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Recall: Important difference
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Rate-independent perfect plasticity

* Simplified rheological model:

frictional device linear spring

INITIAL
CONFIGURATION
DEFORMED (CURRENT) ? —_— O
CONFIGURATION LT : :

The strain is split into an elastic and a plastic part

E=¢E,t¢&,

i.e. the elastic strain is

D. Mohr Lecture #4 — Fall 2015 3



ETH:zurich

151-0735: Dynamic behavior of materials and structures

Rate-independent perfect plasticity - Summary

i. Constitutive equation for stress

oc=E(e-¢,)

ii. Yield function

f[a,k]:‘g‘—k

iii. Flow rule

&, =y sign[o]

iv. Loading/unloading conditions

y

<

(0 if f<0 |
>0if =0 and f =0

0 if f=0 and f <0

Material model parameters: (1) Young’s modulus E, and (2) flow stress k.

D. Mohr
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Rate-independent perfect plasticity - Application
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Rate-independent isotropic hardening plasticity
®
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A loading
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The magnitude of the stress increases due to strain hardening
when the material is deformed in the elasto-plastic range. For
isotropic hardening materials, it is described through an evolution
equation for the flow stress k.
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Rate-independent isotropic hardening plasticity

Firstly, we introduce a scalar valued non-negative function
g, = | 7t

to measure the amount of plastic flow (slip). This measure is often
called equivalent plastic strain. Unlike the plastic strain, the
magnitude of the equivalent plastic strain can only increase!

It is then assumed that the flow stress is a monotonically increasing
smooth differentiable function of the equivalent plastic strain

k =k[z,]

This equation describes the isotropic hardening law.
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Rate-independent isotropic hardening plasticity

151-0735: Dynamic behavior of materials and structures

Frequently used parametric forms of the function k = k[§p] are the
Swift and Voce laws:

Hardening saturation

K A K A dk K A
— > O, k —> kO + Q
dgp
Swift Voce Swift-Voce
>z >z >z,
ke = A(Z, +&)" k, =k, +Q(L—exp[-Z,]) k =(1-a)k, + ks
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Rate-independent isotropic hardening plasticity

In engineering practice, the isotropic hardening function is often
represented by a piece-wise linear function

k [MPa]

400 - PEEQ, k
0.000 199.1

350
0.020 246.3

300 0.050 283.9

250 0.100 321.0

500 0.200 365.6

150 -

100 -

50 -

0 I I I \ gp [_]
0 0.05 0.1 0.15 0.2
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Isotropic hardening plasticity - Summary

i. Constitutive equation for stress
oc=E(e—¢,)

ii. Yield function
flo,e,]= ‘G‘ —k[e,]

iii. Flow rule L
¢, =y sign[o]
iv. Loading/unloading conditions

(0 if f<O0 |
y=<>0if f=0 and f =0

v. Isotropic hardening law

k=K[z,] with &, =t
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Differential equation to be solved

* First-order ordinary differential equation

c=E(e-¢,) £, zysignlg[t]_gp[t]JE

&, =y sign[o]
* Initial condition * Prescribed loading
5p[t=0]:0 g = ¢glt]

* Multiplier ¥ to satisfy the constraints
(0 if f<O0 |
y=<>0if f=0 and f =0

0 if f=0 and f <0

with flo,8,]1=|0]-k[Z,], c=E(s—¢,) and gpzjmt
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Numerical solution of Differential Equations

Without the loading and unloading conditions, the plasticity problem
reduces to solving an ordinary first-order differential equation for
the plastic strain, considering time as the only independent variable:

. DE & =ysignlelt] - [tE <= %zg[y]

Such equations are solved numerically using integration algorithms.

Instead of the calculating the exact analytical solution, we limit our
attention to calculating the approximated solution

Yo = YIt,]
at equally-spaced instants ¢, n=1,...,N with the time step A,
At = 1:n+1 o 1:n
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Numerical solution of Differential Equations

A first popular method is the so-called forward (explicit) Euler
algorithm:

CYO

Yi=Yo T AJ[g[yo]

CYz =Y +Atg[y1]
yn+1 — yn + Atg[yn]

Starting with the initial condition, the approximations can be
progressively calculated.
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Numerical solution of Differential Equations

Recall that y'= g[y]and thus the forward (explicit) Euler algorithm
may also be written as

CYO y1
Yi=Y T AWO

CYz =Y, + AtYl

exact derivative

1
| . approximation

yn+1 — yn + Atyn

i : >
tn tn-l—]
In other words, the time derivative at time ¢, is given by the

approximation . _
Y[tn] ~ yn+1 yn
At
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Numerical solution of Differential Equations

A second popular method is the so-called backward (implicit) Euler
algorithm:

C Yo
yl which is obtained from solving the implicit equation yl yO + Atg [ yl]
C y2 which is obtained from solving the implicit equation y2 yl + Atg [y2]

