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Abstract— Generating robot motion trajectories instanta-
neously in the moment unforeseen sensor events happen is
very essential for many real-world robot applications. Using
a previous work on online trajectory generation as a basis, this
paper proposes an alternative approach that also considers dy-
namic models. The former class of algorithms does not take into
account dynamically changing acceleration capabilities based
on maximum actuator forces/torques. This paper extends target
velocity-based algorithms of the previous approach by taking
into consideration the entire system dynamics when generating
trajectories online within one control cycle (typically 1ms or
less). The extension includes the acceleration capabilities of
a robot at every discrete time step assuming constant values
for the maximum actuator forces/torques, thus allowing the
generation of adaptive trajectory profiles during the motion
of the robot. Several real-world experimental results using a
seven-degree-of-freedom lightweight robot arm underline the
relevance of this extension.

I. INTRODUCTION

Integrating sensors in robot motion control systems and us-
ing sensor signals at several levels — for perception, for high-
level task and motion planning, for discrete or continuous
task transitions, and for low-level trajectory generation and
feedback control — is essential for all domains of robotics. A
major obstacle that prevents robots from accomplishing real-
world tasks is their inability to physically interact with, and
effectively manipulate, the most common objects generally
found in human environments. Robots generally employ pre-
cision to perform a manipulation task. Humans, in contrast,
employ compliance through tactile and force feedback to
overcome their imprecision, allowing them to resolve un-
certainties associated with the task. The lack of compliance
and force control has been indeed a major limiting factor
in the ability of robots to interact and manipulate in human
environments.

Considering robots with compliant motion control capa-
bilities (e.g., [1], [2]), different — task-dependent — reaction
behaviors [3] are desired in the moment a collision or
prospective collision is detected. In the moment a potential
collision is detected, high control gains are desirable in
order to let the robot move away from the objects that it
is about to collide with [4]. To achieve the best immediate
reaction behaviors for avoiding collisions, controllers have
to be switched and trajectories have to be generated instan-
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Fig. 1: Overview: online trajectory generation algorithms [5]–[7]
are combined with offline methods [8]–[10] to take into account
time-varying acceleration capabilities.

taneously in order to allow smooth and continuous motions
during discrete switching events.

In this paper, we consider a robot with multiple de-
grees of freedom (DOFs) with constant maximum joint
forces/torques. The kinematic and dynamic model of the
system is known, and we take the concepts of [5]–[7] as a
basis, so that trajectories can be generated online from arbi-
trary states of motion. While the existing algorithms [5]–[7]
assume constant acceleration values over entire trajectories,
we propose a new concept that

1) generates robot motion trajectories from arbitrary
initial states of motion within one low-level control
cycle (≈ 1 ms) and

2) takes into account jerk-limits and dynamics not
only locally but globally over the entire trajectory.

The acceleration capabilities based on the dynamics have
dependent boundaries between each single axis, while the
acceleration constraints used for the online trajectory gener-
ation have to be linearly independent. The new concept takes
this into account and converts the dependent capabilities into
linearly independent constraints. Trajectories that will bring
at least one of the actuators into force/torque saturation are
computed instantaneously in the moment unforeseen sensor
signals or events happen. As a result, robots can employ their
dynamic capabilities immediately and react instantaneously
(cf. Fig. 1). This method can be applied to purely position-
controlled mechanisms and to variable-stiffness systems.

II. RELATED WORK

In [11]–[14], overviews on robot motion planning algo-
rithms are given. Most related to this work are the online

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6358-7/13/$31.00 ©2013 IEEE 5644



trajectory generation (OTG) concepts of Broquère et al. [5],
Haschke et al. [6], and Kröger [7]. All three approaches
allow generating robot motion trajectories from arbitrary
initial states of motion, however, they are not capable of
using dynamic models for their planning procedures, so that
varying acceleration capabilities are not taken into account.

Based on the approach of Hollerbach [15], Bobrow et al.
[8], Shin et al. [10], and Pfeiffer et al. [9] independently
developed a technique for time-optimal trajectory planning
for arbitrarily specified paths.

Here, robot dynamics are described in dependence on a
parametric path representation, so that a maximum acceler-
ation is calculated for each point of the trajectory.

