ㅋIIzürich

151-0851-00 V

lecture:	CAB G11	Tuesday 10:15-12:00, every week
exercise:	HG E1.2	Wednesday 8:15-10:00, according to schedule (about every 2nd week)

Marco Hutter, Roland Siegwart, and Thomas Stastny

캐zürich

19.09.2017	Intro and Outline	Course Introduction; Recapitulation Position, Linear Velocity				
26.09.2017	Kinematics 1	Rotation and Angular Velocity; Rigid Body Formulation, Transformation	26.09.2017	Exercise 1a	Kinematics Modeling the ABB arm	
03.10.2017	Kinematics 2	Kinematics of Systems of Bodies; Jacobians	03.10.2017	Exercise 1b	Differential Kinematics of the ABB arm	
10.10.2017	Kinematics 3	Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control	10.10.2017	Exercise 1c	Kinematic Control of the ABB Arm	
17.10.2017	Dynamics L1	Multi-body Dynamics	17.10.2017	Exercise 2a	Dynamic Modeling of the ABB Arm	
24.10.2017	Dynamics L2	Floating Base Dynamics	24.10.2017			
31.10.2017	Dynamics L3	Dynamic Model Based Control Methods	31.10.2017	Exercise 2b	Dynamic Control Methods Applied to the ABB arm	
07.11.2017	Legged Robot	Dynamic Modeling of Legged Robots \& Control	07.11.2017	Exercise 3	Legged robot	
14.11.2017	Case Studies 1	Legged Robotics Case Study	14.11.2017			
21.11.2017	Rotorcraft	Dynamic Modeling of Rotorcraft \& Control	21.11.2017	Exercise 4	Modeling and Control of Multicopter	
28.11.2017	Case Studies 2	Rotor Craft Case Study	28.11.2017			
05.12.2017	Fixed-wing	Dynamic Modeling of Fixed-wing \& Control	05.12.2017	Exercise 5	Fixed-wing Control and Simulation	
12.12.2017	Case Studies 3	Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical Take-off and Landing UAVs - Wingtra)				
19.12.2017	Summery and Ou	Summery; Wrap-up; Exam				
				ot Dynamics - Kine	natic Control \| 10.10.2017	2

ㅋHzürich

Outline

- Kinematic control methods
- Inverse kinematics
- Singularities, redundancy
- Multi-task control
- Iterative inverse differential kinematics
- Kinematic trajectory control

Gllzürich

What we saw so far...

- Relative pose between frame coordinate

$$
\mathbf{T}_{A B}=\left[\begin{array}{cc}
\mathbf{C}_{A B} & { }_{A} \mathbf{r}_{A B} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

GHzürich

Forward kinematics

- Forward kinematics
- Description of end-effector configuration (position \& orientation) as a function of joint coordinates
- Use the homogeneous transformation matrix
- $\mathbf{T}_{\mathcal{I E}}(\mathbf{q})=\left[\begin{array}{cc}\mathbf{C}_{I E}(\mathbf{q}) & { }_{\mathcal{I}} \mathbf{r}_{I E}(\mathbf{q}) \\ \mathbf{0}^{T} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$
- Parametrized description

$$
\begin{aligned}
& \mathbf{x}_{e}=\binom{\mathbf{r}_{e}(\mathbf{q})}{\phi_{e}(\mathbf{q})}=f(\mathbf{q}) \\
& \chi_{e}=\binom{\chi_{e_{P}}}{\chi_{e_{R}}}
\end{aligned}
$$

ㅋIIzürich

Inverse kinematics

- Inverse kinematics
- Description of joint angles as a function of the end-effector configuration
- Use the homogeneous transformation matrix
- $\mathbf{T}_{\mathcal{I E}}(\mathbf{q})=\left[\begin{array}{cc}\mathbf{C}_{I E}(\mathbf{q}) & { }_{\mathcal{I}} \mathbf{r}_{I E}(\mathbf{q}) \\ \mathbf{0}^{T} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$
- Parametrized description

$$
\begin{aligned}
& \mathbf{x}_{e}=\binom{\mathbf{r}_{e}(\mathbf{q})}{\phi_{e}(\mathbf{q})}=f(\mathbf{q}) \quad \mathbf{q}=\mathbf{f}^{-1}\left(\mathbf{x}_{E}\right) \\
& \chi_{e}=\binom{\chi_{e_{P}}}{\chi_{e_{R}}}
\end{aligned}
$$

