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Abstract

This paper investigates the convergence hypothesis for per capita COq
emissions with a panel of 166 world areas covering the period 1960-2002.
The analysis is based on the evolution of the spatial distributions over time.
Robust measures of dispersion, asymmetry, peakedness and two nonparamet-
ric distributional tests - shape equality and multimodality - are used to assess
spatial time differences. A robust normal reference bandwidth is also applied
to estimate Markov’s transition laws and its subsequent ergodic (long-run)
distributions. Our results point toward non-stationary, flattening and right-
skewed spatial distributions before the oil price shocks of the 1970s and more
stable shapes between 1980 and 2000 at the world level and for many country
groupings (similar income, geographic neighbors, institutional partners). In
the latter period, group-specific convergence patterns emerge with the clear-
est single-peaked and compact density shapes being reached in the wealthy,
well-integrated and European countries during the last years of the panel. No
significant multimodality is formally detected in the world distribution over
the whole period. The Markov analysis suggests more divergence and larger
per capita emissions for the world before stabilization occurs. A variety of
steady state distributions are identified in the country subsets.
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1 Introduction

While the Kyoto Protocol commitments to prevent global warming expire in 2012,
a range of new policy measures has been put forward to pursue the international
effort to control greenhouse gas emissions. Among the many options, Aldy (2006)
reports that 25% of the over forty proposals surveyed in Bodansky, Chou and
Jorge-Tresoni (2004) are based on per capita emissions allocation schemes. The
Global Common Institute promotes an approach, dubbed ‘Contraction & Conver-
gence’ (C&C), which consists of setting a long term sustainable emissions budget
and sharing this budget among countries so that per capita levels of pollution are
equalized in the long run. The fundamental principle of allocating world emissions
according to the same individual "right to pollute" is appealing from an equity
point of Vie. However, the egalitarian rule may not correspond to the ‘efficient’
distribution, i.e. the allocation scheme which maximizes the value of resources. It
ignores specific structural characteristics of countries, such as colder climate, natu-
ral resource endowments, irreversible investments in energy sources and asymmetric
costs/benefits of abatement. Nevertheless, its operational simplicity and its ability
to set a "unifying principle that facilitates an international greenhouse warming
agreement" (Rose et al. (1998)) between governments has attracted institutional
support from rich as well as emerging economiesd. In the background of this policy
debate, an important empirical fact calls for a better understanding of the dy-
namics of per capita carbon dioxide emissions (COy PCE henceforth): while total
emissions keep increasing in most countries, per capita emissions at the global level
and in numerous individual countries appear to have stabilizedﬁ. If national series
show some evidence of converging trends, per capita targets may represent a more
acceptable basis for political compromises than absolute levels.

This paper explores the cross-country dynamics in CO, PCE for the world as a
whole as well as for specific subsamples by looking at the past and future evolution
of its spatial distributions. We explicitly address two important questions: (i) has
the world spatial distribution of per capita CO5 emissions been stable since the
1960s or does it tend toward a steady state (possibly multimodal) shape in the
long run? (ii) do countries similar in terms of income, geographic neighbors or
institutional /political partners display specific converging patterns in per capita
carbon levels?

The empirical evidence gathered so far regarding pollution convergence be-
tween countries is debated. On the one hand, methods which analyze how the
cross-sectional distribution of ‘relative’ or ‘normalized’ per capita emissions evolve

'Rose, Brandt, Edmonds and Marshall (1998) call this allocation scheme ‘egalitarian equity’
and define it as an equal right for everyone to pollute or to be protected from pollution.
2Copeland and Taylor (2005) argue that, under free trade in goods, there are an infinite
number of ways to cut back emissions efficiently. This gives parties abundant leeway to set an
initial allocation of permits or pollution targets that addresses distributional or equity concerns.
3See McKitrick and Strazicich (2005).



over time show either divergence or persistent gaps worldwide but convergence be-
tween industrial or large pollutersﬁ. On the other hand, time series analyses present
ambiguous results, with divergence between OECD members in some studied) but
convergence within groups of a priori more heterogeneous countriedd.

This study revisits the distributional analysis of carbon emissions convergence
in a novel fashion. Our first contribution is to greatly expand the number of coun-
tries analyzed until now in the database that has been used by many authors. By
simply accounting for changes in borders over time, we identify a balanced panel of
166 non-overlapping world areas, spanning the years 1960-2002, which represents
about 90% of the countries defined by the World Bank and significantly increases
the number and variety of considered areas compared to the previous literature.
Second, we explore the world dynamics of per capita emissions not only in rela-
tive terms, but also in levels. This departure from common practice is important
because, as shown by Stegman (2005), measuring carbon PCE in terms of either
percentages or deviations from the contemporaneous arithmetic mean may result in
different distribution dynamics depending on the measure used. Third, the (world)
spatial distributions of per capita CO, emissions are typically highly skewed to the
right and suggest the presence of outliers. We conduct a distributional analysis
with robust methods which avoid arbitrary deletion of extreme data and prevent
their unexpected impact on the convergence measures. Finally, Markov transition
matrices/kernels are often used to produce distribution forecasts that are of great
interest for policymakers. After estimating the transition laws in a robust manner,
we offer for the first time forward projections of spatial COy PCE densities in levels
for the world as well for a large variety of country groupings.

Our results highlight important differences in the dynamics of the world spa-
tial distributions of COy PCE, depending on whether per capita emissions are
measured in levels or in proportional deviations, and on whether the period un-
der inspection starts before or after the oil price shocks of the 1970s. While the
relative data suggest a moderate increase in the pollution gaps during the 1960s
followed by a period of stronger cross-country divergence which stabilizes in the
1990s, their unscaled counterparts suggest strong divergence before the oil shocks
and later stabilization. Regarding the distribution forecasts, we show that, when
transition laws covering the 1960-2002 period are employed, the Markov analysis
predicts larger emissions and dispersion compared to current levels, whatever the
emissions’ measure. If a post-oil shock dynamics (1980-2002) is used instead, the
long-run (ergodic) spatial density for the relative series is very close to the one
in 2000, while further divergence and larger pollution with a later stabilization is
predicted with unscaled CO5 PCE levels. We identify a variety of clusters of con-
verging economies according to regional, economic and political country groupings.

4See Stegman (2005), Nguyen Van (2005), Aldy (2006) or Ezcurra (2007).
®See Aldy (2006) and Barrasi, Cole and Elliott (2008).
6See Westerlund and Basher (2008) or Panopoulou and Pantelidis (2009).



For most of these subsets, we reject formally the pooling with the rest of the world.
However, we find no evidence of significant (multi-)polarization for the world when
multimodality is formally tested over the 1960-2002 horizon. This suggests that the
convergence club phenomenon of per capita CO5 emissions is not strong and wide
enough to generate statistically significant multiple modes in past distributions.

The rest of the paper is as follows. Section [2 proceeds with an extensive survey
of the empirical literature on the dynamics of per capita carbon emissions. Section[3]
describes the distributional methodology. Section [ presents the data and historical
trends for world samples as well as for several groupings of countries. The empirical
results are shown in section [ and section [@ concludes.

2 Empirical literature

The evolution of the gaps in per capita CO, emissions between countries/regions is
explored mainly with four measures of convergence, all borrowed from the income
growth literature. The first one, called beta-convergence ([-convergence), cap-
tures the idea that countries with lower initial levels of pollution per capita should
experience higher pollution growth, and therefore eventually ‘catch-up’ with the
most polluting countries. In the presence of absolute (-convergence, regressing
the subsequent period pollution average growth rate for each country on its initial
pollution level should result in a negative relationship. In practice, the ‘catch up’
phenomenon is expected to occur between similar countries whose economic activ-
ity took off at different points in time. Thus, economies with structural differences
will tend to grow toward their own pollution level, and convergence becomes condi-
tional upon country characteristics. In this case, conditional 3-convergence is nat-
urally investigated by adding a set of exogenous explanatory factors to the absolute
[(-convergence regressiorﬂ The second empirical measure of convergence, dubbed
sigma-convergence (g-convergence), requires that dispersion across a group of coun-
tries decreases over time. Barro and Sala-i Martin (2004, Ch.11.1) show that (-
convergence is a necessary but not sufficient condition for the cross-section variance
to decrease over time. Note that o-convergence may fail to capture polarization
phenomena in case of tendencies toward multimodality. Stochastic convergence
is another approach to convergence based on univariate time-series analysis. In-
spired by the work of Carlino and Mills (1993), this method employs unit root
specifications, with a constant and with or without a linear trend, for testing to
what extent initial departures from some hypothesized (relative) long-run equilib-
rium in per capita pollution tend to vanish over time. In this framework, rejecting
the presence of a unit root in pollution series relative to some group-specific con-
temporaneous mean indicates that a random shock to the series reverts toward a
(potentially null) constant or toward the constant and a trend. Unit root specifica-
tions can be estimated with a variety of techniques, designed for individual series or

"The shortcomings of B-convergence have been widely discussed in Durlauf, Johnson and
Temple (2005).



panel data, under the null of stationarity or nonstationarity and accounting or not
for (multiple) structural breaks and for cross-sectional dependencies in the panel
statistics. Other variants of stochastic convergence, called pair-wise convergence,
have also been suggested by Bernard and Durlauf (1995), Evans (1998) and Pesaran
(2007) to tackle directly the dynamics of income differences between pairs of coun-
tries and to extend the results of the pair-wise approach to all members of a set of
economies. Phillips and Sul (2007) have recently introduced a time-varying factor
model based on proportional deviations from the cross-sectional mean which al-
lows for a wide range of (nonlinear) time trends and country-specific heterogeneity.

Finally, the distribution dynamics analysis initiated by Quah (1997, 1993) puts
the emphasis on the intra-distributional mobility (‘churning’) characterizing se-
quences of cross-sectional distributions over time. It consists of conditioning future
spatial distributions of per capita emissions of CO, on their past counterparts by
assuming that current levels map into future ones according to a time-invariant
transition lawll. This is similar in spirit to a first order autoregression, with dis-
tributions as argument instead of scalar or vectors. Limiting (long run or ergodic)
distributions can be computed based on transition laws and polarization phenom-
ena detected.

