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1 Introduction

In credit risk modeling the KMV/CreditMetrics setting is one of the most popular approaches.

It is based on the classical Merton setting, which describes the non-observable firm’s asset

values as a geometric Brownian motion. A firm defaults if, at the time of servicing the debt,

its assets are lower than its outstanding debt. The Merton model is attractive because of its

formal elegance, based on the option pricing theory developed by Black and Scholes (1973),

and its ease of implementation. But it is well known that the underlying assumptions are

quite unrealistic. Three different research strategies have been pursued to model credit risk

since Merton developed his approach: extensions of the Merton model, the First Passage

Model developed by Black and Cox (1976), and reduced-form models.1

We follow the first line of research for two reasons. First, many researchers and practitioners

are applying the model. Second, the Basel Committee on Banking Supervision has used

the Merton approach to calculate capital regulatory requirements. One crucial weakness of

this approach is that the empirical evidence from time series of equity prices contradicts the

Merton model. The observation goes back at least to Black (1976), who discussed the fat

tail characteristics of return distributions. Moreover, the Merton model also predicts that the

implied volatility of options is constant through time, which is false.

Since the late 1980s, stochastic volatility models have been developed (see the classical

papers by Wiggins (1987), Hull and White (1987), Scott (1982), Stein and Stein (1991), and

Heston (1993)) to explain some of the empirical features of the joint time series of stock and

option prices, as the volatility process is not perfectly correlated with the Brownian motion

and thus has an independent random component. We use flexible stochastic volatility models

that have been developed in the seminal contributions of Fouque, Papanicolaou and Sircar

(2001) and of Fouque, Sircar and Sølna (2006).

1Structural and reduced-form models can be reconciled. In particular, assuming incomplete information of
investors regarding the process dynamics that trigger the default in structural models produces default charac-
teristics consistent with reduced-form models (see Elizalde (2005) for a survey).
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Then, we address some key issues in credit risk management and banking regulation:

• How can default probabilities be determined in stochastic volatility models?

• How much do they differ from estimations based on the simple Merton model?

Concerning the latter, this difference is too small if trying to translate the recent results in

Fouqué, Sircar, Sølna (2006) to the context of approximating the default probabilities (in

the nonleverage case there is actually no difference). This is due to the fact that in this case

one has to work under the subjective probability measure and the order of their asymptotic

expansion is too small.

Our main contribution in this paper is a new analytical expression for the default probability

for a class of fast mean reverting SV models, which offers a higher degree of accuracy

compared to the results of Fouqué et al. (2006). The price to be payed is that the usual

calibration procedure can no more be applied, since our asymptotic expansion explicitely

depends on the solution of a Poisson equation and not just on the numerical properties of the

latter. The extension to a larger class of models and a solution to the calibration problem is

ongoing work.

Our further results are as follows: An analytical result and simulations indicate that stochas-

tic volatility models tend to predict higher default probabilities than the corresponding Mer-

ton model with constant volatility if a firm’s default risk is not too high. Hence, the Merton

model underestimates the default probability of firms with high credit-worthiness. Otherwise

the stochastic volatility model predicts lower probabilities of default.

Our paper contributes to four strands of the literature. First, a number of different spec-

ifications of stochastic volatility models have been suggested. We use flexible stochastic

volatility of the mean-reverting type (Fouque, Papanicolaou, and Sircar 2001 and Fouque,

Sircar, Sølna 2006).2

2Recently, Bansal and Yaron (2004) and Tauchen (2004) have provided interesting general equilibrium
foundations for stochastic volatility.
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Second, the accuracy and contribution of the default forecasting model based on Merton’s

(1974) bond pricing model and developed by the KMV corporation has attracted substantial

literature. Duffie and Wang (2004), for instance, show that KMV-Merton probabilities have

significant predictive power in a model of default probabilities over time and can generate

a term structure of default probabilities. Campbell, Hilscher, and Szilagyi (2004) estimate

hazard models, finding that KMV-Merton-type default probabilities seem to have relatively

little forecasting power after conditioning on other variables. Bharath and Shumway (2004)

conclude that KMV-Merton-type default probabilities have some predictive power for default

but they are not sufficient statistically. In this paper we explore the robustness of the Merton

model with respect to stochastic volatility. Our analytical formula may help to increase the

power of the Merton model in predicting default probabilities.

