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Abstract

This paper studies the problem of redistribution between individuals having

different mortality rates. We use a continuous time model in which there

are two types of individuals characterized by different survival probability

paths. Individual preferences are represented by a generalized life-cycle util-

ity function which can exhibit temporal risk aversion. We successively com-

pare utilitarian allocations when individuals exhibit temporal risk neutrality

and temporal risk aversion. This problem is analyzed in the contexts of full

information and asymmetric information on mortality rates.

JEL classification: H55, H23, I31.

Key words: Uncertain Lifetime, Redistribution, Annuities, Nonlinear

Taxation.



1 Introduction

Studies on annuity and pensions usually rely on the seminal paper by Yaari

(1965). This standard approach, though analytically convenient, relies on

some strong assumptions on individuals preferences. In particular lifetime

utilities are additively separable, which implies temporal risk neutrality. Such

an assumption has major consequences. Firstly, it is found that the optimal

annuity pattern is independent of the individual’s mortality profile (Yaari,

1965, Levhari and Mirman, 1977, Barro and Friedman, 1977). Secondly, opti-

mal allocation of resources between individuals with different mortality takes

a very simple form. As shown for example in Sheshinski (2007), a utilitarian

social planner would like to equalize instantaneous levels of consumptions be-

tween individuals with different mortality profiles. Consequently, the Social

Security scheme should redistribute life-cycle income from individuals with

high mortality to those with low mortality.

Accounting for temporal risk aversion is of crucial importance when con-

sidering risks that have long term consequences. The risk of death being

one of them, temporal risk aversion turns out to be a key aspect of individ-

ual preferences when studying intertemporal choice under uncertain lifetime

(Bommier, 2006). In particular, when temporal risk aversion is introduced,

Yaari’s famous result vanishes and the optimal consumption profile depends

on individual’s mortality. For a social planner this may be of importance for

two reasons. First, the first-best objective no longer corresponds to giving

the same annuity profile to all individuals, independently of their mortality.

Second, since people with different mortality look for different annuity pro-

files, the age profile of annuity becomes an interesting policy tool that can

be used to achieve some redistribution.

The present paper emphasizes the role of temporal risk aversion when

designing pensions for individuals having different mortality profiles. The

question of pension design has been addressed by several papers using the

1



standard additive approach, thus assuming temporal risk neutrality. This is

the case in Sheshinski (2007) and Cremer et al. (2010). Accounting for tem-

poral risk aversion provides new perspectives. Contrarily to what is found

with the standard additive approach, it is not necessary to relate heterogene-

ity in mortality and heterogeneity in income or wealth to have non trivial

results. Thus, we decided to focus on the simple case where all agents have

the same financial endowments. The problems that result from the corre-

lation between mortality and income or wealth, which were central in these

two papers, are left for further contributions.

We consider a setting with heterogenous individuals differing in their mor-

tality profile and being on the verge of retirement. The low-type individuals

are characterized by a higher mortality rate at any age. Time is continuous

and we consider that the economy is characterized by an exogenous inter-

est rate. Individuals utility may exhibit temporal risk neutrality as well as

temporal risk aversion. We study the design of annuity profiles implied by a

utilitarian social planner. Our main results are as follows. First, when the

government can observe individuals mortality profiles, the optimum leads to

a pooling allocation if individuals preferences exhibit temporal risk neutral-

ity. However, with temporal risk aversion, low-type individuals should have

a higher level of instantaneous consumption and a lower consumption growth

rate. When mortality rates are private information, the strategy of the gov-

ernment very much depends on the characteristics of existing private markets

and on the government’s ability to commit. As an illustration, we consider

the case where there are perfect markets for savings and annuities and the

case where private savings are impossible. These are of course extreme sce-

narios, with reality lying in between. We also compare the situation where

the government can commit to some flow of pension payments in exchange

of information on mortality, with the setting where such kind of commitment

is impossible. When there are perfect markets, the first best can be imple-

mented through the appropriate design of a public pension system. This is no
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longer possible when markets are deficient, but we then characterize the op-

timal government policies. The paper is illustrated by numerical simulations

based on realistic demographic data.

2 The model

We consider an economy where every individuals are endowed with the same

initial wealthW0. The population is divided into two categories. Individuals

of type H are characterized by lower mortality rates than individuals of type

L. Denoting μH(t) and μL(t) agents H and L hazard rate of death at age t,

we thus assume that:

A1 : μH(t) < μL(t) for every t

Agents of type H have therefore higher survival probability that agents of

type L. We also assume that mortality rates increase with age:

A2 :
d

dt
μi(t) > 0

Demographic studies indicate that this assumption is realistic when consider-

ing ages greater than 25 or 30. Since our paper deals with pensions that are

typically received after retirement, such an assumption is rather unrestric-

tive. Assumption A3 further states that the hazard rate of death increases

more slowly for individuals of type L:

A3 :
μH (t+ ε)

μH (t)
> μL (t+ ε)

μL (t)
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for any t and t+ ε, where ε > 0. In other words, this assumption states that

the relative difference between mortality rates is decreasing with age. Again

this assumption is supported by studies on differential mortality at adult and

old ages (Brown, Liebman and Pollet, 2002).

At birth, the proportion of type-i individuals is ni, an exogenous constant.

Throughout the paper, we denote j(t), the exogenous return on private sav-

ings at time t, the actuarially fair return on annuity being j(t) + μH(t) for

type-H individuals and j(t) + μL(t) for type-L individuals.

2.1 Individuals preferences

Yaari’s standard approach consists in assuming that a life of length T with

a consumption profile c = c(.) yields a lifetime utility:

Uyaari (c, T ) =

Z T

0

α (t)u (c (t)) dt (1)

where α (t) is an exogenous time discount factor. Bommier (2006) empha-

sized the limits of such an approach which relies on the assumption of tem-

poral risk neutrality, a rather unappealing assumption for dealing with risks

which have long term consequences, such as the risk of death. Temporal

risk aversion can be introduced, without abandoning the expected utility

framework, by considering utility functions of the form:

U (c, T ) = φ

µZ T

0

α (t) u (c (t)) dt

¶
(2)

where φ is an increasing function. With no loss of generality it can be assumed

that φ(0) = 0. As is known from Kihlstrom and Mirman (1974), playing with

the function φ involves adjusting individuals risk aversion. When φ is concave
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the agent with the above utility function is simply more risk averse than the

agent with Yaari’s utility function (which is obtained when φ is linear).

