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Abstract

We study the interactions between technological change, resource scarcity and population
dynamics in a Schumpeterian model with endogenous fertility. There exists a pseudo-
Malthusian equilibrium in which population is constant and income grows exponentially:
the equilibrium population level is determined by resource scarcity but is independent of
technology. The stability properties are driven by (i) the income reaction to increased
resource scarcity and (ii) the fertility response to income dynamics. If labor and resources
are substitutes in production, income and fertility dynamics are self-balancing and the
pseudo-Malthusian equilibrium is the global attractor of the system. If labor and resources
are complements, income and fertility dynamics are self-reinforcing and drive the economy
towards either demographic explosion or human extinction. Introducing a minimum resource
requirement, we obtain a second steady state implying constant population even under
complementarity. The standard result of exponential population growth appears as a rather
special case of our model.
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1 Introduction

More than two centuries after the publication of Thomas Malthus�(1798) Essay on the Principle
of Population, understanding the interactions between economic growth, resource scarcity and
population remains a central aim of scholars in di¤erent �elds of social sciences. The debate
revolves around two fundamental questions: whether a larger population is good or bad for
human development and welfare (Birdsall and Sinding, 2001; Kelley, 2001), and how population
growth reacts to changing economic conditions (Wang et al.,1994; Jones et al., 2010). In the
past century, economists treated these issues as distinct subjects, casting the �rst problem in the
realm of welfare/resource economics (Robinson and Srinivasian, 1997) and addressing the second
in the context of fertility theories (Nerlove and Raut, 1997). It is increasingly evident, however,
that little progress can be made without tackling both issues at the same time: assessing the
economic consequences of growing population requires considering the feedback e¤ects of tighter
resource scarcity on fertility (Bloom and Canning, 2001).

This recognition underlies two strands of recent literature. The �rst is Uni�ed Growth
Theory (UGT), a framework that exploits the modern instruments of dynamic analysis to
provide consistent explanations of the historical phases of development, from the Malthusian
Stagnation to the current regime of sustained growth in per capita incomes (Galor and Weil,
2000; Galor, 2005, 2011). The two building blocks of UGT models are endogenous fertility
and the assumption that consumption goods are produced by means of human capital and
a natural resource, typically land. This structure highlights the central mechanism behind
economy-environment interactions: population growth a¤ects natural resource scarcity and
labor productivity, while income dynamics induce feedback e¤ects on fertility that determine
future population growth.

Population-resource interactions are also studied in the literature on bio-economic systems,
which seeks to explain the rise and fall of civilizations. These contributions draw explicit links
between population dynamics and the laws of biological regeneration that govern resource avail-
ability: individuals operate in a closed system �e.g., islands �and the resource stock follows
a logistic process that is directly a¤ected by harvesting choices. The interaction between pop-
ulation growth and biological laws generates rich dynamics, including feast-famine equilibrium
paths and/or environmental crises that can eventually drive the human society to extinction
(Taylor 2009). Bio-economic models have been calibrated to replicate the collapse of Easter Is-
land and similar historical episodes (Brander and Taylor, 1998; Basener and Ross, 2005; Good
and Reuveny, 2009). Several authors argued that the Easter Island economy is a metaphor
of resource-based closed systems like Planet Earth and extended the model to include manu-
factured goods (Reuveny and Decker, 2000), intentional capital bequests (Harford, 2000) and
endogenous technological change (Dalton et al., 2005).

In this paper, we take a di¤erent perspective and investigate the mechanism linking resource
scarcity, incomes and population in a Schumpeterian model of endogenous growth. Unlike UGT,
our analysis does not seek to explain the transition from the Malthusian Stagnation to modern
growth regimes but aims to build a theory of economy-environment interactions capable of ad-
dressing one of the main future challenges for modern industrialized economies: how to sustain
income growth in a �nite habitat. In answering this question, standard balanced growth models
are not satisfactory since they mostly predict exponential population growth that is clearly at
odds with the fact that Planet Earth has a �nite carrying capacity of people. We tackle this
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issue by studying whether and under what circumstances population-resource interactions gen-
erate long-run equilibria where income grows at constant (endogenous) rates while population
achieves a constant (endogenous) level. The existence of such equilibria requires that long-term
economic growth be driven by the accumulation of intangible assets. Accordingly, the modern
theory of R&D-based productivity growth is the natural place to start.

In our model, �rms produce di¤erent varieties of manufacturing goods by means of labor and
a resource in �xed aggregate supply �e.g., land �and household utility maximization determines
fertility choice. The central insight of our analysis is that as population growth raises natural
scarcity, the strength of the resource price response determines a resource income e¤ect that
drives the feedback response of fertility and thereby the qualitative dynamics of population.
The literature generally neglects these price e¤ects because the existing models either abstract
from the resource market (e.g., Galor and Weil, 2000) or, when they allow for a resource market,
assume a unit elasticity of substitution between labor and resources (e.g., Lucas, 2002).1 In our
model, instead, we consider a generic production function displaying constant returns to scale
and show that the e¤ect of the resource price on fertility drives the economy towards di¤erent
long-run equilibria depending on whether labor and resources are complements or substitutes.
Before describing our results in detail, we emphasize another characteristic of our analysis.

We employ a Schumpeterian model of endogenous growth in which horizontal and vertical
innovations coexist: manufacturing �rms undertake R&D to increase their total factor produc-
tivity while outside entrepreneurs design new products and set up new �rms in order to serve
the market (Peretto, 1998; Dinopoulos and Thompson, 1998). This class of models has received
substantial empirical support in recent years (Laincz and Peretto, 2006; Ha and Howitt, 2007;
Madsen, 2008; Madsen et al., 2010; Madsen and Ang, 2011) and is particularly useful in ad-
dressing our research question because its main mechanism yields that the e¤ect of endowments
on growth is only temporary. Speci�cally, product proliferation, i.e., net entry, sterilizes the
(strong) scale e¤ect in the long run because it fragments the aggregate market into submarkets
whose size does not increase with the size of the endowments. In our analysis with endoge-
nous fertility, the elimination of the (strong) scale e¤ect, combined with Hicks-neutrality of
vertical technological change, generates long-run equilibria in which population is constant and
independent of productivity growth.

Indeed, our �rst result is that there exists a pseudo-Malthusian steady state in which in-
come per capita grows at a constant rate and population is constant. We label this steady
state pseudo-Malthusian because the equilibrium population level is proportional to the re-
source endowment but is not constrained by technology. Importantly, the existence of the
pseudo-Malthusian equilibrium is not due to ad-hoc assumptions on preferences for fertility
or the reproduction technology � in fact, we work with a very standard speci�cation of the
costs and bene�ts of reproduction �but is exclusively determined by the price e¤ects arising
under complementarity or substitutability. To emphasize this point, we show that if we impose
unit elasticity of input substitution, the pseudo-Malthusian steady state disappears and the
equilibrium path displays exponential population growth as in most balanced growth models.