Gllzürich

Closed form solutions

- Geometric or Algebra
- Analytic solutions exist for a large class of mechanisms
- 3 intersecting neighbouring axes (most industrial robots)

Gllzürich

Closed form solutions

- Geometric or Algebraic
- Analytic solutions exist for a large class of mechanisms
- 3 intersecting neighbouring axes (most industrial robots)
- Geometric
- Decompose spatial geometry of manipulator into several plane problems and apply geometric laws

7Hzürich

Closed form solutions

- Geometric or Algebraic
- Analytic solutions exist for a large class of mechanisms
- 3 intersecting neighbouring axes (most industrial robots)
- Geometric
- Decompose spatial geometry of manipulator into several plane problems and apply geometric laws
- Algebraic
- Manipulate transformation matrix equation to get the joint angles

$$
\begin{aligned}
\mathbf{T}_{I E} & =\mathbf{T}_{01}\left(\varphi_{1}\right) \mathbf{T}_{12}\left(\varphi_{2}\right) \mathbf{T}_{23}\left(\varphi_{3}\right) \mathbf{T}_{34}\left(\varphi_{4}\right) \mathbf{T}_{45}\left(\varphi_{5}\right) \mathbf{T}_{56}\left(\varphi_{6}\right) \\
\mathbf{T}_{01}\left(\varphi_{1}\right)^{-1} \mathbf{T}_{I E} & =\mathbf{T}_{12}\left(\varphi_{2}\right) \mathbf{T}_{23}\left(\varphi_{3}\right) \mathbf{T}_{34}\left(\varphi_{4}\right) \mathbf{T}_{45}\left(\varphi_{5}\right) \mathbf{T}_{56}\left(\varphi_{6}\right) \\
\left(\mathbf{T}_{01}\left(\varphi_{1}\right) \mathbf{T}_{12}\left(\varphi_{2}\right)\right)^{-1} \mathbf{T}_{I E} & =\mathbf{T}_{23}\left(\varphi_{3}\right) \mathbf{T}_{34}\left(\varphi_{4}\right) \mathbf{T}_{45}\left(\varphi_{5}\right) \mathbf{T}_{56}\left(\varphi_{6}\right) \\
\left(\mathbf{T}_{01}\left(\varphi_{1}\right) \mathbf{T}_{12}\left(\varphi_{2}\right) \mathbf{T}_{23}\left(\varphi_{3}\right)\right)^{-1} \mathbf{T}_{I E} & =\mathbf{T}_{34}\left(\varphi_{4}\right) \mathbf{T}_{45}\left(\varphi_{5}\right) \mathbf{T}_{56}\left(\varphi_{6}\right)
\end{aligned}
$$

ㅋIIzürich

Inverse Differential Kinematics

- We have seen how Jacobians map velocities from joint space to task-space
- $\mathbf{w}_{e}=\mathbf{J}_{e 0} \dot{\mathbf{q}}$
- In general, we are interested in the inverse problem
- Simple method: use the pseudoinverse

$$
\dot{\mathbf{q}}=\mathbf{J}_{e 0}^{+} \mathbf{w}_{e}^{*}
$$

- ... however, the Jacobian might be singular!

ㅋIIzürich

Singularities

- A singularity is a joint-space configuration \mathbf{q}_{s} such that $\mathbf{J}_{e 0}\left(\mathbf{q}_{s}\right)$ is column-rank deficient
- the Jacobian becomes badly conditioned
- small desired velocities \mathbf{w}_{e}^{*} produce high joint velocities $\dot{\mathbf{q}}$
- Singularities can be classified into:
- boundary (e.g. a stretched out manipulator)
- easy to avoid during motion planning
- internal
- harder to prevent, requires careful motion planning

ㅋIIzürich

Singularities

- A singurality is a joint-space configuration \mathbf{q}_{s} such that $\mathbf{J}_{e 0}\left(\mathbf{q}_{s}\right)$ is column-rank deficient
- the Jacobian becomes badly conditioned
- small desired velocities \mathbf{w}_{e}^{*} produce high joint velocities $\dot{\mathbf{q}}$
- Use a damped version of the Moore-Penrose pseudo inverse

$$
\begin{aligned}
& \dot{\mathbf{q}}=\mathbf{J}_{e 0}^{T}\left(\mathbf{J}_{e 0} \mathbf{J}_{e 0}^{T}+\lambda^{2} \mathbf{I}\right)^{-1} \mathbf{w}_{e}^{*} \quad \min \quad\left\|\mathbf{w}_{e}^{*}-\mathbf{J}_{e 0} \dot{\mathbf{q}}\right\|^{2}+\lambda^{2}\|\dot{\mathbf{q}}\|^{2} \\
& \lambda>0, \lambda \in \mathbb{R}
\end{aligned}
$$