A simple interpretation of the specification in (1) is that agents have a

linear "lifetime felicity". Each moment of life gives them an instantaneous

felicity α(t)u(c(t)) that is additively aggregated in order to get the lifetime

felicity. However, given the uncertainty about life duration (and about con-

sumption), individuals cannot know ex-ante what will their lifetime felicity

be. At most, they know the distribution of lifetime felicity. Introducing a

function φ as in (2) enables to consider risk aversion with respect to lifetime

felicity. For consumption profiles that would provide a constant flow of fe-

licity, the function φ would determine individual risk aversion with respect

to life duration. A linear φ would involve assuming risk neutrality, while a

concave function φ would indicate a positive risk aversion. While there is

no theoretical obstacle to considering risk-prone agents, we limit ourselves to

the case where φ is concave (φ00 ≤ 0) and where −φ00/φ0 is a non increasing
function (consistent with the idea of non increasing absolute risk aversion

with respect to lifetime felicity).

Undeniably, introducing temporal risk aversion complicates the computa-

tion associated with utility maximization. This is probably one of the main

reasons that led economists to focus on Yaari’s specification for so many

years. A major difficulty seems to appear when writing the expected utility

function. Indeed, when life duration is random, the expected lifetime utility

associated with a given consumption profile c is:

EU (c) =

Z +∞

0

μ(t) exp

µ
−
Z t

0

μ(τ)dτ

¶
φ

µZ t

0

α (τ)u (c (τ)) dτ

¶
dt
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By integration by part, this may also rewrite:

EU (c) =

Z +∞

0

s(t)α (t)u (c (t))φ0
µZ t

0

α (τ)u (c (τ)) dτ

¶
dt

where s(t) = exp
³
−
R t
0
μ(τ)dτ

´
is the probability of being alive at age t.

When φ is not linear, expected utility is then no longer additive, which

might look like the beginning of a nightmare for economists. Bommier (2006)

explains however that this difficulty can easily be avoided by making a linear

approximation. This allows to avoid the pangs of endogenous discounting

without losing most of the insights brought by this novel approach.

The idea is to rely on what is called the assumption of a "priceless life

context". Basically, this assumption consists in assuming that the differ-

ence in terms of welfare between life and death is much greater than the

difference between high and low levels of consumption. Under this assump-

tion (and through an appropriate normalization of the functions φ and/or

α), preferences can be approximated by an additive expected lifetime utility

function:1

EU (c) =

Z +∞

0

s (t)α (t)β (t)u (c (t)) dt (3)

where

β (t) =
−1
s(t)

Z +∞

t

ṡ (τ)φ0
µZ τ

0

α (x) dx

¶
dτ (4)

The main departure from Yaari comes from β (t) which represents the time

discounting factor. Note that when φ is linear, as in Yaari’s case, β (t) is

constant and can be omitted. In the other cases, however, β is not constant

and its shape depends both on the mortality risks (through the survival

function s (t)) and on the degree of temporal risk, via the function φ. When

φ is concave, β is decreasing, reflecting the fact that the combination of

1See Appendix A for calculations.
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temporal risk aversion with mortality risks generates time discounting as

explained in Bommier (2006).

All our theoretical results will rely on this linear approximation. They

should therefore be considered as valid and formally proven only in the limit

case where the value of life is infinite. Section 4, which presents the result

of numerical estimations, helps getting an idea on how our conclusions are

modified if assuming a plausible finite value of life.

We finally assume in the rest of the paper that the utility function u (.)

exhibits a constant intertemporal elasticity of substitution. This means that

the ratio cu00 (c) /u0 (c) is assumed to be independent of c.

2.2 Individuals types and preferences properties

Before going further, it is useful to compare both types of individuals pref-

erences properties. We prove the following lemma in the appendix.

Lemma 1 If individuals mortality patterns satisfy Assumptions A1-A3, then

for any times t, ε > 0, we have βH (t) ≤ βL (t) and βH (t+ ε) /βH (t) ≥
βL (t+ ε) /βL (t) .

This lemma tells that time discounting generated by mortality profiles

are such that individuals of type L value more consumption at any date.

Furthermore, the time discount factor decreases at a higher rate for low-

survival individuals.

Note finally that Assumptions A1 to A3 imply some monotonicity prop-

erties on individuals indifference curves. To see this write the marginal rate

of substitution between consumptions at date t and t + ε for any pair of
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consumptions (c (t) , c (t+ ε)). Differentiation of (3) gives:

MRSi
c(t),c(t+ε) =

dc (t)

dc (t+ ε)

¯̄̄̄
EUi

= −s
i (t+ ε)α (t+ ε)βi (t+ ε)u0 (c (t+ ε))

si (t)α (t)βi (t)u0 (c (t))
(5)

Assumption A2 implies sL (t+ ε) /sL (t) < sH (t+ ε) /sH (t) and Assumption

A3 implies βL (t+ ε) /βL (t) < βH (t+ ε) /βH (t) so that MRSH
c(t),c(t+ε) <

MRSL
c(t),c(t+ε). In other words, the slope of indifference curve in the {c (t+ ε) , c (t)}

space is less steeper for the type-L individuals.

Another way to illustrate this point, perhaps more insightful, involves

comparing what people with different mortality types would do if having the

same initial endowment W0 and having access to a perfect annuity market.

Individual i’s problem would then be:

max
c(t)

EU i (c) =

Z +∞

0

si (t)α (t)βi (t) u (c (t)) dt

s.to
Z +∞

0

exp

µZ t

0

−j (τ) + μi (τ) dτ

¶
c (t) dt ≤W0.

The first-order condition would then write:

βi (t)α (t)u0
¡
ci (t)

¢
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
(6)

where λ is the Lagrange multiplier associated with the individual’s budget

constraint, leading to the following result, proved in Appendix C:

Proposition 1 If agents L and H are provided with the same wealth endow-

ment and have access to actuarially fair annuities, then under Assumptions

A1-A3, they choose consumption profiles cL(t) and cH (t) such that:
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(a) With temporal risk neutrality (i.e. when φ is linear): ċL (t) /cL (t) =

ċH (t) /cH (t) for every t.

(b) With temporal risk aversion (i.e. when φ is concave): ċL (t) /cL (t) <

ċH (t) /cH (t) for every t.

