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Abstract 

In this paper we are interested in the way electricity distribution operators anticipate and prevent potential outages by 
increasing maintenance activities and/or capital investments. We make use of the parametric distance function 
approach, assuming that outages enter in the firm production set as an input, an imperfect substitute for maintenance 
activities and investment. This allows us to identify the sources of technical inefficiency and the underlying trade-off 
faced by operators between quality and other inputs and costs. For this purpose, we use panel data on 92 electricity 
distribution units operated by ERDF (Electricité de France - Réseau Distribution) in the 2003–2005 financial years. 
Assuming a multi-output multi-input translog technology, it appears that technical efficiency is positively correlated 
with the share of underground lines and with the age of capital. Moreover, the results show that shadow price of quality 
varies dramatically: from 2.7 € to 15.7 €, by customer interrupted among the operators. Furthermore, as one would 
expect, marginal quality improvements tend to be more expensive as a network approaches 100% reliability. 
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Introduction 

The frequency and the duration of power outages are the two key measures of quality that electricity 
distribution utilities pay particular attention to. Other than direct costs of outages, represented by opportunity 
costs and repair expenditures, firms operating in a regulated framework also risk penalties, generally a fixed 
amount for each customer affected by long duration outages (CEER, 2008). To prevent outages and these 
related costs, operators have two main possibilities, either to increase maintenance or to make new 
investments, e.g. replace overhead lines by underground lines. In this paper we are mainly interested in this 
issue and, more precisely, in the way that electricity distribution operators anticipate and prevent potential 
outages by increasing maintenance activities and/or capital investments. 

We make use of the parametric distance function approach proposed in the activity analysis literature to deal 
with undesirable outputs (Färe et al., 1993). The same approach is applied here, but instead of assuming that 
outages are an undesirable output, we assume that they enter in the firm production set as an input, i.e., that 
outages are an imperfect substitute for maintenance activities and investment. Therefore, following 
Growitsch et al. (2005), we postulate that the corresponding distance function is input oriented. This allows 
us to identify the underlying trade-off faced by operators, between quality and other inputs and costs. 

In this study we use panel data on 92 electricity distribution units operated by ERDF (Electricité de France - 
Réseau Distribution) in France in the 2003–2005 financial years. Compared with similar studies, we have 
access to very comprehensive and comparable data, mainly on the value of capital. This database allows us 
to estimate a flexible translog multi-output multi-input technology. On the output side, we chose a 
specification that takes into account the main output dimensions of the electricity distribution activity: i) the 
number of customers; ii) the surface area served and; iii) the GWh of electricity distributed. On the input 
side, the three dimensions retained are: i) operational expenditures; ii) capital; and iii) quality, represented by 
the number of interruptions (longer than 3 minutes in duration). 

Given the flexible nature of the translog distance function, we use for computation purposes a stochastic 
frontier approach (SFA) and a parametric (deterministic) linear programming approach (PLP). Both 
approaches give similar results, on average. For further analysis we select the parameters and the results 
obtained from PLP, as this approach allows us to impose restrictions implied by economic theory, in a very 
simple way, on the parameters of the distance function, such as monotonicity. 

On the one hand, our results indicate that SFA technical efficiency (TE) is positively correlated with the 
share of underground lines and with the age of capital. On the other hand, using the computed PLP translog 
parameters, several measurements are done that allow us to describe the main characteristics of the 
underlying production technology. Among others, the distance function elasticities with respect to inputs and 
outputs at each point of the boundary surface. And using these measurements, shadow prices can be derived, 
for the quality (outages) measures. 

These results are potentially useful for the operators themselves, who can obtain information regarding the 
marginal cost of reducing interruptions. They are also useful for regulators, who could use them for the 
design of incentive schemes that incorporate quality measures. Moreover, the results show that shadow price 
of quality varies dramatically: from 2.7 € to 15.7 €, by customer interrupted among the operators. 
Furthermore, as one would expect, marginal quality improvements tend to be more expensive as a network 
approaches 100% reliability. 

The remainder of the paper is organized as follows. In Section 2 we survey the literature on benchmarking 
analyses in electricity distribution including service quality while Section 3 describes the electricity 
distribution sector in France. Sections 4 and 5 present the methodology and the data used in estimation, 
respectively. In Section 6 we report the main results of this study and in Section 7 we draw some 
conclusions.  

 
2 Literature 

Most benchmarking analyses in electricity distribution have involved models that incorporate standard 
output characteristics, such as energy supplied (in GWh), number of customers and network size (e.g., 
service area or network length).  For example, see the literature review in London Economics (1999) and 
Jamasb and Pollitt (2001).  Very few studies have included quality of service measures in these models. 
Exceptions are the studies by Giannakis, Jamasb and Pollitt (2005), Growitsch, Jamasb and Pollitt (2005), 
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Coelli et al (2007) and Jamasb, Orea and Pollitt (2010).  