Third, the Merton model has been extended in many ways. Black and Cox (1976) allow for

safety covenants and subordination arrangements, while Turnbull (1979) includes corporate

taxes and bankruptcy costs. Kim, Ramaswamy, and Sunderesan (1993) allow the riskless

interest rate to follow a square root process correlated with firm value. They show that

default risk is not sensitive to the volatility of interest rates but is sensitive to interest rate

expectations. Longstaff and Schwartz (1995) model stochastic interest rates correlated with

the firm process, an exogenous early default, and an exogenous recovery rate. Finally, Leland

(1994) and Leland and Toft (1996) endogenize the bankruptcy decision while accounting for

taxes and bankruptcy costs. We suggest that the introduction of the stochastic volatility

feature will predict higher default probabilities if firms are not highly leveraged and lower

default probabilities for less healthy firms. As discussed in the section on implications, this

result might be useful to improve the empirical accuracy of structural models.

The paper is organized as follows: In the next section we introduce the class of stochastic

volatility models we are working with. In the third section we develop an analytical formula

for the probability of default in this setting. In the fourth section we perform simulation

exercises. In section five, we derive implications. Section six concludes.
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2 A Stochastic Volatility Model to Describe a Firm’s Value

We assume that the value S(t) of a firm has the following dynamics:

dS(t)

S(t)
= µ dt+ σt dW (t), with σt = f(Y (t)), (1)

dY (t) = α(m− Y (t)) dt+ β dZ(t), t ≥ 0, (2)

where (W (t))t≥0 and (Z(t))t≥0 are standard Brownian motions that are stochastically inde-

pendent3, m ∈ R and µ, α, β are some positive constants. The first equation has the standard

interpretation. The infinitesimal return dS(t)
S(t)

has mean µ dt with a constant rate of return µ

and random fluctuations governed by the volatility process σt = f(Y (t)), with f being some

positive function of a process (Y (t))t≥0 driving the volatility. We note that (Y (t))t≥0 and

(S(t))t≥0 are Feller processes.4

The stochastic differential equation for (Y (t))t≥0 is of the mean-reverting type. Here α is the

rate of mean reversion and m is the long-term level of (Y (t))t≥0. The drift-term pulls Y (t)

toward m and hence σt approaches the mean value of f(Y (t)) with respect to the long-term

distribution of (Y (t))t≥0. The variable β is a positive real number that describes the volatility

of the volatility.

The central assumption is that the volatility process is fast mean-reverting, i.e. the volatility

level fluctuates randomly around its mean level and the episodes of high/low volatility are

rather short. This volatility regime can be described by assuming that the parameter ϵ = 1/α

is small when compared with other time scales. In this sense, there are several possible inter-

pretations for (Y (t))t≥0. For instance, Y (t) may refer to the level of ambiguity in financial

markets, i.e. to the average level of confidence of market participants in their own statistical

forecasts. Changing levels of ambiguity translate into different levels of volatility (see e.g.

Chen et al. 2009 and Faria et al. 2009).
3The second Brownian motion (Z(t))t≥0 can be correlated with the Brownian motion (W (t))t≥0. In this

paper we assume as a benchmark case that the instantaneous correlation is zero.
4We refer the reader to Karatzas and Shreve (1988) or Øksendal (1998) for details concerning stochastic

differential equations and the related stochastic calculus.
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Let Φ(y) be the density function of the invariant distribution5 of (Y (t))t≥0 and denote

L1
Φ(R) := {g :

∫
R
Φ(y)|g(y)| dy < ∞}. (3)

Throughout the paper we use as a shortcut the following notation for the average with respect

to the invariant distribution: ⟨
g
⟩
:=

∫
R
Φ(y)g(y)dy, (4)

for all g ∈ L1
Φ(R). Furthermore we assume that f ∈ C2, f 2k ∈ L1

Φ(R), k ≤ 2. Then the

effective volatility σ is defined by σ2 =
⟨
f2
⟩
, i.e. it is the average volatility with respect to

invariant distribution of (Y (t))t≥0.

The above stochastic volatility settings extend the classical Merton model in a natural way.

For f(x) = ex we obtain the Scott univariate SV model, and for f(x) = |x| we get the

Stein-Stein model.