Our second result concerns how, speci�cally, the elasticity of input substitution determines
the stability properties of the equilibrium. If labor and resources are substitutes, the pseudo-
Malthusian steady state is a global attractor, and represents the long-run equilibrium of the

1An exception is Bretschger (2011), who considers poor substitution (complementarity) between labor and
an exhaustible resource in a Romer-style model of endogenous growth that exhibits the strong scale e¤ect.
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economy for any initial condition, because the feedback e¤ect of scarcity on fertility is self-
balancing. Population growth reduces the resource-labor ratio but, due to substitutability, the
resource price rises moderately. As a consequence, resource income declines over time and
the fertility rate decreases until population reaches a constant equilibrium level. If labor and
resources are complements, instead, the pseudo-Malthusian steady state acts as a separating
threshold: if the resource is initially scarce (abundant), population follows a diverging path
implying demographic explosion (collapse). The reason is that complementarity generates a
self-reinforcing feedback e¤ect: starting from the pseudo-Malthusian steady state, a rise in
population yields a resource price increase that raises resource income and drive fertility up
and thereby further population growth. If the deviation from the pseudo-Malthusian steady
state is toward resource abundance (a drop in population), the resource price�s response induces
further population decline.

The third result is that if we introduce a minimum resource requirement per adult �e.g.,
residential land �the economy may avoid demographic explosion under (weak) complementarity.
As households respond to a price signal that re�ects congestion, fertility rates are subject to
an enhanced preventive check that always stabilizes the population level as it grows too large.
And since this mechanism operates in the special Cobb-Douglas case, our model shows that
the standard result of exponential population growth often found in the literature is a rather
special case: if the net resource supply per capita is subject to a lower bound, the economy
converges towards a pseudo-Malthusian equilibrium even though labor and resources are neither
complements nor substitutes.

2 The model

A representative household purchases di¤erentiated consumption goods and chooses the number
of children in order to maximize utility. The household supplies labor services and a natural
resource (e.g., land) in competitive markets, and accumulates wealth in the form of �nancial
assets. Each variety of consumption good is supplied by one monopolistic �rm and productivity
growth stems from two types of innovations. First, the mass of manufacturing �rms increases
over time due to the development of new product lines (horizontal innovation). Second, each
�rm undertakes in-house R&D to increase it own productivity (vertical innovation). The inter-
play between horizontal and vertical innovations allows the economy to grow in the long run at
a constant endogenous rate that is independent of factor endowments (Peretto, 1998; Dinopou-
los and Thompson, 1998; Peretto and Connolly 2007). This class of models is receiving strong
empirical support (Laincz and Peretto, 2006; Ha and Howitt, 2007; Madsen, 2008; Madsen et
al. 2010; Madsen and Ang, 2011), which further legitimates its use in our theoretical analysis.
Connolly and Peretto (2003) studied the role of endogenous fertility in this framework. Our
analysis extends the model to include privately-owned natural resources and varying degrees of
substitutability between labor and resource inputs.

2.1 Households

The representative household maximizes present-value welfare at time t,

U(t) =

Z 1

t
e��(v�t) log u(v)dv; (1)
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where log u(v) is the instantaneous utility of each adult at time v, and � > 0 is the discount rate.
We specify preferences according to the Barro-Becker approach to fertility choice in continuous
time (see Barro and Sala-i-Martin, 2004, pp. 411-421). Instantaneous utility depends on
individual consumption, the fertility rate �de�ned as the mass of children per adult and denoted
by b �and population size:

log u (t) = log

"Z N(t)

0
(Xi (t) =L (t))

��1
� di

# �
��1

+ � log b (t) + (� + 1) logL (t) ; (2)

where N is the mass of consumption goods, Xi is aggregate consumption of the i-th good, L
is the mass of adults, � > 1 is the elasticity of substitution among di¤erentiated goods, � > 0
is the elasticity of utility with respect to individual fertility and � > 0 is the net elasticity of
utility with respect to adult family size.2 The law of motion of adult population is

_L (t) = L (t) (b (t)� d) ; (3)

where d > 0 is the death rate, assumed exogenous and constant.
Each adult is endowed with one unit of time, which can be spent either working or rearing

children. Denoting the time cost of child rearing by  , each adult supplies 1 �  b (t) units of
labor. In addition, the household supplies inelastically R units of a non-exhaustible natural
resource (e.g., land) to manufacturing �rms. The wealth constraint thus reads

_A (t) = r (t)A (t) + w (t)L (t) (1�  b (t)) + p (t)R (t)� Y (t) ; (4)

where A is assets holding, r is the rate of return on assets, w is the wage rate, L (1�  b) is total
labor supply, p is the market price of the resource, and Y is consumption expenditure. The
household solves the problem in two steps. First, it chooses the quantity of each consumption
good in order to maximize the instantaneous utility (2) subject to the expenditure constraint

Y (t) =

Z N(t)

0
Pi (t)Xi (t) di; (5)

where Pi is the price of the i-th good. In the second step, the household chooses the time paths
of expenditure and the fertility rate in order to maximize intertemporal welfare (1) subject to
the demographic law (3) and the wealth constraint (4).

2.2 Production and Vertical Innovation

Each consumption good is produced by a single monopolist that makes two decisions. First,
it chooses the cost-minimizing combination of production inputs at each instant. Second, it
chooses the time path of R&D e¤ort in order to maximize the present value of its future pro�ts.

Speci�cally, �rm i operates the production technology

Xi = Z�i � F (LXi � �;Ri) ; 0 < � < 1; � > 0 (6)

2Speci�cation (2) is the continuous-time equivalent of speci�cation [9.52] in Barro and Sala-i-Martin (2004,
p. 410). As shown in the Appendix, the consumption term reduces to log (Y (t) =L (t)), where Y (t) is total
consumption expenditure, so that the net elasticity of utility to population size reduces to � + 1� 1 = �.
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where Xi is output, LXi is labor employed in production, � is a �xed labor cost, Ri is the
resource input and F (�; �) is a standard production function homogeneous of degree one in its
arguments that may exhibit elasticity of input substitution below or above unity. Whether labor
and the resource are complements or substitutes matters for our results and we will discuss all
possible scenarios, including the case of unit elasticity where F (�; �) is Cobb-Douglas. The �xed
labor cost, �, ties long-run product proliferation to population growth, as discussed in detail
in Peretto and Connolly (2007). Finally, the productivity of the �rm depends on the stock of
�rm-speci�c knowledge, Zi, with elasticity �. Importantly, this �rm-speci�c productivity term
is Hicks-neutral with respect to labor and the resource.

The stock of �rm-speci�c knowledge increases according to

_Zi (t) = �K (t)LZi (t) ; � > 0 (7)

where LZi is labor employed in R&D. The productivity of R&D e¤ort is determined by the
exogenous parameter � and by the stock of public knowledge, K. Public knowledge accumulates
as a result of spillovers. When one �rm generates a new idea, it also generates non-excludable
knowledge that bene�ts the R&D of other �rms. Speci�cally, we assume that

K (t) =

Z N(t)

0

1

N (t)
Zi (t) di: (8)

As discussed in detail in Peretto and Smulders (2002), this is the simplest speci�cation of the
spillover function that eliminates the strong scale e¤ect in models of this class.