캐zürich

Redundancy

- A kinematic structure is redundant if the dimension of the task-space is smaller than the dimension of the joint-space
- E.g. the human arm has 7DoF (three in the shoulder, one in the elbow, and three in the wrist)
- $\mathbf{q} \in \mathbb{R}^{7}$
- $\mathbf{w} \in \mathbb{R}^{6}$
- $\mathbf{J}_{e 0} \in \mathbb{R}^{6 \times 7}$
- Redundancy implies infinite solutions
- $\dot{\mathbf{q}}=\mathbf{J}_{e 0}^{+} \mathbf{w}_{e}^{*}+\mathbf{N} \dot{\mathbf{q}}_{0}$
$\mathbf{N}=\mathcal{N}\left(\mathbf{J}_{e 0}\right)$
$\mathbf{J}_{e 0}\left(\mathbf{J}_{e 0}^{+} \mathbf{w}_{e}^{*}+\mathbf{N} \dot{\mathbf{q}}_{0}\right)=\mathbf{w}_{e}^{*}$

$$
\mathbf{J}_{e 0} \mathbf{N}=\mathbf{0}
$$

- One way to compute the nullspace projection matrix
- $\mathbf{N}=\mathbf{I}-\mathbf{J}_{e 0}^{+} \mathbf{J}_{e 0}$

캐zürich

Multi-task control

- Manipulation (as well as locomotion!...) is a complex combination of high level tasks
- track a desired position
- ensure kinematic constraints
- reach a desired end-effector orientation
- Break down the complexity into smaller tasks
- Two methods
- Multi-task with equal priority
- Multi-task with Prioritization

$$
\operatorname{task}_{i}:=\left\{\mathbf{J}_{i}, \mathbf{w}_{i}^{*}\right\}
$$

ㅋIIzürich

Multi-task control

Equal priority

- Assume that tasks have been defined
- The generalised velocity is given by
$\cdot \dot{q}=\underbrace{\left[\begin{array}{c}\mathbf{J}_{1} \\ \vdots \\ \mathbf{J}_{n_{t}}\end{array}\right]^{+}}_{\overline{\mathbf{J}}} \underbrace{\left(\begin{array}{c}\mathbf{w}_{1}^{*} \\ \vdots \\ \mathbf{w}_{n_{t}}^{*}\end{array}\right)}_{\overline{\mathbf{w}}}$

The pseudo inversion will try to solve all tasks at the same time in an optimal way

- It is possible to weigh some tasks higher than others

$$
\overline{\mathbf{J}}^{+W}=\left(\overline{\mathbf{J}}^{T} \mathbf{W} \overline{\mathbf{J}}\right)^{-1} \overline{\mathbf{J}}^{T} \mathbf{W} \quad \mathbf{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{m}\right)
$$

ㅋIIzürich

Multi-task control

Prioritization

- Instead of solving all tasks at once, we can use consecutive nullspace projection to ensure a strict priority
- We already saw that $\dot{\mathbf{q}}=\mathbf{J}_{1}^{+} \mathbf{w}_{1}^{*}+\mathbf{N}_{1} \dot{\mathbf{q}}_{0}$
- The solution for task 2 should not violate the one found for task 1
- $\quad \mathbf{w}_{2}=\mathbf{J}_{2} \dot{\mathbf{q}}=\mathbf{J}_{2}\left(\mathbf{J}_{1}^{+} \mathbf{w}_{1}^{*}+\mathbf{N}_{1} \dot{\mathbf{q}}_{0}\right)$
- This can be solved for $\dot{\mathbf{q}}_{0}$

$$
\begin{aligned}
& \dot{\mathbf{q}}_{0}=\left(\mathbf{J}_{2} \mathbf{N}_{1}\right)^{+}\left(\mathbf{w}_{2}^{*}-\mathbf{J}_{2} \mathbf{J}_{1}^{+} \mathbf{w}_{1}^{*}\right) \\
& \dot{\mathbf{q}}=\mathbf{J}_{1}^{+} \mathbf{w}_{1}^{*}+\mathbf{N}_{1}\left(\mathbf{J}_{2} \mathbf{N}_{1}\right)^{+}\left(\mathbf{w}_{2}^{*}-\mathbf{J}_{2} \mathbf{J}_{1}^{+} \mathbf{w}_{1}^{*}\right)
\end{aligned}
$$