Following the Merton model the capital structure of the firm comprises equity and a zero-

coupon bond with maturity T and face value B. Under these assumptions, equity represents

a call option on the firm’s assets with maturity T and strike price B. Then the firm will

default at time T if ST < B. The variable B is the default barrier. We use PD(T,B|t, x, y)

to denote the default probability of the firm at current time t, when its value of debt is B

at time T > t and S(t) = x and Y (t) = y. Following Fouqué et al. (2001), under a fast

mean-reverting (FMR) volatility regime, the best approximation of the above SV model in

the class of models with constant volatility is the following Merton model:

dS(t)

S(t)
= µ dt+ σ dW (t), t ≥ 0. (5)

Denoting PD0(T,B|t, x) the corresponding default probability in this Merton model, we

have

PD0(T,B|t, x) = ΦNS

( logB − log x− (T − t) · (µ− 1
2
σ2)

√
T − t · σ

)
, (6)

for all (t, x) ∈ [0, T )× [0,∞), where ΦNS is the cdf of a standard normal random variable.

5Note that for this Ornstein-Uhlenbeck process (Y (t))t≥0 the invariant distribution is N(m, ν2), where
ν = β√

2α
.
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Such a simple description for PD(T,B|t, x, y) is of course not possible, however, we ob-

tained a new analytical approximation in the context of the asymptoptic theory of Fouqué et

al. (2001). In the following we restrict our attention to the case x > B, t < T , since this is

the most interesting one for practical purposes.

3 Analytical Development of Default Probability

3.1 The Main Result

In this section we derive an analytical approximation for the default probability in the above

described SV framework. In the following we assume that the usual conditions for the

asymptoptic theory of Fouqué et al. (2001) are satisfied. This is a general technique to

construct approximations for the solutions of a large class of PDEs including those used in

option pricing theory. In particular, for the above SV scenario the corresponding approxima-

tions are obtained by performing an expansion of the PDE solution in powers of
√
ϵ, where

ϵ = 1
α

. In general it is possible to obtain an analytical description only for the first two terms

of this expansion. Then the corresponding approximation is the leading order plus the first

correction.

For the special case where the quantity of interest is the default probability in the above SV

model, then this first correction is zero, however an analytical description of the second cor-

rection is still possible and this leads to the default probability approximation formula given

below. In this context, performing an expansion of the probability of default in powers of
√
ϵ reduces actually to an expansion in powers of ϵ, which means far less terms as usually

are needed for a good approximation. This is a strong motivation for trying to derive anality-

cally as many terms as posible from the corresponding asymptotic expansion of the default

probability.

As (Yt)t≥0 is a Feller process the infinitesimal generator exists which is denoted by L0. Let
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ϕ ∈ L1
Φ(R) be a solution of the Poisson equation

L0 ϕ = f2 −
⟨
f 2
⟩
.

Then we have the following

Theorem 1

A corrected default probability formula under the above stochastic volatility setting can be

explicitly given by

min{1,
˜PD(T,B|t, x, y) + | ˜PD(T,B|t, x, y)|

2
}, (7)

˜PD(T,B|t, x, y) := PD0(T,B|t, x) + 1

α
PD1(T,B|t, x, y), (8)

PD1(T,B|t, x, y) = −1

2
(ϕ(y)−

⟨
ϕ
⟩
) · x2 · ∂

2PD0

∂x2
− 1

4
(T − t)(

⟨
f2ϕ

⟩
−
⟨
f2
⟩⟨
ϕ
⟩
)

·
(
2x2∂

2PD0

∂x2
+ 4x3∂

3PD0

∂x3
+ x4∂

4PD0

∂x4

)
, (9)

for all (t, x, y) ∈ [0, T ) × (B,∞) × R, where PD0(T,B|t, x) is the default probability in

the Merton setting with volatility σ.

The proof and some elementary facts about the above Poisson equation and its solutions can

be found in the Appendix.

3.2 Discussion

Several remarks are useful to put the result in perspective.

(i) As already mentioned in Fouqué et al. (2000), this type of approximations performs

poorly close to T or to the other frontiers of the corresponding domain for x. However,

our approximation is more accurate than the corresponding one in Fouqué et al. (2006),

since we performed the expansion in powers of ϵ, instead of
√
ϵ, while preserving the same

number of terms. Moreover, unlike Fouqué et al. (2006), our approximation also depends

on y, which gives the chance to capture with this analytical formula a larger amount of the

relevant market informations.
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(ii) A weaker, y-independent version of the previous corrected default probability formula

can be obtained by taking expectations with regard to y:

min{1,
˜PD(T,B|t, x) + | ˜PD(T,B|t, x)|

2
}, (10)

where

˜PD(T,B|t, x) := PD0(T,B|t, x) + 1

α
PD1(T,B|t, x), (11)

PD1(T,B|t, x) = −1

4
(T − t)(

⟨
f 2ϕ

⟩
−
⟨
f2
⟩⟨
ϕ
⟩
) ·
(
2x2∂

2PD0

∂x2
+4x3∂

3PD0

∂x3
+x4∂

4PD0

∂x4

)
,

for all (t, x) ∈ [0, T )× (B,∞).