Giannakis et al (2005) use data envelopment analysis (DEA) methods to measure technical efficiency (TE) 
and total factor productivity growth (TFP) in 14 UK distribution authorities over the 1991/92 to 1998/99 
period.  The DEA method is used to estimate a non-parametric input distance function that involves three 
output variables (energy supplied, customers and network length).  Four models involving different input 
sets are considered: (i) operating expenditure (OPEX); (ii) total expenditure (TOTEX); (iii) number of 
interruptions (NINT) and total interruptions (TINT); and (iv) TOTEX, NINT and TINT.  They find that the 
TE scores of the various models are positively (but not perfectly) correlated, and that the TE scores rise when 
the NINT and TINT quality variables are added to the TOTEX model (a result that is to be mathematically 
expected when variables are added to a DEA model).1  

Growitsch et al (2005) use stochastic frontier analysis (SFA) methods to estimate an input distance function 
using data on 505 electricity distribution utilities from eight European countries in the 2002 financial year. 
Their models contain two output variables (energy supplied and customers) and either one input variable 
(TOTEX) or two input variables (TOTEX and TINT). They use the Battese and Coelli (1995) SFA model to 
investigate the effects of customer density (customers per network km) and country (using dummy variables) 
upon technical efficiency scores. They find that the inclusion of the quality variable reduces TE for all but 
the large firms, plus they find that the TE scores from the two models are significantly negatively correlated, 
both findings being in contrast to those of Giannakis et al (2005). 

Jamasb et al (2010) estimate the marginal cost of quality improvements of 12 UK distribution companies for 
the period 1995-2003. For that, they run fixed-effect estimations of the link between the cost of electricity 
distribution (identified with TOTEX or CAPEX) and a series of cost drivers including the energy delivered, 
the network length, the network energy losses, the customers minute lost and a time trend. They found that 
the cost of reducing energy losses is positive and, in average, equal to 2.8 pence per kWh. This marginal cost 
of improving quality is smaller than the penalty/reward set by the regulator (4.8 pence per KWh) for 
lower/higher delivered quality. Moreover, the marginal cost of improving quality increases with the quality 
delivered.     

The above studies are to be commended for introducing quality variables into these benchmarking models. 
However, these studies contain some shortcomings. First, they all make use of TOTEX measures which 
contain capital expenditure (CAPEX) measures which need not reflect the actual amount of capital services 
consumed in a particular year. Second, the UK studies suffer from small sample size problems while the 
inter-country study suffers from difficulties associated with deflating monetary values of TOTEX in order to 
obtain comparable measures of implicit input usage in each country. 

In the current study we aim to address these problems by making use of a detailed database on the activities 
of electricity distribution units operated by ERDF Réseau Distribution in France in the 2003–2005 financial 
years. With these data we thus avoid the small sample size problem; we avoid the international comparability 
problem; and we also have access to comprehensive and comparable data on the value of capital items, so we 
can avoid the need to use CAPEX to measure capital input services. Coelli et al (2007) used a previous 
version of the same data and similar methodological strategy, but relying on a comparison of parametric and 
non parametric approaches. 

 

3 Electricity distribution in France 

In France, most electricity distribution grids are owned by municipalities, individually or grouped in 
communities. Municipalities are in charge of the public service of electricity distribution, which they 
delegate to a third party, the distribution system operator (DSO), within the framework of a concession. The 
concession contracts between parties follow a similar model. The public service requirements are, indeed, the 
same all over the country.  

                                                 

1 This is also seen in a DEA study by Korhonen and Syrjänen (2003) of Finnish electricity distribution operators, where 
the inclusion of a TINT variable into the DEA model led to increases in technical efficiency for a number of firms. For 
example, see their Figure 3. However, note that these results need to be treated with caution because their DEA model 
did not include a capital measure, which could lead to substantial biases. 
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The concession contracts define the rights and obligations of the distributor regarding quality of supply, 
customers’ connections and environmental conditions. These contracts state that the distributor is 
remunerated by the tariff applied to final users, which is supposed to cover operating costs and investments. 
This tariff is the same for all the concessions (one single price for all the customers in France) and for all 
DSOs. The rates for the use of public electricity grids, including transmission and distribution networks, are 
set by the French Regulator, the CRE (Commission de Régulation de l’Energie). 

Most of the municipalities delegate the management of their network to ERDF, a subsidiary of EDF, the 
historical electricity operator which is now publicly listed company. ERDF covers more than 95% of the 
territory and the remaining part is covered by local public companies.      

There are 92 local distribution units. These units, known as Centers, are grouped in 23 URE (Unité Réseau 
Electrique) and further aggregated in 8 regions. During the sample period, centers were autonomous (within 
limits) for taking decisions regarding capital and operational expenditures.  In 2006, the company was 
reorganized and the decision power moved to the URE, with the Centers remaining as administrative units.    

The quality of electricity distribution is regulated by the CRE. The quality is measured by the minutes of 
interruption from which a series of exceptional events are removed (criterion B). The regulator sets a quality 
target and rewards/penalties are set according to the fulfilment of the objectives.   

 

4 Methodology 

We model the production process using a multi-input, multi-output input distance function and introduce the 
quality variable as an input variable. The logic associated with including the quality variable as an input 
variable is that the operators can substitute between regular inputs (labour, capital etc.) and the 
inconvenience faced by the customers (interruptions). The rational operator will look at the “price of 
interruptions” (e.g., the penalty imposed by the regulator) and compare it with the price of other inputs (e.g., 
labour) before deciding upon the optimal (cost minimising) mix of inputs to use. 