Consider now a �rm that starts to produce in instant t. Its present discounted value of the
net cash �ow is

Vi (t) =

Z 1

t
�i(v)e

�
R v
t [r(v

0)+�]dv0dv; (9)

where �i is the instantaneous pro�t, r is the instantaneous interest rate and � > 0 is the
instantaneous death rate.3 In each instant, the �rm chooses the cost-minimizing combination
of rival inputs, LXi and Ri, and the output level Xi that maximize static pro�ts �i subject to
the demand schedule coming from the household�s problem. Given this choice, the monopolist
then determines the time path of R&D employment LZi that maximizes present-value pro�ts
(9) subject to the R&D technology (7), taking as given the other �rms�innovation paths. The
solution to this problem is described in detail in the Appendix and yields the maximized value
of the �rm given the time path of the mass of �rms.

2.3 Horizontal Innovation (Entry)

Outside entrepreneurs hire labor to perform R&D that develops new products and then set
up �rms to serve the market. This process of horizontal innovation increases the mass of
�rms over time. We assume that for each entrant, denoted i without loss of generality, the
labor requirement translates into a sunk cost that is proportional to the value of production:
denoting by LNi the labor employed in start-up activity, the entry cost is wLNi = �Yi, where

3The main role of the instantaneous death rate is to avoid the asymmetric dynamics and associated hysteresis
e¤ects that arise when entry entails a sunk cost. Such unnecessary complications would distract attention from
the main point of the paper.
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Yi � PiXi is the value of production of the new good when it enters the market and � > 0
is a parameter representing technological opportunity. This assumption captures the notion
that entry requires more e¤ort the larger the anticipated volume of production.4 The value of
the �rm entering the market at time t equals the maximized present-value net cash �ow Vi (t)
because, once in the market, the �rm solves an intertemporal problem identical to that of the
generic incumbent. Free entry, therefore, requires

Vi (t) = �Yi (t) = w (t)LNi (t) ; (10)

for each entrant.

3 Equilibrium Conditions

The intertemporal choices of households and the pro�t-maximizing behavior of �rms charac-
terize the equilibrium path of the economy. This section describes consumption and fertility
decisions, the dynamics of innovation rates and the relevant market-clearing conditions.

3.1 Consumption and Fertility Choices

Consumption and fertility choices are the solutions to the household�s problem (see the Appen-
dix for derivations). Consumption expenditure obeys the standard Keynes-Ramsey rule

_Y (t) =Y (t) = r (t)� �: (11)

To characterize fertility choice, we denote by ` (t) the dynamic multiplier associated to constraint
(3). This is the marginal shadow value of bringing into the world a future worker. The fertility
rate must then satisfy the condition

` (t) =
1

Y (t)
�  w (t)� �

b (t)L (t)
; (12)

which says that the marginal value of an additional family member equals the net marginal
utility cost of having children at each point in time.5 The dynamics of ` (t) are governed by the
costate equation

�` (t)� _̀ (t) =
�

L (t)
+
w (t) (1�  b (t))

Y (t)
+ ` (t) � (b (t)� d) ; (13)

which has the usual asset-pricing interpretation: each new born is an asset that delivers divi-
dends in the future, directly as an adult family member and indirectly as an adult wage earner.

4Our assumption on the entry cost can be rationalized in several ways and does not a¤ect the generality of
our results. Peretto and Connolly (2007), in particular, discuss alternative formulations of the entry cost that
yield the same qualitative properties for the equilibrium dynamics of the mass of �rms that we exploit here.

5The �rst term in the right hand side of (12) is the gross marginal cost of child rearing in terms of foregone wage
income,  w (t), expressed in utility terms (i.e., multiplied by the marginal utility from consumption expenditure,
1=Y (t)). The second term is the direct marginal utility from increased population. The right hand side of (12)
thus equals the net marginal cost of having children.
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3.2 Innovation Rates

The solution to the monopolist problem yields a symmetric equilibrium across �rms (see Ap-
pendix). We can thus write aggregate quantities of labor employed in production and vertical
R&D as LX = NLXi and LZ = NLZi , respectively. Similarly, total resource use in manufac-
turing production equals R = NRi. The �rm�s knowledge stock is Zi = Z for each i 2 [0; N ]
and evolves according to

_Z (t)

Z (t)
= �

LZ (t)

N (t)
: (14)

Equation (14) implies that an equilibrium in which employment per �rm in vertical R&D is
constant is characterized by a constant growth rate of �rm-level, Hicks-neutral total factor
productivity. Symmetry across �rms also yields that the value of a �rm�s production is Yi (t) =
Y (t) =N (t) so that the free-entry condition (10) is identically satis�ed as Vi = �Y (t) =N (t)
by every entrant. As a consequence, denoting total employment in start-up operations by
LN = ( _N + �N) � LNi , the net increase in the mass of �rms equals

_N (t)

N (t)
=

w (t)

�Y (t)
� LN (t)� �: (15)

The rates of vertical and horizontal innovation in (14) and (15) are interdependent through the
no-arbitrage condition that the associated returns must be equal (see Appendix).

3.3 Market Clearing Conditions

The economy�s resource endowment is denoted by 
 and is constant over time. We assign
full and well-de�ned property rights over this endowment to the household and, for simplicity,
assume full utilization of the resource stock. In equilibrium, therefore, we have

R (t) = 
; (16)

where R (t) = N (t)Ri (t) is total resource use in production. Accordingly, the household�s
resource income equals p (t) 
 at each point in time. Labor market clearing requires that total
labor supply be exhausted by its competing uses:

L (t) (1�  b (t)) = LX (t) + LZ (t) + LN (t) : (17)

In the market for assets, equilibrium requires that the value of the household�s portfolio equal
the value of the securities issued by �rms: A (t) = N (t)Vi (t) = �Y (t). Substituting this result
into the wealth constraint (4), and using the saving rule (11), we obtain

Y (t) =
1

1� �� [w (t)L (t) (1�  b (t)) + p (t) 
] : (18)

Expression (18) says that the ratio of household consumption expenditure, Y (t), to household
labor and resource income, the term in square brackets, is constant over time.
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4 General Equilibrium Dynamics

For clarity, we split the analysis of dynamics in two parts. First, we study the interplay of
population and resource scarcity (section 4.1). Second, we describe the interaction between
horizontal and vertical innovations in determining productivity growth (section 4.2). A crucial
characteristic of the resulting dynamics is the existence of a steady state displaying constant
population associated to constant growth of (real) consumption per capita.

Henceforth, we take labor as the numeraire and set w (t) � 1. In models with exogenous pop-
ulation this normalization implies that consumption expenditure par capita, y (t) � Y (t) =L (t),
is constant over time and real growth is represented by the growth rate of the consumption term
in the utility function. In the present model, expenditure and production exhibit transitional
dynamics due to the endogenous fertility rate. However, in steady state the usual result ap-
plies: expenditure is constant and real consumption grows because technological change yields
a constant exponential rate of decay of the consumer price index.

4.1 Fertility and Resource Scarcity

In this subsection we characterize the interactions between population and resource scarcity as
a dynamic system involving two variables: the resource endowment per capita and the shadow
value of humanity. The resource endowment per capita, ! (t) � 
=L (t), is a state variable
that is given at time zero but is subsequently driven by fertility choices via the dynamics of
population. The shadow value of humanity is denoted by h (t) � ` (t)L (t), where ` (t) is the
marginal shadow value of a new worker previously de�ned, and is a forward-looking variable
driving fertility choice under perfect foresight.

