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ABSTRACT 

This paper explores the application of several panel data models in measuring 

productive efficiency of the electricity distribution sector. Stochastic Frontier Analysis has 

been used to estimate the cost-efficiency of 59 distribution utilities operating over a nine-year 

period in Switzerland. The estimated coefficients and inefficiency scores are compared across 

three different panel data models. The results indicate that individual efficiency estimates are 

sensitive to the econometric specification of unobserved firm-specific heterogeneity. When 

these factors are considered as a separate stochastic term, the efficiency estimates are 

substantially higher indicating that conventional models could confound efficiency 

differences with other unobserved variations among companies. The results suggest that 

alternative panel models such as the “true” random effects model proposed by Greene (2005) 

could be used to evaluate the possible impacts of unobserved factors such as network effects 

on efficiency estimates.  
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1. INTRODUCTION 

Transmission and distribution of electricity have been considered as natural 

monopolies, thus less affected by the recent waves of deregulation in power industry. 

However, as competition is being introduced into generation sector, regulatory reform and 

incentive regulation of distribution utilities have become more common. In traditional cost-

of-service regulation systems companies recover their costs with a risk-free fixed rate of 

return and therefore have little incentive to minimize costs. The incentive-based schemes on 

the other hand, are designed to provide incentive for productive efficiency by compensating 

the company with its savings. A variety of methods have been proposed in the literature. 

Main categories of incentive-based schemes used for electricity utilities are: price or revenue 

cap regulation schemes, sliding-scale rate of return, partial cost adjustment, menu of 

contracts, and yardstick regulation.1 Jamasb and Pollitt (2001) provide an extensive survey of 

different regulation practices in electricity markets around the world. Virtually most of the 

models used in practice, are based on ‘benchmarking’ that is, measuring a company’s 

productive efficiency, i.e. technical and/or cost efficiency, against a reference performance.2

There exist a variety of methods for efficiency measurement.3 As pointed out in Jamasb 

and Pollit (2003), Estache et al. (2004) and Farsi and Filippini (2005), different methods 

could lead to significantly different individual efficiency estimates.4 This problem is 

                                                           
1 See Joskow and Schmalensee (1986) for a review of regulation models.  
2 Other measures of performance such as quality and productivity are not considered here.This paper focuses on 
productive (in)efficiency, which can be decomposed into technical and allocative (in)efficiencies (cf. 
Kumbhakar and Lovell, 2000). Another source of inefficiency is related to the size (scale) of the production unit 
(cf. Chambers, 1988). However, scale inefficiency is usually beyond the firm’s control, thus generally not 
considered in benchmarking.  
3 See Kumbhakar and Lovell (2000) and Coelli et al. (1998) for extensive discussion of these methods. 
4 Jamasb and Pollit (2003) report substantial variations in estimated efficiency scores and rank orders across 
different approaches (parametric and non-parametric) and among different econometric models applied to a 
cross sectional sample of European power distribution utilities. Similar results are reported by Farsi and Filippini 
(2004, 2005) in a sample from Switzerland. Estache et al. (2004) provide more or less similar discrepancies 
between parametric and non-parametric methods applied to a sample of power distributors from South America. 
Other authors like Horrace and Schmidt (1996), Street (2003) and Jensen (2000) reported substantial errors and 
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especially important for in most cases, there is no clearly defined criterion for choosing a 

unique method among several legitimate models. Moreover, the inefficiency estimates can 

have great financial consequences for the firms and therefore, their reliability is crucial for an 

effective regulation system. In particular, if the estimated inefficiency scores are sensitive to 

the benchmarking methods, a more detailed analysis to justify the adopted approach is 

required. For instance, Bauer et al. (1998) have proposed a series of criteria that can be used 

to evaluate if the results in terms of inefficiency level obtained from different approaches and 

models are mutually “consistent”, that is, lead to comparable inefficiency scores and ranks. 

However, in many cases because of a considerable discrepancy, these criteria are not 

satisfied. This can be considered as an improvement over the benchmarking models 

commonly used in electricity networks, which have been frequently criticized.5

In the literature we can distinguish two main approaches to measure efficiency – the 

econometric (parametric) approach and the linear programming (non-parametric) method.6 

Although the latter category, particularly Data Envelopment Analysis, has become popular 

among electricity regulators, both approaches have advocates in the scientific community. 