Time-series properties of per capita CO; emissions. Three major papersﬁ
focus solely on the time-series properties of the (log) level of the data. Heil and
Selden (1999) are among the first to test for unit roots in carbon dioxide PCE
series with level as well as logarithmic data. The null of a unit root is checked
for an unbalanced world panel of 135 countries over the horizon 1950-1992 with a
country-by-country Augmented Dickey-Fuller (ADF) test and the panel approach
of Im, Pesaran and Shin (2003) (IPS) for a constant and trend unit root specifica-
tion. The unit root null is rejected for 20 (22) countries’ level (logarithmic) series
as well as for the whole panel against ‘trend stationarity for some panel members’.
The pre- and post-oil shock periods 1950-1973 and 1974-1992 are investigated sep-
arately with the IPS approach and indicate trend stationarity in all cases except
in levels for the pre-oil shock period. Therefore, level and logarithmic data may
yield different results as an exogenous structural break in 1973 is found only in
levels. No information on the national trend’s coefficients are provided. Lanne
and Liski (2004) propose a country-level investigation for 16 OECD series in log-
arithms, spanning the years 1870-1998, with an endogenous break unit root test
applied sequentially to identify multiple breaks. Among the 10 trend-stationary
series identified, non-significant or negative trends are found for 4 countries after
the final breaks occurring in the 1970s while the remaining series are positively
trended (with/without breaks). In the same vein, with shorter time series but a
widely extended number of countries, McKitrick and Strazicich (2005) apply an

8As noted by Quah (1993, p.429), there is "no reason why the law of motion of the cross-
sectional distribution need be first order, or why the relation need be time-invariant".

9A table that summarizes the empirical literature presented in this section is available on the
corresponding author’s website.



endogenous two-break unit root test to a world as well as 121 national CO; PCE
series over the years 1950-2000. They find no evidence of a unit root against trend
stationarity for the individual world series and identify two breaks in 1968 and
1981 in the deterministic trend. After 1981, the linear trend’s coefficient is small
in magnitude, negative and not significant. Regarding results at the country level,
only 26 out of the 121 series possess a unit root. Moreover, 46 out of the 95
trend-stationary series (48%) have significant positive trends after the final break,
18 (19%) are negatively trended and 31 (33%) are trendless. Note that 60% of
the countries experience a significant break between 1973 and 1982. Overall, these
three papers highlight three main characteristics of the national time-series on CO4
PCE : (i) most of them are not stochastically trended, (ii) they display significant
structural breaks, mainly located around the oil price shocks when postwar data
are used, (iii) and the world COy PCE level as well as a large portion of the na-

tional series depict null or decreasing deterministic trends after the last structural
break identified.

Convergence in per capita CO, emissions. = We begin with the g and o-
convergence results, we proceed with the stochastic approach and end with the
distributional analysis. To our knowledge, Strazicich and List (2003) (SL2003
henceforth) are the first to explore convergence for CO, emissions. They study
both absolute and conditional (-convergence for a sample of 21 OECD countries
over the period 1960-1997. The conditional (3-convergence analysis is carried out
based on a set of ad-hoc regressors which capture country-specific characteristics:
GDP, GDP squared, gasoline price, population density and a temperature indica-
tor. The regression results indicate that absolute §-convergence holds and that the
convergence coefficient remains significant and negative for all investigated com-
binations of control variables. Among the conditioning factors, only the gasoline
price and temperature appear to be significant and possess a negative impact on
emissions growth. Brock and Taylor (2004) test absolute as well as conditional
(-convergence based on their Green Solow model, by progressively augmenting the
simple cross-sectional regression with time-averaged country-specific (estimations
of) technological progress in abatement, saving rate, abatement level and effec-
tive depreciation rate of capital. The model is tested for OECD countries over
the period 1960-1998 and the fits indicate that most of the explanatory power
comes from the initial level of pollution, which displays a significant negative ef-
fect. Nguyen Van (2005) analyses absolute (3-convergence for 100 countries over
the period 1966-1996 and finds a significant negative relationship. Finally, Aldy
(2006) provides estimations of o-convergence for 23 OECD series as well as for a
88-country world sample over the period 1960-200019. Based on two distinct mea-
sures of dispersion, he shows that the standard deviation of the cross-section COs
PCE in logarithms decreases steadily for the OECD panel but increases slightly
for the world over the period. Then, comparing the interquartile ranges (IQR) for
relative series in 1960 with those for later decades, he confirms the latter result

10See Aldy (2007) for a study on COq convergence between US states.



for OECD countries but without formally rejecting the null of equal dispersion be-
tween the reference year 1960 and later decades. Significant divergence is found for
the world sample in 1990 and 2000 with the IQR measure. Overall, these studies
find F-convergence for the OECD samples as well as at the world level. However,
o-divergence is prevalent for the world while the contrary holds in most of OECD
country groups.

Regarding stochastic convergence, SL2003 make use of a linear trend specifi-
cation in the panel IPS framework to test convergence of the log of relative CO,
PCE for an OECD panel of 21 countries. The panel statistic validates the existence
of convergence among (some) OECD members but no information is provided re-
garding either the significance level or the sign of the national trends’ coefficients.
Nguyen Van (2005) analyzes stochastic convergence for a world panel with a con-
stant specification (no trend), the dynamic panel approach of Arrellano and Bond
(1991) and the log of relative CO, PCE taken every 5-year as well as 10-year pe-
riods for each country. Stochastic convergence is accepted with only the 5-year
data. Aldy (2006) tests a unit root equation with a linear trend at the coun-
try level with an improved version of the Dickey-Fuller test. He finds that only
13 and 3 countries reject the null of a unit root in his world (88 countries) and
OECD (23 countries) samples respectively at the 10% level, but he provides no
formal panel results. More recently, Barrasi et al. (2008) focus on the 21 OECD
countries used in SL2003 and complete the analysis by investigating the individual
intercepts/trends’ characteristics for the period 1950-2002. Making use of more
recent unit root techniques (with trend stationarity under the null), they report
pollution divergence across the OECD members, even when the ADF and IPS
approaches from SL2003 are employed with methods that improve the size and
power of the latter test and account for cross-dependencies. Romero-Avila (2008)
studies a similar OECD sample of 23 countries over the years 1960-2002 with both
a constant and a constant-and-trend equations, allowing for an unknown number
of endogenous breaks in both specifications, correcting or not for cross-correlation
in the panel statistics. Under the null of either stationarity or trend stationarity,
he shows that stochastic convergence - i.e. (trend-)stationarity - is widely rejected
for the whole panel when structural breaks and cross-sectional dependencies are
ignored but overwhelmingly accepted when they are both allowed.

Using the notion of pair-wise convergence a la Evans (1998) and a panel unit
root test with constant and trend which accounts for cross-sectional dependencies,
Westerlund and Basher (2008) establish the existence of group-wise convergence
between 16 OECD countries for the period 1870-2002 and for 28 developed and
developing countries over the horizon 1901-2002. The existence of numerous clubs
of convergence is confirmed over the postwar period 1960-2003 by Panopoulou and
Pantelidis (2009). These authors apply the factor model and classification algo-
rithm of Phillips and Sul (2007), and they identify the existence of two balanced
convergence clubs at the world level in a context of global CO, PCE divergence
within the 128-country sample, with evidence of transitioning between the two
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groups. When two early and late subperiods are considered separately, the 1960-
1982 period is characterized by (slow) convergence among all countries, and two
main convergence clubs of low vs. large polluters are identified between 1975 and
2003 in a context of divergence between the 128 economies. In addition, they
highlight (a) strong convergence over the whole period within the EMU, OECD,
high-income groups as well as within several world regions (MENA and EAP), (b)
slow convergence between the middle-income and LAC countries and (c) diver-
gence within the low-income group, OPEC and the ECA, SSA and SA areas (see
section 4.1 for acronyms). Three main conclusions can be drawn from the empiri-
cal literature on stochastic convergence in COy PCE: (i) accounting for structural
breaks/nonlinearities in the dynamics as well as cross-sectional dependencies favors
the convergence hypothesis in carbon panels, in particular for the OECD countries,
(ii) a variety of convergence clubs exists (based sometimes on simple grouping cri-
teria), with possible transitioning between them and variable convergence speeds,
(iii) the evidence at the world level is mixed but points toward persistent /increasing
differences with potential emergence of a multi-polar world in the future.

Finally, four papers study the intra-distributional dynamics of relative per
capita CO, emissions for large panels of world countries by assuming cross-sectional
distributions evolving according to a stable time-invariant (Markovian) first order
process (or stable transition probabilities). In a discrete framework, Aldy (2006)
warns against the sensitivity of the ergodic (long-run) distributions to the refer-
ence period and concludes that ‘no meaningful convergence’ exists at the world
level with a 1-year transition step. However, he reports long-run unimodal distri-
butions with more probability mass in the lower emissions categories compared to
the distribution of the last year of the panel, whatever the reference period consid-
ered to compute the transition law. Furthermore, projections based on 1960-2000
and 1970-2000 dynamics predict lower variance in the world ergodic distribution.
Some hints of bimodal polarization (twin-peaked distribution) also arise with the
most recent transitions. Nguyen Van (2005) argues that the time-invariant hypoth-
esis of the transition process is quite robust in a continuous setting with 10-year
transitions and that worldwide convergence occurs essentially between the most
intensive polluters and the rest of the world as well as within industrial countries.
Stegman (2005) confirms Nguyen Van’s results for the world to some extent] with
a panel of 97 countries spanning the years 1950-1999. However, she stresses that
centering the data instead of dividing them by the cross-sectional contemporaneous
mean would result in no evidence of convergence (but rather persistent gaps) over
the entire initial distribution’s support. Finally, Ezcurra (2007) employs a panel of
87 countries over the period 1960-1999 and provides polarization measures based
on an exogenous partitioning of the sample. He shows that cross-country polar-
ization decreases steadily when a two-group splitting is considered and that it
remains steady during the 60s but decreases afterwards with a three group par-

HStegman (2005, p.17-18) outlines that the few observations available at the upper relative
CO; PCE levels may bias severely the stochastic kernel estimates.



tition. He also estimates ergodic densities and conditional densities on income,
trade openness and climatic conditions (average annual temperature) for selected
years (first and last year of the panel). The ergodic distribution appears to be
unimodal and does not collapse over time, suggesting permanent differences in the
long run. Regarding the conditional distributions for selected years, the density
mass is more concentrated around the average when the data are conditioned upon
the per capita income and climatic conditions’ variables, while trade openness does
not affect the original distributions. Overall, the distributional analysis indicates
convergence between industrial economies and between the most intensive polluters
and the rest of the world but ‘persistent relative gaps’ for the remaining emitters.
Our distributional approach completes these relative patterns with a level analysis
for multiple country sets and proposes a direct comparison between the ergodic
shapes and the current distribution.