We derive the dynamical system in two steps. In section 4.1.1, we treat the values of ! (t)
and h (t) as given at time t and derive the equilibrium values of the fertility rate, the resource
price and consumption expenditure per capita. Building on this result, in section 4.1.2 we
derive the two-by-two system that describes the joint dynamics of ! (t) and h (t).

4.1.1 Fertility, Expenditure and Resource Price

The de�nition of h (t) and the optimality condition (12) yield

b (t) =
�

 
y(t) � h (t)

: (19)

Expression (19) shows that the fertility rate is positively related to consumption expenditure
per capita, given the shadow value of humanity. Consumption expenditure per capita, in turn,
satis�es the equilibrium condition (18), which can be rewritten as

y (t) =
1�  b (t) + p (t)! (t)

1� �� : (20)

Equation (20) says that consumption expenditure per capita is proportional to the sum of labor
income per capita, 1�  b (t), and resource income per capita, p (t)! (t). Resource income per
capita, in turn, is determined by the equilibrium between the demand for the resource by �rms
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and the household�s supply. Firms�conditional demand for the resource is (see Appendix)

p (t)! (t) = y (t)
�� 1
�

S (p (t)) ; (21)

where S (p) 2 (0; 1) is the cost share of resource use, i.e., the ratio between total resource rents
paid by �rms to resource owners and the total variable costs of manufacturing production, and is
a function of the resource price. Expression (21) speci�es how expenditure decisions determine
resource income through the endogenous resource price. This relationship depends on the
characteristics of the production technology (6). Speci�cally, the cost share of resource use is
increasing or decreasing in the resource price depending on the elasticity of input substitution
(see Appendix):

@S (p)

@p

8<:
> 0 if (LXi ; Ri) are complements;
< 0 if (LXi ; Ri) are substitutes;
= 0 if F (�; �) is Cobb-Douglas.

(22)

The cost-share e¤ect summarized in (22) plays a crucial role in our results.
To see this, note that equations (19), (20) and (21) form a static system in three unknowns

that determines the equilibrium levels of p (t), y (t) and b (t) for given levels of the resource
endowment, ! (t), and the shadow value of humanity, h (t). Figure 1 describes graphically the
equilibrium determination (see the Appendix for details). In the upper panel, the loci obtained
from (20) and (21) determine expenditure given fertility, �y (b (t) ;! (t)). In the lower panel,
�y (b (t) ;! (t)) is combined with the locus (19) to determine the equilibrium expenditure and
fertility, y� (! (t) ; h (t)) and b� (! (t) ; h (t)). The upper graphs of Figure 1 show that equilibrium
expenditure responds di¤erently to the resource endowment per capita, ! (t), depending on
whether labor and resources are complements or substitutes.6 We summarize the relevant
comparative-statics e¤ects in the following Proposition.

Proposition 1 Given (! (t) ; h (t)) = (!; h) at instant t, there exists a unique triple

fp� (!; h) ; y� (!; h) ; b� (!; h)g

determining the equilibrium levels of the fertility rate, consumption expenditure per capita and
the resource price. Holding h �xed, the marginal e¤ects of an increase in ! are:

(i) Complementarity: @p� (!; h) =@! < 0; @y� (!; h) =@! < 0; @b� (!; h) =@! < 0;
(ii) Substitutability: @p� (!; h) =@! < 0; @y� (!; h) =@! > 0; @b� (!; h) =@! > 0;
(iii) Cobb-Douglas: @p� (!; h) =@! < 0; @y� (!; h) =@! = 0; @b� (!; h) =@! = 0:

Holding ! �xed, the marginal e¤ects of an increase in h are

@p� (!; h) =@h < 0; @y� (!; h) =@h < 0; @b� (!; h) =@h > 0;

independently of the elasticity of input substitution.

6 In graphical terms, an increase in ! implies that the locus y2 �which represents equation (20) � rotates
counter-clock-wise whereas the locus y3 � which represents equation (21) � is una¤ected. Consequently, an
increase in ! induces a decline in �y (b;!) under complementarity (diagram (a)), an increase in �y (b;!) under
substitutability (diagram (b)), and no e¤ect on �y (b;!) in the Cobb-Douglas case (diagram (c)).

10



Proposition 1 establishes four results. First, the e¤ect of an increase in the resource en-
dowment per capita ! on the equilibrium resource price p� is always negative. Second, the
e¤ect of ! on equilibrium consumption expenditure per capita y� is negative (positive) if labor
and resources are complements (substitutes). The reason is that the sign of the e¤ect of an
increase in ! on on resource income per capita depends on labor-resource substitutability. Un-
der complementarity, resource demand is relatively inelastic and an increase in resource supply
generates a drastic � that is, more than one-for-one � reduction of the price. Consequently,
resource income, p!, falls and drives down consumption expenditure. Under substitutability,
resource demand is relatively elastic and the increase in ! generates a mild reduction in the
resource price, which implies a positive net e¤ect on resource income and thereby higher con-
sumption expenditure. In the special Cobb-Douglas case, the price and quantity e¤ects exactly
compensate each other so that resource income and expenditure are not a¤ected by scarcity:
@ (p!)� =@! = 0 and @y�=@! = 0.

The third result in Proposition 1 is that b� (!; h) reacts to ! in the same direction as
consumption expenditure: an increase in ! reduces (increases) the fertility rate if labor and
resources are complements (substitutes). The reason is the optimality condition (19), which
says that fertility raises with expenditure per capita for a given shadow value of humanity.
The fourth result is that the marginal e¤ects of an increase in h do not depend on input
substitutability. On the one hand, the fertility rate is higher the higher is the shadow value of
humanity. On the other hand, consumption expenditure and the resource price decline because
a higher fertility rate implies reduced work time.

These results play a key role in determining the equilibrium path of the economy: the
qualitative characteristics of the transitional dynamics change depending on how income reacts
to increased resource scarcity. We address this point by exploiting the instantaneous equilibrium
de�ned in Proposition 1 to determine the joint dynamics of ! (t) and h (t).

4.1.2 Dynamic System

From (3), the di¤erential equation describing the equilibrium dynamics of ! (t) is

_! (t) = ! (t) � [d� b� (! (t) ; h (t))] : (23)

Using h (t) � ` (t)L (t), the costate equation (13) becomes

_h (t) = �h (t)� � � 1�  b
� (! (t) ; h (t))

y� (! (t) ; h (t))
: (24)

The system formed by (23) and (24) allows us to analyze the general equilibrium dynamics
of the resource-population ratio and the associated shadow value of humanity. The results in
Proposition 1 then allow us to characterize how expenditure per capita, the fertility rate and the
resource price evolve along this path. Before studying in detail the properties of system (23)-
(24), we complete the description of the general equilibrium dynamics by considering innovation
rates and productivity growth.

4.2 Innovations and Productivity Growth

With the wage rate normalized to unity, the model�s relevant measure of real output is the
consumption term in the utility function (2). In equilibrium, therefore, the growth rate of the
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economy, G (t), is (see Appendix)

G (t) =
_y (t)

y (t)
� S (p (t)) � _p (t)

p (t)
+

(
� �

_Z (t)

Z (t)
+

1

�� 1 �
_N (t)

N (t)

)
; (25)

where the last term in curly brackets represents the growth rate of total factor productivity
(TFP), determined by vertical and horizontal innovations.