If the production technology (frontier) is known (which is rarely the case) we can measure the distance that 
each data point (firm) lies below the frontier by calculating the amount by which the input vector (x) can be 
proportionally reduced while holding the output vector (y) constant. That is, for each data point (x,y) we seek 
to find the smallest possible value of the scalar  such that (x,y) remains within the feasible production set 
bounded by the frontier. This is illustrated (for the case of a 2-input technology) in Figure 1, where the 
distance that firm A is inside the frontier is equal to =0B/0A. This distance (i.e., technical efficiency score) 
equals approximately 0.7 in this diagram, suggesting that the firm could reduce input usage by 30% and still 
produce the same output vector. 

INSERT FIGURE 1 

In reality, the production frontier is rarely known. Instead it is estimated using sample data on a number of 
firms. This generally involves fitting an empirical frontier that aims to minimise these distances so that the 
frontier is a “tight-fit” to the data. In this paper we use parametric methods to estimate an input distance 
function. 

The input distance function may be defined on the input set, L(y), as: 

  ( , ) max : ( / ) ( )ID L  x y x y , (1) 

where 1/   and the input set L(y) represents the set of all input vectors, KRx , which can produce the 

output vector, MRy .  That is, 

  ( ) :  can produce KL R y x x y . (2) 

( , )ID x y  is non-decreasing, positively linearly homogeneous and concave in x, and increasing in y.  The 

distance function will take a value which is greater than or equal to one if the input vector, x, is an element of 
the feasible input set, L(y). That is, ( , )ID x y 1 if xL(y).  Furthermore, the distance function will take a 

value of unity if x is located on the inner boundary of the input set. 
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Stochastic frontier analysis (SFA) 

Following Coelli et al (2003), a translog input distance function for the case of M outputs and K inputs is 
specified as 
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where i denotes the i-th firm in the sample of N firms.2  Note that to obtain the frontier surface (i.e., the 
transformation function) one would set Di=1, which implies the left hand side of equation (3) is equal to 
zero. 

Imposing homogeneity of degree +1 in inputs and rearranging we obtain 
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where * / Kiki kix x x . 

The restrictions required for homogeneity of degree +1 in inputs are  
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and those required for symmetry are  

 mn = nm,   m,n=1,2,...,M,   and   kl = kl,   k,l=1,2,...,K. (6) 

To estimate this model using SFA methods we replace the distance term with an error term that has two i.i.d. 
components. That is, we set ln i i iD v u   , where vi ~ |N(0, 2

v )| is a symmetric error to account for data 

noise and the ui is a one-sided error to account for technical inefficiency. The technical efficiency score for 
the i-th firm is predicted using the conditional expectation: [exp( | )]i i iE u v u  , which takes a value 
between 0 and 1. The model is estimated using maximum likelihood (ML) methods.  Note that prior to 

estimation the variance parameters, 2
v and 2

u  are re-parameterised as 2 2 2/( )u u v      and 
2 2 2

u v     for computational convenience. 

The ui term is often modelled as a truncated normal distribution, of the form . However, in this 

study we make use of the more generalised model proposed by Battese and Coelli (1995), which allows one 
to investigate the effects of various factors upon efficiency levels. In this model the inefficiency term is made 
an explicit function of a vector of exogeneous characteristics, zi, by specifying that the ui are independently 
(but not identically) distributed as non-negative truncations of a general normal distribution 

                                                 

2 Note that in our application we have annual data on 92 units over a three year period.  Hence we have 276 
observations. Given the short time period we assume that there has been no technological progress over this period and 
hence pool the data as if it was a single year of data on 276 firms when estimating the production frontiers. 
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  (7) 

where 0
1

J

i j ij
j

m z 


   and the 0  and j  are unknown parameters to be estimated. 

Within this framework, the values of the unknown parameters in (4) and (7) are obtained simultaneously 
using maximum likelihood estimation. The expressions for the likelihood function and first partial 
derivatives are presented in Battese and Coelli (1993), as well as the expression for [exp( | )]i i iE u v u  .  

Shadow prices 

Furthermore, as well as measuring the effect of quality upon TE scores, we also make use of the methods 
described in Grosskopf et al (1995) and Coelli and Rao (1998) to derive measures of the shadow price of 
quality from the curvature of the estimated distance functions. This information could be quite valuable in 
allowing one to assess the degree to which rewards for quality outcomes could influence the services 
provided. 

Shadow price information is obtained using the method outlined in Grosskopf et al (2005), Morrison Paul 
and Nehring (2005), and others. That is, we obtain ratios of shadow prices from the ratios of derivatives of 
the input distance function as: 

 ik i ik
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for the case of inputs, and  
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for the case of outputs. 

In order to compute ratios of shadow prices, we compute input distance partial elasticities with respect to 
inputs:   
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and with respect to outputs: 
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These elasticities have also a direct interpretation as shadow shares. Shares of inputs in total input, for kis , 

and shares of outputs in total output, for mir . Moreover, combining mir  we compute scale elasticities at each 

point: 





M

m
mii re

1

, (13) 

with 1,1  ii ee and 1ie  indicating decreasing, constant or increasing returns to scale, respectively. 