When temporal risk aversion is introduced, type-H and -L agents choose

consumption paths with different growth rates. Indeed, agent H, whose

mortality is low, chooses a higher rate of consumption growth (or a lower

rate of consumption decline) than agent L. This reflects the relation between

mortality and impatience discussed in Bommier (2008). Since agents’ optimal

strategies are different, we may anticipate that a social planner may be willing

to provide different pension levels and different pension profiles to individuals

of different types. Moreover, in the case where the type is not observable,

the planner may use this heterogeneity of individuals’ optimal strategies to

make them reveal their type by letting them choose a pension plan among

several alternatives. We address these questions below where we discuss the

planner’s optimal strategy, depending on whether individuals’ mortality is

private information or not.

3 Government’s problem

For the following we assume that there is a utilitarian government whose aim

is to maximize the sum of individuals’ expected utility functions

nHEUH
¡
cH
¢
+ nLEUL

¡
cL
¢

and discuss what it should do depending on the information context that is

considered.
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3.1 Full information

Assume first that the government can perfectly observe individuals types.

In this first-best problem, it maximizes social welfare under the resource

constraint of the economy. Its problem is thus:

max
cH(t),cL(t)

nHEUH
¡
cH
¢
+ nLEUL

¡
cL
¢

s.to
Z +∞

0

nHsH(t) exp

µZ t

0

−j (τ) dτ
¶
cH(t)dt

+

Z +∞

0

nLsL (t) exp

µZ t

0

−j (τ) dτ
¶
cL(t)dt ≤W0

First-order conditions of the first-best problem are:

βi (t)α (t)u0
¡
ci (t)

¢
− λ exp

µ
−
Z t

0

j (τ) dτ

¶
= 0 (7)

for any i = H,L and every t and λ is the Lagrange multiplier associated with

the resource constraint. We prove the following proposition in appendix:

Proposition 2 Under Assumptions A1-A2, the first-best allocation is char-

acterized by:

(a) With temporal risk neutrality, cH (t) = cL (t) ∀t.
(b) With temporal risk aversion,

(i) cH (t) < cL (t) for every t.

(ii) With assumption A3, ċL (t) /cL (t) < ċH (t) /cH (t) for every t.

Under the assumption of temporal risk neutrality, point (a) of Proposi-

tion 2 states that the optimum involves providing all individuals with the

same consumption profiles. However, as stressed in point (b), when indi-

viduals expected utility exhibits temporal risk aversion, the optimum is to

offer a higher instantaneous consumption level for the low-survival individ-
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uals at all ages. This is because, low-type individuals have on average a

lower lifetime felicity and that lifetime utility is concave in lifetime felic-

ity. As in Proposition 1, the consumption level of type-H individuals in-

creases (resp. decreases) at a higher (resp. lower) rate. In case (a), it is

clear that there is a positive transfer of (expected) lifetime income from the

low- to the high-type individuals. The level of this transfer is measured

by
³R +∞

0
nHsH(t)c(t)dt−

R +∞
0

nLsL(t)c(t)dt
´
where c (t) is the optimal con-

sumption profile for both types of individuals. In case (b) however, the sign

of the transfer is ambiguous.

3.2 Asymmetric information

Assume now that the government is unable to tell who is of type L and who

is of type H. In the following, we analyze two scenarios. In a first section,

we study the case where individuals have access to a privately fair annuity

market. It turns out that one can always implement the first-best optimum

in this case. Then we turn to the case where individuals do not have access

to savings.

3.2.1 With a perfect annuity market

When individuals have access to a privately fair annuity market, the govern-

ment can easily decentralize the first-best allocation described in Proposition

2, by distributing uniform pensions ρ which are financed through a lump-sum

tax G0 at age 0. Indeed, pensions, which are paid contingent on survival,

provide a way to redistribute between individuals without observing their

type. The government has then just to pick up a level of public pension that

would implement the optimal redistribution. The existence of actuarially fair

annuities on the market would then allow individuals to optimally smooth

consumption. Precisely, denotingW ∗
L the present value of type-L individual’s
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lifetime consumption in the first best, it is straightforward to check that ρ

and G0 such that

ρ =
W0 −W ∗

L

nH
R +∞
0

(sH (t)− sL (t)) exp
³
−
R t
0
j (τ) dτ

´
dt

(8)

G0 = ρ

Z +∞

0

¡
nHsH (t) + nLsL (t)

¢
exp

µ
−
Z t

0

j (τ) dτ

¶
dt (9)

decentralize the first-best optimum. Whether ρ and G0 are positive or neg-

ative depends on the sign of W0 −W ∗
L, that is on whether the government

wishes to redistribute life-cycle income from the short-lived individuals to-

ward the long-lived individuals or not. When W0 −W ∗
L is positive, which is

the case when individuals exhibit little temporal risk aversion, ρ and G0 are

positive. The first best is then implemented through a simple public pension

system, which distributes constant and uniform pensions that are financed

by a uniform lump-sum tax G0 at age 0. It is worth emphasizing that, in

such an idealized setting, which assumes perfect markets, the goal of the

public pension system is not to help individuals to smooth their consump-

tion - which they can do by purchasing private annuities - but to achieve the

optimal redistribution between unobserved types.

For large degrees of temporal risk aversion,W0−W ∗
L may be negative. The

government then wishes to redistribute life-cycle income from the long-lived

toward the short-lived individuals. In such a case, ρ and G0 are negative,

and the government can implement the first-best optimum by imposing a

uniform tax −ρ at each age t in order to redistribute a lump-sum grant −G0

at age zero.
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3.2.2 No private savings

When there are no private savings the government has to directly provide

individuals with consumption profiles. The strategy of the government will

depend on its ability to commit for the future. Intuitively, a government who

is able to commit can propose a menu of pensions which will lead the agents

to reveal their types, granting them that this information will not be used

against their own interest in the future. In case commitment is impossible,

agents will not be willing to reveal their type, and the best the government

can do involves providing all agents with the same pensions. We will study

both possibilities successively.

Second best when full commitment is possible We first look at the

case where the planner can offer different annuity profiles and be credible

when making this offer. This means that the government is able to commit

itself to paying some pensions, even though it may anticipate that given the

information he will get in the future he would prefer to deviate from this

plan. The government problem is then a static problem of insurance, with

adverse selection, unless agents are temporal risk neutral. With temporal risk

aversion, it is clear that individuals of typeH would like to mimic individuals

of type L in order to get a higher pension at all ages. The government has

therefore to add an incentive compatibility constraint stating that type-H

individuals do not get a lower utility if they reveal their true type, and its
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problem rewrites as follows2:

max
cH(t),cL(t)

nHEUH
¡
cH
¢
+ nLEUL

¡
cL
¢

s.to :
Z +∞

0

nHsH (t) exp

µZ t

0

−j (τ) dτ
¶
cH(t)dt+Z +∞

0

nLsL (t) exp

µZ t

0

−j (τ) dτ
¶
cL(t)dt ≤W0,

EUH
¡
cH
¢
≥ EUH

¡
cL
¢
.