C

yn+1 which is obtained from solving the implicit equation yn+1 — yn + Atg [ yn+1]

Starting with the initial condition, the approximations can be
progressively calculated. However, at each time step ¢, an often
implicit equation needs to be solved.
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Numerical solution of Differential Equations

According to the backward (implicit) Euler algorithm, the time
derivative at time ¢, is given by the approximation

+ At
Yo = Yaa T ALGLY, ] }» y[t]Nyn ynl

y=glyl]

approximation

exact derivative
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Illustration

(differential equation)

Example: d_y =y
dt

» y = exp[t] (exact solution)
y[t — O] — 1 (initial condition)

The approximate solution with forward (explicit) Euler algorithm for
a time step of Ar=1 reads (we have g[y]=y and y,=1):

Yo =1 el exact  At=0.01
Y, = Yo +Ag[Y]=1+1-1=2 EZ \ZAt:O.l
Y, =Y, +Atgly,]=2+1-2=4 e
<y3:=y2+Atg:y2:=4+1-4=8 .
y4:y3+Atg:Y3::8+l'8:16 zz /At:l
Cy5:y4+Atg:y4:=16+1-16=32 o

Observe from the graph that the method converges for At — o
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Comparison implicit vs. explicit

The approximate solutions with forward (explicit) Euler and
backward (implicit) Euler algorithms for a time step of A=0.1

200 - «—implicit
180 -
160 -
140 -
120 - «— explicit
100 -
80 -
60 -
40 -
20 -
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.. back to the plasticity problem

Differential equation:
&, =7signleltl -z, [tE B & =&7 + At ]
=&’ + Aty sign|e
-+ Aty sign|
Ay
— gnp +A7/ Sign[anﬂ]

=

n+l n+1

Initial condition: State variable: Dependent variables:
& =0 Eny =&y +AY o= E(6r —&n1)
& =0 Ko= K[E2 ]
plus “discrete” evolution constraints: nel” ‘Gml‘_ n+1
f..<0
Ay =0 if Ay >0then f_, =0
(A7) Ty =0 “{if f., <0 then Ay =0
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... back to the plasticity problem

Differential equation:
&, =7signleltl -z, [tE B & =&7 + At ]
=g + Aty Sign[gn+1 — gnp+1]E

= gnp + A7/ Sign[anﬂ]

Initial condition: State variable: Dependent variables:
gOp =0 gnp+1 = Enp @ O™ E (8n+1 o gnp+1)
gop = O kn+1: k[gnil]
plus “discrete” evolution constraints: f N+l ‘Gn+1‘ o kn+1
fn+1 <0 Main unknown:

Plastic multiplier Ay

Ay >0 .
7/ If A7/ > O then fn"‘l = O ... which makes our problem more complex
(Ay) fn+1 — O “ |f f than solving an ordinary first order

n+1

< O then Aj/ = O differential equation!
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Return Mapping Algorithm

We solve the plasticity problem assuming a strain-driven process, i.e.
for a given increment in the applied total strain,

Ae=¢&,,,—&

n

we determine numerical approximations of the corresponding stress

and state variables at time t_,;, based on their values at time 7.

Applied total strain
increment

A&

' OUTPUT:

State variables at time 7, ;

State variables at time 7,

P o P
0 —p » RETURN MAPPING » 8n+1, 8n+1
, &€ ALGORITHM :
n n Stress at time ¢,

Ohi1 = E(gn+1 o gnp+1)

E
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Return mapping procedure

When computing the solution at time ¢z _,,, we first compute the trial
elastic state by assuming that the material response is purely elastic
(no plastic evolution) when applying A¢ :

trlal Py P\ __
Oni E(8n+1—8n)—E(A8+€n—8n)—ﬂn+E(A8)
pitrial _ . p
n+l gn
—ptrial _ =p
gn+1 g
trial trial ) if ftlrlal < 0 then elastic loading step
fn+1 o ‘ Oni1 k[g ] » rial ' -
fn+1 > (0 then plastic loading step
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Return mapping procedure
trial
Oni = 0Oy + E(A(‘,‘) trial
rial n+1
ria
Gn+1
N N N
trial
n+1 O
O
n
trial trial trial trial
1:n+1 =0 1:n+1 >0 1:n+1 >0 1:n+1 <0
elastic plastic plastic elastic
step step step step
23
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Return mapping procedure

Elastic loading step: Ay =0
fn+1 _ .I:trial < O

n+1

Applied total strain
increment
Ag
State variables at time ¢, Calculate fntiilal <0
g p

ZP Trial State
n ! n trial ftrial :>
Gn+1 J n+1

Ay =0

OUTPUT:
State variables at time ¢,

P _ AP
gn+1_gn

~P _ =P
€hi = &y
Stress at time ¢,

Ohi1 = E(gn+1 o gnp+1)
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Return mapping procedure

Plastic loading step: fntfla' >0 » Ay >0

In a plastic loading step, the plastic multiplier
Ay>0 must be determined such that the yield f o= |Ona] =Ko [(2)
condition at time ¢, is full filled.