 
Furthermore, a well-behaved production function must satisfy some desirable properties, among them 
monotonicity and curvature conditions. Monotonicity implies that the input distance function analyzed here 
has to be non-decreasing in inputs ( 0kis ) and non-increasing in outputs ( 0mir ) (Färe and Primont, 

1995). Curvature conditions imply that the input distance function satisfy convexity in outputs and quasi-
convexity in inputs. 
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Unfortunately, we are unable to impose these well-behaved conditions on the SFA estimation using 
traditional econometrics techniques. The main reason is that these conditions cannot be introduced as simple 
restrictions on parameters. As a consequence, potentially the estimations will show monotonicity and 
curvature violations at specific points. In other words, incorrect computed values for shadow shares and 
shadow prices ratios at particular points.3 
 
Parametric linear programming (PLP) 
 
In this paper, we proceed in two steps. After verifying that SFA results satisfy monotonicity restrictions for 
average values but not for extreme points, we recomputed the input distance function using a parametric 
linear programming approach (PLP).  
 
Values of unknown parameters in equation (3) are obtained by using LP as follows: 

Min 


N

i
iD

1

ln ,  

subject to the constraints that: 

0ln iD ,      i = 1, 2, …, N, 

0kis ,          i = 1, 2, …, N,  k = 1, 2, …, K,      

0mir ,          i = 1, 2, …, N,  m = 1, 2, …, M, 

as well as to the same homogeneity and symmetry constraints in (4) and (5). 
 
5 Data 

The selection and measurement of input and output variables is a key aspect of any efficiency analysis study. 
In this study we have drawn upon our knowledge of the key cost drivers in the French electricity distribution 
industry, along with reviewing the experiences gained in previous analyses.  For example, see those studies 
surveyed in London Economics (1999) and Jamasb and Pollitt (2001), and more recent studies, such as 
Lawrence and Diewert (2006) and Edvardsen et al (2006). 

Three output variables are used in the present study: energy supplied, number of customers and the service 
area. The amount of energy supplied in giga-watt hours (GWH) is generally the first output variable thought 
of, since the aim of a distribution company is to “supply electricity to customers”. Although a distribution 
network operator cannot normally determine the amount of electricity distributed, it has to ensure that all its 
network assets have the capacity to deliver this energy to its customers. Hence, the total amount of energy 
supplied may be viewed as a proxy for the load capacity of the network. The measure used in this study is 
gross electricity distributed (which includes losses).  

The number of customers (CUST) is also used as an output variable in our model because we believe that 
this variable is needed to ensure that the model does not unfairly discriminate against those operators which 
sell smaller amounts of energy per customer. Furthermore, a large part of distribution activities (relating to 
metering services, customer connections, customer calls, etc.) are directly correlated to the number of 
customers. Note that our measure only includes Low Voltage (LV) customers, since industrial customers 
who are connected to the Medium Voltage (MV) network are rather small in number. 

The surface covered in square kilometres (KM2) is a measure of network dispersion. A lot of network 
operations, such as routine maintenance, overhaul, vegetation management for overhead lines, etc. are 
closely linked to the length of MV and LV lines or, indirectly, to the size of the area served. Moreover, the 
reliability of a distribution network and therefore the level of quality of supply is often affected by the length 
of feeders, in other words, by customers’ density. In big cities, where the feeders are mostly short and 
underground, the number of outages should be lower than in less dense areas which tend to have a high 
proportion of overhead lines. As a consequence, the costs of repairs are expected to differ between urban and 
rural areas. 

                                                 

3 See O’Donnell and Coelli (2005) for an application of a Bayesian approach to impose regularity conditions.  
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The net effect of using these three output variables in our model is to ensure that the key aspects of output 
heterogeneity are captured, so that when we conduct benchmarking comparisons using technical efficiency 
(TE) measures, we are conditioning on these factors and hence comparing like with like. That is, not 
comparing distribution units like Lille with the Southern Alps, and so on.  Nevertheless, we are aware that 
with three output variables, we are unable to control for all environmental differences that could influence 
costs, such as influence of forests and mountainous terrain, ages of the assets, accessibility of lines or 
substations, climatic factors, etc. 

The inputs used in electricity distribution are many and varied. In terms of capital inputs there are 
underground and overhead lines of various voltage levels, transformers, vehicles, computers, and so on.  Plus 
we have various types of labour – technicians, engineers, managers, etc. – plus a variety of other materials 
and services. One could perhaps define dozens of input variables, but degrees of freedom limitations in the 
production model prevent us from doing that.  Instead we have chosen to define only two input variables – 
capital inputs (CAP) and non capital inputs (OPEX).  