Because R&D is a �xed, sunk cost, investing in vertical or horizontal R&D is pro�table only
if the �rm�s volume of production is large enough. Consequently, as in all models of endogenous
innovation, there exist thresholds of market size, Y (t), below which vertical innovation or
horizontal innovation, or both, are inactive because �rms cannot obtain a rate of return that
equals the prevailing interest rate in the economy. These thresholds have important implications
for the model�s characterization of the early development phase of the economy since they yield
a region of the phase space where vertical and/or horizontal innovation shut down. Indeed,
the presence of the �xed operating cost, �, implies that if the economy�s resource base �the
pair L (t) ;
 �is too small, �modern�monopolistic production is not feasible in the �rst place.
Although interesting, this property has no crucial bearing on the research question that we
tackle in this paper, where the focus is on the future behavior of an economy that has already
transited to modern production.7 Consequently, to keep things simple we impose assumptions
that guarantee that the dynamics of population that we study below are associated to active
vertical and horizontal innovation at all times (see the Appendix for details).

To determine the dynamics of productivity growth under such conditions, we note that
in equilibrium the rates of vertical and horizontal innovation are jointly determined by two
variables, �rm size, which we denote by x (t) � Y (t) =N (t), and the interest rate, r (t).

Lemma 2 Along the equilibrium path, the rates of vertical and horizontal innovation are, re-
spectively:

_Z (t)

Z (t)
= x (t)

�� (�� 1)
�

� r (t)� �; (26)

_N (t)

N (t)
=
1

�

�
1� � (�� 1)

�
� 1

x (t)

�
�� r (t) + �

�

��
� �� �: (27)

The behavior of �rm size, x (t), is governed by the linear di¤erential equation with time-varying
coe¢ cients

_x (t) =
��� r (t)� �

��
� 1� � (�� 1)� �� (r (t) + �)

��
� x (t) : (28)

The fact that the coe¢ cients of equation (28) depend solely on the interest rate, r (t),
highlights an important property of the model. The evolution of population due to households�
fertility and consumption choices (studied in the next section) drives the equilibrium path of
aggregate market size, Y (t), which in turn drives the equilibrium path of the interest rate, as
we can see by combining (11) and (3) to obtain

r (t) = �+
_y (t)

y (t)
+ b (t)� d = �+

_Y (t)

Y (t)
: (29)

7For an example of work that studies in detail how an economy of this class activates sequentially the two
R&D technologies, see Peretto (2011).
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The equilibrium path of the interest rate then drives the coe¢ cients of the process governing
the evolution of �rm size. The interpretation of the process is that the interest rate carries all
the information industry needs to pick paths of vertical and horizontal R&D that are consistent
with the evolution of the aggregate market for manufacturing goods due to the underlying
evolution of the economy�s resource base.

We are particularly interested in the long-run behavior of the productivity growth rate
when the economy converges to a steady state where expenditure per capita, population and
the resource price are constant. In this respect, note �rst that equations (25) and (29) imply
that in such a steady state the interest rate equals r (t) = � and the real growth rate equals the
TFP growth rate. We then have the following result:

Proposition 3 Suppose that the long-run equilibrium of the economy exhibits limt!1 _y (t) =
limt!1 _p (t) = limt!1 _L (t) = 0. Then, the net rate of horizontal innovation is zero and income
growth is exclusively driven by vertical innovation,

lim
t!1

_N (t)

N (t)
= 0 and lim

t!1
G (t) = � � lim

t!1

_Z (t)

Z (t)
: (30)

Provided that parameters satisfy � + � < ���(��1)
1���(�+�) , the asymptotic �rm size limt!1 x (t) is

above the critical level and the growth rate is strictly positive:

lim
t!1

G (t) = �
� (�� 1) [��� (�+ �)]
1� � (�� 1)� �� (�+ �) � � (�+ �) > 0: (31)

Proposition 3 incorporates two main results concerning equilibria with constant population.
First, economic growth in the long run is exclusively driven by vertical innovation. As discussed
in detail elsewhere (Peretto, 1998; Peretto and Connolly, 2007) the process of entry enlarges
the mass of goods until the gross entry rate matches the �rms�death rate. Consequently, in
the long run the mass of �rms is constant and each �rm invests a constant amount of labor in
vertical R&D. The second result is that, asymptotically, income growth is independent of factor
endowments precisely because net entry eliminates the strong scale e¤ect. In the present model,
the interaction between horizontal and vertical innovation yields that the economy converges
to a long-run equilibrium with constant population but where real income per capita grows at
a constant rate. We address this point in detail in the next section.

5 Population, Resources and Technology

As highlighted in the previous section, the model has the property that �rms need only to
anticipate the path of the interest rate to make decisions about vertical and horizontal R&D
that generate a path of �rm size consistent with the path of market size generated by the
household fertility and consumption/saving decisions. A desirable implication of this property
is that the model�s dynamics becomes very tractable since the system acquires a block-triangular
structure whereby the dynamics of the resource base L (t) ;
 can be studied in isolation. Then,
given the path of the interest rate induced by the demographic dynamics, one can determine the
evolution of �rm size and TFP growth. In this section we concentrate on the demography-driven
block of the model since it is the one that delivers the paper�s novel results.
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5.1 The Pseudo-Malthusian Steady State

Consider a steady state (!ss; hss) in which both the resource per capita and the shadow value
of humanity are constant. Imposing _! = _h = 0 in the dynamic system (23)-(24), we obtain

d = b� (!ss; hss) ; (32)

hss =
1

�
�
�
� +

1�  d
y� (!ss; hss)

�
: (33)

Equation (32) is the obvious requirement of zero net fertility for constant population. Equation
(33) de�nes the stationary shadow value of humanity. From Proposition 1, the steady-state
equilibrium (!ss; hss) also implies stationary values for the resource price, consumption expen-
diture and the fertility rate, which we denote by (pss; yss; bss). In particular, we have (see
Appendix):

Proposition 4 Assume  � > 1�  d. Then, there exists a steady state where expenditure per
capita and population are, respectively:

yss =
 �� (1�  d)
� + � (�=d)

; (34)

Lss =
pss

yss (1� ��)� (1�  d) � 
; (35)

Recall that by Proposition 3, given the constant values (pss; yss; bss), real income growth
equals the constant rate of vertical innovation. An important characteristic of this steady
state is that yss and Lss are independent of technology. From (34), expenditure per capita
depends solely on preferences and demographic parameters: neither the endowment of the
natural resource, 
, nor total factor productivity play any role. From (35), population is
proportional to the resource endowment but remains independent of technology whereas real
income per capita grows at the endogenous rate (31). Therefore, we have a pseudo-Malthusian
steady state, that is, a steady state with the Malthusian property that resource scarcity limits
the population level, but where real income grows at an endogenous rate driven by technological
change. It should be clear that a key assumption driving this result is that the technological
change that drives long-run growth is Hicks-neutral with respect to labor and land.8 Before
pursuing this property further, we need to assess whether and under what circumstances the
pseudo-Malthusian steady state is the long-run equilibrium achieved by the economy.

5.2 Stability in the General Case

The stability properties of the pseudo-Malthusian steady state depend on the input elasticity of
substitution in manufacturing. We thus have three main cases: complementarity, substitutabil-
ity and unit elasticity (Cobb-Douglas). In this section we concentrate on strict complementarity
and strict substitutability. We analyze the Cobb-Douglas case in section 5.3 below.