3 Estimation methods

In order to capture consistently the cross-country convergence process for COy PCE
with a distributional approach when heavy asymmetries are present in the data,
our first step consists of evaluating the changes in spatial distributions at regular
time intervals with robust statistics without imposing constraints on the dynamic
process. Section B.I] proposes a series of simple measures of location, spread, asym-
metry and peakedness which offer a more systematic and robust picture in terms
of these distributional dimensions. It also introduces two tests devised to check
formally the existence of multimodality and time-differences in shapes. In section
B2 we directly model the growth process which drives the distributional changes
over time with a standard state-space approach.

3.1 Comparative statics

Graphical representations of (stacked) annual kernel densities are often used to
visualize the evolution of cross-country distributions of CO, PCE. In many cases,
world subsamples are used to avoid the inclusion of atypical data, which could bias
kernel estimation. However, data exclusion introduces potential selection bias. It
is therefore important to rely on kernel estimates which are robust to outliers. The
annual densities are estimated by the usual kernel method
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where n; denotes the sample size in year t, x;; the level of COy PCE in country
i, hy is a fixed smoothing parameter (bandwidth) and K(.) a (gaussian) kernel



function. The choice of the bandwidth is key to capturing the most relevant fea-
tures of the data distribution. In this paper, we use the highly robust smoothing
parameter proposed by Zhang and Wang (2009) which is given by

hunvr(p) = 1.06n3Q(p) (2)

where p € (0.3,0.5) is a quantile and @(p) is a local dispersion measure which
involves different ratios of quantile ranges. The specific range of the parameter
p has been shown to provide more robust bandwidths than other standard (fixed
bandwidth) approaches in the presence of outlier.

In order to identify the inter-temporal changes in the carbon spatial distri-
butions consistently, robust location, scale and shape (quantile-based) statistics
are computed and compared with their traditional (moment-based) counterparts.
While the median and interquartile range (/@R henceforth) are widespread robust
location and scale measures, little attention has been paid to skewness and kurtosis
indicators resistant to outliers. Brys, Hubert and Struyf (2006) show that their
asymmetry measure, called medcouple, as well as the peakedness estimator pro-
posed by Schmid and Trede (2003) performs well and tolerate up to 25% and 12.5%
outliers respectively before the estimator breaks down'J. Both statistics (defined
below) are location and scale invariantfd and exist for any distribution.

Let X,, = x1,29,...,z, be a ii.d. univariate sample, ordered such that z; <
g < ... < x,, with median z (5. Then the medcouple is given by:

MC = med H(z;,z,) (3)
% <T(0.5)<T]

For x; # x;, the kernel function H () is defined as

(#; — 205) — (X5 — T3)
Ij — T

H(IZ‘, ZL’j) =

(4)

The kernel function H(.) is a standardized difference between the z;s and the
x;s to the median and lies between +1 and —1. It is positive (negative) when x;
(x;) lies farther away from the median and it equals zero in the case of a perfectly

12The normal-reference bandwidth proposed by Silverman (1986, p.47) is known to be robust
to about 25% outliers. The family of bandwidth proposed by Zhang and Wang (2009) is up to
two times more robust.

BThe breakdown value corresponds to the amount of observations that need to be replaced in
the sample to make the estimator worthless (arbitrary small/large or meaningless value). The
extreme sensitivity of the standard measure of skewness and kurtosis to outliers is illustrated in
Brys, Hubert and Struyf (2004, p.996) and Schmid and Trede (2003, p.2).

US(Fx) = S(Fux+p), where S = {P, MC} from equations (@) and (&)

10



symmetric distribution]. The median of all these kernel values gives the med-
couple. A positive (negative) value of MC' indicates a right-tailed (or left-tailed)
distribution while 0 means symmetry.

The robust peakedness of Schmid and Trede (2003) is defined as

P— L(1-p) — L(p) (5)
T(1—q) — L(q)

where 0 < p < ¢ < 0.5 and z(y,) is the pth quantile of a univariate sample. The
choice of p and ¢ is somewhat arbitrary but following the aforementioned authors,
we set p = 0.125 and ¢ = 0.25, which is a good compromise between robustness
and variance of the estimator. In that case, the denominator in equation (&) cor-
responds to the IQ R, a dispersion indicator often used to measure o-convergence.
The peakedness indicator ([l is a ratio of two lengths: the length of the distribu-
tion basis divided by some length related to its center. Larger (lower) peakedness
over time requires a larger (lower) relative increase of the basis with respect to
the center. In the presence of both increasing peakedness and IQ)R, we can state
that the expanding basis and center lead to a wider distribution support that
suggests global sigma-divergence. Decreasing peakedness and IQ) R would indicate
that both the basis and center of the distribution shrink, driving to a tighter distri-
bution support that points toward global sigma-convergence. Opposite variations
in the peakedness and IQQR do not provide immediate interpretation in terms of
sigma-convergence for both emissions’ range. The reader is warned that, due to
the location and scale invariance property of the peakedness indicator, a flatter
distribution over time does not imply lower peakedness. Given that this measure
is not familiar, the following benchmarks could be useful for interpreting the re-
sults: for 10000 draws of the N(0,1), N(0,10), U(0,1), and the bimodal normal
mixture N(u = (—2,2),0 = (1,1),prob = (0.5)) densities, P is respectively 1.70,
1.70, 1.47, 1.33.

Clearly, identifying increasing/decreasing asymmetry and/or peakedness for a
distribution is not enough to capture a potential convergence club phenomenon.
The literature on income convergence employs multimodality testd:%. Among the
many procedures available, Hartigan and Hartigan (1985) propose the so-called Dip
statistic, which measures the degree of departure from unimodality of the empiri-
cal cumulative distribution function'. Therefore we also control for multimodality

5Note that the kernel H() in equation (@) does not apply to all couples (x;,z;) of X, but
only to those for which z; < x(g.5) and x; > x(g.5). In the special case where x; = x; = 7(¢.5), the
function H (x;,x;) takes the values of 1 for H (x5, ;) and all z; > 295y, —1 for H(z;,z(0.5))
and all z; < 2.5y, and 0 for H(z; = 2.5y, 2 = #(0.5)) so there are as many zeros as values tight
with the median. See Brys et al. (2004, p.998) for discussion.

16See Bianchi (1997) or Henderson, Parmeter and Russell (2008), among others.

"More precisely and paraphrasing its authors, the Dip test employs the maximum difference,
over all sample points, between the empirical distribution function and the unimodal distribution
function that minimizes that maximum difference.
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in the cross-section distributions. Note that we used (interpolated) critical values
tabulated by Maechler and Ringach (2009) and that this test is location and scale
invariant.

Finally, rather than computing differences between specific scale and shape
statistics over time, we perform pair-wise comparisons between successive spatial
distributions in ¢ and t+s and formally check global differences in the distributional
shapes. The closeness between two distributions, i.e Hy :  f(z) = g(x) vs. Hy :
f(z) # g(x), can be checked by using the standard Kolmogorov-Smirnov test (KS
test). Noting X, and X, two iid samples of size n and m, recall that the KS
procedure relies on the maximum distance (called D,,,,,) between the two empirical
CDFs F,, and G,,,. This test statistic follows a Kolmogorov-Smirnov distribution@,

noted /%Dnm 4, K. We also apply a procedure proposed by Li (1996) which

accounts for cross-sectional dependencies between X, and X,,. The latter test re-
lies on the integrated square difference between f() and ¢g(), its empirical statistic

JIn 4N (0,1) and the test is one-sided™. Note that these distributional tests can
be carried out to compare either two distributions over time (time poolability or
homogeneity of the data over time) or the homogeneity of two groups for the same
year (spatial poolability). In the empirical results, we check for both homogeneity
concepts.

3.2 Transition dynamics

The comparative-static exercise does not provide precise information regarding nei-
ther the mobility of countries between different COy PCE levels (intra-distributional
mobility) over time nor the pattern of change of the spatial density in the long run.
This section briefly describes the methodology proposed by Quah (1993, 1997) to
address both issues. Let x and y denote the CO, (relative) per capita emissions of
a cross section of countries at times ¢ and ¢ + 7, with 7 > 0. The joint, marginal
and conditional densities of (z,y), = and y|x for a given 7 can be written re-
spectively fiirr(2,v), ¢:(x) and g,(y|x). A natural kernel estimator of g.(y|z) is

g-(ylz) = ft,t+T(I7 y)/qi(x), where

18Noting Dy, = sup |Fp(z) — G ()], d =, [ iy and when nm is large enough, the critical

significance cutoffs for « = 10%, 5% and 1% levels can be approximated by 1.22/d, 1.36/d and
1.63/d respectively.