Capital is measured using gross (not depreciated) value. We have chosen gross in preference to net because 
we wish to avoid the situation where an operator that has conducted a lot of recent investment is labelled as 
inefficient because their net capital stock is high relative to others.  In using this measure we implicitly make 
two assumptions. First we assume that asset age does not significantly affect service potential. Second we 
assume that all operators have assets with similar life spans and hence that annual service potential is 
proportional to the stock. These assumptions are arguably quite reasonable in the current study, since all the 
data come from a single distribution operator (ERDF) who defines and manages very similar policies for 
investment, operations and network asset development across the various local distribution units.4 

In terms of non-capital inputs, we use network operating expenses net of depreciation and interest as our 
aggregate measure of these items. These are the direct operational costs of local distribution units, excluding 
centralized network service support and overhead costs. These operational costs relate to day-to-day 
operations, such as: 

 operating, developing and maintaining distribution network assets: looking after substations and 
overhead lines, fault repairs, remote control and dispatching, and so on; 

 running connections services; 

 providing meter services and any other customer interventions; 

 relations with local authorities and customers; etc. 

We could have chosen to split this OPEX grouping into labour and non-labour groups, but given that labour 
expense dominates this category and that outsourcing is blurring the boundaries between these two 
categories, we decided to use a single variable.5 

Finally, quality is measured as the total number of interruptions (NINT) – excluding short interruptions of 
three minutes or less.  

The total number of interruptions NINT has been calculated as follows: 

 NINT =  SAIFI  Total number of customers. 

According to the international standards relative to quality of supply, SAIFI (System Average Interruption 
Frequency) is the average number of sustained interruptions (>3 min) experienced per customer served per 
year:  

 SAIFI =  
Total number of customer interruptions 

Total number of customers served
. 

Therefore, NINT represents the total number of outages. It includes unplanned interruptions, even those for 

                                                 

4 The gross capital value is computed by ERDF using replacement values, with the exception of capital materials that 
have reached the end of their depreciation period (expected potential service life), in which case the gross purchase 
value is only adjusted for inflation.  
5 CAPITAL and OPEX variables are expressed in 2005 prices using a gross industrial commodities price deflator. 
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which the distribution company is not responsible (e.g., due to transmission network outages), and also 
planned interruptions (e.g., to accommodate extensions, upgrades, etc.).   

Explaining efficiency variations 

We define a number of variables that can be used to investigate some of the reasons for variations in 
efficiency across different DSOs. The variables that we consider are as follows: 

1. D2004 and D2005 are dummy variables that attempt to capture factors that vary from one year to another, 
such as the effects of temperature variations on demand patterns and the effects of storm events on 
outages. 

2. UNDERG is the proportion of the network that is located underground (as opposed to being overhead on 
poles).  We expect that the higher asset values for underground lines in CAP will be offset by the reduced 
maintenance requirements in OPEX and the reduced number of outages.  However, there may be some 
other aspect to undergrounding that we have not captured in our model, and hence we include this 
variable to see if we can identify an additional effect. 

3. DENSE is the proportion of customers that are located in towns involving less than 10,000 inhabitants.   

4. AGE is the ratio of net book value to gross book value of assets. Hence it is an index of average asset age 
that varies between 0 and 1, with higher values indicating newer assets. 

5. GROWTH is the ratio of customer numbers in the previous year to customer numbers in the current year. 

6. HVCON is the amount of high voltage capacity that is contracted to industrial customers divided by total 
transformer potential. It is an indicator of the degree to which industrial customers are important to the 
DSO. 

7. EXNINT is the proportion of NINT that is due to exceptional events. 

8. EXMINT is the proportion of MINT (minutes of interruptions) that is due to exceptional events. 

 
Descriptive statistics 

The units of observation are the 92 ERDF Centres (Paris is not included in this study). All the values 
reported are in averages for the three-year period 2003-2005. Table 1 provides an overview of outputs, inputs 
and environmental factors. It illustrates the range of variation among Centres, not only on size, measured by 
the number of residential customers and the surface served, but particularly in terms of the share of 
underground lines and of small towns, as well as the percentage of outages, frequency and duration, due to 
exceptional events. 

INSERT TABLE 1 

Table 2 presents ratios obtained combining outputs and inputs quantities by customers’ density quintiles. On 
the one hand, electricity consumption by customer (GWH/CUST) is on average invariant across quintiles 
but, as expected, capital density (CAP/KM2) varies dramatically following the evolution of customers’ 
density (CUST/KM2). On the other hand, operational costs by customer (OPEX/CUST) diminishes from 
91.4 € to 58.9 € from the first to the fifth quintiles, while the frequency of interruptions 
(SAIFI=NINT/CUST) varies in a similar manner, it is close to 1.5 per customer per year among Centres in 
the low density quintile and close to 1.0 in the highest quintile.  

These observations might be seen as indicating that costs are mainly driven by the level of outages.  
However, the distance function estimates presented later show that it is dangerous to look at a few measures 
in isolation, and that the relationships are much more complex. The direction and the importance of these 
relations will depend, among others, on the complementarity/substitutability between OPEX, capital 
investments and quality. 

INSERT TABLE 2 

 

6 Results 

In this section we report the estimates obtained using Stochastic Frontier Analysis (SFA) including the 
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effects of the environmental variables. We compare the parameter estimates and the technical efficiency (TE) 
scores with those obtained computing the same distance function model using Parametric Linear 
Programming (PLP) with monotonicity restrictions imposed. Finally, we report partial elasticities and quality 
shadow prices computed for the PLP model. 