(iii) In practice, all the parameters of the above presented formulae can be estimated from

equity prices data using nonlinear filtering methods, see e.g. Jazwinski (1970) or Tanizaki

(1996). In this way, additional asymptotic expansions for the parameter calibration can be

alleviated.

3.3 Relationship to the Merton Model

With the above notations we obtain in the limit for α → ∞ (or ϵ → 0),

lim
α→∞

˜PD(T,B|t, x, y) = PD0(T,B|t, x).

When the rate of mean reversion becomes very large, the stochastic volatility model con-

verges to the Merton model with a constant volatility. Hence the Merton model correspond-

ing to the effective volatility σ is closest to our SV model. Thus the difference between the

SV and Merton settings can be studied by examining ˜PD(T,B|t, x, y)−PD0(T,B|t, x), as

a function of α, which will be done in the following.

For fixed T,B, t, x, y we introduce

δ(α) = ˜PD(T,B|t, x, y)− PD0(T,B|t, x) = 1

α
PD1(T,B|t, x, y), ∀α > 0. (12)

Then, by observing that

dnδ

dαn
= (−1)n · n! 1

αn+1
PD1(T,B|t, x, y), ∀n ∈ N, α > 0 (13)
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we obtain the following

Corollary

A.) If PD1(T,B|t, x, y) ̸= 0, then

sgn(PD1(T,B|t, x, y)) · ( ˜PD(T,B|t, x, y)− PD0(T,B|t, x)) > 0, ∀α > 0 (14)

and the function

α → | ˜PD(T,B|t, x, y)− PD0(T,B|t, x)| (15)

is strictly monotonically decreasing.

B.) If PD1(T,B|t, x, y) = 0, then

˜PD(T,B|t, x, y) = PD0(T,B|t, x), ∀α > 0. (16)

The above result regarding the difference between the default probability in our SV model

and the default probability in the corresponding Merton setting will be graphically illustrated

and discussed in the next section.

4 Examples

In this section we perform simulations using the derived analytical formula for default prob-

ability in order to illustrate how default probabilities in the stochastic volatitliy model relate

to the default risk estimated by the Merton model.

As a basic case, we adopt the Scott SV model and we use the following set of parameters

(see Duan, Gauthier, and Zaanoun, 2004): t = 0, T = 1, µ = 0.1, ν = 0.26, m = −0.5358,

Y0 = −0.5. The current value of the first firm was taken to be S0 = 100 monetary units. For

the corresponding Merton model we took the diffusion coefficients equal to the respective

components of σ . We now vary the face value of debt B and the rate of mean reversion

α and compare the resulting default probabilities under the stochastic volatility model and

under the Merton model.
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From these simulation exercises we report the following figures (Figure 1 to 4 in the ap-

pendix). In each figure, the default barrier B is fixed. The x-axis represents the values for

α, which we vary between 0 and 1200. The y-axis stands for the default probability. The

straight line in each figure is the default probability under the Merton setting, as the default

risk does not depend on α. The other curve shows how the default probability depends on

the rate of mean reversion under the stochastic volatility model. We report the figures for

B = 40, 55, 60, 65 in the appendix.

The figures illustrate some characteristics of the stochastic volatility model.6 First, the de-

fault probability under SV converges monotonically to the PD under the Merton setting when

the rate of mean reversion becomes large. Intuitively, when the rate of mean reversion be-

comes very large, the SV model converges to the Merton model.

Second, for lower rates of mean reversion, the default prediction of the SV model differs from

the PD of the Merton model by a wide margin which is not present with an approximation of

a lower order. Third, if the default barrier is not too high (and thus the default risk is not too

high, either), the probability of default is higher under stochastic volatility. By performing

simulations with varying B, we can observe that this pattern occurs for default probabilities

in the Merton setting below 6%. The opposite pattern occurs for higher default risk when

stochastic volatility models predict lower default rates.