19This test requires kernel density fits for f() and g(). We employed equations () and () for
that purpose.
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Forrrlz,y) = nhihy Z K, (x ;:m) K, (y ;yyz) (6)
() = 1 ZKx (I - SL’Z) (7)

Equation ([6)) represents the so-called product kernel estimator of the joint dis-
tributions. The K () and h terms in the above equations play the same role as in
the univariate case (Il) in the z and y dimensions. Pagan and Ullah (1999, p.59)
indicate that the bandwidths in equation (@) can be computed using an optimal
formula for each univariate kernel component. We used a Gaussian kernel and
the robust normal reference bandwidth described in equation (2]) for that purpose.
Further assuming that the mapping between the cross-country density of (relative)
CO4 PCE in times t and ¢t+7 is time-invariant and first order (future emissions lev-
els in t47 depend only on their value in t), §,(y|z) represents a transition operator
also called stochastic kernel, that can be employed to predict future distributions
through the relation

Dan(y) = / " 4 la)dula)d ®)

The conditional density term §.(y|x) in equation (§]) represents the continu-
ous counterpart of a Markov transition matrix and it can be similarly iterated to
generate an ergodic (or long run) distribution, see Johnson (2000). The empirical
literature on the topic emphasizes that the ergodic patterns are more sensitive to
the time window over which the transition law is estimated than to the choice of
the transition step 7. We employ the above methodologies to generate ergodic dis-
tributions based on different transition periods in a business-as-usual scenario and
we compare their shape with the current spatial distribution. This approach al-
lows one to better identify whether convergence or divergence should be expected
in the future, and whether the past dynamics generates (multi-)polarization or
fragmentation of the spatial distribution in the long run.

4 Data

4.1 Data source and country groupings

As in most papers presented in section 2 our data on COy emissions come from
the Carbon Dioxide Information Analysis Centrd?] (CDIAC) and reflect anthro-
pogenic emissions from fossil fuel consumption, cement manufacturing and gas
flaring, ignoring fuels supplied to ships and aircrafts. These series are available

20See Marland, Boden and Andres (2006).

13



at several aggregation levels, such as individual countries, geographic regions or
the world as a whole. National series capture the time pattern of more than 250
non-overlapping geographic areas for periods ranging from ten years to over two
centuries. When all these data are aggregated for all available years, we get total
carbon emissions for what we call the CDIAC World. Once we account for changes
in borders over time, this large database allows us to build up a balanced panel
of 166 non-overlapping national series?] covering the period 1960-2002. The latter
sample, called CDIAC166 henceforth, represents 183 out of the 208 countries (88%)
reported by the World Bank (2004) in its CDrom World Development Indicator
2004 (WDI henceforth). Note that 38 series included in the CDIAC166 sample
depict rather erratic time patterns, with annual COy, PCE growth rates more than
doubling /halving for at least one of the years of the 1960-2002 period. We refer
to the latter subset as ‘outliers’ as their impact on non-robust statistics can be
significant. Removing the 38 outlying series from CDIAC166 results in a world
sample of 128 countries, CDIAC128 henceforth?2.

Regarding the different groupings of countries, the criteria used to build up in-
come and geographic groups are borrowed from WDI. The World Bank defines the
following four income categories on the basis of per capita Gross National Income
levels in 2002: low or LI (<735$), lower-middle or LMI (736$-2935%), upper-middle
or UMI (2936$-9075%), high income or HI (>9075$). Countries are also classified
into seven world geographic regions: East Asia & Pacific (EPA), Europe & Cen-
tral Asia (ECA), Latin America & Caribbean (LAC), Middle East & North Africa

MENA), North America (NA), South Asia (SA) and Sub-Saharan Africa (SSA)
23, Note that we merged the small South Asia group (5 countries) with East Asia &
Pacific and that the middle-income (LMI and UMI) countries form a single subset
(called MI).

We also put together in groups countries that have a systemic significance at
the world level in terms of fossil fuels consumption or global economic weight. We
choose to focus on OPEC, OECD countries and the early EU members, the EU15,
which embodies the EU founders and successive newcomers prior to the post 2003
Eastern Europe extensions. Given the new geopolitical configuration that emerged
from the 2008 financial crisis, the COy, PCE dynamics of the Group of Twenty -
the G20 - is also explored.

21See the list of countries in the appendix. For the reconstructed series and country groupings,
see the complementary material on the corresponding author’s website.

2 Ibid.

2Most of the CDIAC166 areas are equivalent to the world countries listed in WDI. However,
some CDIAC166 areas encompass several WDI countries that belong to the same geographic area
but that may possess different income per capita levels. Therefore some sample adjustments are
necessary to match the WDI groupings criteria with the CDIAC166 areas.
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4.2 Historical trends

Figure [ displays graphical patterns of total, per capita and relative per capita
COy emissions for the world (CDIAC World, CDIAC166 and CDIAC128) samples
as well as for the main country groupings (essentially income and geographical
groups plus OECD, EU15 and the G20). Table [I provides summary statistics for
the whole 1960-2002 period. Columns 2 to 4 concern total emissions and report
for each country/area initial and terminal total emissions, with the corresponding
emissions share for each country/aggregate group relative to the reference sample
CDIAC166. The emissions’ average growth rate over the years 1960-2002 is pro-
vided in column 4. Similar statistics for carbon emissions in per capita terms are
presented in columns 5 to 7 and their relative counterparts (relative to the arith-
metic yearly mean over the 166 CDIAC areas) are in column 8 to 10.

In lines 1 to 3 in Table [l we can see that the CDIAC166 sample accounts for
almost 96.8% (94.7%) of total emissions of the CDIAC World in 1960 (2002), while
the world sample without outliers CDIAC128 represents a fair 96.3% (91.3%) share
of total emissions. The three world samples display very similar trends. Between
1960 and 2002, CDIAC World emissions went up from 2577 to 6973 thousand mil-
lions of metric tons, which represents an average growth rate of 2.4% per year. In
per capita terms, the increase over that period is about 0.6% per year for the three
world samples, while the rate of growth is negative for the relative series (-1.4%).

If we focus on selected individual countries from lines 4 to 13, we can see that
the USA is by far the largest individual total fossil-fuel carbon emitter in 1960 and
2002, with respectively 32% and 24% of CDIAC166 world’s emissions. In 1960,
Germany and China were at the second and third position, with respective shares
of 8.9% and 8.1%. By 2002, while Germany managed to stabilize total emissions
at its 1960 level, emerging economies such as China and India strongly increased
their total emissions (by 3.6% and 5.7% per year respectively) and share (+6.4%
and +3.7% ) in the CDIAC166 world. Note that the Chinese and Indian emis-
sions are far below those of more advanced economies both in relative and per
capita terms. Luxembourg, UK, Germany and USA were the only rich and diver-
sified economies producing over 3 metric tons (mt henceforth) CO, PCE in 1960.
These levels decreased over the period for the three European countries while US
emissions have kept increasing on average by 0.5%. By 2002, Luxembourg, USA,
Australia and Canada were the only diversified and advanced economies producing
more than 4 mt CO, PCE, i.e. four times the world per capita level, and more than
2.5 times the CDIAC166 average. The largest growth in total emissions since 1960
took place in oil-producing countries (such as the United Arab Emirates or Qatar).

Regarding the time trends in Figure [Tl it is very clear on the left graphs that
total emissions for all samples (world, income, regions, etc) were rising quickly
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Table 1: World carbon dioxide emissions. Summary statistics for the period 1960-2002

Levels (in thousand mt)

Per capita (in mt)

Rel. per capita

annual annual annual
Country / growth growth growth
group 1960 (%) 2002 (%) 60-02 1960 (rk.) 2002 (rk.) 60-02 1960 (rk.) 2002 (rk.) 60-02
World
CDIAC World  2577.0 (103.2%)  6973.0 (105.3%) 2.4% 0.85 (36) 1.12 (70) 0.7% 1.22 (36) 0.68 (70) -1.4%
CDIAC166 2497.9 (100.0%)  6621.2 (100.0%) 2.3% 0.82 (39) 1.07 (72) 0.6% 1.18 (39) 0.65 (72) -1.4%
CDIAC128 2486.0 (99.5%) 6400.2 (96.6%) 2.3% 0.83 (38) 1.07 (72) 0.6% 1.20 (38) 0.65 (72) -1.4%
Selected countries
Australia 24.1 (1.0%) 97.1 (1.5%) 3.3% 2.32 (11) 4.97 (11) 1.8% 3.33 (11) 3.02 (11) -0.2%
Canada 52.6 (2.1%) 140.9 (2.1%)  2.4% 2.88 (8)  4.41 (14)  1.0% 414 (8) 269 (14)  -1.0%
China 212.9 (8.1%) 957.2 (14.5%) 3.6% 0.33 (64) 0.75 (86) 2.0% 0.47 (64) 0.45 (86) -0.1%
India 32.9 (1.3%) 332.7 (5%) 5.7% 0.07 (160)  0.32 (109) 3.6% 0.11 (160) 0.2 (109) 1.5%
Germany 222.2 (8.9%) 219.3 (3.3%) -0.0% 3.07 (5) 2.66 (25) -0.3% 4.40 (5) 1.62 (25) -2.3%
Luxembourg 3.1 (0.1%) 2.6 (0.03%) -0.5% 10.0 (2) 5.71 (9) -1.3% 14.4 (2) 3.48 (9) -3.3%
Qatar 0.048 (0.0%) 9.9 (0.1%) 13.5% 1.06 (28) 12.52 (2) 6.0% 1.52 (28) 7.62 (2) 3.9%
U. Arab. Emir. 0.003 (0.0%) 25.6 (0.4%) 24.1% 0.03 (139) 10.49 (3)  15.0% 0.04 (139) 6.39 (3) 12.7%
UK 159.3 (6.4%) 148.1 (2.2%)  -0.2% 3.04 (6) 247 (31) -0.5% 437 (6)  1.51 (31)  -2.5%
USA 798.6 (32.0%)  1592.4 (24.0%)  1.7% 442 (4) 553 (10)  0.5% 6.35 (4)  3.37 (10)  -1.5%
Income
HI 1554.4 (62.2%) 3290.0 (49.7%) 1.8% 2.33 (11) 3.50 (19) 1.0% 3.34 (11) 2.13 (19) -1.1%
MI 878.2 (35.2%) 2703.1 (40.8%) 2.7% 0.62 (43) 0.96 (73) 1.0% 0.90 (43) 0.58 (73) -1.0%
LI 61.9 (2.5%) 564.0 (8.5%) 5.4% 0.06 (118) 0.23 (116) 3.1% 0.09 (118) 0.14 (116) 1.0%
Geogr. areas
EAP & SA 366.2 (14.7%) 2189.5 (33.1%) 4.3% 0.23 (76) 0.63 (92) 2.4% 0.32 (76) 0.38 (92) 0.4%
ECA 1131.0 (45.3%) 1732.1 (26.2%) 1.0% 1.67 (20) 1.99 (47) 0.4% 2.39 (20) 1.22 (47) -1.6%
LAC 83.3 (3.3%) 354.2 (5.3%) 3.5% 0.38 (61) 0.66 (92) 1.3% 0.55 (61) 0.40 (92) -0.7%
MENA 27.9 (1.1%) 412.0 (6.2%) 6.6% 0.27 (70) 1.27 (65) 3.8% 0.38 (70) 0.77 (65) 1.7%
NA 851.2 (34.1%)  1733.6 (26.2%)  1.7% 427 (5) 542 (11)  0.6% 6.14 (5)  3.30 (11)  -1.5%
SSA 34.9 (1.4%) 135.7 (2.1%) 3.3% 0.16 (88) 0.21 (120) 0.6% 0.23 (88) 0.12 (120) -1.4%
Other groups
EU15 588.6 (23.6%) 853.3 (12.9%) 0.9% 1.86 (16) 2.25 (39) 0.4% 2.67 (16) 1.37 (39) -1.6%
Ex-USSR 395.1 (15.8%) 587.3 (8.9%) 0.9% 1.74 (20) 2.06 (45) 0.4% 2.50 (20) 1.25 (45) -1.6%
G20 2149.3 (86.0%) 5296.3 (80.0%) 2.2% 1.00 (32) 1.30 (65) 0.6% 1.43 (32) 0.79 (65) -1.4%
OECD 1667.4 (66.8%) 3470.1 (52.4%) 1.8% 2.15 (12) 3.03 (23) 0.8% 3.08 (12) 1.84 (23) -1.2%
OPEC 39.6 (1.6%) 430.5 (6.5%) 5.8% 0.20 (78) 0.81 (84) 3.3% 0.29 (78) 0.49 (84) 1.2%