Table 3 presents parameters for both the SFA and the PLP models.  Note that output (ym, m=1, …, M) and 
input (xk, k=1, ..., K) variables are in logarithms and also in deviations with respect to means and 
environmental factors (zj, j=1, …, J) in deviations with respect to means, except for dummy variables (z1 and 
z2).  

INSERT TABLE 3 

Note that y1=CUST; y2= KM2; y3=GWH; x1=OPEX; x2=CAP; x3=NINT. In SFA model, x1 was chosen as the 
reference variable to impose homogeneity of degree + 1.6 Therefore, x1 becomes the dependent variable and 
xk are replaced by x*

k=xk -x1 for k = 2, … k .  

The results presented in Table 3 can be summarized as follows: 

 Given that variables are expressed in logarithmic deviations from mean values, first order 
coefficients associated with outputs and inputs may be interpreted as distance function elasticities 
with respect to outputs and inputs at the sample mean, respectively. In both models these coefficients 
have the expected sign, negative for outputs elasticities ( mir ) and positive for inputs ( kis ), and are 

very close each other. The only exception are the coefficients associated with the number of 
customers (y1=CUST) and with energy supplied (y3=GWH) that are lower and higher, respectively, 
under the PLP model with respect with SFA.  

  Under the SFA model, in most cases these coefficients are statistically significant, with t-ratio tests 
higher than 1.7. Second order terms are significant for the squared capital variable (x2=CAP) and for 
the squared surface output (y2=KM2), but insignificant for most of the other terms. 

 The sum of the output elasticities provides information on returns to scale. For the SFA model we 
see that the sum ie = -0.964, implying increasing returns to scale at the sample mean. That is, a 1% 

increase in outputs can be achieved using a 0.964% increase in inputs. For the PLP model, the results 
are on the other way around, ie = -1.030, that is decreasing returns to scale at the sample mean. 

 In the SFA model . This implies that the error term is primarily associated with noise. 

 Among the environment factors (zj variables), we note that DENSE, GROWTH, HVCON, EXNINT 
and EXMINT, are statistically insignificant (the 5% level). UNDERG and AGE are the only two 
variables that are significant. Note that a positive (negative) coefficient corresponds to a decreasing 
(increasing) effect on technical efficiency. 

 The coefficient of UNDERG (percentage of underground lines) is negative. As expected, this factor 
has a negative effect on inefficiency, because underground lines are less susceptible to storm 
damage, etc. The marginal effect indicates that an increase of 10 percentage points in underground 
lines implies a decrease of near 2.5 percentage TE points in average.  

 The coefficient of AGE (the ratio of net (depreciated) to gross capital in book values) is positive. It 
was expected that this factor would have a negative effect on inefficiency, because we expected that 
newer assets would require less maintenance.  However, likely newer assets have more “teething 
problems” and hence require extra adjustments in the early years.  

Summing up, the coefficients reported in Table 3 show close results between SFA and PLP models at mean 
sample values. That is, independent of their stochastic and deterministic nature and the fact that SFA takes 
simultaneously into account the potential effect of environmental variables.  

Technical efficiency (TE) 

Table 4 reports average technical efficiency (TE) scores for the SFA and PLP models by quintile. ERDF 

                                                 

6 Results are insensitive to the choice of the reference variable, as illustrated in Coelli and Perelman (1996).    



 

11 

Centres are classified in quintiles by customers’ density, quality (SAIFI) and underground lines (%). As 
expected, SFA technical efficiency scores are higher than PLP scores, 0.897 vs. 0.828 on average.7 This is 
due to the role played by noise under the SFA model, as indicated before. The Pearson correlation between 
both scores is 0.708. 

In both cases, SFA and PLP, TE scores show the same evolution, increasing parsimoniously across Centres 
on behave of customers’ density, better quality (SAIFI) and with the percentage of underground lines. This 
confirms that TE in energy distribution is mainly drove by customers’ density and quality considerations. 
Even if underground lines imply huge capital investment, compared with surface lines, at the end of the day 
extra capital costs are compensated by diminishing OPEX costs and frequency of interruptions. In order to 
identify  these relationships among inputs, we turn now to a more deeper study of the underlying production 
technology, looking to distance function elasticities and shadow prices at all points (92 Centres, 3 years). For 
this purpose, we rely exclusively on PLP results. Unfortunately, but as expected, the estimated SFA 
technology did not verify all monotonicity restrictions at all points. 

INSERT TABLE 4 

Input and output distance function elasticities and shadow price ratios 

Table 5 contains information on distance function elasticities with respect to inputs ( kis ) and outputs ( mir ). 

They are computed using equations (10) and (11) and correspond to “output shares” and to “input shares, 
respectively. In both cases, partial elasticities vary systematically with customer density.  

On the one hand, capital share decreases while the share of operational expenditures and quality increases. 
As expected, partial elasticities are higher among units operating with proportionally lower quantities of a 
given input resource, and vice versa.  

On the other hand, distance function elasticities with respect to the number of customers increases 
dramatically with density while, simultaneously, surface and energy distributed elasticities decrease. 
Summing up, scale elasticities go from increasing returns in low density units to decreasing returns in high 
density units.  