- Back substituting yields
- The iterative solution for T tasks is then given by

$$
\dot{\mathbf{q}}=\sum_{i=1}^{n_{T}} \mathbf{N}_{i} \dot{\mathbf{q}}_{i}, \quad \text { with } \quad \dot{\mathbf{q}}_{i}=\left(\mathbf{J}_{i} \mathbf{N}_{i}\right)^{+}\left(\mathbf{w}_{i}^{*}-\mathbf{J} \sum_{k=1}^{i-1} \mathbf{N}_{k} \dot{\mathbf{q}}_{k}\right)
$$

FHzürich

Multi-task control

Example - single task

- 3DoF planar robot arm with unitary link lengths
- Find the generalised velocities, given
- $\mathbf{q}_{t}=(\pi / 6, \pi / 3, \pi / 3)^{T} \quad{ }_{0} \dot{\mathbf{r}}_{E, t}^{*}=(1,1)^{T}$
- ${ }_{I} \mathbf{J}_{e 0_{P}}=\left[\begin{array}{ccc}l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} & l_{2} c_{12}+l_{3} c_{123} & l_{3} c_{123} \\ 0 & 0 & 0 \\ -l_{1} s_{1}-l_{2} s_{12}-l_{3} c_{123} & -l_{2} s_{12}-l_{3} s_{123} & -l_{3} s_{123}\end{array}\right]$

ㅋHzürich

Multi-task control

Example - stacked task

- 3DoF planar robot arm with unitary link lengths
- Find the generalised velocities, given
- $\mathbf{q}_{t}=(\pi / 6, \pi / 3, \pi / 3)^{T} \quad{ }_{0} \dot{\mathbf{r}}_{E, t}^{*}=(1,1)^{T}$
- ${ }_{I} \mathbf{J}_{e 0_{P}}=\left[\begin{array}{ccc}l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} & l_{2} c_{12}+l_{3} c_{123} & l_{3} c_{123} \\ 0 & 0 & 0 \\ -l_{1} s_{1}-l_{2} s_{12}-l_{3} c_{123} & -l_{2} s_{12}-l_{3} s_{123} & -l_{3} s_{123}\end{array}\right]$
- Additionally, we want to fulfill a second task with the same priority as the first, namely that the first and third joint velocities are zero

ㅋIzürich

Mapping associated with the Jacobian

캐zürich

Numerical solutions

Inverse differential kinematics

- Jacobians map joint-space velocities to end-effector velocities
- $\dot{\chi}_{e}=\mathbf{J}_{e A}(\mathbf{q}) \dot{\mathbf{q}}$

$$
\Delta \chi_{e}=\mathbf{J}_{e A}(\mathbf{q}) \cdot \Delta \mathbf{q}
$$

- We can use this to iteratively solve the inverse kinematics problem
- target configuration χ_{e}^{*}, initial joint space guess \mathbf{q}^{0}

1. $\mathbf{q} \leftarrow \mathbf{q}^{0}$
2. while $\left\|\chi_{e}^{*}-\chi_{e}(\mathbf{q})\right\| \geq$ tol do
3. $\mathbf{J}_{e A} \leftarrow \mathbf{J}_{e A}(\mathbf{q})=\frac{\partial \chi_{\mathbf{e}}}{\partial \mathbf{q}}(\mathbf{q})$
4. $\mathbf{J}_{e A}^{+} \leftarrow\left(\mathbf{J}_{e A}(\mathbf{q})\right)^{+}$
5. $\Delta \chi_{e} \leftarrow \chi_{e}^{*}-\chi_{e}(\mathbf{q})$
6. $\mathbf{q} \leftarrow \mathbf{q}+\mathbf{J}_{e A}^{+} \Delta \chi_{e}$
\triangleright start configuration
\triangleright while the solution is not reached
\triangleright evaluate Jacobian
\triangleright compute the pseudo inverse
\triangleright find the end-effector configuration error vector
\triangleright updated the generalized coordinates