Dahl et al. [16] suggested an online trajectory adaptation
method to improve the path accuracy of pre-planned robot
motions. Using the basic algorithm of Bobrow/Pfeiffer/Shin
[8]–[10], their method adapts the acceleration along the path,
and furthermore the parameters of the trajectory-following
controller are adapted online, so that underlying trajectory-
following controllers become adapted depending on the
current motion state.

An offline numerical approach has been shown in Wu
[17], which assumes a given path and also limits the jerk.
The method does not allow start and target velocities and
accelerations to be unequal to zero.

The real-time adaptive motion planning framework by
Vannoy et al. [18] and elastic strips framework by Brock
et al. [19] are key to implement reactive motion control
behaviors in robot control systems. These works use splines
to represent calculated trajectories; it is the task to calculate
respective sets of spline knots and trajectory parameters
during runtime.

Instead of generating motion trajectories, a concept pro-
posed by Haddadin et al. [20] uses virtual springs and damp-
ing elements as input values for a Cartesian impedance con-
troller. Other recent online trajectory generation approaches
were published by Guarino Lo Bianco et al. [21]. Based on
the work of De Luca et al. [4], a time-scaling method is
proposed that takes into account dynamic models of robot
systems. Formulated as a control problem, the works of
Khansari-Zadeh et al. [22] illustrates a new trajectory gen-
eration method allowing immediate reactions to unforeseen
sensor signals. Zanchettin et al. [23] show a very similar
concept and applies it to human-robot interaction scenarios.

III. ONLINE TRAJECTORY GENERATION (OTG)

This section briefly summarizes the functionality and
nomenclature used for the target velocity-based OTG, short
VOTG. For more details about this algorithm, please refer
to [7]. The new target velocity-based dynamic OTG, short
VDOTG, will be described based on this.

Figure 2 illustrates the input and output values: At a
discrete instant ti, the algorithm receives the command to
calculate a synchronized motion trajectory, which transfers
the motion state from Ξi to Ξi,trgt within the shortest pos-
sible time while not exceeding the given motion constraints
Bi.

Fig. 2: Input and output values of the target velocity-based Type
IV OTG algorithm (cf. [7]).

We assume a time-discrete system with ti = ti−1 +
tcycle and i ∈ {1, . . . , N} where tcycle represents the
cycle time. Time-discrete values have an additional sub-
script i compared to time-continuous values. The position
of a robotic system with K DOFs at time ti is qi =
(1qi, . . . , kqi, . . . , Kqi)

T , the time derivations are indicated
by q̇i and q̈i, respectively. A complete motion state at
time ti is described by the matrix Ξi = (qi, q̇i, q̈i) =
(1ξi, ..., kξi, ...,Kξi)

T . kξi stands for the k-th row of the
motion state matrix Ξi. The desired target motion state at
time instant ti is contained in Ξi,trgt = (q̇i,trgt, q̈i,trgt ≡ 0).
A target position cannot be defined, but is determined by the
algorithm. The target acceleration has to be zero.

The kinematic motion constraints at a time ti are denoted
asBi =

(
{q̈i,min, q̈i,max}, {

...
q i,min,

...
q i,max}

)
and constrain

only the acceleration and the jerk of the motion state Ξi

∀ i ∈ {1, . . . , N}. The velocities are not constrained by this
algorithm. All variables combined are the input parameters
of the OTG algorithm

W i = (Ξi,Ξi,trgt,Bi) . (1)

The VOTG algorithm computes Ξi+1, which is the motion
state on the kinematically time-optimal trajectory that will be
used as a command value for underlying controllers at ti+1.
z−1 indicates, that Ξi+1 is fed back as the new Ξi of the
next cycle. All DOFs will reach the desired velocities Ξi,trgt

simultaneously.
The algorithm assumes that the kinematic motion con-

straints Bi are constant at every instant ti. This way, the
dynamic capabilities of a robot system cannot be deployed,
and conservative values for Bi have to be chosen to com-
pute executable trajectories. In order to fully deploy the
time-varying maximum acceleration capabilities, the OTG
algorithm has to take into account the dynamic model. Our
goal in this paper is generating dynamically time-optimal
trajectories that are provided within one control cycle, that
is, within tcycle.
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Fig. 3: Maximum torques as blue rectangles are mapped to the
maximum accelerations as red parallelograms for a whole range
of joint space configurations. For one configuration the torque
combination (1τmax, 2τmax)

T is shown as a blue arrow pointing
to one corner of the blue rectangle. The blue arrow maps to
the red arrow, which is the equivalent acceleration corner of the
parallelogram. The green arrow indicates the direction of the current
joint velocity.