The result requires subtle interpretation. Consider a firm with low default risk as measured

by the Merton approach. With a low rate of mean reversion under SV, volatility fluctuates.

If volatility is high, the default probability will increase. The opposite will occur if volatility

shrinks. Since the default risk is not too high, the first effect dominates, as higher volatility

raises the default probability disproportionately. The decline of the PD when volatility de-

clines in comparison to effective volatility is comparatively small. For high default risk, the

relative importance of both effects is reversed.

6We performed a host of simulation exercises by varying B from zero to 80 for different sets of parameters.
All simulations confirmed the qualitative results which we report here. Details are available upon request.
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5 Implications

Our results have several implications. First, taking into account the stochastic feature can

yield quite different predictions for probabilities of default. In particular, firms that ap-

pear to be healthy and are assessed to be of good credit quality may turn out to have much

higher default risk under SV. Moreover, the rate of mean reversion has a major impact on the

probability of default. Such properties have direct implications for risk management, credit

analysis, and the pricing of credit derivatives.

Second, it is well known that structural models of default have difficulties in generating

credit spread that are comparable to the ones observed in practice. The comprehensive study

by Eom, Helwege and Huang (2004) shows that the Merton spreads are low compared to

empirical values and that more recent conceptual innovations by Longstaff and Schwartz

(1995), and Collin-Dufresne and Goldstein (2001) tend to over-predict credit risk of bonds

that are highly leveraged and under-predict spreads of safer bonds. As our model predicts

higher default probabilities for healthy firms and lower defaults otherwise in comparison to

the Merton model, our model might be useful in further applications to solve the empirical

puzzle concerning the default spreads of corporate bonds.

6 Conclusion

In this paper we propose a simple formula for default probability in SV models that extends

the Merton model. The SV model is more flexible than the Merton setting. The latter can

be obtained by taking the limit α → ∞ which produces a Brownian motion with constant

volatility. Therefore, assuming that a firm dynamics can be described with the SV model

under the fast mean reverting volatility regime less restrictive than the Merton framework.

Moreover, as argued in the introduction the SV model provides a better description of the

observed distributional properties of financial time series.

Our simulation exercises suggest that the stochastic volatility feature is important in assess-
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ing the default risk of firms. Hence our formula can enrich the tools of credit risk manage-

ment. Numerous issues deserve further research. The method of higher order approximation

could be applied to more general correlation structures. Moreover, calibration of solutions

with higher-order approximations requires the calibration of solutions of the Poisson equa-

tion. These topics constitute an entire research project.
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7 Appendix

7.1 Proof of the Theorem

Considering the pricing problem in Fouqué et al. (2001), the default probability function

PD(T,B|t, x, y) satisfies

∂PD

∂t
+

1

2
f 2(y)x2∂

2PD

∂x2
+

1

2
β2∂

2PD

∂y2
+ α(m− y)

∂PD

∂y
+ µx

∂PD

∂x
= 0, (17)

on (t, x, y) ∈ [0, T ) × (B,∞) × R with terminal condition PD(T,B|T, x, y) = hPD(x) =

1
2
(1 + sgn(B − x)), for all x ≥ B, y ∈ R.

With the usual rescaling method for modeling fast mean reversion in the volatilities

α =
1

ϵ
, β = ν

√
2√
ϵ
, ϵ > 0,

(m and ν fixed constants, ν > 0) we can rewrite the above problem as(1
ϵ
L0 + L1

)
PDϵ = 0, (18)

where PDϵ is the rescaled default probability,

L0 = ν2 ∂2

∂y2
+ (m− y)

∂

∂y
, (19)

L1 =
∂

∂t
+

1

2
f2(y) · x2 · ∂2

∂x2
+ µx · ∂

∂x
. (20)

The idea is to expand PDϵ in powers of ϵ:

PDϵ = PD0 + ϵPD1 + ϵ2PD2 + . . . , (21)

where PDk, k = 0, 1, . . ., are function of (t, x, y) to be determined.

As usual in the asymptotic theory of Fouqué et al. (2000), we are primarily interested in the

first two terms PD0 + ϵPD1.

Substituting (21) in (18), we get that PD0 is the default probability in the Merton setting

with constant volatility σ and PD1 has to verify

L0PD1 = −L1PD0, (22)
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on [0, T ) × (B,∞) × R, with the terminal condition PD1(T,B|T, x, y) = 0 and with the

centering condition
⟨
L1PD1

⟩
= 0.