The purpose of this paper is not to stress the advantages and disadvantages of these two 

different approaches, but to present how some limitations of frontier models can be overcome 

if panel data are available.7 This paper focuses on econometric methods as they can be 

relatively easily adapted to panel data. Productive efficiency can also be estimated using 

production or cost frontiers. In this paper we focus on the latter category that can be readily 

used to estimate cost-efficiency.  

 

                                                                                                                                                                                     
inconsistency problems in the estimation of individual efficiency scores in cross sectional data from other 
industries. 
5 For instance see Shuttlewroth (2003) and Irastorza (2003) for criticisms of benchmarking approaches in 
electricity industry. 
6 See Murillo-Zamorano (2004) for a general presentation of the different methodologies. 
7 In contrast with cross-sectional data, panels provide information on same companies over several periods. 
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As opposed to cross-sectional data, panels provide information on same companies over 

several periods. Repeated observation of the same company over time allows an estimation of 

unobserved firm-specific factors, which might affect costs but are not under the firm’s 

control. Individual companies operate in different regions with various environmental and 

network characteristics that are only partially observed, it is crucial for the regulator to 

distinguish between inefficiency and such exogenous heterogeneity. Several recently 

developed models such as Greene (2005, 2004), Alvarez, Arias and Greene (2004) and 

Tsionas (2002) have addressed this issue using alternative panel data models. Some of these 

models have proved a certain success in other applications such as public transportation 

networks in that they give more plausible efficiency estimates.8 These results raise an 

important question as to whether (or to what extent) the sensitivity problems can be solved by 

using panel data and the adapted frontier models. This question is especially important in the 

electricity sector, in which the application of benchmarking has been frequently criticized 

based on reliability of efficiency estimates.9 Moreover, given that in many countries the 

regulatory reforms have been in effect for several years, an increasing number of regulators 

have access to panel data. However, the number of empirical studies is still insufficient to 

provide a general answer to this question. This paper studies the performance of an 

alternative panel data econometric frontier model to distinguish unobserved firm-specific 

heterogeneity from inefficiency in the context of electricity distribution networks.   

The results of this paper suggest that the alternative panel data models can separate part 

of the unobserved heterogeneity from inefficiency estimates, thus can be considered as a 

promising complement to other regulatory instruments such as cost prediction (as proposed in 

Farsi and Filippini, 2004) and case-by-case analyses. The rest of the paper proceeds as 

                                                           
8 See Farsi, Filippini and Kuenzle (2006) and Farsi, Filippini and Greene (2005) for applications in bus and 
railway transports respectively. 
9 See for instance, Shuttlewoth (2003) and Irastorza (2003). 
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follows: Section 2 discusses the application of stochastic frontier models in panel data. The 

model specification and the adopted econometric methods are described in Section 3. 

Following a brief description of the data, the estimation results are presented and discussed in 

Section 4. And Section 5 summarizes the main conclusions.   

 

2. PANEL DATA AND STOCHASTIC FRONTIER MODELS  

The first use of panel data models in stochastic frontier models goes back to Pitt and 

Lee (1981) who interpreted the panel data random effects as inefficiency rather than 

heterogeneity.10 This tradition continued with Schmidt and Sickles (1984) who used a similar 

interpretation applied to a panel data model with fixed effects. Both models have been 

extensively used in the literature. A main shortcoming of these models is that any 

unobserved, time-invariant, firm-specific heterogeneity is considered as inefficiency. In more 

recent papers the random effects model has been extended to include time-variant 

inefficiency. Cornwell, Schmidt and Sickles (1990) and Battese and Coelli (1992) are two 

important contributions in this regard. In particular the former paper proposes a flexible 

function of time with parameters varying among firms. However, in both these models the 

variation of efficiency with time is considered as a deterministic function that is commonly 

defined for all firms. We contend that the time variation of inefficiency may be different 

across firms. Even within a given firm, these variations could depend on unobserved factors 

thus can be assumed as a stochastic term rather than a deterministic function of time.   