IV. DYNAMICS AND PROBLEM DESCRIPTION

The standard form of the equations of motion in joint
space is given in Eqn. (2.37) of [24]:

M(q) q̈ + c(q, q̇) q̇ + τ g(q) = τ (2)

the vector q contains the joint positions, M(q) is the mass
matrix, c(q, q̇) are the Coriolis/centrifugal torques, τ g(q)
are the gravity torques and τ are the actuator torque. Using
Eqn. (2) leads to the inverse dynamic model

q̈extr =M(q)−1 (τ extr − τ g(q)− c(q, q̇) q̇) (3)

where the extreme actuator torques τ = τ extr are mapped to
the extreme joint accelerations q̈ = q̈extr. The corner values
q̈ extr can be found through combination of the extreme
torque values kτextr of each individual actuator:

∀ k ∈ {1, . . . , K} : kτextr ∈ {kτmin, kτmax} (4)
with kτmin ≤ kτ ≤ kτmax (5)

We assume that elements of τmin and τmax are constant
and do not depend on q̇. In order to illustrate the joint
acceleration capabilities, Fig. 3 considers a simple two-DOF
planar robot with two revolute joints.

A. Acceleration Parallelotopes

The mass matrix maps actuator forces to accelerations,
while the Coriolis/centrifugal and the gravity torques cause
an offset. Figure 4 visualizes this: For 1D, a line segment
is mapped to another one. for 2D, the torque rectangles are
mapped to a parallelogram with a shifted origin compared to
the torque-box origin. For 3D, the shape of the acceleration
capabilities is called parallelepiped. For the general case of
n-dimensions, the shape is called parallelotope (PT).

If the origin of the acceleration coordinate system is inside
the PT, the manipulator can theoretically accelerate in all di-
rections with values anywhere between zero and the extremal
values described by the PT bounds. Any chosen acceleration
direction can also be extended to its negative direction. If

Fig. 4: Visualization of parallelotopes.

the sum of Coriolis/centrifugal and gravity torques surpasses
the available actuator torques, the origin moves outside the
PT. In this case, the robot can only accelerate in one of the
directions lying inside a truncated cone. The minimal and
maximal acceleration values of a direction vector inside the
cone have the same sign. The apex point of the cone is the
origin of the acceleration frame, the cap point is the first
intersection of the central ray with the PT, the base point is
the second intersection with the PT. In the further discussions
we assume, that actuator torques are always high enough, so
that the origin of the acceleration frame is always inside the
PT.

V. TARGET VELOCITY-BASED DYNAMIC OTG (VDOTG)
A. One-Dimensional Path Representation

The VOTG [7] provides an initial motion trajectory, which
is used when simplifying the analysis of the acceleration
capabilities of a multi-DOF robot to a one-dimensional path
problem. According to [8], a multidimensional joint position
trajectory q(t) can also be described in dependency to the
one-dimensional path variable s(t):

q(t) := r(s(t)) (6)

The path describes the arc length of a continuous position
progression and is defined by:

s(t) =

∫ t

t0

||q̇(t)|| dt (7)

The VOTG computes a second-order, piecewise defined
velocity progression q̇(t), which does not allow to solve the
integral in Eqn. (7) in an analytical way. Only the derivations
of s(t) are needed, as will be shown later. The dependency
to time is dropped in the following to improve legibility.
Differentiating Eqn. 6 with respect to time yields

q̇ =
∂r(s)

∂s
ṡ = rs(s) ṡ (8)

rs(s) describes the first partial derivation of r(s) by s. The
second derivation leads to

q̈ = rs(s) s̈+
∂rs(s)

∂s

∂s

∂t
ṡ

= rs(s) s̈︸ ︷︷ ︸
tang.acc.

+ rss(s) ṡ
2︸ ︷︷ ︸

norm.acc.