8 It is of course possible to introduce land-augmenting technological change, as in UGT, but doing so would
complicate the model without adding insight to this paper�s research question. In UGT land-augmenting tech-
nological change lifts the economy out of the Malthusian trap by allowing population growth in the phase where
the subsistence consumption constraint is binding. As explained, our focus is on the future, not the past, and
consequently we do not need to postulate a bias of technological change that puts downward pressure on the
land to population ratio.
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In the (!; h) plane, we denote by h( _!=0) the stationary locus of resource per capita obtained
from (23) and by h( _h=0) the stationary locus for the shadow value of humanity obtained from
(24). The phase diagrams for the cases of strict substitutability and strict complementarity are
in Figure 2 and yield the following result:

Proposition 5 Under substitutability, the stationary loci h( _h=0) and h( _!=0) are decreasing,
h(
_h=0) cuts h( _!=0) from below, and (!ss; hss) is saddle-point stable. Consequently, the pseudo-

Malthusian steady state is the global attractor of the system and represents the long-run equilib-
rium of economy. Under complementarity, the stationary loci are increasing, h( _h=0) cuts h( _!=0)

from above, and (!ss; hss) is an unstable node. Consequently, the pseudo-Malthusian steady
state is a separating threshold: if the resource is initially scarce (abundant) relative to labor,
the economy experiences demographic explosion (collapse) in the long run.

Proposition 5 establishes that the pseudo-Malthusian steady state is the long-run equilib-
rium of the economy if labor and the resource are substitutes in production. Under complemen-
tarity, instead, the steady state is unstable and the economy follows diverging equilibrium paths
leading to population explosion or collapse depending on the relative abundance of resources at
time zero. The economic intuition for these results follows from the income e¤ect of resource
scarcity established in Proposition 1.

First, consider the case of substitutability in diagram (a) and suppose that the resource is
initially abundant, that is, !0 > !ss. During the transition, population grows and ! declines
while the resource price, p, rises. Crucially, when labor and resources are substitutes, the price
e¤ect due to increasing land scarcity is not very strong and the economy experiences falling
resource income per capita, p!, and, consequently, a falling fertility rate (cf. Proposition 1).
Symmetrically, if the resource is relatively scarce at time zero, !0 < !ss, population shrinks
during the transition and ! rises while p falls. Since the price e¤ect is weak, resource income per
capita p! rises, driving the fertility rate up. In both cases, the transition ends when the fertility
rate equals the death rate. Under substitutability the pseudo-Malthusian steady state is the
global attractor of the system because population growth generates resource income dynamics
that yield self-balancing feedback e¤ects: as land scarcity tightens, the price of land rises, but
less than one for one with the endowment, so that land income per capita falls.

Now consider the case of complementarity in Figure 2, diagram (b). In this scenario, the
pseudo-Malthusian steady state is not the global attractor of the system because the resource
income e¤ect is reversed. If the resource is initially scarce, !0 < !ss, the dynamics exacerbate
scarcity because, as population growth reduces !, the resource price p rises more than one for
one yielding a rise of resource income per capita p! and a rise in fertility (cf. Proposition
1). This implies a feedback e¤ect whereby population grows faster and drives the economy
further away from the pseudo-Malthusian steady state. Resource per capita ! then tends
asymptotically to zero as the economy experiences a demographic explosion. Symmetrically, if
the resource is relatively abundant at time zero, !0 > !ss, population shrinks and the increase
in ! reduces resource income per capita via strong reductions in the resource price p, yielding a
negative e¤ect on fertility. Hence, under complementarity, the pseudo-Malthusian steady state
is not the global attractor of the system because population growth generates resource income
dynamics that yield self-reinforcing feedback e¤ects on fertility choice.

The mechanism underlying the collapse path under complementarity is quite di¤erent from
that suggested by bio-economic models in which the logistic law of natural regeneration is mod-
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i�ed to include a minimum resource threshold below which resource renewal is negative �see,
e.g., D�Alessandro (2007) and, especially, Taylor (2009). In our model, the demographic col-
lapse is not due to excessive population growth that strains the natural resource base. Rather,
it is due to an excessive scarcity of manpower that prevents the economy from taking advantage
of the natural resource base. The reason why such a situation is self-reinforcing is that the low
resource income per capita yields below-replacement fertility and further population decline.
Moreover, as we highlighted in our discussion of the dynamics of the innovation rates, the col-
lapse of the population eventually results in the shutting down of R&D activity and ultimately
of modern manufacturing production itself.

Our results are novel also with respect to UGT because the qualitative dynamics described
in Figure 2 are generated by a price e¤ect that does not arise if there is no resource market, as in
Galor and Weil (2000), or, if there is, labor and resources exhibit a unit elasticity of substitution,
as in Lucas (2002). To make this point transparent, we now turn to the Cobb-Douglas case and
show that the pseudo-Malthusian equilibrium is indeed created by the resource price e¤ect.

5.3 The Special Cobb-Douglas Case

When the manufacturing technology takes the Cobb-Douglas form, the pseudo-Malthusian
steady state does not exist and the model predicts that population grows, or shrinks, forever at
a constant rate. The proof follows from Proposition 1. A unit elasticity of input substitution
implies that neither expenditures nor the fertility rate are a¤ected by variations in resources per
capita. Consequently, the stationary loci h( _!=0) and h( _h=0) become horizontal straight lines.
The properties of the dynamic system (23)-(24) fall in three subcases: (i) the locus h( _!=0) lies
below h(

_h=0), (ii) the locus h( _!=0) lies above h( _h=0), or (iii) the two loci coincide.
Figure 3 describes the phase diagram (see the Appendix for details) in all subcases. The

common characteristic is that, given the initial condition ! (0) = !0, the shadow value of hu-
manity jumps on the h( _h=0) locus at time zero.9 In subcase (i) there is no pseudo-Malthusian
equilibrium: given !0, the economy moves along the h(

_h=0) locus and population grows at a
constant exponential rate during the whole transition.10 Subcase (ii) is specular: the economy
moves along the h( _h=0) locus with a permanently declining level of population, with no tran-
sitional dynamics in the fertility rate because the shadow value of humanity is constant. In
subcase (iii), the parameters are such that the the equilibrium fertility rate exactly coincides
with the exogenous mortality rate. However, this steady state is di¤erent from the pseudo-
Malthusian equilibrium as there are no interactions between resource scarcity and fertility over
time: the economy maintains the initial resource endowment per capita !0 forever.

9All explosive paths yielding h (t)!1 or h (t) < 0 at some �nite date are ruled out by standard arguments:
they either violate the transversality condition limt!1 h (t) e��t = 0 or the household�s budget constraint.
10The population growth rate is constant because the shadow value of humanity is constant. Since expenditure

is not a¤ected by variations in resource per capita (cf. Proposition 1), having _h = 0 implies a constant fertility
rate b (t) by virtue of condition (19). The same reasoning applies to all subcases.
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6 Minimum Resource Requirement: A Dominant Preventive
Check

A question that arises naturally is whether the prediction of stable population in the long
run �which holds under substitutability �extends to the cases of complementarity and unit
substitution if we further enrich the model. In particular, considering the equilibrium paths
yielding ! (t) ! 0, what kind of forces may stop the demographic explosion? In this section
we present a simple extension of the model that yields a considerable generalization of our
results. Speci�cally, we assume that each adult has a �xed minimum requirement of the resource
and show that this induces a congestion e¤ect that operates through the price of land p and
ampli�es the preventive check against demographic explosion making it the dominant force for
any elasticity of substitution between labor and land.