Hence, to prove our assertion it is sufficient to show that the function PD1 described in the

Theorem satisfies the above conditions.

Firstly observe that ⟨
L1(x

n · ∂
nPD0

∂xn
)
⟩
= 0, ∀n ∈ N. (23)

Using property (23) and the fact that ϕ is a solution of the above Poisson equation, we obtain

L1PD0 =
1

2
(f2(y)−

⟨
f 2
⟩
) · x2 · ∂

2PD0

∂x2
,

and

L0PD1 = −1

2
(f2(y)−

⟨
f 2
⟩
) · x2 · ∂

2PD0

∂x2
.

By summing up both equations, we obtain the PDE (22) and it only remains to verify the

centering condition, which results as follows:

⟨
L1PD1

⟩
=

1

2

⟨
(f 2 −

⟨
f2
⟩
) · x2 · ∂

2PD1

∂x2

⟩
− 1

2

⟨
ϕ
⟩⟨
L1

(
x2 · ∂

2PD0

∂x2

)⟩
+
⟨
L1

(
PD1 +

1

2
ϕx2 · ∂

2PD0

∂x2

)⟩
.

The last term can be rewritten as

⟨
L1

(
PD1 +

1

2
ϕx2 · ∂

2PD0

∂x2

)⟩
=

1

4
(
⟨
f2ϕ

⟩
−
⟨
f2
⟩⟨
ϕ
⟩
)
(
2x2∂

2PD0

∂x2
+ 4x3∂

3PD0

∂x3
+ x4∂

4PD0

∂x4

)
.

From property (23) we have
⟨
L1

(
x2 · ∂2PD0

∂x2

)⟩
= 0. Hence, it remains to show that

⟨
(f 2−

⟨
f 2
⟩
) · x2 · ∂

2PD1

∂x2

⟩
= −1

2
(
⟨
f 2ϕ

⟩
−

⟨
f 2
⟩⟨
ϕ
⟩
)
(
2x2∂

2PD0

∂x2
+ 4x3∂

3PD0

∂x3
+ x4∂

4PD0

∂x4

)
. (24)
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For this purpose observe first that

⟨
(f 2−

⟨
f2
⟩
)PD1

⟩
= −1

2
(
⟨
f2ϕ

⟩
−
⟨
f2
⟩⟨
ϕ
⟩
)x2∂

2PD0

∂x2
− 1

4
(T − t)(

⟨
f2ϕ

⟩
−
⟨
f2
⟩⟨
ϕ
⟩
)
⟨
(f 2 −

⟨
f2
⟩
)
⟩

·
(
2x2∂

2PD0

∂x2
+ 4x3∂

3PD0

∂x3
+ x4∂

4PD0

∂x4

)
= −1

2
(
⟨
f2ϕ

⟩
−
⟨
f2
⟩⟨
ϕ
⟩
)x2∂

2PD0

∂x2
.

Finally, using the fact that

1

2

⟨
(f 2 −

⟨
f2
⟩
) · x2 · ∂

2PD1

∂x2

⟩
=

1

2
x2 · ∂2

∂x2

(⟨
(f 2 −

⟨
f2
⟩
)PD1

⟩)
we obtain (24), which completes the proof.

2

7.2 Some facts about the Poisson Equation

Following Fouqué, Papanicolaou, and Sircar (2001), we report here some elementary facts

about the Poisson equation

L0 ϕ = g, (25)

L0 = ν2 ∂2

∂y2
+ (m− y)

∂

∂y
, m ∈ R, ν > 0.

where g ∈ L1
Φ(R) (see (3)) The centering condition

⟨
g
⟩
= 0 (see (4)) is necessary for (25) to

admit a solution ϕ ∈ L1
Φ(R) and then it can be shown that the derivative of ϕ can be explicitly

given by

ϕ′ =
1

ν2Φ

∫ .

−∞
g · ϕ. (26)

The solutions of the Poisson equation above satisfy the following growth condition: if

|g(y)| ≤ C1(1 + |y|n), n ∈ N, then |ϕ(y)| ≤ C2(1 + |y|n) where C1 and C2 are two

constants.

This property ensures that all terms involving ϕ in the Theorem are well defined.
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7.3 Figures
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Figure 1: Default barrier: B = 40.
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Figure 2: Default barrier: B = 55.
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