Source: Author’s own calculations with CO2 data from Marland et al. (2006) and population series from U.S. Census Bureau (2006). The
sample CDIAC128 corresponds to the sample CDIAC166 once erratic countries are removed. The growth rates are geom. averages over the
whole period. ‘mt’ stands for metric tons, (%) corresponds to emission shares relative to the total CDIAC166 emissions while (rk) is the rank
with respect to the national series included in CDIAC166. The income and geographic grouping criteria are based on World Development
Indicators (2004). HI, MI and LI stand for high-, middle- and low-income, EAP = East Asia & Pacific, ECA = Europe & Central Asia
(ECA), LAC = Latin America & Caribbean, MENA = Middle East & North Africa, NA = North America, SA = South Asia and SSA=
Sub-Saharan Africa.



Figure 1: Time trends in world CO, emissions. Period 1960-2002.
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Notes: Figures on CO2 emissions and population come from Marland et al. (2006) and U.S. Census Bureau
(2006) respectively. CO2 emissions come exclusively from fossil fuel consumption, cement production and
gas flaring. ‘mt’ stands for metric tons. The income and geographic countries’ groupings are based on World
Bank (2004). HI, MI and LI stand for high-, middle- and low-income, EAP = East Asia & Pacific, ECA
= Europe & Central Asia (ECA), LAC = Latin America & Caribbean, MENA = Middle East & North
Africa, NA = North America, SA = South Asia and SSA = Sub-Saharan Africa. The vertical lines plotted
correspond to the 1973 and 1979 oil price shocks. Relative CO2 PCE is calculated with respect to the yearly
arithmetic mean over the 166 CDIAC areas.

before the 1970s oil shocks (vertical lines), and kept increasing afterward at a lower
pace. The aggregate emissions for the CDIAC World rose by roughly 2750 mil-
lions mt (+107%) from 1960 until 1980 and 1640 million mt (+31%) during the
1980-2002 period. The growth rates for the CDIAC166 and CDIAC128 samples
are slightly lower. These trends are confirmed at the level of income categories.
The European & Central Asia group is the only geographic grouping that reduced
its total emissions, by -21%, after the second oil price shock (due to the USSR’s
collapse). Regarding the political groupings, the G20 happen to be the top pol-
luting group as its members emit roughly 80% of the CDIAC166 total emissions
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since 1960, with a +92% increase between 1960 and 1980 and +28% during the
1980-2002 period. However, the most striking empirical fact comes from the series
in per capita terms: most of the country groupings clearly stabilize their respective

level either after the first or the second oil shock. In that respect, our data are in
line with McKitrick and Strazicich (2005).

5 Distribution results

The empirical sectionPd is divided broadly into two parts. In section 5], a world
analysis is carried out with series in per capita as well as in relative terms. The
comparative statics is conducted every decade from 1960 to 2000 and includes a
comparison between the robust location, scale and shape statistics and their tradi-
tional moment-based counterparts. The intra-distribution dynamics is performed
with 10-year (7 = 10) transition laws estimated over the periods 1960-2002, 1970-
2002, 1980-2002 and 1990-2002, and the subsequent ergodic densities are compared
with the spatial density for the near-term year 2000.

In the subgroups’ results in section (.2] the relative series’ analysis is dropped
due to space constraints. The comparative statics is carried out for each country
grouping exclusively with robust measures and for the years 1960, 1980 and 2000.
Omitting the intermediate decades does not modify the global picture. Spatial
density fits for each decade are nevertheless reported and the ergodic densities for
each group are shown beside the yearly density plot.

5.1 World convergence

The evolution of the COy PCE cross-sectional densities for the CDIAC166 world
panel is presented on the top panel of Figure[2l We can clearly see that the mass of
the highly peaked and right-skewed carbon density in 1960 tends to migrate toward
larger CO, PCE levels over time. This feature is particularly strong during the
1960s but the carbon distributions become more stable after the oil price shocks.
The cross-sectional mean (dotted line drawn on the floor of the 3-dimensional plot)
is influenced by large values while the median keeps increasing at a more constant
pace, which slows down around year 1980. The lower panel of Figure [2 shows how
the scaling of the data relative to the cross-sectional mean modifies the graphical
pattern. The related densities appear to be roughly stable during the 1960-1970

24A1l the computations in the paper are made using R.2.9.2 software, see R Development
Core Team (2009), and the contributed packages adapt 1.0-4 of Lumley and Maechler (2007),
diptest 0.25-2 of Maechler and Ringach (2009), quantreg 4.44 of Koenker (2009), moments 0.11
of Komsta and Novomestky (2007) and np 0.30-3 of Hayfield and Racine (2008).

25Note that the group analysis exclusively reports the time and spatial poolability tests carried
out with the methodology of Li (1996). The Kolmogorov-Smirnov procedure yields identical
conclusions in the vast majority of the cases.
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Figure 2: Cross-section densities of the world per capita CO, emissions. Period
1960-2002.
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period, flattening between 1970 and 1990 and staying rather steady afterwards.
The reader can check in Figure [ in the Appendix that these dynamics remain
fairly similar when outliers are removed.

Table 2 provides the distributional statistics and tests for cross-section carbon
densities of the CDIAC166 world panel for each decade from 1960 to 2000. The
median and spread for the relative COy PCE series can be easily obtained from
the latter table. Since the asymmetry, peakedness and Dip statistics are scale-
and location-invariant, their values hold for the relative series as well. As some
of the scale and shape measures based on moments behave erratically, and do
not allow any precise inference, we interpret only robust figures. First, the me-
dian for the CO, PCE series grows over the whole period at a decreasing rate,
pointing to a permanent shift of the distribution toward larger COy PCE levels
which possibly stabilize in the future. The corresponding medians for relative se-
ries are 0.24,0.21,0.31,0.50 and 0.48, and rather suggest an increasing trend in
emissions during the mid-years 1970-1990. Second, IQR for CO; PCE levels in-
creases strongly during the 1960-1980 period and remains rather steady afterwards.
With the related IQR for relative COy PCE at 0.85,0.96,1.15,1.28,1.17, disper-
sion in that case rises more moderately during the 60s, increases strongly between
1970 and 1990 and stabilizes afterward. In terms of sigma-convergence, (relative)
COy PCE series display strong (moderate) divergence worldwide during the 60s,
moderate (stronger) divergence in the 70s (1970-1990) and relatively stable spread
since 1980 (1990).

Third, the asymmetry measure (MC') indicates that the cross-sectional den-
sities are right-tailed during all decades and that asymmetry decreases after the
70s oil crises. Fourth, peakedness decreases over time with a large drop between
1960 and 1970. Note however on the upper panel of Figure [2 that percentile 87.5
minus percentile 12.5 (the numerator of the peakedness indicator) increases during
the years 1960-1970, signaling sigma-divergence in COy PCE levels between the
most intensive polluters and the rest of the world, while the relative series on the
lower plot exhibit a decreasing difference in these percentiles during that period,
suggesting convergence instead?d. Fifth, no significant departure from unimodal-
ity is detected with the Dip test over time, which points towards the absence of
multi-polarization at the world level. Finally, both KS and Li’s tests show a signif-
icant difference between the COy PCE distributions in 1960 and 1970 but none for
the next successive pairs of decades and confirm the strong changes in the spatial
distribution over the early years. By contrast, the KS and Li’s procedures suggest
similar spatial distributions throughout the entire time horizon for the relative CO,

PCE series.

26The reader can easily check for the relative series that the difference in percentiles 87.5 and
12.5 went down from 2.19 to 1.67 between 1960 and 1970 (because of the increase of the yearly
mean) while the corresponding figures for the unscaled data are 1.53 and 2.78 respectively.
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Table 2: World cross-section densities of per capita CO, emissions. Location, scale and shape statistics. Period 1960-2000.