6.1 Equilibrium with Minimum Requirement

We denote the �xed requirement of resource per adult by �, and impose

! (t) > � in each t 2 [0;1) : (36)

This assumption can be rationalized in many ways. For example, if the resource 
 represents
total available land, constraint (36) establishes that there is a minimum land requirement �
e.g., residential land �for each adult. Setting � = 0, we are back to the original model analyzed
in the previous sections.

When � > 0, the minimum requirement restricts the supply of the resource to �rms: the
dynamic wealth constraint (4) is replaced by

_A (t) = r (t)A (t) + w (t)L (t) (1�  b (t)) + p (t) � (
� �L (t))� Y (t) ; (37)

where R (t) = 
��L (t) is aggregate net resource supply. The rest of the economy is as before.
The representative household maximizes welfare (1) subject to (37) and conditions (20) and
(21) are replaced by

y (t) =
1�  b (t) + p (t) � (! (t)� �)

1� �� ; (38)

y (t) =
p (t) � (! (t)� �)

��1
� S (p (t))

; (39)

respectively. Using (38), (39) and the static fertility relation (19) �which is unchanged �we
can follow the same steps taken in section 4.1.1 and build a static system that determines the
conditional equilibrium levels of expenditure, the resource price and the fertility rate.

The only modi�cation is that the relevant index of resource supply per capita is not ! (t)
but the net resource supply per capita, which we denote by s (t) � ! (t) � �. We thus obtain
the same results described in Proposition 1: treating s (t) and h (t) as given at time t, there
exists a unique triple

fp� (s (t) ; h (t)) ; y� (s (t) ; h (t)) ; b� (s (t) ; h (t))g

17



determining the equilibrium levels of p (t), y (t) and b (t) and displaying the same comparative-
statics properties listed in Proposition 1. Moreover (see Appendix),

lim
s(t)!0+

p� (s (t) ; h (t)) =1; (40)

which says that the resource price goes to in�nity when the resource endowment per capita
approaches the minimum threshold.

6.2 Steady State with Minimum Requirement

The dynamics of s (t) are governed by

_s (t) = (s (t) + �) � [d� b� (s (t) ; h (t))] : (41)

The di¤erential equation for h (t), (24), is now replaced by (see Appendix)

_h (t) = �h (t)� � � 1�  b
� (s (t) ; h (t))� � � p� (s (t) ; h (t))

y� (s (t) ; h (t))
: (42)

In steady state expenditure per capita is (see Appendix)

y� (sss; hss) =
 �� (1�  d) [1 + (�=sss)]

� + � (�=d)� (�=sss) (1� ��) ; (43)

where sss indicates the constant level of net resource supply per capita associated to the constant
level of the shadow value of humanity hss.

Denote by h( _s=0) and h( _h=0) the stationary loci determined by (41) and (42) in the (s; h)
plane. The di¤erence with respect to the original model with � = 0 is that the locus h( _h=0)

exhibits a vertical asymptote in h = 0 and goes to minus in�nity independently of the elasticity
of substitution. This result is described in the upper panel of Figure 4, where we consider (a)
substitutability, (b) complementarity and (c) the Cobb-Douglas case for the relevant subcase
featuring growing population.11 Starting from � = 0, and subsequently imposing higher values
of �, the left branch of the locus h( _h=0) bends downward and the locus shifts down. As one can
see, the congestion e¤ect due to the minimum land requirement per capita removes ! = 0 as a
possible attractor of the system and, for technologies that feature elasticity of substitution less
than or equal to one, replaces it with one that features constant population.

The intuition is provided by result (40) combined with the costate equation (42). When
the amount of resource per capita approaches the minimum requirement, the resource price
explodes to in�nity. This force shows up in fertility choices as the term � � p (s; h) in equation
(42) that governs the dynamics of the shadow value of humanity: although, as in the baseline
model with � = 0, our representative household experiences an exploding resource income
per capita, it now responds to the exploding resource price by lowering fertility because that
exploding price now signals excessive congestion of the resource.

11 In the Cobb-Douglas scenario, we limit our attention to subcase (i) because it is the only case featuring
demographic explosion (cf. Figure 3). The introduction of a minimum resource requirement is only relevant for
equilibrium paths that exhibit zero resource per capita in the long run.
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6.3 Dynamics with Minimum Requirement

Figure 4 clari�es the consequences of the minimum resource requirement for the number of
steady states and their stability properties. Under substitutability, our conclusions do not
change: as shown in diagram (d), the steady state (sss; hss) is unique and is saddle-point stable
because h( _h=0) cuts h( _s=0) from below.

Under complementarity, instead, two steady states arise. As shown in diagram (e), there
are is a �low�pseudo-Malthusian equilibrium, denoted by (s0ss; h

0
ss), as well as a �high�pseudo-

Malthusian equilibrium, denoted by (s00ss; h
00
ss). The �high�equilibrium is an unstable node and

thus acts as a separating threshold. The �low�equilibrium, instead, is saddle-path stable and
is therefore the local attractor of the system. Provided that the initial net resource endowment
is below s00ss, the economy converges to the pseudo-Malthusian steady state (s

00
ss; h

00
ss).

Consider now the Cobb-Douglas case. In the original model with � = 0 the economy follows
a path of constant exponential growth of population (cf. Figure 3, subcase (i)). The positive
requirement � > 0 generates a unique pseudo-Malthusian steady state that is saddle-path stable
and is thus the global attractor of the system; see Figure 4, diagram (f). We summarize these
conclusions as follows.

Proposition 6 Given a �xed requirement of resource per adult � > 0, the economy converges
towards a pseudo-Malthusian steady state under substitutability, under complementarity (pro-
vided that s0 < s00ss) and under Cobb-Douglas technology (subcase (i)).

With the inclusion of a congestion e¤ect due to a minimum resource requirement that mimics
the role of residential land, our theory of the long-run level of population appears robust with
respect to scenarios in which labor and resources are not strictly substitutes: the preventive-
check mechanism driven by the price of land always eliminates explosive population dynamics.

7 Conclusion

This paper investigated the links between resource scarcity, income levels and population growth
in a Schumpeterian model with endogenous fertility. Our analysis o¤ers the following results.
When labor and resources are strict complements or strict substitutes in production, the in-
crease in resource scarcity induced by population growth generates price e¤ects that modify
income per capita yielding feedback e¤ects on fertility. These price e¤ects create a pseudo-
Malthusian equilibrium in which population is constant, income per capita grows at a constant
endogenous rate and population size is independent of technology. Under substitutability, this
equilibrium is a global attractor and indeed determines the population level in the long run:
increased resource scarcity reduces income producing self-balancing e¤ects on population via
reduced fertility. Under complementarity, instead, the pseudo-Malthusian equilibrium acts as a
separating threshold and population level follows diverging paths: increased (reduced) resource
scarcity generated by the growth (decline) of population increases (decreases) income per capita
and fertility rates, implying self-reinforcing feedback e¤ects that drive the economy towards de-
mographic explosion (human extinction). If we introduce a minimum resource requirement
per adult �e.g., residential land �the economy avoids demographic explosion in all scenarios.
Agents internalize the minimum requirement in intertemporal choices and this enhances the
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preventive check that generates stable pseudo-Malthusian equilibria. Accordingly, population
achieves a stationary level in the long run even under complementarity.