Firstly, we express the absolute value of the stress o, as a function

of the unknown plastic multiplier: As
P

p p trial
O i E(gn+1 o gn+1) — E(gn+1 o g o (gn+1 &y )): On — EAgp

while
AE — gn+1 o gnp — A]/ Sign[gml]
And hence

n+1 E(gn+1 o gn+1) ;Till o E(A7)Sigﬂ[0n+1]
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o, = sign[

L~ n+1

llo

=sign[

=sign|

observe that

sign[c,, ] =sign[c'] B | |00l =

n+1

151-0735: Dynamic behavior of materials and structures

Return mapping procedure

lo

n+1

n+1

wial _ E(Ay)sign[o,.,])
trlal E (AQ/)

n+1

trlal
n+1

—EAy |(2)

Secondly, we express the flow stress k£, as a function of the
unknown plastic multiplier:

—nﬂl = —p + A)/ » nel — k[Enp + Aj/] (3)

Then, using the results (2) and (3) in (1), we obtain the so-called
discrete consistency condition:

f N+l ‘Gn+1‘ o kn+1 —

trlal
n+1

—EAy —K[E" +Ay]=0

D. Mohr
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Return mapping procedure

.= |0 |- EAy —K[&] + Ay]=0
trial
A n+1
A
E(Ay)
kn+1 o X
kn : n+1
>
Age : k[gnp + Aj/]
>
Ag i
: —> ¥
gn gn+1
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Solving the discrete consistency condition

Example #1: Linear hardening law

k[Ep] =k0+H§IO with constant hardening modulus H
The discrete consistency condition then reads

f.=lom|—EAy - (ko +H(g, + A7))

trial 0\

=lo.q|—(k,+He")—HAy —EAy oo | V7 £ _ (H + E)x

= £ _(H +E)Ay =0 " _\/

from which we determine the plastic multiplier ij\
ftrial
A — n+1
" H+E
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Solving the discrete consistency condition

Example #2: General non-linear concave hardening law k[&,]

The discrete consistency condition then reads ‘
fo=|o" - EAy —K[ZP + Ay] Ky /
=lom™ -k —EAy - (k[énp +Ay]- kn) E*Ay
= £ _EAy - (k[2P + Ay]—k, )=0 - > &

n

Which corresponds to seeking the root of the ¢ trial

convex function n+1 _\
g trial _ . —p B
y[x] N f”+1 EX (k[gn + X] kn) > X
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Solving the discrete consistency condition

Seeking the root of a C*-continuous function is a standard problem
in applied mathematics. For example, it can be found using a
Newton-Raphson scheme:

X, = 0% = X, y[Xo]$ X, = X, — yIX,] B DX, =X - y[X. ]

yLX

iterate until |y[X,,,]

yl[Xl] n y'[Xn]
<TOL then Ay =X,

D. Mohr
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Elasto-plastic Tangent Modulus

The derivative do/d¢is called elasto-plastic tangent modulus.
During plastic tensile loading (de >0,do >0, de, > 0), we have

E
df —da—dk—E(dg—d;/)—Eﬁ}dy_O Cy dy= de
de, ( dk )
E + a7
and thus &
g g
do = E(de —dy) = ) dg oy |99 :
dk de dk
E+ E+| - —
de, de,
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Elasto-plastic Tangent Modulus

Formally, we note the incremental stress-strain response as

do =E, (de)

> Q

with Eep

dk
E+| —
=) g
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ETHzurich
Summary: Return Mapping Algorithm
Applied total strain A7/ =0
increment
Ag OUTPUT:
State variables at time ¢,
j P P
: E1=E&
State variables at time ¢, Calculate fnt:'fl <0 _np+1 _np
cP ZP Trial State En = &
neon E>| ol fma :> Stress at time ¢
n+l ' “n+l n+l

ﬂ ftrial > O O-n+1 — E(‘C"n+1 o gnp+1)

n+1
trial —
Solve: ‘Gnrﬁ —EAy —k[e" +Ay]=0

<> Ay>0

OUTPUT:
State variables at time ¢, Stress at time 7,

P __ .p : trial

€na = & + (A7)8|gn[0n+1 o _ E(E gp )
—p _ =p n+l — N+l ©n+l
Exq =&, TAY
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Reading Materials for Lecture #4

e J.C.Simo and T.J.R. Hughes, “Computational Inelasticity” (first chapter):
http://link.springer.com/book/10.1007%2Fb98904

M.E. Gurtin, E. Fried, L. Anand, “The Mechanics and Thermodynamics of
Continua”, Cambridge University Press, 2010.
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