Denoting γ the Lagrange multiplier associated with the incentive compati-

bility constraint and π (t) =
£
γ/nL

¤ £
sH (t)βH (t)

¤
/
£
sL (t)βL (t)

¤
> 0, the

first-order conditions yield:

MRSH
c(t),c(t+ε)

= − exp
µ
−
Z t+ε

t

¡
j (τ) + μH (τ)

¢
dτ

¶
, (10)

MRSL
c(t),c(t+ε)

= − exp
µ
−
Z t+ε

t

¡
j (τ) + μL (τ)

¢
dτ

¶

×

⎡⎢⎢⎣ 1− π (t)

1− π (t)
MRS

H

c(t),c(t+ε)

MRSL
c(t),c(t+ε)

⎤⎥⎥⎦ (11)

for any t and t+ε and whereMRS
H

c(t),c(t+ε)
is the marginal rate of substitution

of a type-H individual mimicking a type-L individual.

In the first best, we would simply haveMRSH
c(t),c(t+ε)

= − exp
³
−
R t+ε
t

¡
j (τ) + μH (τ)

¢
dτ
´

and MRSL
c(t),c(t+ε)

= − exp
³
−
R t+ε
t

¡
j (τ) + μL (τ)

¢
dτ
´
. Thus, what we ob-

2In some cases, solving such a problem involves taking zero or negative consumption
for the low-type individuals after some age, which is of course meaningless. In those cases,
it is necessary to consider additional constraints fixing a lower bound for consumption,
which may become binding after some age. For simplicity, we shall ignore this point in this
section, while we did account for it in our numerical estimations where such constraints
were binding at extremely old ages.
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tain in (10) for the second best is the usual result of no distortion at the top.

This means that the first-best trade-off between two-period consumptions is

preserved for the high-survival individual. However, the second-best opti-

mum introduces a distortion in the trade-off between two-period consump-

tions for the low-type individual. As shown in Section 2.2, MRSH
c(t),c(t+ε) <

MRSL
c(t),c(t+ε) for the same pair of consumption {c (t) , c (t+ ε)}. Thus

MRS
H

c(t),c(t+ε)
/MRSL

c(t),c(t+ε)
> 1

and the expression in brackets of (11) is greater than one. We summarize

these results in the following proposition:3

Proposition 3 With Assumptions A1-A3, the second-best allocation is char-

acterized by:

(i) With temporal risk neutrality, the first-best solution is implementable.

(ii) With temporal risk aversion, the second-best solution is characterized

by:

(a) MRSH
c(t),c(t+�)

= −
£
sH(t+ ε)/sH(t)

¤
exp

³
−
R t+ε
t

j (τ) dτ
´
for any t

and ε > 0.

(b) MRSL
c(t),c(t+�)

< −
£
sL(t+ ε)/sL(t)

¤
exp

³
−
R t+ε
t

j (τ) dτ
´
for any t

and ε > 0.

(c)
¡
ċL (t) /cL (t)

¢SB
<
¡
ċL (t) /cL (t)

¢FB
<
¡
ċH (t) /cH (t)

¢SB
=
¡
ċH (t) /cH (t)

¢FB
where FB and SB stand respectively for the first- and the second-best

allocations.

As argued above, the first-best solution is incentive compatible when indi-

viduals preferences exhibit temporal risk neutrality. With positive temporal

risk aversion, point ii(a) states that the consumption path of individuals of

type H is not distorted. This is the usual "no distortion at the top" result.

3See the appendix for details.
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However, for type-L individuals, the marginal rate of substitution between

present and future consumptions is distorted downwardly. In words, it is

desirable to encourage early consumption in life as compared to the first-

best trade-off. Intuitively, this property can be explained by the fact that

type-L individuals have steeper indifference curves in the {c (t+ ε) , c (t)}
space. This implies that, starting from the first-best trade-off, a variation

dc (t+ ε) < 0 along with a variation dc (t) =MRSL
c(t),c(t+ε)dc (t+ ε) > 0 has

no first-order effect on the utility of type-L individuals while it decreases the

life-cycle utility of type-H individuals. This distortion is thus a way to relax

an otherwise binding self-selection constraint. As a result, point (c) stresses

that the variation rate of consumption of type-L individuals is lower than

the one in the first best.

Pooling optimum In the scenario we developed above, the government

offers a menu of pension to individuals at date zero. When picking up one

particular pension profile an individual reveals his type, an information that

the government would like to use in the future, providing pensions that are

different from those initially scheduled. Of course, in case the government

cannot commit to follow the initial offer, individuals would anticipate this

and a separating equilibrium would be impossible to implement. Indeed, in

the continuous time case we consider, there is no way to make all individuals

reveal their type at a date t if such an information can be freely used at date

t+ε by the government. Any “reward” that could be consumed between time

t and t+ε in exchange of this information would have a negligible impact on

lifetime utility when ε tends to zero and would not compensate the agents

for providing information on their mortality types.

In absence of commitment device the best a government can do is to

provide the same pensions to all individuals. The government’s problem can
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be expressed as:

max
c(t)

nHEUH (c) + nLEUL (c)

s.to
Z +∞

0

¡
nHsH(t) + nLsL (t)

¢
exp

µZ t

0

−j (τ) dτ
¶
c(t)dt ≤W0

The first-order condition with respect to c(t) yields:

β̄ (t)α (t)u0 (c (t)) = λ exp

µZ t

0

−j (τ) dτ
¶

(12)

where λ is the Lagrange multiplier associated with the resource constraint

and β̄ (t) =
£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
/
£
nHsH(t) + nLsL (t)

¤
. β̄ (t)

is a weighted sum of the βi (t)’s with the weight given on βi (t) by the frac-

tion of individuals of type i surviving at period t: nisi (t) /
P

j=H,L

njsj (t). In

appendix, we prove that β̇
L
(t) /βL (t) <

.

β̄ (t)/β̄ (t) < β̇
H
(t) /βH (t) for every

t. This implies that:

µ
ċL (t)

cL (t)

¶FB

<
ċ (t)

c (t)
<

µ
ċH (t)

cH (t)

¶FB

for every t and where FB stands for the first-best allocation. In other words,

the variation rate of the consumption profile in the pooling optimum lies

between variation rates obtained in the first-best optimum.