GHzürich

Inverse kinematics

Three-link arm example

- Determine end-effector Jacobian

GHzürich

Inverse kinematics
 Three-link arm example

- Determine end-effector Jacobian

1. Introduce coordinate frames

GHzürich

Inverse kinematics
 Three-link arm example

- Determine end-effector Jacobian

1. Introduce coordinate frames
2. Introduce generalized coordinates

ㅋIIzürich

Inverse kinematics

Three-link arm example

- Determine end-effector Jacobian

1. Introduce coordinate frames
2. Introduce generalized coordinates
3. Determine end-effector position

$$
{ }_{0} \mathbf{r}_{O E}(\mathbf{q})=\left[\begin{array}{c}
l_{0}+l_{1} \cos \left(q_{1}\right)+l_{2} \cos \left(q_{1}+q_{2}\right)+l_{3} \cos \left(q_{1}+q_{2}+q_{3}\right) \\
l_{1} \sin \left(q_{1}\right)+l_{2} \sin \left(q_{1}+q_{2}\right)+l_{3} \sin \left(q_{1}+q_{2}+q_{3}\right) \\
0
\end{array}\right]
$$

패zürich

Inverse kinematics

Three-link arm example

- Determine end-effector Jacobian

1. Introduce coordinate frames
2. Introduce generalized coordinates
3. Determine end-effector position

$$
{ }_{0} \mathbf{r}_{0 E}(\mathbf{q})=\left[\begin{array}{c}
l_{0}+l_{1} \cos \left(q_{1}\right)+l_{2} \cos \left(q_{1}+q_{2}\right)+l_{3} \cos \left(q_{1}+q_{2}+q_{3}\right) \\
l_{1} \sin \left(q_{1}\right)+l_{2} \sin \left(q_{1}+q_{2}\right)+l_{3} \sin \left(q_{1}+q_{2}+q_{3}\right) \\
0
\end{array}\right]
$$

4. Compute the Jacobian

$$
\begin{aligned}
{ }_{0} \mathbf{J}_{e P} & =\frac{\partial}{\partial \mathbf{q}}{ }^{0} \mathbf{r}_{0 E}(\mathbf{q}) \\
& =\left[\begin{array}{ccc}
-l_{1} \sin \left(q_{1}\right)-l_{2} \sin \left(q_{1}+q_{2}\right)-l_{3} \sin \left(q_{1}+q_{2}+q_{3}\right) & -l_{2} \sin \left(q_{1}+q_{2}\right)-l_{3} \sin \left(q_{1}+q_{2}+q_{3}\right) & -l_{3} \sin \left(q_{1}+q_{2}+q_{3}\right) \\
l_{1} \cos \left(q_{1}\right)+l_{2} \cos \left(q_{1}+q_{2}\right)+l_{3} \cos \left(q_{1}+q_{2}+q_{3}\right) & l_{2} \cos \left(q_{1}+q_{2}\right)+l_{3} \cos \left(q_{1}+q_{2}+q_{3}\right) & l_{3} \cos \left(q_{1}+q_{2}+q_{3}\right) \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

GHzürich

Inverse kinematics

Three-link arm example

- Iterative inverse kinematics to find desired configuration
- $\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathbf{J}_{e P}^{+}\left(\mathbf{r}_{\text {goal }}-\mathbf{r}^{i}\right)$

GHzürich

Inverse kinematics

Three-link arm example

- Iterative inverse kinematics to find desired configuratior
$-\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathrm{J}_{\text {e }}^{+}\left(\mathrm{r}_{\text {goal }}-\mathbf{r}^{i}\right)$
- start value

$$
\mathbf{q}^{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

GHzürich

Inverse kinematics

Three-link arm example

- Iterative inverse kinematics to find desired configuratior
- $\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathbf{J}_{\text {eP }}^{+}\left(\mathbf{r}_{\text {goal }}-\mathbf{r}^{i}\right)$
- start value

$$
\mathbf{q}^{0}=\left[\begin{array}{c}
\pi / 2 \\
0 \\
0
\end{array}\right]
$$

AHzürich

Inverse kinematics

Three-link arm example

- Iterative inverse kinematics to find desired configuratior
- $\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathbf{J}_{\text {e }}^{+}\left(\mathrm{r}_{\text {goal }}-\mathrm{r}^{i}\right)$
- start value

$$
\mathbf{q}^{0}=\left[\begin{array}{c}
\pi / 2 \\
-\pi / 2 \\
0
\end{array}\right]
$$

