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Rate-independent perfect plasticity
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• Simplified rheological model:

The strain is split into an elastic and a plastic part
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i. Constitutive equation for stress

)( pE  

ii. Yield function
kkf   ],[

iii. Flow rule
][sign   p

iv. Loading/unloading conditions
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Rate-independent perfect plasticity - Summary

Material model parameters: (1) Young’s modulus E, and (2) flow stress k.



2/15/2016 5 5Lecture #4 – Fall 2015 5D. Mohr

151-0735: Dynamic behavior of materials and structures

Rate-independent perfect plasticity - Application
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Rate-independent isotropic hardening plasticity

The magnitude of the stress increases due to strain hardening
when the material is deformed in the elasto-plastic range. For
isotropic hardening materials, it is described through an evolution
equation for the flow stress k.
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Rate-independent isotropic hardening plasticity

to measure the amount of plastic flow (slip). This measure is often
called equivalent plastic strain. Unlike the plastic strain, the
magnitude of the equivalent plastic strain can only increase!

][ pkk 

Firstly, we introduce a scalar valued non-negative function

 dtp  

It is then assumed that the flow stress is a monotonically increasing
smooth differentiable function of the equivalent plastic strain

This equation describes the isotropic hardening law.
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Rate-independent isotropic hardening plasticity

Frequently used parametric forms of the function                     are the 
Swift and Voce laws:

n
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Rate-independent isotropic hardening plasticity

In engineering practice, the isotropic hardening function is often 
represented by a piece-wise linear function  
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i. Constitutive equation for stress

)( pE  

ii. Yield function
][],[ pp kf  

iii. Flow rule
][sign   p

iv. Loading/unloading conditions
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Isotropic hardening plasticity - Summary

v. Isotropic hardening law

][ pkk  with  dtp  
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)( pE  

][],[ pp kf  

][sign   p

• First-order ordinary differential equation
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Differential equation to be solved

• Multiplier to satisfy the constraints

with  dtp  

 Ett pp ][][sign   

• Initial condition

0]0[ tp

• Prescribed loading

][t 

and
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Numerical solution of Differential Equations

Without the loading and unloading conditions, the plasticity problem
reduces to solving an ordinary first-order differential equation for
the plastic strain, considering time as the only independent variable:

 Ett pp ][][sign   

0]0[ tp

][ yg
dt

dy
• D.E.

• I.C.
0]0[ yty 

Such equations are solved numerically using integration algorithms.
Instead of the calculating the exact analytical solution, we limit our
attention to calculating the approximated solution

][ nn tyy 

at equally-spaced instants tn, n=1,…,N with the time step Dt,

nn ttt D 1
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Numerical solution of Differential Equations

A first popular method is the so-called forward (explicit) Euler
algorithm:

][1 nnn ytgyy D

][ 001 ytgyy D

][ 112 ytgyy D
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Starting with the initial condition, the approximations can be
progressively calculated.
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Numerical solution of Differential Equations

Recall that                  and thus the forward (explicit) Euler algorithm 
may also be written as 

nnn ytyy D1
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In other words, the time derivative at time tn is given by the 
approximation
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Numerical solution of Differential Equations

A second popular method is the so-called backward (implicit) Euler
algorithm:

1ny

1y
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0y

Starting with the initial condition, the approximations can be
progressively calculated. However, at each time step ti, an often
implicit equation needs to be solved.

][ 101 ytgyy Dwhich is obtained from solving the implicit equation

][ 212 ytgyy Dwhich is obtained from solving the implicit equation

][ 11  D nnn ytgyywhich is obtained from solving the implicit equation
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Numerical solution of Differential Equations

According to the backward (implicit) Euler algorithm, the time 
derivative at time tn is given by the approximation
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Illustration
Example: y

dt

dy


1]0[ ty

The approximate solution with forward (explicit) Euler algorithm for 
a time step of Dt=1 reads (we have g[y]=y and y0=1):  

]exp[ty 

(differential equation)

(initial condition)

(exact solution)
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Observe from the graph that the method converges for Dt
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… back to the plasticity problem
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Differential equation:

plus “discrete” evolution constraints:
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Differential equation:

plus “discrete” evolution constraints:
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Main unknown:

Plastic multiplier D

… which makes our problem more complex
than solving an ordinary first order
differential equation!

… back to the plasticity problem
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Return Mapping Algorithm

We solve the plasticity problem assuming a strain-driven process, i.e. 
for a given increment in the applied total strain,

nn  D 1

we determine numerical approximations of the corresponding stress 
and state variables at time tn+1 based on their values at time tn.
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Return mapping procedure

When computing the solution at time tn+1, we first compute the trial 
elastic state by assuming that the material response is purely elastic 
(no plastic evolution) when applying D :  
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Return mapping procedure
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Return mapping procedure

Elastic loading step: 0D
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Return mapping procedure

Plastic loading step: 0D01 

trial

nf

In a plastic loading step, the plastic multiplier 
D>0must be determined such that the yield 
condition at time tn+1 is full filled. 
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Firstly, we express the absolute value of the stress n+1 as a function 
of the unknown plastic multiplier:

(1)

while

And hence

][sign)()( 11111  D n

trial

n

p

nnn EE 



2/15/2016 26 26Lecture #4 – Fall 2015 26D. Mohr

151-0735: Dynamic behavior of materials and structures

Return mapping procedure

 1  D
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Then, using the results (2) and (3) in (1), we obtain the so-called 
discrete consistency condition: 

Secondly, we express the flow stress kn+1 as a function of the 
unknown plastic multiplier:
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Return mapping procedure
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Solving the discrete consistency condition
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Example #1: Linear hardening law

pp Hkk   0][ with constant hardening modulus H

The discrete consistency condition then reads
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Solving the discrete consistency condition

Example #2: General non-linear concave hardening law ][ pk 

The discrete consistency condition then reads

Which corresponds to seeking the root of the 
convex function
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Solving the discrete consistency condition

Seeking the root of a C1-continuous function is a standard problem 
in applied mathematics. For example, it can be found using a 
Newton-Raphson scheme:
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Elasto-plastic Tangent Modulus

The derivative d/d is called elasto-plastic tangent modulus. 
During plastic tensile loading                                             , we have
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Elasto-plastic Tangent Modulus

Formally, we note the incremental stress-strain response as
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Summary: Return Mapping Algorithm
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Reading Materials for Lecture #4

• J.C. Simo and T.J.R. Hughes, “Computational Inelasticity” (first chapter): 
http://link.springer.com/book/10.1007%2Fb98904

• M.E. Gurtin, E. Fried, L. Anand, “The Mechanics and Thermodynamics of 
Continua”, Cambridge University Press, 2010.

http://link.springer.com/book/10.1007/b98904