4 Numerical simulations

For this illustrative part, we take a population aged above 60. This corre-

sponds to the case in which individuals are endowed with a certain amount

of capital W0 and decide to annuitize it at the age of 60. Our types of in-
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dividuals H and L have mortality rates similar to those of women and men

according to the year 2000 US life table.4 We did not choose these gender

specific mortality to provide conclusion on gender issues. Actually, gender is

generally well observed by the social planner and, therefore, not associated

with the problem of asymmetric information that motivated the second-best

approach. We only used these male and female mortality because they pro-

vide mortality rates and a differential mortality that are of a reasonable order

of magnitude. It is assumed that nH = nL = 0.5.

We further assume that the subjective discount factor is such that α (x) =

1 so that agents impatience exclusively arises from the combination of risk

aversion and mortality risk, as in the “time neutral model” in Bommier

(2008). We use a function φ (x) = [1− exp(−ax)], assuming therefore con-
stant absolute risk aversion with respect to life duration. The parameter a

is set to get plausible rates of time discounting. Precisely it has been set so

that −β̇L (65) /βL (65) = 0.03 per year. Finally, the utility function is given
by the isoelastic utility function:

u (c) = 1 + ξ
c1−κ

1− κ

where κ = 1/0.9 assuming therefore an intertemporal elasticity of substitu-

tion of 0.9. The parameter ξ is the main determinant of the value of life.

Our linear approximation which leads to equation (3) involves assuming that

ξ is very small, and therefore the value of life very large. This parameter

thus needs to be calibrated only for drawing Figure 1, which shows the first

best when one does not rely on the additive approximation. Calibration was

provided by relying on standard estimates about the Value of Statistical Life,

as in Bommier (2008).

The results of the simulations are shown in Figures 1 to 4. Figure 1 shows

4Demographic data were taken from the Berkeley Mortality Database.
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the first best when computed without making use of the linear approximation.

We find that in the first best, short-lived individuals should be provided

with higher pensions than long-lived individuals during most of retirement.

Though we should not conclude that pensions actually redistribute resources

from long-lived toward short-lived individuals. Actually, in the first best, the

present value of pensions received by short-lived individuals is 5.5% smaller

than the one received by the long-lived individuals because of differential

mortality. The social planner is therefore willing to redistribute from short-

lived individuals to long-lived individuals, though significantly less than what

he would do if he were constrained to provide all individuals with the same

pension. As a comparison, in the case of a pooling strategy (as in Figure

4), the present value of pensions received by short-lived individuals would be

12.3% smaller than the one received by long-lived individuals. It is worth

noticing that the consumption profiles shown in Figure 1 intersect at some

point (at age 84.3 precisely). This indicates that the theoretical result that

cL(t) > cH(t) which was obtained when considering an infinite value of life,

does not extend to the case of a finite value of life. The conclusion about

the consumption growth rates (ċL (t) /cL (t) < ċH (t) /cH (t)) is, however, not

challenged by the result of our simulation with a finite value of life.

Figure 2 draws the pension profile we would obtain in the first best when

using the linear approximation. The general pattern is comparable to that

obtained in Figure 1 though we find that relying on the linear approximation

leads to provide even larger pensions to short-lived individuals and smaller

pensions to long-lived individuals. This is quite intuitive: the linear es-

timation involves assuming that the value of life is infinite and therefore

overemphasizes the difference in lifetime welfare resulting from heterogeneity

in life duration. For this reason, it overestimates the difference in marginal

utilities between long-lived and short-lived individuals, ending up suggesting

too different pension levels. The lack of precision is not completely negligi-

ble. Though, this linear approximation remains useful to provide the main
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intuition and a reasonable order of magnitude.

Figure 3 looks at the second best when the social planner can commit to

provide some pension in exchange of the information about mortality types,

and was computed relying on the linear approximation. Conform with our

theoretical results the social planner provides short-lived individuals with

more rapidly declining pensions than that of long-lived individuals. Long-

lived individuals are indifferent between both pension profiles, while short-

lived individuals are strictly happier with the more rapidly declining profile.

Compared to the first-best optimum, long-lived individuals are better off and

short-lived individuals are worse off. The present value of pensions received

by short-lived individuals is 11% lower than that of long-lived individuals.

Lastly, in Figure 4, we look at the best pooling strategy. The government

distributes the same pensions to all individuals. The social welfare is then

lower than in the separating equilibrium shown in Figure 3, but one does not

need to have commitment abilities to implement such a strategy. Long-lived

individuals are better off in that pooling equilibrium than in the separating

one, while it is the reverse for short-lived individuals. This pooling optimum

is in fact the one that implements the greater redistribution from short-lived

individuals to long-lived individuals and therefore the one that leads to the

greater inequality in welfare.

5 Conclusion

This paper has studied the problem of redistribution between individuals dif-

fering in their survival probabilities. We have compared successively utilitar-

ian allocations when individuals are either temporal risk neutral or temporal

risk averse. In a first-best setting, we find, in the limit case where the value

of life tends to infinity, that if individuals are temporal risk averse, long-lived

individuals should have a lower instantaneous consumption than short-lived
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individuals. Conversely, with temporal risk neutrality, the pooling allocation

is socially optimal.

When mortality type is a private information, the optimal government’s

strategy depends on the characteristics of the private markets and on the

government’s capacity to commit. We considered three polar cases.

If credit and insurance markets are perfect, the first best can be imple-

mented with the use of uniform public pension system and lump-sum grant.

Indeed, due to differential mortality, such a uniform pension system gener-

ates some redistribution between mortality types. Individuals can then rely

on the private market for annuities to smooth their consumption.

In the absence of credit market and with asymmetric information, the

first best can no longer be achieved (unless individuals exhibit temporal risk

neutrality). If the government can commit to distribute in the future some

given pension profiles in exchange of information about mortality, the second

best is a separating equilibrium, which is obtained by offering pension profiles

that vary with age differently. In absence of commitment possibilities, the

government offers the same pension to everybody.

In a numerical illustration, based on realistic mortality rates, we com-

puted the different strategies, and discussed their redistributive aspects. We

found that the pooling strategy, without private savings, is actually the one

which generates the largest inequalities (in terms of lifetime utilities). Alter-

native strategies, which would either (partially) rely on private savings or on

the offer of a menu of pensions would be more progressive.

Of course, to gain in relevance the message should be refined by consid-

ering imperfect markets in order to be closer to what is observed in reality.