(9)

where the acceleration consists of a tangential component
along the path and a normal component perpendicular to the
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path. The expression rss(s) is the second partial derivation of
r(s) by s. To prove this statement, we differentiate Eqn. (7)
by time:

ṡ = ||q̇|| (10)

Combining Eqn. (10) with Eqn. (8) leads to:

q̇ =
q̇

||q̇||
||q̇|| = rs(s) ṡ (11)

This shows that the velocity consist of a unit vector tangential
to the path:

rs(s) =
q̇

||q̇||
=
q̇

ṡ
. (12)

rs(s) times s̈ results in the tangential acceleration of Eqn. (9)
and the vector rss(s) describes the change along the path s
and is therefore always perpendicular to rs(s). rss(s) is a
vector normal to the path and calculated using Eqn. (9):

rss(s) =
q̈ − rs(s) s̈

ṡ2
(13)

For the second derivation of s follows

s̈ =
∂ṡ

∂t
=
∂||q̇||
∂t

=
∂
√∑K

i=1 iq̇2

∂t

=

∑K
i=1 iq̇iq̈√∑K
i=1 iq̇2

=
q̇ · q̈
||q̇||

(14)

The denominators of s̈, rs(s), and rss(s) contain ṡ. In the
special case, that q̇ = 0 and therefore ṡ = 0, we have
to consider in each case L’Hospital’s Rule and find after
rearranging the following feasible solutions:

a) Case 1: q̇ → 0 and q̈ → 0:

lim
q̇,q̈→0

s̈ = 0 (15)

lim
q̇,q̈→0

rs(s)
0<k

...
q

=

...
q (q)

||...q (q)||
∀ k ∈ {1, . . . ,K} (16)

lim
q̇,q̈→0

rss(s) = 0 (17)

b) Case 2: q̇ → 0 and q̈ 6= 0:

lim
q̇→0

s̈ = ||q̈|| (18)

lim
q̇→0

rs(s)
0<k q̈
=

q̈

||q̈||
∀ k ∈ {1, . . . ,K} (19)

lim
q̇→0

rss(s) = 0 (20)

B. Combining Path Representation with Dynamics

We combine the one-dimensional path-representation with
the inverse dynamics model to derive the extremal accelera-
tions for a path described by the variable s̈. From this point
on we shorten rs(s) to rs and rss(s) to rss. We substitute
q̈ from Eqn. (9) into Eqn. (2).

M(q) (rs s̈+ rss ṡ
2) = τ − τ g(q)− c(q, q̇) q̇ (21)

Using α := M(q) rs and β := τ g(q) + c(q, q̇) q̇ +
M(q) rss ṡ

2 abbreviates Eqn. (21) to

α s̈ = τ − β (22)

The three variables τ , α, and β only depend on q, q̇, ṡ,
rs, and rss. q and q̇ can be acquired from sensor inputs
in the first instant the acceleration capabilities are calculated
and after that, it can be calculated in every time step using
the analytical descriptions of the polynomials generated by
the OTG algorithm. ṡ, rs, and rss are calculated in every
time step using the values of q and q̇. We write the k-th row
of Eqn. (22), which stands for the k-th DOF:

kα s̈ = kτ − kβ (23)

In a next step, we take into account the torque capabilities,
which leads to K individual inequalities, one for each DOF:

kτmin − kβ ≤ kα s̈ ≤ kτmax − kβ (24)

Note that kα 6= 0, because the mass matrix M(q) is
always positive definite and rs is the non-zero path vector.
Therefore, Eqn. (24) can be written as:

kl ≤ s̈ ≤ kh , kl =

{
kτmin− kβ

kα
for kα > 0

kτmax− kβ

kα
for kα < 0

kh =

{
kτmax− kβ

kα
for kα > 0

kτmin− kβ

kα
for kα < 0

(25)

Equation (25) describes the range of joint accelerations s̈,
for which a single actuator can hold the manipulator on its
joint path without violating the k-th constraint. To fulfill all
the constraints,

s̈ ∈ [kl, kh] ∀ k ∈ {1, . . . , K} (26)

has to be fulfilled. Only if the absolute velocity is too
high, the intervals [kl, kh] will have no intersection ∀ k ∈
{1, . . . , K}. Otherwise there will be an intersection of all
the intervals. It follows that an admissible acceleration is
any tangential acceleration s̈ that does not violate Eqn. (24)
∀ k ∈ {1, . . . , K}, that is:

s̈min ≤ s̈ ≤ s̈max with s̈min = maxk kl

s̈max = mink kh (27)

We transform s̈min and s̈max back into the n-dimensional
space to get the two intersections with the PT:

q̈min/max,path = s̈min/max rs + rss ṡ
2 (28)