As shown by Alvarez, Arias and Greene (2003), even in cases where inefficiency is due 

to time-invariant factors such as constant managers’ capability, the resulting cost 

inefficiencies can vary over time. These authors assume that the management skills are one of 

                                                           
10 Pitt and Lee (1981)’s model is different from the conventional RE model in that the individual specific effects 
are assumed to follow a half-normal distribution. Important variations of this model were presented by Schmidt 
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the inputs that can interact with other time-variant input factors thus, create time-variant cost 

inefficiency. This result is consistent with the economic theory in that a firm’s inefficiency is 

a dynamic phenomenon and cannot be constant. Firms constantly face new events and 

technologies, which they gradually learn how to deal with and apply. As the learning process 

continues, inefficiency with regards to the existing technologies decrease but other new 

events and technologies appear. Therefore the overall inefficiency of a firm depends on not 

only the managers’ efforts but on the effect of new technologies and events on the production 

process. Based on this argument, the inefficiency can best be modeled as a time-variant 

stochastic term. On the other hand a major part of the unobserved heterogeneity such as 

network and location-related factors can be considered as constant over time. 

The discrepancy in efficiency estimates in conventional panel data models has been 

shown in Horrace and Schmidt (1996) and Farsi and Filippini (2004). A common feature of 

all these models is that they do not fully separate the sources of heterogeneity and 

inefficiency at the firm level. In fact, the time-variant error term in these models could 

include a major part of inefficiencies whereas the firm-specific effects that are interpreted as 

inefficiency could be mainly due to time-invariant heterogeneity.  

An alternative approach is to consider an additional stochastic term for cost efficiency. 

Theoretically, a stochastic frontier model in its original form (Aigner, Lovell and Schmidt, 

1977) can be extended to panel data models, by adding a fixed or random effect in the model. 

There are however few papers that have explored this possibility. The first development can 

be attributed to Kumbhakar (1991) who proposed a three-stage estimation procedure to solve 

the model with time- and firm-specific effects.11 Polachek and Yoon (1996) attempted to 

                                                                                                                                                                                     
and Sickles (1984) who relaxed the distribution assumption and used the GLS estimator, and by Battese and 
Coelli (1988) who assumed a truncated normal distribution. 
11 See also Heshmati and Kumbhakar (1994) and Kumbhakar and Hjalmarsson (1995) for two applications of 
this model. Note that in the latter paper, it is assumed that both time- and firm- specific effects are part of 
inefficiency. 
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estimate a panel data frontier model with firm dummies using a one-step procedure. Greene 

(2002a) discussed the numerical obstacles that have apparently delayed such a development. 

As shown by Greene (2002a), assuming that the inefficiency term follows a 

distributional form, both models with random and fixed effects can be estimated using 

maximum likelihood estimation methods. These models are referred to as “true frontier 

models” in that they are a straightforward extension of original frontier framework (in line 

with Aigner et al., 1977) to panel data. He proposed numerical solutions for both models, 

which he respectively refers to as ‘true’ fixed and random effects models (see also Greene, 

2005). In particular, Greene’s true random effects model has proved useful in efficiency 

measurement of network industries (Farsi, Filippini and Greene, 2005). 

 

3. MODEL SPECIFICATION 

To illustrate the differences across models, we focus on three panel data models: GLS 

model in line with Schmidt and Sickles (1984), MLE model as in Pitt and Lee (1981), and the 

True Random Effects (TRE) model as proposed by Greene (2005, 2004). These methods have 

been applied to a panel of 59 Swiss distribution utilities.12 A triple-input single-output 

production function has been considered. The output is measured as the total number of 

delivered electricity in kWh, and the three input factors are set as capital, labor and the input 

power purchased from the generator. Capital price is measured as the ratio of capital expenses 

(depreciation plus interest) to the total installed capacity of the utility’s transformers in 

kVA.13 The capital costs are approximated by the residual costs that is, total costs minus 

labor and purchased power costs. Labor price is defined as the average annual salary of the 

                                                           
12 The sample used in this study is similar to the one used by Farsi and Filippini (2004). 
13 Because of the lack of inventory data the capital stock is measured by the capacity of transformers, which are 
the main device used to transfer electricity in the network.  
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firm’s employees. For those companies that produce part of their power the average price of 

input electricity is assumed to be equal to the price of purchased power. 