Though, the main messages, would remain the same: (1) Differential mor-

tality generates inequality in lifetime utilities which should be taken into

account as soon as we allow for temporal risk aversion. (2) Public pension is

a way to redistribute resources between individuals with different mortality

patterns. (3) Redistribution should not only be achieved by playing with the
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level of public pension, but also by offering pensions (or menu of pensions)

which vary with age. It occurs that this latter possibility is little used in

practice, and we see it as an interesting avenue for future research and policy

changes.

For simplicity, our paper focused on heterogeneity in mortality exclusively

and did not consider wealth inequality. This was sufficient to illustrate the

role of temporal risk aversion and why it suggests new policy instruments.

But of course inequality in wealth is a central aspect which should be taken

into account in future works. Some authors (e.g. Brunner et al., 2008 or

Cremer et al., 2010) study the design of pension systems when agents differ

not only in their mortality pattern but also in their income. These studies

rely however on the assumption of temporal risk neutrality. With a negative

correlation between mortality and wealth, these authors have shown that

the design of redistributive pension systems implies a trade-off between the

redistribution from high- to low-income and from short- to long-lived indi-

viduals. If one takes into account temporal risk aversion, our results show

that this trade-off can be mitigated (or even eliminated) in favour of more

redistribution from high- to low-income individuals.

Also, the paper is restricted to issues that are related to the annuitization

of wealth at the retirement age. Allowing for an explicit account of workers is

clearly a priority on our research agenda. With this additional dimension, we

plan to study issues related to the formation of wealth and intergenerational

redistribution but also the role of labor income taxation when individuals

choose the age at which they withdraw pension benefits.
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Appendix

A Expected lifetime utility

To be able to get back to a simple additive specification, we make the as-

sumption of a “priceless life context”. As defined in Bommier (2006), it

corresponds to a situation where u (c (t)) = 1+λω (c (t)) where λ is a (small)

scalar and ω (.) is bounded. The lifetime expected utility function can then

be rewritten as:

EU (c) =

Z +∞

0

s(t)α (t)φ0
µZ t

0

α (x) (1 + λω (c (x))) dx

¶
dt

+λ

Z +∞

0

s(t)α (t)ω (c (t))φ0
µZ t

0

α (x) (1 + λω (c (x))) dx

¶
dt.

We assume that λ→ 0 which means that the individual would agree to give

up most of his consumption to live longer. Taking the Taylor expansion of

the function φ0 and keeping only the terms of order zero and one in λ, this

yields:

EU (c) =

Z +∞

0

s(t)α (t)φ0
µZ t

0

α (x) dx

¶
dt

+λ

Z +∞

0

s(t)α (t)ω (c (t))φ0
µZ t

0

α (x) dx

¶
dt

+λ

Z +∞

0

s(t)α (t)

µZ t

0

α (x)ω (c (x)) dx

¶
φ”

µZ t

0

α (x) dx

¶
dt.

Denoting the constant Ψ =
R +∞
0

s(t)α (t)φ0
³R t

0
α (x) dx

´
dt and switching

the order of integration of the third term, the expected utility function can
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be approximated by:

EU (c) ≈ Ψ+ λ

Z +∞

0

s(t)α (t)ω (c (t))φ0
µZ t

0

α (x) dx

¶
dt

+λ

Z +∞

0

α (t)ω (c (t))

µZ ++∞

t

s (x)α (x)φ”

µZ x

0

α (τ) dτ

¶
dx

¶
dt

≈ Ψ+ λ

Z +∞

0

α (t)ω (c (t))

⎡⎢⎢⎣ s(t)φ0
³R t

0
α (x) dx

´
+R +∞

t
s (x)α (x)φ”

¡R x
0
α (τ) dτ

¢
dx

⎤⎥⎥⎦ dt.

Integrating by part the term in brackets yields:

EU (c) ≈ Ψ+ λ

Z +∞

0

s(t)α (t)ω (c (t))β (t) dt

where β (t) =
R +∞
t
− (ṡ (τ) /s (t))φ0

¡R τ
0
α (x) dx

¢
dτ . Using ω (c (t)) = u (c (t))−

1/λ and forgetting the constant, the expected lifetime utility can thus be ap-

proximated by the following additive utility function:

EU (c) =

Z +∞

0

s (t)α (t)β (t)u (c (t)) dt.

Finally, denoting respectively β̇ (t) and ṡ (t) the derivatives of β (t) and s (t)

with respect to t yields:

β̇ (t) =
ṡ (t)

s (t)2

Z +∞

t

ṡ (τ)φ0
µZ τ

0

α (x) dx

¶
dτ +

ṡ (t)

s (t)
φ0
µZ t

0

α (x) dx

¶
= − ṡ (t)

s (t)

Z +∞

t

s (τ)

s (t)
φ”

µZ τ

0

α (x) dx

¶
dτ (13)

where we made use of integration by-part.
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B Proof of Lemma 1

Let’s denote ∆ (t) = −β̇L (t) /βL (t)−
³
−β̇H (t) /βH (t)

´
. We want to show

that this term is positive for any t. Using the definition of μ (t), one has:

∆ (t) =
μL (t)

R +∞
t

sL(τ)
sL(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR +∞

t
μL (τ) s

L(τ)
sL(t)

φ0
¡R τ
0
α (x) dx

¢
dτ

−
μH (t)

R +∞
t

sH(τ)
sH(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR +∞

t
μH (τ) s

H(τ)
sH(t)

φ0
¡R τ
0
α (x) dx

¢
dτ

.

Using Assumption A3 and φ” < 0, we thus have the following inequality:

∆ (t) ≥ μL (t)

⎡⎣ R +∞t
sL(τ)
sL(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR +∞

t
μL (τ) s

L(τ)
sL(t)

φ0
¡R τ
0
α (x) dx

¢
dτ
−
R +∞
t

sH(τ)
sH(t)

¡
−φ”

¡R τ
0
α (x) dx

¢¢
dτR +∞

t
μL (τ) s

H(τ)
sH(t)

φ0
¡R τ
0
α (x) dx

¢
dτ

⎤⎦ .
(14)

Using the following notations:

g (τ) = μL (τ)
sL (τ)

sL (t)
φ0
µZ τ

0

α (x) dx

¶
,

k (τ) = −
φ”
¡R τ
0
α (x) dx

¢
φ0
¡R τ
0
α (x) dx

¢ 1

μL (τ)
,

h (τ) =
sH (τ) /sH (t)

sL (τ) /sL (t)
,

the inequality (14) can be rewritten as:

∆ (t) ≥ μL (t)