For a given motion state Ξ, these two values express how
much the robot could accelerate/decelerate on the current
path while still staying on it. We transform these values in
absolute minimal and absolute maximal acceleration values
∀ k ∈ {1, . . . , K}:

kq̈min,abs = min(kq̈min,path, kq̈max,path) (29)

kq̈max,abs = max(kq̈min,path, kq̈max,path) (30)
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C. Merging Algorithm

In order to plan trajectories for every axis from start to
end, there has to be a period of acceleration and a period
of deceleration. kq̈min/max,abs represent only the limitations
of the current motion state, but do not work well for the
planning of a complete motion trajectory. A 2D example
in Fig. 5 illustrates the problem. Zero acceleration is at
the origin q̈1/2. The tangential acceleration is prolonged in
both directions till the line intersects with the boundary. The
intersection is q̈min/max,path (cf. Eqn. (28)). In a 3D or
higher dimensional case, the prolonged (hyper) line would
intersect with two of the (hyper) planes of the PT. The
blue-dashed rectangle shows the absolute acceleration limits
q̈min/max,abs. This rectangle does not include the origin,
because all coordinates of q̈min/max,abs are positive. These
values are not useful for trajectory planning, since they would
need to be extended in the negative direction in order to
include the origin. This is shown as a black-dashed rectangle.
The discrepancy between what is given and what is at least
needed is shown as a light grey area. Even though the origin
would now be included, only acceleration, but almost no
deceleration capabilities are given. A very small deceleration
limit renders the execution time far too long and is therefore
not optimal at all.

Fig. 5: Acceleration capabilities for a given motion state.

The “potentially” available acceleration/deceleration capa-
bilities of the PT need to be considered, even though most of
it is not needed for the current motion state. This motivates
the merging algorithm, which is outlined in the following:

1) Using the current motion state Ξi, calculate the path
derivations ṡ, s̈, rs, and rss.

2) Extend each coordinate axis in negative and positive
direction until they intersect with the boundaries. To
do this, we substitute the acceleration vector q̈ in
Eqn. (21) with the axis vector νl. This vector is
computed as νl = el νl, where el is a unit vector
along each axis with l ∈ {1, . . . ,K}. νl describes
the scalar value of the vector along axis l. The rest of
the calculation is analogous to Sec. V-B. It results in
the acceleration constraints, q̈min/max,axes.

3) If q̇ = 0 ∧ q̈ = 0: q̈min/max = q̈min/max,axes

4) Else: Calculate the extremal path accelerations
q̈min/max,path according to Sec. V-B and find for both
their absolute largest coordinate.

5) If both accelerations have their largest absolute value
on the same coordinate axis with the same sign, we
only store the larger of both as a constraint for that
axis. We take a further look into the other one. We call
the larger acceleration A and the smaller acceleration
B:

a) For B, we look at its second largest coordinate
and compare it with the same coordinate axis of
A.

b) If both points have on that axis a value with
the same sign and the coordinate of A is larger
than the one of B, we look at the third largest
coordinate of B in the same way again.

c) We repeat this until they neither have the same
sign or they have the same sign and the coordi-
nate of B is larger than the one of A. In either
case we use the found coordinate value of B as
the second constraint.

d) If the coordinates of B were always smaller than
the ones of A, B is not used in this step.

6) The found scalar values are taken as fixed constraints
on those coordinates.

7) The remaining coordinates of q̈min/max,path are com-
pared coordinate by coordinate with the earlier cal-
culated q̈min/max,axes. The larger of both values is
taken as constraint on that axis. This is done to
ensure, that the merged boundaries always encompass
q̈min/max,path. The merged result is q̈min/max.

8) The optimized acceleration constraints q̈min/max are
used as acceleration constraints for the VOTG.

Figure 6 takes up the example from before to demonstrate
how the Merging Algorithm works. Extending the axes
starting from the origin with the dotted grey lines to the
PT results in two intersections per axis, which are the
“axes acceleration constraints” q̈min/max,axes. We compare
the tangential acceleration values with the axes acceleration
limits and generate the finally used acceleration constraints,
shown by the dotted black box. The key principle used
herefore is the fact that we only need to limit kq̈min/max,path
each by its largest coordinate value. For the other coordinate
values, the axes acceleration limits can be used. This princi-
ple works for any number of DOFs. The gain in potentially
usable acceleration capability is shown by the light grey area.