The costs of distribution utilities consist of two main parts: the costs of the purchased 

power and the network costs including labor and capital costs. There are therefore two 

alternatives for measuring cost efficiency in power distribution utilities: total costs approach 

and network costs approach. The network costs approach has a practical advantage in that the 

estimated average costs can be directly used in a price-cap formula.14 However, this approach 

neglects the potential inefficiencies in the choice of the generator and also in the possibilities 

of substitution between capital and input energy. In this paper we use the first approach based 

on the total costs. 

In addition to input prices and output, several output characteristics are included. The 

resulting specification of the cost function can be written as:  

C = C(Y, PK , PL , PP , LF, CU, AS, HGRID, DOT)   (1), 

where C represents total cost; Y is the output in kWh; PK , PL and PP are respectively the 

prices of capital, labor and input power; LF is the ‘load factor’ defined as the ratio of utility’s 

average load on its peak load; CU is the number of customers; and AS the size of the service 

area served by the distribution utility. HGRID is a binary indicator to distinguish the utilities 

that operate a high-voltage transmission network in addition to their distribution network and 

DOT is a dummy variable representing the utilities whose share of auxiliary revenues is more 

than 25 percent of total revenues. 

The specification of the cost frontier used in this analysis is similar to the one used in 

the previous section. Here, we included two additional variables. A Cobb-Douglas functional 

form has been adopted. We excluded the flexible forms like translog to avoid the potential 

risk of multicollinearity among second order terms due to strong correlation between output 

                                                           
14 Notice that the price cap is generally applied to the network access.  
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characteristics. Moreover, given the purpose of this study, we want to use a simple 

specification and avoid an excessive number of parameters required in the flexible functional 

forms.  

After imposing the linear homogeneity in input prices the adopted cost function can be 

written as: 

0 1

2 3 1 2

Cln ln ln ln ln

ln ln

                                     with   1, 2, ... ,  and  1, 2, ... , 

K L
Y it K L i

P P Pit it it

it it it it it

i

P P
Y L

P P P

AS CU HGRID DOT r

i N t T

β β β β γ

γ γ δ δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ + + + +

= =

tF

                                                          

   (2), 

This specification is similar to that used in Farsi and Filippini (2004) with the only difference 

that here we excluded two explanatory variables whose effects proved to be statistically 

insignificant.15 Subscripts i and t denote the company and year respectively and rit  is the 

stochastic term.  

 Quality of service usually measured by the number of interruptions is among the 

excluded variables. Given that in Switzerland, practically there has been no outage cases, we 

can assume that all the utilities operate at a sufficient level of quality reinforced by a tight 

regulation system. Therefore, we contend that the quality differences are not significant. 

Another excluded variable is the network length. In our model, this variable is proxied by the 

service area.   

 All the three models are based on the specification given in (2). The differences are in 

the specification of the residuals (rit). This term is composed of two components, one of 

which (αi) being time-invariant (firm-specific) and the other (εit) varying across observations. 

Table 2 summarizes the econometric specification of the models used in this study. The table 

also provides the estimation procedure for the efficiency scores. These scores are relative 

 
15 The excluded variables are the linear trend and the dummy variable representing the forested areas.  
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efficiencies on a scale of 0 to 1 against the best practice. The conditional expectations are 

estimated using the procedure proposed by Jondrow et al. (1982).16

 

Table 2. Econometric specifications of the stochastic cost frontier 
 

rit = αi + εit

Model I 
 

GLS 

Model II 
 

MLE 

Model III 
 

True RE 
Firm-specific 
component αi

iid (0, σα
2) Half-normal 

N+ (0, σα
2) N (0, σα

2) 

Time-variant 
component εit

iid (0, σε
2) N (0, σε

2) 

 
εit= uit+ vit 

uit ~ N+ (0, σu
2) 

vit ~ N (0, σv
2) 

 
Inefficiency 
 

 
ˆ ˆmin{ }i iα α−  

 

 

1 2ˆ ˆ ˆE , ,..,i i i iTu r r r⎡ ⎤⎣ ⎦  
 

 
ˆE it itu r⎡ ⎤⎣ ⎦  

 
Relative 
efficiency (0-1) 

( )ˆ ˆmin{ }i ie α α− −  1 2ˆ ˆ ˆE , ,..,iu
i i iTe r r r−⎡ ⎤

⎣ ⎦  ˆE itu
ite r−⎡ ⎤

⎣ ⎦  

 

 

4. DATA AND ESTIMATION RESULTS 

The data consist of an unbalanced panel of 59 Switzerland’s distribution utilities over a 

9-year period from 1988 to 1996. The sample includes 380 observations with a minimum of 

four observations per company. From about 900 power distribution companies in 

Switzerland, the companies included in the sample deliver about a third of Switzerland’s 

electricity consumption, thus can be considered as representative of relatively large 

distribution utilities in the country.17 The descriptive statistics are given in Table 3.  