INSERT TABLE 5 

We turn now to shadow price ratios. Input shadow ratios (eq. 8) correspond to marginal rates of substitution 
and output shadow ratios (eq. 9) to marginal rates of transformation. Table 6 reports shadow price ratios by 
customer density quintiles. 

On the input side the three ratios represented increase with customers’ density. The first two columns 
illustrate the trade-off between quality and other costs, OPEX and capital. More precisely, one customer 
interruption (>3 minutes) has a shadow price of 4.9 € of OPEX costs or 97.1 € of gross capital investments 
for a low density Centre, while it cost 7.5 € and 613.5 € for a high density (urban area) Center. At the same 
time, the marginal rate of substitution between operational costs and capital (OPEX/CAP) increases from 
20.5 € to 75.7 €. Given an average asset age ratio of 0.62 and a weighted average cost of capital 
(WACC) of 8% approximately, the expected OPEX/CAP ratio is close to 20. Therefore, values 
higher than 20 likely imply an overuse of capital in more dense areas. 

In the output side, as expected, we observe a huge increase of the surface (KM2) shadow price, with respect 
to costumers and GWh outputs, among high customer density Centres. At the same time, the marginal rate of 
transformation between customers and GWh is divided by ten when the first and fifth quintiles are compared. 

Moreover, in some cases shadow price ratios can be converted into shadow prices. It is possible if one can 
reasonably assume that the observed price of one input variable equals its shadow price. For example, if we 
assume this for OPEX we can therefore conclude from our PLP results that the average shadow price of 
quality (NINT) is 5.1 € (because the price of a unit of OPEX is one Euro). That is, it will cost approximately 
Five Euros to reduce the number of customer interruptions by one.  

                                                 

7 The distance measures derived from the estimation of input distance functions are, by definition, equal or higher than 
1.0. For presentation purposes, we transform them into technical efficiency scores, with values between 0 and 1.0, by 
taking the reciprocal. 
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INSERT TABLE 6  

This shadow price information is also reported in Figure 2. The horizontal axis corresponds to quality 
(SAIFI) and the dots the ERDF units (92 Centres over the three year period analysed). In terms of the PLP 
model, the computed shadow price extreme values vary from 2.7 € to 15.7 €. And, as one would expect, 
marginal quality improvements tend to be more expensive as a network approaches 100% reliability. 

INSERT FIGURE 2 

 

7 Conclusions 

In this paper we make use of the parametric distance function approach to identify the sources of technical 
inefficiency and the underlying technology in the energy distribution sector. Using panel data on 92 
electricity distribution units operated by ERDF (Electricité de France - Réseau Distribution) over the 2003–
2005 financial years, it appears that technical efficiency is positively correlated with the share of 
underground lines and with the age of capital. Moreover, the results show that shadow price of quality varies 
notably: from 2.7 € to 15.7 €, per customer interrupted among the operators. And, as one would expect, 
marginal quality improvements tend to be more expensive as a network approaches 100% reliability. 
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Figure 1:  Input oriented technical efficiency 

 

 

Figure 2: Quality shadow price 
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Table 1: Output and input variables. Descriptive statistics (n=276) 

Variable units mean std min max 

Inputs    
Customers (CUST) n 324,857 134,162 109,435 762,905 
Surface (KM2) km2 5,532 3,125 129 13,871 
Electricity (GWH) GWh 3,557 1,477 1,001 7,976 
Ouputs    
Operational expenditures (OPEX) 103 € 22,804 8,401 10,575 57,591 
Capital (CAP) 103 € 636,134 220,018 247,464 1,250,115 
Number of interruptions (NINT) n 384,476 204,569 48,886 1,632,336 
Environmental factors    
Underground lines (UNDERG) ratio 0.39 0.19 0.13 0.88 
Small towns (DENS) ratio 0.44 0.23 0.00 0.86 
Assets age proxy (AGE) ratio 0.62 0.03 0.53 0.68 
Customers growth (GROWTH) % 1.97 1.81 -5.46 19.97 
HV industrial capacity (HVCO) ratio 0.24 0.06 0.14 0.42 
Exceptional events: 
 Frequency (EXNINT) ratio 0.11 0.11 0.00 0.49 
 Minutes (EXMINT) ratio 0.13 0.18 0.00 0.82 

 
 

Table 2: Production characteristics 

Customers’ 
density 
quintile 

Outputs ratios Input / Output ratios 

CUST 
KM2 

GWH      
CUST 

OPEX 
CUST 

CAP      
KM2 

NINT      
CUST 

Q1 23.0 11.0 91.4 63.9 1.53 
Q2 36.3 12.2 77.6 84.5 1.27 
Q3 55.5 12.2 73.4 118.4 1.33 
Q4 88.2 11.9 67.7 163.9 1.05 
Q5 1,223.0 10.6 58.9 1,384.0 0.97 

Mean 288.6 13.1 73.7 366.7 1.23 
 



 

16 

 
Table 3: SFA and PLP coefficients 

Explanatory variables 
SFA PLP 

Coef. (t-ratio) Coef. (t-ratio) 