Statistic/Test 1960 1970 1980 1990 2000

Location, scale and shape statistics based on moments

Central tendency (arith. mean) 0.70 1.67 1.72 1.44 1.64
[0.41,0.91] [0.92,2.27] [1.06,2.21] [1.06,1.74] [1.11,2.05]

Spread (variance) 2.7 19.3 14.6 5.2 9.8

[0.6,6.0] [4.3,42.7] [3.3,34.1] [1.9,10.6] [2.4,22 4]
Asymmetry (skewness) 6.0 6.0 7.0 5.1 6.7
[4.2,9.8] [3.9,8.7] [5.5,11.8] [4.0,8.8] [5.4,11.5]

Peakedness (kurtosis) 48.0 47.4 67.4 43.1 63.6
[14.8,87.8] [12.0,79.9] [42.4,126.2] [28.3,81.4] [42.6,120.0]

Location, scale and shape statistics based on quantiles

Central tendency (median) 0.17 0.34 0.54 0.72 0.78
[0.07,0.21] [0.14,0.45] [0.30,0.70] [0.50,1.06] [0.49,1.00]

Spread (IQR) 0.59 1.60 1.97 1.84 1.92
[0.25,0.79] [1.38,2.15] [1.51,2.57] [1.30,2.17] [1.59,2.46]

Asymmetry (MC) 0.69 0.70 0.63 0.45 0.41
[0.62,0.90] [0.59,0.86] [0.51,0.77] [0.17,0.62] [0.25,0.62]

Peakedness 2.60 1.74 1.72 1.62 1.43
[1.64,3.60] [1.09,2.08] [1.20,1.98] [1.21,1.91] [0.85,1.59]

Global shape tests

Unimod. vs multimod. (Dip test) 0.015 0.022 0.014 0.020 0.022

Shape equality (KS test) - levels 0.17" 0.10 0.06 0.06

Shape equality (Li (1996) test) - levels 2.33"" 0.40 0.25 0.41

Shape equality (KS test) - relative 0.07 0.10 0.10 0.08

Shape equality (Li (1996) test) - relative 0.37 0.34 0.10 0.42

Notes: In brackets are 95% basic bootstrap confidence limits, see Davison and Hinkley (1997, p.28-29). To avoid negative values for the
variance’s lower confidence bound, we used the basic percentile method (see ibid, p. 202-203). Note that we resampled blocks of full length in
the time dimension. IQR and MC stand for interquartile range and medcouple respectively. * and ** indicate 5% and 10% significance levels
for the Dip statistic, Kolmogorov-Smirnov (KS) and Li (1996) tests. For the Dip test, spline interpolations from the finite sample tabled critical
values have been used. Large samples’ asymptotic values are applied in the other tests.



Figure 3: Ergodic densities for the world per capita COy emissions.
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In summary, the analysis of the world spatial distribution over the postwar
period highlights cross-country divergence and larger median emissions for the
(relative) COy PCE series during the 1960-80 (1970-90) decades and more stable
(relative) emissions and gaps after the 70s oil shocks (1990), leaving the door open
for conditional sigma-convergence toward larger and possibly stable emission lev-
els to occur worldwide in the long run. We find significant differences between the
successive spatial distributions only between 1960 and 1970 for the series in levels.
Finally, we rule out the existence of multi-polarization at the world level over the
full timespan.

Figure Bl displays the continuous Markov analysis with the ergodic density plots
for the CO, PCE series (in relative terms) on the left-hand-side (right-hand-side).
The density profiles foo 1960,7=10 tO foo 1990,-=10 correspond to steady state distri-
butions based on 10-year transition laws estimated over the horizons 1960-2002,
1970-2002, 1980-2002 and 1990-2002 respectively. The density faoo (in gray) is
the near-term spatial distribution in 2000, referred to as the ‘current’ distribution
henceforth. We notice on the left plot in Figure [3] that the ergodic distributions
for the level series possess more mass at larger emission levels compared to the
current distribution, and globally suggest further divergence and larger emissions
with later stabilization. These conclusions are confirmed when integrating the sta-
tionary shapes ( foo,l%oﬁzlo to foo,lggoﬁzlo) over the pertinent ranges and inverting:
the respective long-run medians 2.75, 2.25, 2.35, 1.95 and interquartile ranges 2.1,
1.7, 3.1, 2.7 are larger in most cases than the median (0.78) and IQR (1.92) levels
in year 2000. A similar result holds with respect to the relative CO, PCE steady
state densities fOo 1960,r=10 and fOo 1970,-=10, Where the related long-run medians
(1.25 and 1.45) and IQR (1.75 and 1.30) are larger compared to the median (0.48)
and dispersion (1.17) in year 2000, while foo,lgg()ﬂ—:lo and fm719907T:10 rather predict
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sigma-convergence in relative terms, with long-run medians of 0.65 and 1.4 and
IQR values of 0.9 and 0.75. We proceed to roughly evaluate the differences in
terms of long-run projections for the two COy, PCE measures. Noting that the
mean _emissions per capita over the four estimating periods is about 1.5 mt COs
PC, we observe that the 0-2 category for the relative series corresponds to the
0-3 category for the unscaled data. Numerical integration yields proportions of
80.6%, 69.1%, 93.0% and 77.4% countries falling in the 0-3 mt CO, PCE range
with relative series’ dynamics while these magnitudes are smaller in general, 57.0%,
70.5%, 64.0%, 71.2% respectively, with unscaled data. Finally, note that because
the foo7199077210 projection is based on much less data@, its shape is less robust and
its interpretation will be ignored in the group analysis where smaller samples are
employed.

Overall, while the comparative statics suggests a stabilization of the diverging
dynamics of the world (relative) CO, PCE spatial distributions after 1980 (1990),
the transition laws estimated over the whole horizon 1960-2002 predict further
cross-country divergence compared to the current level and larger emissions with
later stabilization for both emissions’ measures. If we rather consider post-oil shock
transitions, a similar picture arises for the per capita series while the normalized
data predict narrower gaps and larger relative emission levels compared to year
2000. In any case and whatever the starting point and measurement scale, we al-
ways find stable and non-degenerated world ergodic densities, which point clearly
toward conditional sigma-convergence in the long run (a variety of country-specific
steady state emission levels). Compared to other studies, we confirm Ezcurra’s
(2007) unimodal ergodic shape for the relative series but with essentially post-oil
shock transitions. Our results broadly corroborate the sigma-divergence’s finding
of Aldy (2006) for the relative series over the years 1960-2000 as well as the exis-
tence of persistent gaps in the long run. In contrast to his findings, we find lower
dispersion in the relative ergodic distributions only when the most recent transition
laws are employed. Similarly to Stegman (2005), we highlight that the distribution
results are heavily affected by the COy PCE series transformation. Finally, our
analysis does not identify the emergence of two (or multiple) modes in the world
distribution of relative CO5 PCE between 1960 and 2002 as some of the results in
Aldy (2006) or Panopoulou and Pantelidis (2009) may suggest.

2TThe average per capita emissions over the periods 1960-2002, 1970-2002, 1980-2002 and 1990-
2002 are 1.45, 1.58, 1.51 and 1.59 mt CO2 PCE respectively.

28Gtarting in 1990 allows one to map only three cross-sections (emission levels in 1990, 1991
and 1992) into those observed 10 years later before reaching the end of the time horizon. From
another perspective, as noted by Aldy (2006), recent dynamics may be more likely to capture the
most relevant economic, technological and institutional factors influencing the transition across
pollution levels.
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5.2 Convergence within subgroups

Income groups. This subsection empirically investigates how past and future
spatial distributions of per capita CO, emissions are affected when countries achieve
similar levels of per capita income in the terminal year of the panel. The left plots
in Figure @ show the densities estimated for the years 1960, 1970, 1980 ,1990, 2000,
denoted fyear. We observe that, similarly to the world sample, the spatial shapes
strongly flatten from 1960 to 1980 in all income groups, with a density mass mi-
grating from lower toward larger emission levels. From 1980 to 2000, non-diverging
dynamics emerge, particularly in the high-income (HI) and low-income (LI) groups.

Figure 4: Income groups’ spatial densities
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Looking first at the formal tests in Table [8] we observe that none of the Dip
statistics of the multimodality test is significant. We therefore reject the existence
of multi-polarization within the income groups. The equality of the spatial distri-
butions is also rejected in all subsets between 1960 and 1980 at the 5% level but
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accepted between 1980 and 2000. This highlights the importance of the distribu-
tional variations in the 60s and 70s whatever the income level. Finally, the spatial
poolability of the income groups with the rest of the world is strongly rejected for
all years considered.

The descriptive statistics in Table [ indicate that the median, spread (IQR)
and peakedness measures increase quite heavily during the early years 1960 to 1980
in all income groups while the right asymmetry is preserved. These are clear di-
verging patterns, with distribution basis and center spreading apart toward larger
emission levels. After the oil shocks, group-specific behaviors emerge. In the
HI economies, the median and spread decrease over time, positive asymmetry in-
creases and peakedness remains steady. This suggests convergence (center and basis
shrinking in the same proportion) over that period possibly toward lower emission
levels with persistent heavy polluters. In the MI countries, the median rises but
IQR, peakedness and positive asymmetry fall. These features also signal abso-
lute/conditional convergence (narrowing basis and center of the distribution) but
toward larger emissions. The LI countries display decreasing median and peaked-
ness but slightly increasing IQQR and (positive) asymmetry which point toward
moderate divergence and decreasing emissions during the post-oil shock horizon.

The ergodic densities drawn on the right-hand-side plots in Figure E indicate
that the distribution forecasts depend heavily on the time horizon used to esti-
mate the 10-year transition operator. When the full period 1960-2002 is employed,
the ergodic shapes (solid black lines) for the three income groups are flatter and
emission levels rise globally compared to the levels in 2000 (solid gray lines). By
contrast, the post-oil shock transitions 1980-2002 (dashed black lines) favor sharper
and single-peaked density profiles around a lower /larger modal emission level com-
pared to year 2000 for the LI/MI economies. The ergodic shape for the HI countries
is much more spread and exhibits several modes mainly located at the right of the
single peak of year 2000.