"R +∞
t

g (τ) k (τ) dτR +∞
t

g (τ) dτ
−
R +∞
t

g (τ) k (τ)h (τ) dτR +∞
t

g (τ)h (τ) dτ

#
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where the functions g (.) , k (.) and h (.) are non negative. Rearranging the

terms in brackets yields:

∆ (t) ≥ μL (t)

"R +∞
t

g (τ) k (τ) dτ
R +∞
t

g (τ)h (τ) dτ −
R +∞
t

g (τ) k (τ)h (τ) dτ
R +∞
t

g (τ) dτR +∞
t

g (τ) dτ
R +∞
t

g (τ)h (τ) dτ

#

where the denominator in brackets is positive. Define the function f (x) =R x
t
g (τ) k (τ) dτ

R x
t
g (τ)h (τ) dτ −

R x
t
g (τ) k (τ)h (τ) dτ

R x
t
g (τ) dτ . By As-

sumption A2, h is non decreasing, k is non increasing since −φ”/φ0 is non
increasing and μL (τ) is increasing. This implies that f (x) is non decreasing

with x and therefore non negative for any x > t. Then ∆ (t) is positive for

any t which proves the result.

C Proof of Proposition 1

The proof is similar to the one provided for Proposition 7 in Bommier (2008).

Differentiating (6) with respect to t yields:

α̇ (t)βi (t)u0
¡
ci (t)

¢
+ α (t)

h
ċi (t) u00

¡
ci (t)

¢
βi (t) + u0

¡
ci (t)

¢
β̇
i
(t)
i

= −λ exp
µ
−
Z t

0

j (τ) dτ

¶
j (t)

which, after some manipulation, gives:

ċi (t)

ci (t)
= − u0 (ci (t))

u00 (ci (t)) ci (t)

"
j (t) +

α̇ (t)

α (t)
+

β̇
i
(t)

βi (t)

#

where u0 (ci (t)) /u00 (ci (t)) ci (t) is a constant by assumption.

(a) With temporal risk neutrality, βi (t) is equal to a constant so that−ċi (t) /ci (t) =
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j (t) + α̇ (t) /α (t) for i = H,L.

(b) With temporal risk aversion, Lemma 1 implies ċL (t) /cL (t) < ċH (t) /cH (t) .

D Proof of Proposition 2

Differentiation of (7) with respect to t yields:

α̇i (t)
£
u0
¡
ci (t)

¢
βi (t)

¤
+α (t)

⎡⎢⎢⎣ ċi (t)u00 (ci (t))βi (t)

+u0 (ci (t)) β̇
i
(t)

⎤⎥⎥⎦ = −λ expµ−Z t

0

j (τ) dτ

¶
j (t)

which after some manipulation gives:

ċi (t)

ci (t)
= − u0 (ci (t))

u00 (ci (t)) ci (t)

"
j (t) +

α̇ (t)

α (t)
+

β̇
i
(t)

βi (t)

#
(15)

where u0 (ci (t)) /u00 (ci (t)) ci (t) is a constant by assumption.

(a) With temporal risk neutrality, βi (t) is equal to a constant so that (7)

implies ci (t) = c (t) for every t and i = H,L.

(b) With temporal risk aversion, (7) implies cH (t) < cL (t). Equation (15)

and Lemma 1 imply ċL (t) /cL (t) < ċH (t) /cH (t).
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E Second-best optimum

E.1 Proof of point (ii) of Proposition 3

First-order conditions of the second-best problem are:

∂EUH

∂cH(t)

³
1 +

γ

nH

´
− λsH (t) exp

µ
−
Z t

0

j (τ) dτ

¶
= 0, (16)

∂EUL

∂cL(t)
− λsL (t) exp

µ
−
Z t

0

j (τ) dτ

¶
− γ

nL
∂EUH

∂cL(t)
= 0. (17)

(a) Straightforward rearrangement of (16) taken at time t and t+ � gives the

marginal rate of substitution between two-period consumptions (10)

for the high-type individual which proves point (a).

(b) Denoting EU j
c(t) the expected marginal utility of consumption at date t

and evaluating (17) at time t and t+ �, we get:

EUL
c(t+ε)

EUL
c(t)

"
1− γ

nL
EU

H

c(t+ε)

EUL
c(t)

EUL
c(t)

EUL
c(t+ε)

#
=

sL(t+ ε)

sL(t)
exp

µ
−
Z t

0

j (τ) dτ

¶
×
"
1− γ

nL
EU

H

c(t)

EUL
c(t)

#

where EU
H

c(t) is the expected marginal utility of a type-H individual

mimicking a type-L individual. Multiplying the second term in brackets
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of the LHS by EU
H

c(t)/EU
H

c(t) yields:

EUL
c(t+ε)

EUL
c(t)

"
1− γ

nL
EU

H

c(t+ε)

EUL
c(t)

EUL
c(t)

EUL
c(t+ε)

EU
H

c(t)

EU
H

c(t)

#
=

sL(t+ ε)

sL(t)
exp

µ
−
Z t

0

j (τ) dτ

¶
×
"
1− γ

nL
EU

H

c(t)

EUL
c(t)

#
.

This can be rewritten as:

MRSL
c(t),c(t+ε)

⎡⎣1− γ

nL

MRS
H

c(t),c(t+ε)

MRSL
c(t),c(t+ε)

sH (t)βH (t)

sL (t)βL (t)

⎤⎦ =
sL(t+ ε)

sL(t)
exp

µ
−
Z t

0

j (τ) dτ

¶
×
∙
1− γ

nL
sH (t)βH (t)

sL (t)βL (t)

¸

which yields (11).

(c) The first-order conditions (16) and (17) can be rewritten as:

α (t)u0
¡
cH (t)

¢
βH (t)

³
1 +

γ

nH

´
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
, (18)

α (t)u0
¡
cL (t)

¢ ∙
βL (t)− γ

nL
sH (t)

sL (t)
βH (t)

¸
= λ exp

µ
−
Z t

0

j (τ) dτ

¶
.