Intercept 0.154 ( 5.3) *** -0.221  
ln(x1) (OPEX) 0.501  0.501  
ln(x2) (CAP) 0.457 ( 9.2) *** 0.456  
ln(x3) (NINT) 0.041 ( 2.0) ** 0.043  
ln(x1).ln(x1) -0.706  -0.094  
ln(x2).ln(x2) -0.829 (-3.1) *** -0.211  
ln(x3).ln(x3) -0.136 (-1.7) * -0.056  
ln(x1).ln(x2) 0.699  0.124  
ln(x1).ln(x3) 0.007  -0.030  
ln(x2).ln(x3) 0.129 ( 1.1) 0.087  
ln(y1) (CUST) -0.757 (-15.4) *** -0.696  
ln(y2) (KM2) -0.101 (-5.3) *** -0.107  
ln(y3) (GWH) -0.106 (-2.4) ** -0.227  
ln(y1).ln(y1) 0.949 ( 1.6) * 0.263  
ln(y2).ln(y2) 0.028 ( 2.1) ** -0.014  
ln(y3).ln(y3) 0.284 ( 0.5) -0.392  
ln(y1).ln(y2) 0.004 ( 0.1) -0.136  
ln(y1).ln(y3) -0.658 (-1.2) 0.169  
ln(y2).ln(y3) 0.091 ( 1.6) * 0.027  
ln(x1).ln(y1) -0.288  -0.083  
ln(x1).ln(y2) 0.055  0.058  
ln(x1).ln(y3) 0.243  -0.042  
ln(x2).ln(y1) 0.188 ( 0.6) 0.065  
ln(x2).ln(y2) -0.052 (-1.2) -0.072  
ln(x2).ln(y3) -0.168 (-0.5) 0.048  
ln(x3).ln(y1) 0.100 ( 0.6) 0.017  
ln(x3).ln(y2) -0.003 (-0.2) 0.014  
ln(x3).ln(y3) -0.075 (-0.5) -0.006  

Environmental factors 

Intercept -0.266 (-1.8) *   
z1 (D2004) -0.005 (-0.3)   
z2 (D2005) -0.097 (-4.7) ***   
z3 (UNDERG) -0.226 (-6.2) ***   
z4 (DENSE) 0.025 ( 0.6)   
z5 (AGE) 0.629 ( 4.4) ***   
z6 (GROWTH) -0.001 (-0.2)   
z7 (HVCON) -0.027 (-1.2)   
z8 (EXNINT) 0.007 ( 0.7)   
z9 (EXMINT) -0.007 (-1.2)   

 0.008 (11.5) ***   

 0.174 ( 6.0) ***   

LLF 286.0    

***, **  and * significant at 1%, 5% and 10% level, respectively. 
Underlined parameters are calculated by applying the homogeneity 
conditions. Variables ln(ym) and ln(xk) are expressed in deviations from 
sample mean values.  
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Table 4: SFA and PLP Technical Efficiency scores by quintiles  

Quintiles 

SFA PLP 

Customers’ 
density 

Quality 
(SAIFI) 

Underground 
lines 

Customer 
density 

Quality 
(SAIFI) 

Underground 
lines 

Q1 0.803 0.853 0.783 0.664 0.755 0.688 
Q2 0.843 0.870 0.843 0.807 0.783 0.805 
Q3 0.858 0.879 0.872 0.822 0.832 0.833 
Q4 0.915 0.907 0.925 0.884 0.871 0.881 
Q5 0.981 0.960 0.982 0.861 0.878 0.866 
All 0.897 0.897 0.897 0.828 0.828 0.828 

 
 

Table 5: Distance function elasticities (PLP) 

Customers’ 
density 

quintiles 

With respect to inputs 
“output shares” 

With respect to outputs 
“input shares” 

Scale 
elasticity Operational 

costs 
(OPEX) 

Capital 
(CAP) 

Quality 
(NINT) 

Customers 
(CUST) 

Surface 
(KM2) 

Electricity 
distributed 

(GWH) 
Q1 0.385 0.584 0.032 -0.387 -0.140 -0.381 -0.908 
Q2 0.447 0.524 0.029 -0.594 -0.100 -0.241 -0.934 
Q3 0.490 0.473 0.038 -0.700 -0.086 -0.203 -0.988 
Q4 0.538 0.426 0.037 -0.833 -0.064 -0.142 -1.034 
Q5 0.670 0.259 0.076 -1.079 -0.098 -0.122 -1.262 

Mean 0.533 0.424 0.046 -0.784 -0.092 -0.193 -1.037 

 
 

Table 6: Shadow price ratios 

Customers’ 
density 

quintiles 

Inputs Outputs 

Quality      
OPEX 

Quality       
Capital 

OPEX        
Capital 

Surface       
Customers 

GWH        
Customers 

Surface      
GWH 

Q1 4.9 97.1 20.5 9.0 106.0 0.09 
Q2 3.7 94.9 26.4 6.6 38.9 0.19 
Q3 4.2 125.6 30.7 7.0 27.5 0.30 
Q4 4.2 140.5 35.3 7.6 18.9 1.07 
Q5 7.5 613.5 75.7 117.9 13.4 29.29 
All 5.1 254.1 42.1 37.5 32.5 7.977 

   
 