 

                                                           
16 See also Greene (2002b) and Battese and Coelli (1992). 
17 See Farsi and Filippini (2004) for more details on the data set and a general description of the Swiss power 
distribution sector in Switzerland. 
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Table 3. Descriptive statistics (380 observations) 

  
Mean 

Standard 
Deviation 

 
Minimum 

 
Maximum 

 
Total annual costs per kWh 
output (CHF) 

 
 

.188 

 
 

.0303 

 
 

.128 

 
 

.323 

 
Annual output (Y) in GigaWh  

 
 

263.51 

 
 

390.36 

 
 

17 

 
 

2301.5 
 
Number of customers (CU) 

 
26975.6 

 
36935.8 

 
2461 220060 

 
Load Factor (LF) 

 
.5541 

 
.0727 

 
.3219 

 
.9817 

 
Service Area (AS) in km2

 
15,467 

 
35,376 

 
176 

 
198,946 

 
Average annual labor price (PL) 
per employee (CHF 1000)  

 
 

101.27 

 
 

32.55 

 
 

43.36 

 
 

253.89 
 
Average capital price (PK) in 
CHF per kVoltAmpere 
installed capacity  

 
 

95.06 

 
 

39.35 

 
 

32.08 

 
 

257.98 

 
Average price of input power 
(PP) in CHF/kWh  

 
 

.105 

 
 

.0210 

 
 

.0583 

 
 

.161 
 
High-voltage network dummy 
(HGRID) 

 
.35 

 
.4776 

 
0 

 
1 

 
Auxiliary revenues more than 
25% (DOT) 
 

 
.397 

 
.490 

 
0 

 
1 

 

- All monetary values are in 1996 Swiss Francs (CHF), adjusted for inflation by  
      Switzerland’s global consumer price index. 
 

The estimated parameters of the cost frontier are listed in Table 4. This table shows that 

almost all the coefficients are highly significant and have the expected signs. The results are 

more or less similar across different models. It should be noted that the three models are 

similar in the sense that they all have a firm-specific and a time-variant stochastic term, but 

differ in the distribution of these terms. Moreover, in all the models it is assumed that the 

firm-specific term is uncorrelated with the time-variant one.18

                                                           
18 Potential correlations may bias the coefficients. The assumption of no correlation can be relaxed using a fixed 
effects model (cf. Farsi and Filippini, 2004). However, given that in this paper the main focus is on the 
efficiency estimates and the coefficients have only a secondary importance, we decided to focus on random-
effects models.  
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Table 4. Cost frontier parameters- Panel data (1988-1996) 
 

  GLS MLE True RE 

 Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. 

lnY .783* .031 .789* .037 .754* .004 

lnCU .150* .033 .145* .048 .185* .004 

lnAS .052* .009 .046* .014 .056* .001 

lnLF -.234* .038 -.211* .022 -.155* .007 

lnPL .044* .013 .044* .014 .033* .003 

lnPK .173* .009 .166* .005 .164* .002 

HGRID .074* .026 .108* .047 .066* .003 

DOT .049* .021 .033 .032 .032* .002 

Constant -.854* .360 -.870* .355 -.345* .058 

σα - - - - .083* .001 

σu (half-normal) - - .146* .022 .063* .001 

σv (normal)
 - - .040* - .008* -  

* significant at p=.05; The sample includes 380 observations from 59 companies. 