In sum, the income groups exhibit sigma-divergence and larger per capita emis-
sions between 1960 and 2000 without hints of multi-polarization. During the sub-
period 1960-1980, the diverging and increasing trends are particularly strong in
all income subsets. Between 1980 and 2000, we identify sigma-convergence in the
HI/MI economies but toward lower/larger emission levels respectively while the LI
group exhibits slightly increasing dispersion and lower median emissions. Com-
pared to the spatial distribution in 2000, the distribution forecasts based on 1960-
2000 transition laws anticipate further divergence and larger per capita emissions
within all income subsets before the steady-state levels are achieved. The post-
oil shock transition laws (1980-2002) suggest larger emission levels and multiple
modes for the ergodic HI distribution but further convergence toward larger/lower
emissions in the MI/LI economies.
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Table 3: Income groups’ cross-section densities of per capita COs emissions. Lo-

cation, scale and shape statistics. Period 1960-2000.

Sample (size) Statistic / Test 1960 1980 2000
Center (median) 1.77 4.34 3.92
. Spread (IQR) 1.40 2.57 2.02
?ﬁ%‘ Income Asymmetry (MC) 0.33 0.32 0.52
(n—48) Peakedness 1.97 2.83 2.84
Multimodality (Dip)  0.063 0.044 0.043
Spatial pool. 30.1° 29.8""" 51.1°
Pair-wise time pool. 5.12" 0.87
Center (median) 0.17 0.49 0.67
. Spread (IQR) 0.37 1.02 0.84
?ﬁgﬂe Income 4 mmetry (MC) 0.60 0.65 0.40
(n—62) Peakedness 1.97 2.18 1.96
Multimodality (Dip)  0.029 0.028 0.035
Spatial pool. 28.7°" 19.8" 33.9""
Pair-wise time pool. 4.65"" 1.33"
Center (median) 0.024 0.062 0.055
Spread (IQR) 0.046 0.090 0.110
(LLOIV)V Income Asymmetry (MC) 0.49 0.45 0.52
(n—49) Peakedness 1.61 2.03 1.69
Multimodality (Dip)  0.033 0.033 0.042
Spatial pool. 167" 120" 133"
Pair-wise time pool. 1.99"" -0.51

Notes: IQR and MC stand for interquartile range and medcouple respectively. * and ** indicate 5%
and 10% rejection levels for the null of unimodality vs multimodality - Dip statistic of Hartigan and
Hartigan (1985) - and for the null of distribution equality over time (time poolability) or with the ‘rest
of the world’ (spatial poolability) - .J, statistic of Li (1996).

Geographic groups. Geographic proximity between countries may favor the ex-
istence of similar natural resource endowments, weather conditions, technologies or
consumption habits which may in return generate a comparable use of fossil fuel.
The perspective of regional trading schemes of carbon allowances makes regional
emissions dynamics of particular interest. The left density plots in Figure [l indi-
cate that the early expanding trends and later stabilization in gaps and emissions
prevalent worldwide affect most regions. However, East Asia & Pacific and South
Asia (EAP & SA) and Middle-East and North Africa (MENA) display particularly

spreading apart patterns over the entire timespan.

Starting with the formal tests in Tabled we identify no significant multimodal-
ity within any region and at any time. The spatial pooling of the geographic subsets
with the rest of the world is widely rejected except for the EAP & SA countries.
Significant differences over time are detected between the distributions of years
1960 and 1980 for most regions (except for EAP & SA) but none between 1980
and 2000.

The statistics in Table[d show that most regions display larger median emissions
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Figure 5: Geographic groups’ cross-section densities of per capita COs emissions.

Period 1960-2000.
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Table 4: Geographic groups’ cross-section densities of per capita CO, emissions.

Location, scale and shape statistics. Period 1960-2000.

Sample (size) Statistic / Test 1960 1980 2000
Center (median) 1.13 2.35 2.11
Europe & Spread (IQR) 1.29 1.43 1.17
Central Asia Asymmetry (MC) 0.28 0.10 0.02
(ECA) Peakedness 1.76 1.52 1.21
(n=30) Multimodality (Dip)  0.078 0.045 0.065
Spatial pool. 27.6" 28.1"" 26.4"""
Pair-wise time pool. 3.27 0.32
. Center (median) 0.10 0.37 0.65
g:ﬁfﬁ":z&" Spread (IQR) 0.37 1.75 2.16
. Asymmetry (MC) 0.68 0.70 0.53
South Asia
(EAP & SA) Peak('edness. . 1.73 2.01 1.55
(n—34) Multimodality (Dip)  0.044 0.043 0.044
Spatial pool. -1.71 -2.26 -1.33
Pair-wise time pool. 1.21 0.10
Center (median) 0.19 0.81 1.16
Middle-East &  Spread (IQR) 0.28 2.67 2.52
North Africa Asymmetry (MC) 0.68 0.79 0.71
(MENA) Peakedness 2.96 2.12 2.96
(n=19) Multimodality (Dip)  0.049 0.055 0.050
Spatial pool. 27.6" 28.1"" 26.4"""
Pair-wise time pool. 245" -0.07
Latin Center (median) 0.21 0.47 0.60
America & Spread (IQR) 0.38 0.84 0.76
Caribbean Asymmetry (MC) 0.41 0.52 0.49
(LAC) Peakedness 2.04 2.57 2.00
(n—36) Multimodality (Dip) 0.02)? O'Oi% 0.0éz*
Spatial pool. 2.0 6.0 17.9
Pair-wise time pool. 1.43" 0.32
Center (median) 0.025 0.062 0.055
Sub Saharan Spread (IQR) 0.044 0.088 0.080
Africa Asymmetry (MC) 0.46 0.51 0.39
(SSA) Peakedness 1.62 2.18 1.81
(n=37) Multimodality (Dip)  0.038 0.050 0.049
Spatial pool. 10.1° 68.9°" 89.0°""
Pair-wise time pool. 2.16™ -0.11

Notes: IQR and MC stand for interquartile range and medcouple respectively. * and ** indicate 5%
and 10% rejection levels for the null of unimodality vs multimodality - Dip statistic of Hartigan and
Hartigan (1985) - and for the null of distribution equality over time (time poolability) or with the ‘rest

of the world’ (spatial poolability) - .J, statistic of Li (1996).

and dispersion between 1960 and 2000. The only exceptions are the ECA coun-
tries which converge in the sigma sense. During the early period 1960-1980, median
emissions and dispersion more than double in the vast majority of the regions, and
more than triple in the EAP & SA and MENA subsets. If we focus on the post-oil
shock period 1980-2000, we notice that (a) two regions depict sigma-convergence
and decreasing median emissions (ECA and SSA), (b) two other regions exhibit
sigma-convergence and increasing median emissions (MENA and LAC) and (iii)
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one area experiences sigma-divergence and increasing median pollution (EAP &

SA).

Regarding the Markov analysis, the ergodic densities shown on the right-hand-
side plots in Figure [ indicate that for all regions (except for ECA) the spatial
distributions estimated with 10-year transition laws covering the horizon 1960-
2002 exhibit much flatter profiles and larger emissions compared to the density
in 2000, with possible multimodality in the future. Using post 1970s transitions
(1980-2002) instead, the ergodic densities for ECA and SSA are sharper, more
compact and possess more mass located at lower emission levels; those for MENA
and LAC appear to be relatively fragmented and spread, with several (separated)
modes located at larger emission levels; the one for EAP & SA is expected to
concentrate mainly within an emission range of roughly 4.5-5 mt CO, PCE in the
future.

To summarize, every region displays sigma-divergence and larger per capita
median emissions over the whole period 1960-2000, except ECA which globally
converges. The same picture holds between 1960 and 1980 but with larger vari-
ations and divergence in ECA. From 1980 to 2000, sigma-convergence prevails in
all regions (but EAP & SA which diverges) with decreasing median emissions in
ECA and SSA and increasing median emissions in MENA, LAC and EAP & SA.
We formally discard multimodality in the past distributions. The Markov analysis
based on 1960-2000 transitions anticipates further divergence and larger emission
levels in all regions before the ergodic shapes are reached, except in the ECA area
which possesses a distribution in year 2000 close to its steady state. The post-oil
shock dynamics (1980-2002) predicts lower emissions and further convergence in
two regions: ECA and SSA, and a variety of diverging and polarization patterns
toward larger emission levels within the remaining three areas.

Political groupings. This section concentrates on the analysis of countries grouped
according to institutional /political characteristics. Starting with the left-hand-side
yearly density plots in Figure [l the similarities between the EU15 and OECD in-
dicate that, as members of OECD, the EU15 countries largely contribute to the
peaked density profile that emerges over time in the OECD subset. We also notice
the flat shapes of the G20 group which highlight the large pollution gaps existing
since the 60s among the G20 economies in per capita terms. Globally, the densi-
ties of the four country subsets appear to be unimodal and the expanding trends
identified worldwide from 1960 to 1980 seem to be present.

Focusing first on the statistical tests in Table B we can see that unimodal-
ity is accepted in every subset and for every year considered. The cross-sectional
pooling with the rest of the world is rejected in every group and for every year
except in OPEC. The equality of the distributions is rejected between 1960 and
1980 at the 10% level in the OECD and OPEC cases but accepted in the EU15
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Figure 6: Political groupings’ cross-section densities of per capita CO, emissions.
Period 1960-2000.
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Notes: Ergodic shapes based on iterations from stochastic kernels according to the method of Johnson (2000).
The conditional densities are estimated with product (gaussian) kernels for the joint. The robust normal reference
method of Zhang and Wang (2009) with p € (0.3,0.5) is used to get optimal bandwidths.

and G20 subsets while the distributions are formally similar between 1980 and
2000 in all four groups. Consequently, the 1960s dynamics seems to have affected
the political country subsets to a lesser extent compared to other grouping criteria.

Turning to the location, scale and shape measures, we notice that, over the full
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Table 5: Political groupings’ cross-section densities of per capita CO, emissions.
Location, scale and shape statistics. Period 1960-2000.