D. Dynamics, Merging Algorithm, and OTG Combined

The acceleration constraints q̈i,min/max used by the
VOTG were in the past only roughly estimated. A possible
approach to improve this would be to calculate at the
moment a new target motion state Ξi,trgt is chosen the
acceleration constraints q̈min/max for the current motion
state Ξi according to Sec. V-C. We then choose only a small
fraction of these constraint values as constant input to the
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Fig. 6: Application example for the merging algorithm.

VOTG to ensure that the generated acceleration trajectory
will always be executable without tracking-errors, even if the
motion goes through a robot configuration, which has only
relatively small acceleration capabilities. We do not settle
with this rather pragmatic approach, instead provide a new
algorithm that takes into accout the dynamics throughout the
motion. In the following, we will show how the procedure
of Sec. V-C is applied to the calculation of acceleration
constraints and combine them with the VOTG. We provide
two approaches for the new target velocity-based dynamic
OTG, short VDOTG.

The general use case for a trajectory generator is the
following: An unforeseen event happens at ti, and the
system is in a motion state Ξi, from which we have to
generate a new trajectory in order to reach a user-given
value Ξi,trgt = {q̇i,trgt, q̈i,trgt ≡ 0} in the shortest possible
time. The VOTG (cf. Sec. III) will bring the current velocity
as fast as possible to the target velocity by choosing the
shortest possible motion trajectory. This version is useful if
the system has to do an emergency stop (q̇i,trgt = 0) or if
it has to get to a specific velocity (q̇i,trgt 6= 0) as fast as
possible.

1) First Approach: We calculate the acceleration con-
straints for the start motion state and based on that generate
an initial motion trajectory using the VOTG. The DOF κ
determines the execution time of the complete trajectory, all
other DOFs are adjusted accordingly. We read out from the
initial motion trajectory the next motion state after one cycle
time and calculate the new acceleration constraints for it.
We compute the ratios between the current acceleration con-
straints and the initial acceleration constraints for every DOF.
Using the smallest ratio value we adjust the acceleration
constraint of the DOF κ at the current step. We then call the
VOTG only for the DOF κ. We take from this trajectory the
next motion state and only use the position value to look up
the time η when the original trajectory would have reached
this position for the DOF κ. For all other DOFs, we read
out the new position values from the original trajectory using
the time η. Using these new position values and the system
cycle time, we calculate the new velocities and accelerations.

We compute the acceleration constraints for this new motion
state and based on that calculate the ratios again. We repeat
this until the target velocity is reached. This approach is not
stable, because the acceleration profiles grow exponentially;
Fig. 7 in Sec. VI shows this behavior.

2) Second Approach: A second approach is an algorithm
that optimizes an initially calculated motion trajectory by
adjusting it at every time step, if needed. The optimization
is based on the acceleration constraints, which are calculated
at every motion state. The used path is computed by an
initial run of the VOTG. This algorithm will not find the
global optimum, but it will optimize in real-time the initially
given trajectory to fully account for the dynamic acceleration
constraints of the system. The steps are detailed in the
following:

1) Define i = 0
2) For the values qi and q̇i of the current motion state

Ξi, calculate the joint space dynamic parameters of
the system as described in Sec. IV. The “Rigid Body
Dynamics Algorithm” of [24] is used.

3) For the current motion state Ξi, calculate new values
for the minimum and maximum accelerations q̈i,min,
q̈i,max as described in Sec. V-C.

4) Call the Type IV VOTG algorithm. This will provide a
trajectory (incl. path) for all K DOFs to reach q̇i,trgt
and q̈i,trgt ≡ 0 at the same time instant.
• Input values:

– motion state: Ξi

– current acceleration constraints: q̈i,min, q̈i,max
– constant jerk constraints:

...
q 0,min,

...
q 0,max

– constant target motion state: q̇0,trgt
• Output values: new motion state

– next motion state: Ξi+1

5) If the trajectory is executed on a robot system, Ξi+1

will be send to the controllers.
6) Increment i
7) Check if q̇0,trgt is reached. If not, go back to step 2.
8) Ξi+1 describes the motion state, at which q̇i,trgt is

reached.

E. Summary

The robot dynamics are described along a one-dimensional
motion path. Based on this, the acceleration is split into a
tangential and normal component, which again is used for
calculating the path dependent acceleration capabilities. The
planning principle of the VOTG does not allow to directly
use the acceleration capabilities gained from the path depen-
dent method as acceleration constraints. A merging algorithm
is proposed, which takes the results of the acceleration
capabilities along a path into proper acceleration constraints
that can always be used with the VOTG.