 

A descriptive summary of the efficiency estimates from different models is given in 

Table 5. The results indicate quite similar estimates for the GLS and MLE models, with a 

difference of about .02 in the median and average values. This can be explained by the fact 

that these models have a similar interpretation of inefficiency as a time-invariant factor. The 

True RE model predicts on the other hand, a much higher average efficiency rate. According 

to this model, the companies are on average 96% efficient. Noting that this model assumes a 

time-variant inefficiency term and a separate stochastic term for firm-specific unobserved 

heterogeneity, these results suggest that the other models overestimate the inefficiency. This 

conclusion is valid to the extent that inefficiencies do not remain constant over time.   
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Table 5. Summary statistics of efficiency scores (1988-96) 

 GLS MLE True RE 

Minimum .723 .735 .861 
Maximum 1 .993 .996 
Average .868 .887 .957 
Median .857 .877 .966 

95 percentile .981 .990 .990 
N 380 380 380 

 

The correlation coefficients between the efficiency estimates from different models are 

listed in Table 6. As expected these results indicate a high correlation between the GLS and 

MLE estimates. However, the True RE estimates are only weakly correlated with those of the 

two other models. The correlation between efficiency ranks shows a similar pattern, thus 

excluded from the paper. These results suggest that the assumption about the inefficiency 

term is crucial for the estimations. The assumption that inefficiencies are random over time is 

more realistic than considering constant inefficiency. In fact, the regulated firms cannot 

sustain a constant level of inefficiency for a long period of time. Not only are they 

presumably induced to improve their efficiency they constantly face new technological and 

organizational problems. On the other hand there are a host of parameters such as network 

characteristics and location related factors that remain more or less constant. Therefore, the 

assumptions of the True RE model appear to be more consistent with the real world. The 

results in Table 6 indicate that if the model does not separate unobserved heterogeneity from 

inefficiency, the efficiency estimates could be misleading.   

 

Table 6. Correlation between efficiency from different models (1988-96) 

  GLS MLE True RE 
 GLS 1 .970 .042 
 MLE .970 1 .055 
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5. CONCLUSION 

The results of frontier analyses of electricity distribution utilities presented in the 

literature point to sensitivity problems in the benchmarking methods commonly used in the 

regulation practice. The discrepancy appears to be high when the efficiency scores or ranks 

are considered for individual companies, whereas the efficiency of the whole sector or large 

groups of utilities prove to be more or less robust. This general result applies to both 

parametric and non-parametric methods. A possible explanation of this inconsistency 

problem can be related to the difficulty of benchmarking models in accounting for 

unobserved heterogeneity in environmental and network characteristics across companies. 

Parametric panel data models could be helpful to solve at least partially this heterogeneity 

problem. In this paper we applied several stochastic frontier models to a panel of Swiss 

distribution utilities. Consistent with previous research, the results suggest that the panel data 

models cannot completely solve the problem. However, the alternative models like the ‘true’ 

random effect model (cf. Greene, 2005) can be helpful to disentangle unobserved 

heterogeneity from inefficiency estimates. This study along with the previous empirical 

literature suggests that the estimation errors for individual efficiency scores are rather high. 

Given these possible errors, the direct use of benchmarking results in regulation could have 

significant financial consequences for the companies. Therefore, the benchmarking results 

should not be directly applied to discriminate companies through different individual X-

factors. Such differentiations require a complementary study of individual cases. However, 

the results can be used as an instrument to minimize the information asymmetry between the 

regulator and the regulated companies. For instance benchmarking can be used as a guide to 

classify the companies into several efficiency groups.   

An interesting feature of parametric methods is that they can be used to predict the 

costs/revenues for each company within a confidence interval. Therefore, such methods can 
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be employed to implement a yardstick regulation framework in line with Schleifer (1985). 

The prediction power of these models can be considerably improved by using panel data. For 

instance, Farsi and Filippini (2004) show that panel data models can have a reasonably low 

out-of-sample prediction error.19. This method could be used as an alternative to conventional 

use of benchmarking methods. In practice this regulation approach implies that the regulator 

predicts a confidence interval of the expected costs of a given utility accounting for its 

unobserved characteristics and considering a level of efficiency. The utilities are then 

required to justify any costs in excess of the predicted range.  

A similar approach has been used in the regulation of water supply in Italy, where a 

yardstick competition model has been applied (cf. Antonioli and Filippini, 2001). This 

regulation method is based on an interactive approach: The company proposes its tariff in the 

first stage. The regulator estimates a price cap for the firm using a benchmarking analysis and 

adjusting for observed differences among companies. The proposed tariff is approved if it 

does not exceed an acceptable range around the estimated price cap. Otherwise, the tariffs can 

be renegotiated with the requirement that the company justify its excessive tariff before any 

revision.  
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