(19)

Differentiating (18) with respect to time yields ċH (t) /cH (t) to be the
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same as in (15) whereas differentiation of (19) yields:

ċL (t)

cL (t)
= −

u0
¡
cL (t)

¢
cL (t)u00 (cL (t))

×⎛⎝j (t) +
α̇ (t)

α (t)
+

β̇
L
(t)− γ

³
sH(t)
sL(t)

β̇
H
(t) +

³
ṡH(t)
sL(t)
− ṡL(t)

sL(t)
sH(t)
sL(t)

´
βH (t)

´
βL (t)− γ sH(t)

sL(t)
βH (t)

⎞⎠
= −

u0
¡
cL (t)

¢
cL (t)u00 (cL (t))

×⎛⎜⎝j (t) +
α̇ (t)

α (t)
.+

β̇
L
(t)

βL (t)

⎡⎢⎣1− γ
³
sH(t)
sL(t)

β̇
H
(t)

β̇
L
(t)
+
³
ṡH(t)
sL(t)
− ṡL(t)

sL(t)
sH(t)
sL(t)

´
βH(t)

β̇
L
(t)

´
1− γ sH(t)

sL(t)
βH(t)

βL(t)

⎤⎥⎦
⎞⎟⎠ .(20)

Note that by Assumption A2 and Lemma 1, one has:

ṡH (t)

sH (t)
+

β̇
H
(t)

βH (t)
>

β̇
L
(t)

βL (t)
+

ṡL (t)

sL (t)

so that

Ã
sH (t)

sL (t)

β̇
H
(t)

β̇
L
(t)

+

µ
ṡH (t)

sL (t)
− ṡL (t)

sL (t)

sH (t)

sL (t)

¶
βH (t)

β̇
L
(t)

!
>

sH (t)

sL (t)

βH (t)

βL (t)

which implies

1− γ
³
sH(t)
sL(t)

β̇
H
(t)

β̇
L
(t)
+
³
ṡH(t)
sL(t)
− ṡL(t)

sL(t)
sH(t)
sL(t)

´
βH(t)

β̇
L
(t)

´
1− γ sH(t)

sL(t)
βH(t)

βL(t)

> 1.

Thus, comparing (20)with (15) yields
¡
ċL (t) /cL (t)

¢SB
<
¡
ċL (t) /cL (t)

¢FB
.
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E.2 The pooling optimum

Differentiating (12) with respect to t yields

ċ (t)

c (t)
= − u0 (c (t))

u00 (c (t)) c (t)

⎡⎣j (t) + •
β̄ (t)

β̄ (t)
+

α̇ (t)

α (t)

⎤⎦ (21)

where

•
β̄ (t)

β̄ (t)
=

nh
nH
³
ṡH (t)βH (t) + sH (t) β̇

H
(t)
´

+nL
³
ṡL (t)βL (t) + sL (t) β̇

L
(t)
´i £

nHsH(t) + nLsL (t)
¤

−
£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤ £
nH ṡH(t) + nLṡL (t)

¤ª
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
Developing the numerator in the above expression and rearranging terms

yields:

•
β̄ (t)

β̄ (t)
=

n³
nHsH (t) β̇

H
(t) + nLsL (t) β̇

L
(t)
´ ¡

nHsH(t) + nLsL (t)
¢

+nHnL
¡
βH (t)− βL (t)

¢ ¡
ṡH (t) sL (t)− ṡL (t) sH (t)

¢ª
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
We want to compare

•
β̄ (t) /β̄ (t) with β̇

H
(t) /βH (t) and β̇

L
(t) /βL (t).

Let first denote Λ, the difference between
•
β̄ (t) /β̄ (t) and β̇

H
(t) /βH (t).
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It has the following expression

Λ =

n
nLsL (t)

¡
nHsH(t) + nLsL (t)

¢ ³
β̇
L
(t)− βL (t) β̇

H
(t)

βH(t)

´
+nHnL

¡
βH (t)− βL (t)

¢ ¡
ṡH (t) sL (t)− ṡL (t) sH (t)

¢ª
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t)βL (t)

¤
which is always negative by Assumption A1 and Lemma 1. This implies
•
β̄ (t) /β̄ (t) < β̇

H
(t) /βH (t).

Let us now denote Υ the difference between
•
β̄ (t) /β̄ (t) and β̇

L
(t) /βL (t).

It yields:

Υ =

nHsH (t)
n¡

nHsH(t) + nLsL (t)
¢ ³

β̇
H
(t)− βH (t) β̇

L
(t)

βL(t)

´
+nLsL (t)

¡
βH (t)− βL (t)

¢ ³
ṡH(t)
sH(t)

− ṡL(t)
sL(t)

´o
[nHsH(t) + nLsL (t)]

£
nHsH (t)βH (t) + nLsL (t) βL (t)

¤
where the first part in the numerator is positive while the second one is

negative. Equivalently,

Υ = χ
n
μH (t)

³
β̇
H
(t)

μH(t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤´
−μL (t)

³
βH(t)

βL(t)

β̇
L
(t)

μL(t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤´o

with χ = nHsH (t) /
£¡
nHsH(t) + nLsL (t)

¢ ¡
nHsH (t)βH (t) + nLsL (t)βL (t)

¢¤
>

0. First note that, using equation (13), β̇
i
(t) can be rewritten as

β̇
i
(t) = μi (t)

µ
βi (t)− φ0

µZ t

0

α (x) dx

¶¶
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where βi (t) − φ0
³R t

0
α (x) dx

´
< 0. Using this expression and rearranging

terms, this yields:

β̇
H
(t)

μH (t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤
=

nHsH(t)

µ
βH (t)− φ0

µZ t

0

α (x) dx

¶¶
+ nLsL (t)

µ
βL (t)− φ0

µZ t

0

α (x) dx

¶¶

which is always negative. Using Assumption A1 and Lemma 1, one also has

βH (t)

βL (t)

β̇
L
(t)

μL (t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤
<

β̇
H
(t)

μH (t)

¡
nHsH(t) + nLsL (t)

¢
+ nLsL (t)

£
βL (t)− βH (t)

¤
< 0

so that Υ > 0 and β̇
L
(t) /βL (t) <

•
β̄ (t) /β̄ (t).

Using expressions (15) and β̇
L
(t) /βL (t) <

•
β̄/β̄ (t) < β̇

H
(t) /βH (t) yields:

ċL (t)

cL (t)

FB

<
ċ (t)

c (t)
<

ċH (t)

cH (t)

FB

which proves the result.
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Figure 1: First Best
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Figure 2:  First Best − Linear Approximation
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Figure 3: Second Best
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Decision Processes of a Suicide Bomber – Integrating Economics and Psychology

08/105 A. Ziegler, T. Busch and V.H. Hoffmann

Corporate Responses to Climate Change and Financial Performance: The Impact

of Climate Policy

09/104 S. Valente

Endogenous Growth, Backstop Technology Adoption and Optimal Jumps

09/103 K. Pittel and D. Rübbelke
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