Sample (size) Statistic / Test 1960 1980 2000
Center (median) 1.62 2.44 2.36
Spread (IQR) 1.50 1.46 0.71
EU15 Asymmetry (MC) 0.00 0.14 -0.11
(n=15) Peakedness 1.77 1.51 1.79
Multimodality (Dip)  0.074 0.058 0.072
Spatial pool. 9.4™ 11.9" 4.7
Pair-wise time pool. 0.90 0.42
Center (median) 1.33 2.34 2.37
Spread (IQR) 1.65 1.75 0.79
OECD Asymmetry (MC) 0.25 0.29 -0.01
(n=29) Peakedness 1.57 1.59 2.78
Multimodality (Dip)  0.055 0.043 0.055
Spatial pool. 13.5" 25.2""" 29,2
Pair-wise time pool. 1.51" 0.94
Center (median) 0.65 1.97 2.02
Spread (IQR) 1.86 2.82 1.67
G20 Asymmetry (MC) 0.61 0.08 0.00
(n=19) Peakedness 1.54 1.23 2.14
Multimodality (Dip)  0.066 0.066 0.092
Spatial pool. 4.25""" 247 254"
Pair-wise time pool. 0.71 0.10
Center (median) 0.15 1.62 1.85
Spread (IQR) 0.67 3.78 4.55
OPEC Asymmetry (MC) 0.88 0.55 0.62
(n=11) Peakedness 2.66 2.21 2.03
Multimodality (Dip)  0.096 0.076 0.069
Spatial pool. -3.54 -0.06 -0.31
Pair-wise time pool. 1.37" 0.04

Note: IQR and MC stand for interquartile range and medcouple respectively. * and **
indicate 5% and 10% rejection levels for the null of unimodality vs multimodality - Dip
statistic of Hartigan and Hartigan (1985) - and for the null of distribution equality over
time (time poolability) or with the ‘rest of the world’ (spatial poolability) - J,, statistic
of Li (1996).

period 1960-2000, median emissions rise everywhere but dispersion drops in the
EU15, OECD and G20 subsets. This brings the number of subsets that (sigma-)
converge over the whole time horizon to four in this paper. By contrast, dispersion
explodes in OPEC in that time interval. Regarding the early and late subperiods,
we observe increasing median emissions and dispersion in OECD, G20 and OPEC
but decreasing dispersion in EU15 between 1960 and 1980, while median emissions
are stable and dispersion decreases in all subsets between 1980 and 2000 except in
OPEC where both median emissions and spread keep rising.

The ergodic profiles shown on the right-hand-side plots in Figure [ indicate
that the 1960-2002 transition laws produce mainly flat density patterns and larger
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emissions compared to year 2000 for all political subsets. By contrast, the er-
godic densities evaluated with 1980-2002 transitions are rather close to the spatial
densities in 2000 for the EU15, OECD and G20 members and suggest further con-
vergence (toward slightly larger emissions) for EU15, stable gaps and emissions for
OECD, and a moderately polarized profile with 2 modes for the Group of Twenty.
With respect to OPEC, larger emissions and gaps must be expected whatever the
estimating period of the transition operator.

In sum, OPEC exhibits divergence and increasing median emissions since 1960
and the process is expected to continue in the future. The EU15, OECD and G20
groups display sigma-convergence over the whole (1960-2000) and late (1980-2000)
periods, divergence (except for EU15) during the early period 1960-1980, and ris-
ing median emissions which stabilize after the oil shocks. Compared to the current
distributions, the Markov analysis anticipates stable gaps and emissions for EU15
when transitions starting in 1960 (or 1970) are employed and further convergence
toward slightly larger pollution levels when post-oil shock transitions are used. For
the OECD and G20, the 1960-2000 dynamics favors more divergence and larger
emissions in the future while the post-oil shock dynamics points toward stable gaps
and emissions for the former subset and a moderate twin-peaks phenomenon (bi-
polarization) for the Group of Twenty.

6 Conclusion

This paper contributes to the existing empirical literature on convergence in car-
bon emissions across countries in several respects : (a) we expand the number of
countries analyzed (166 world countries over the years 1960-2002), (b) we rely on
both absolute and relative levels of per capita COy emissions, (c¢) we explicitly
test for multimodality in the distributions and poolability of a variety of country
groupings with the rest of the world, and (d) we use robust distributional measures
to characterize convergence, including a dynamic analysis based on Markov transi-
tion laws estimated over different time horizons which allow spatial distributions’
forecasts.

Our results indicate that convergence in the relative measure can be found in
the presence of diverging and rising emissions in the unscaled data. Focusing on per
capita emissions in levels, we highlight that strong divergence and increasing emis-
sions are prevalent worldwide in the early period 1960-1980 but stabilization (in
gaps and emissions) occurs after the oil price shocks of the 1970s. Significant differ-
ences between the successive world spatial distributions over time are detected in
the early decades but not later on. The Markov analysis of the 166-country sample
suggests bumpier and flatter ergodic densities with larger median emission levels
compared to the distribution in year 2000, whatever the period used to estimate
the transition law. This result points toward more divergence worldwide and larger
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per capita emissions that stabilize in the long run.

Grouping countries according to their income level, geographic proximity or sys-
temic significance allows identification of clusters of converging economies. More
specifically, four country subsets exhibit convergence (lower dispersion) across its
members over the entire horizon 1960-2002 (Europe and Central Asia, OECD,
EU15 and G20), a majority of groups display convergence throughout the late
period 1980 to 2000 exclusively (high- and middle-income economies; Latin Amer-
ica & Caribbean, Middle-East and North Africa, Sub-Saharan Africa) and three
groupings depict divergence over the full /early/late periods (East Asia and Pacific
& South Asia, OPEC and the low-income countries to a lesser extent). None of the
converging patterns is strong enough to generate multi-polarization in the world
or group-specific distributions as multimodality is formally rejected over the whole
period for all (sub)samples. Among the variety of group-specific ergodic density
profiles;, only Europe and Central Asia, Sub-Saharan Africa and the low-income
countries possess unimodal and compact shapes, which suggest convergence toward
lower emissions per capita in the long run, while those for OECD, EU15 and the
G20 are close to their current distribution.

Overall, given that CO, emissions have not been penalized by stringent pol-
icy measures during the time span covered by the panel, these results indicate
that, despite structural differences between countries, technical progress and price
mechanisms favor a more efficient use of fossil fuels at the world level and in most
regions that damp down the positive and diverging trends in per capita emissions
characterizing the 1960s economic boom. Obviously, this does not mean that the
stabilized (or ‘steady state’) pollution levels reached/anticipated are optimal from
an environmental or economic point of view. Strong political action is required to
avoid more divergence and larger per capita carbon emissions in the next decades.
The existence of steady-state spatial distributions of per capita CO5 emissions may
support the emergence of fairer emission objectives for groups of economies and
may help parties reach acceptable international compromises for post-Kyoto agree-
ments.
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7 Appendix

Figure 7: Cross-section densities of the world per capita COy emissions without
outliers (CDIAC128). Period 1960-2002.
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Note: the red, green, navy blue, sky blue and magenta lines drawn on the floor represent respec-
tively the 12.5%, 25%, 50%, 75% and 87.5% cross-sectional quantiles over time and are computed
with a locally linear nonparametric quantile regressions. The grey dashed line is the cross-sectional
arithmetic mean, slightly smoothed with a kernel regression. The univariate cross-sectional kernel
densities are estimated with a Gaussian kernel and Zhang and Wang’s (2009) robust normal reference
bandwidth with p € (0.3,0.5).
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List of countries Afghanistan, Albania, Algeria, American Samoa, Angola, Antigua
& Barbuda, Argentina, Australia, Austria, Bahamas, Bahrain, Bangladesh & Pakistan,

Barbados, Belgium, Belize, Benin, Bermuda, Bolivia, Brazil, Brunei, Bulgaria, Burkina
Faso, Cambodia, Cameroon, Canada, Cape Verde, Cayman Islands, Central African
R., Chad, Chile, China, Colombia, Comoros, Congo (Rep.), Costa Rica, Cote d’Ivoire,

Cuba, Cyprus, Czechoslovakia, Denmark, Djibouti, Dominica, Dominican R., Ecuador,

Egypt, El Salvador, Equatorial Guinea, Ethiopia, Faeroe Islands, Fiji, Finland, France

& Monaco, French Polynesia, French Guiana, Gabon, Gambia, Germany, Ghana, Gibral-
tar, Greece, Greenland, Grenada, Guadeloupe, Guam, Guatemala, Guinea, Guinea Bis-
sau, Guyana, Haiti, Honduras, Hong Kong, Hungary, Iceland, India, Indonesia, Iraq,

Iran, Ireland, Israel, Italy & San Marino, Jamaica, Japan, Jordan, Kenya, Korea (D.R.),
Korea (R.), Kuwait, Laos, Lebanon, Liberia, Libya, Luxembourg, Macau, Madagascar,
Malaysia, Mali, Malta, Martinique, Mauritania, Mauritius, Mexico, Mongolia, Morocco,
Mozambique, Myanmar, Nepal, Netherlands, Neth. Antilles & Aruba, New Caledonia,
New Zealand, Nicaragua, Niger, Nigeria, Norway, Palau, Panama, Papua New Guinea,

Paraguay, Peru, Philippines, Poland, Portugal, Puerto Rico, Qatar, Reunion, Rhodesia-

Nyasaland, Romania, Rwanda-Urundi, Samoa, Sao Tome & Principe, Saudi Arabia,
Senegal, Sierra Leone, Singapore, Solomon Islands, South Africa, Spain, Sri Lanka,

St. Lucia, St. Pierre & Miquelon, St. Vincent & Grenada, Suriname, Sudan, Swe-
den, Switzerland, Syria, Taiwan, Tanzania, Thailand, Togo, Tonga, Trinidad. & Tobago,
Tunisia, Turkey, Uganda, United Arab Em., United Kingdom, Uruguay, USA, USSR,

Venezuela, Vietnam, Virgin Islands (US), Yemen, Yugoslavia, Zaire.
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