The first VDOTG approach calculates in a first step for
all DOF an initial trajectory and then optimizes it at every
time step using the VOTG only for one DOF, the one that
determines the execution time. The input constraints of the
VOTG are calculated taking into account the acceleration
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constraints for every DOF. The one-dimensional output result
of the VOTG is feed to an inverse lookup of the original
trajectory in order to determine the new motion state of the
remaining DOFs. The second VDOTG approach uses for all
DOFs the current acceleration constraints in every time step
as input for the VOTG.

VI. EXPERIMENTAL RESULTS

A. Simulation

The first VDOTG approach of Sec. V-D.1 showed unstable
behavior when simulating it in Mathematica [25]. Only after
a few time steps, the algorithm suddenly destabilizes and the
values go astray. Fig. 7 shows this behavior for three DOFs.
The first row of the figure shows the VOTG run for 73 time
steps and the second row shows what the first approach of
the VDOTG does in the same time frame. After 60 steps,
axes 1 and 4 start to go astray from the VOTG trajectory.
This would not necessarily be a problem as long as the target
velocity would finally be reached. But the VDOTG breaks up
after 73 steps when the allowable maximum acceleration is
breached for axis 4. The VOTG trajectory reaches the target
velocity after 175 steps without exceeding the constraints.
This behavior also happens when varying the input values
randomly, it destabilizes before reaching the target velocity.
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Fig. 7: Comparison of the initial VOTG and the VDOTG first
approach trajectory: the acceleration profile of the VDOTG becomes
unstable.

That is why we chose to work on a second approach
for the VDOTG. As can be seen in Fig. 8, the initial
VOTG trajectory shown in the first row uses the acceleration
constraints calculated at start, while the VDOTG adjusts the
trajectory during the whole motion. The VOTG would breach
the acceleration constraints after about 50 steps while the
VDOTG stays within the upper and lower acceleration con-
straints. These acceleration constraints are explicitly shown
in Fig. 9.

B. Robot Experiments

We were able to show in simulation that the second
approach of the VDOTG stays within the limits and runs
stable. We then implemented the algorithm in C++ to run it
at a rate of 1 kHz on a KUKA Lightweight Robot [1]. To
demonstrate a realistic scenario, the robot’s end-effector was
equipped with a payload of 4.2 kg. In order to demonstrate
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Fig. 8: Comparison of the initial VOTG and the VDOTG second
approach trajectory: only the VDOTG respects the variable accel-
eration constraints.
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Fig. 9: VDOTG second approach: VDOTG values within minimal
and maximal acceleration constraints.
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Fig. 10: Experimental results of the VDOTG on a KUKA
Lightweight Robot: position, velocity, and acceleration trajectories
of axis 1, 2, and 4.
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Fig. 11: Experimental results of VDOTG on a KUKA Lightweight
Robot: acceleration profiles including lower and upper constraints
for axis 1, 2, and 4.

the capability of the second approach of the VDOTG, we
moved the robot from one point to another and then activate
at a random instant the VDOTG algorithm through an
unexpected user input. The robot arm first accelerates to
q̇trgt = (123, 86, 11, −28, 6, 29, 52)T ◦/s, and then the
VDOTG brings all seven joints time-optimally back to zero-
velocity, whereas the computation of this trajectory is done
within one control cycle. The VDOTG profiles are shown
for axes 1, 2, and 4 in Fig. 10 and Fig. 11.

VII. CONCLUSION

This paper combines target velocity-based online trajec-
tory generation, short VOTG, with robot acceleration capa-
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bilities. An acceleration can be split along its motion path
into a normal and a tangential vector component. Extending
the tangential acceleration vector so that it intersects with
the acceleration capabilities described geometrically as a
parallelotope results in the acceleration limits for any given
motion state. In order to obtain suitable acceleration con-
straints for online trajectory generation, the actual accelera-
tion capabilities were converted to useful linearly indepen-
dent values. The combination of the acceleration constraints
with the existing VOTG resulted in a target velocity-based
dynamic online trajectory generation, short VDOTG. This
combined approach was successfully implemented and tested
with a seven-degree-of-freedom lightweight robot. Motion
trajectories were computed within one single control cycle
(1ms) taking into account global kinematic and dynamic
constraints.
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