- Same goal position, multiple solutions
- joint-space bigger than task-space, redundant system

ㅋIIzürich

Inverse kinematics

Iterative methods

- Let's have a closer look at the joint update rule
- $\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathbf{J}_{e A}^{+} \Delta \chi$
- Two main issues
- Scaling
- if the current error is too large, the error linearization implemented by the Jacobian is not accurate enough
- use a scaling factor $0<k<1 \quad \mathbf{q}^{i+1}=\mathbf{q}^{i}+k \mathbf{J}_{e A}^{+} \Delta \chi$
- unfortunately, this will lead to slower convergence

ㅋIIzürich

Inverse kinematics

Iterative methods

- Let's have a closer look at the joint update rule
- $\mathrm{q}^{i+1}=\mathrm{q}^{i}+\mathrm{J}_{e A}^{+} \Delta \chi$
- Two main issues
- Singular configurations
- When the Jacobian is rank-deficient, the inversion becomes a badly conditioned problem
- Use the damped pseudoinverse (Levenberg-Marquardt)
- $\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathbf{J}_{e A}^{T}\left(\mathbf{J}_{e A} \mathbf{J}_{e A}^{T}+\lambda^{2} \mathbf{I}\right)^{-1} \Delta \chi$
- Use the transpose of the Jacobian
- $\mathbf{q}^{i+1}=\mathbf{q}^{i}+\alpha \mathbf{J}_{e A}^{T} \Delta \chi$
- For a detailed explanation, check "Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares methods", Samuel Buss, 2009

GHzürich

Inverse differential kinematics Orientation error

- 3D rotations are defined in the Special Orthogonal group SO(3)
- The parametrization affects convergence from start to goal orientation

$$
\mathbf{q}^{i+1}=\mathbf{q}^{i}+\mathbf{J}_{e A}^{+} \Delta \chi
$$

패zürich

Inverse differential kinematics
 Orientation error

- 3D rotations are defined in the Special Orthogonal group SO(3)
- The parametrization affects convergence from start to goal orientation
- Rotate along shortest path in $\mathrm{SO}(3)$: use rotational vectors which parametrize rotation from start to goal

$$
\Delta \chi_{\text {rotvec }}=\Delta \varphi \quad \Longrightarrow \mathbf{C}_{\mathcal{G S}}(\Delta \varphi)=\mathbf{C}_{\mathcal{G I}}\left(\varphi^{*}\right) \mathbf{C}_{\mathcal{S} \mathcal{I}}^{T}\left(\varphi^{t}\right)
$$

- The update law for rotations will then be -

This is NOT the difference between rotation vectors, but the rotation vector extracted from the relative rotation between start and goal

ㅋHzürich

Rotation with rotation vector and angle

ㅋIIzürich

Trajectory control
 Position

- Consider a planned desired motion of the end effector
- $\mathbf{r}_{e}^{*}(t)$

$$
\dot{\mathbf{r}}_{e}^{*}(t)
$$

- Let's see how to kinematically control the end-effector position
- Feedback term
- $\Delta \mathbf{r}_{e}^{t}=\mathbf{r}_{e}^{*}(t)-\mathbf{r}_{e}\left(\mathbf{q}^{t}\right)$
- We can design a nonlinear stabilizing controller law
- $\dot{\mathbf{q}}=\mathbf{J}_{e 0_{P}}^{+}\left(\dot{\mathbf{r}}^{*}+k_{P P} \Delta \mathbf{r}_{e}^{t}\right)$
- If we substitute this into the differential kinematics equation, we get
- $\mathbf{w}_{e}=\mathbf{J}_{e P} \dot{\mathbf{q}}=\dot{\mathbf{r}}^{*}+k_{P P} \Delta \mathbf{r}_{e}^{t} \Longrightarrow \Delta \dot{\mathbf{r}}_{e}^{t}+k_{P P} \Delta \mathbf{r}_{e}^{t}=\mathbf{0}$

GHzürich

Trajectory control

Orientation

- Derivation more involved
- Final control law similar to the position case

$$
\dot{\mathbf{q}}=\mathbf{J}_{e 0_{R}}^{+}\left(\omega(t)_{e}^{*}+k_{P R} \Delta \varphi\right)
$$

Note that we are not using the analytical Jacobian since we are dealing with angular velocities and rotational vectors