Our analysis unveils a theory of interactions between resources and population that di¤ers
in several respects from the existing literature. Price e¤ects are generally neglected in Uni�ed
Growth Theory, which typically assumes no resources markets or a unitary elasticity of sub-
stitution between labor and resources. Bio-economic models, on the other hand, often allow
for price e¤ects driven by scarcity, but if we consider the extinction path arising under com-
plementarity in our model, the collapse of the society is not due to excessive natural scarcity
�as in models where natural regeneration becomes negative below a certain stock threshold �
but rather to the continuous decline in resource prices which reduces expenditures, incomes and
fertility. In other words, the problem is not scarcity of natural resources but of the labor needed
to exploit those resources. More generally, our analysis suggests a theory of the population level
which is consistent with the fact that Planet Earth has a �nite carrying capacity of people. This
basic characteristic of closed systems is not captured by standard balanced growth models, that
typically predict exponential population growth in the long run.

A Appendix

Household problem: derivation of (11), (12), (13). In the �rst step, the household
maximizes (2) subject to (5). The solution yields the demand schedule for product i,

Xi (t) = Y (t)
Pi (t)

��R N(t)
0 Pi (t)

1�� di
: (A.1)

Atomistic �rms take the denominator of (A.1) as given and each monopolist faces an isoelastic
demand curve. Plugging (A.1) in (A.1), indirect instantaneous utility reads

log u(t) = ~u+ log (Y (t) =L (t)) + � log b (t) + (� + 1) logL (t) (A.2)

where ~u is a function of the goods�prices (taken as given). Expression (A.2) implies a positive
net elasticity of utility to population, � > 0. In the second step, the household maximizes
(1) subject to (4) and (3) using Y and b as control variables and A and L as state variables.
Plugging (A.2) in (1), the Hamiltonian for this problem reads

LH � ~u+ log Y + � log b+ � logL+ � � [rA+ wL (1�  b) + pR� Y ] + ` � [L (b� d)] ; (A.3)

where � and ` are the dynamic multipliers associated to A and L, respectively. The optimality
conditions read

1=Y (t) = � (t) ; (A.4)

�=b (t) =  � (t)w (t)L (t)� ` (t)L (t) ; (A.5)

�� (t)� _� (t) = � (t) r (t) ; (A.6)

�` (t)� _̀ (t) = (�=L (t)) + � (t)w (t) (1�  b (t)) + ` (t) � (b (t)� d) ; (A.7)

in addition to the usual transversality conditions

lim
t!1

� (t)A (t) e��t = lim
t!1

` (t)L (t) e��t = 0: (A.8)
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Combining (A.4) with (A.6), we obtain (11). Substituting (A.4) in (A.5) and solving for ` (t),
we obtain (12). Using (A.4) to eliminate � (t) from (A.7), we obtain equation (13) in the text.

The monopolist problem. The instantaneous pro�t of the i-th monopolist is

�i = PiXi � wLXi � pRi � wLZi : (A.9)

From (6), the cost-minimizing combination of LXi and Ri, for given wage w and resource price
p, yields total production costs

w�+ C(w; p)Z��i Xi; (A.10)

where C (�) is the unit-cost function homogeneous of degree one. Using (A.10), instantaneous
pro�ts (A.9) can be re-written as

�i = [Pi � C(w; p)Z��i ]Xi � w�� wLZi ; (A.11)

where Pi is the market price of the produced variety. In the �rst step, the monopolist maximizes
(A.11) subject to the demand schedule (A.1) �taking the denominator as given �obtaining the
mark-up rule

Pi =
�

�� 1 � C(w; p)Z
��
i for each i 2 [0; N ] : (A.12)

In the second step, the �rm maximizes (9) subject to (7). Using (A.11), the current-value
Hamiltonian for the i-th �rm reads

LMi � [Pi � C(w; p)Z��i ]Xi � w�� wLZi + �i�KLZi ;

where �i is the dynamic multiplier attached to �rm-speci�c knowledge. The state variable is
Zi, the control variable is R&D employment, LZi , and the public knowledge stock, K, is taken
as given. The �rst order conditions for the interior solution are given by

�i�K = w (A.13)

r + � � �C(w; p)Z���1i

Xi

�i
=

_�i
�i
; (A.14)

lim
v!1

e�
R v
t [r(v

0)+�]dv0�i(v)Zi(v) = 0: (A.15)

Peretto (1998, Proposition 1) shows that, under the restriction 1 > � (�� 1), the �rm is always
at the interior solution, where w = �i�K holds and equilibrium is symmetric.12

Innovation rates and no-arbitrage. Symmetry across manufacturing �rms implies K =
Z = Zi and thereby _K=K = �LZ=N , where LZ is aggregate employment in vertical R&D.
Also, the free-entry condition (10) reduces to Vi = �Y (t) =N (t) by every i-th entrant in the
manufacturing business. Time-di¤erentiating (9), we have

r (t) + � =
�Xi (t)

Vi (t)
+
_Vi (t)

Vi (t)
; (A.16)

12Because the Hamiltonian is linear in LZi , we may have three cases. If �i�K < w, the value of the marginal
unit of knowledge is below its cost and the �rm does not invest. If �i�K > w, the value of the marginal unit
of knowledge exceeds its cost: this case is ruled out as it violates the general equilibrium conditions (the �rm
would demand an in�nite amount of labor for R&D purposes).
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which is a perfect-foresight, no-arbitrage condition for the equilibrium in the capital market.
The rates of return to vertical and horizontal R&D read

r (t) = rZ (t) �
_w (t)

w (t)
+ �

�
�(�� 1)

�
� Y (t)

N (t)w (t)
� LZ (t)

N (t)

�
� �; (A.17)

r (t) = rN (t) �
1

�

�
1

�
� N (t)w (t)

Y (t)

�
�+

LZ (t)

N (t)

��
+
_Y (t)

Y (t)
�

_N (t)

N (t)
� �; (A.18)

respectively. Equation (A.17), is obtained by time-di¤erentiating (A.13) and using the demand
curve (A.1), the R&D technology (7) and the price strategy (A.12). Equation (A.18) follows
from substituting Vi = �Y=N in (A.16). No-arbitrage requires that rZ (t) = rN (t) in each
instant t.

Conditional input demands: derivation of (21) and (22). The cost function (A.10)
gives rise to the conditional factor demands

LXi =
@C (w; p)

@w
Z��i Xi + � and Ri =

@C(w; p)

@p
Z��i Xi (A.19)

for each �rm i. Combining (A.19) with the price strategy (A.12), and aggregating across �rms
under symmetry, we obtain the aggregate demand schedules

LX (t) = Y (t)
�� 1
�

h
1� ~S (w (t) ; p (t))

i
+ �N (t) ; (A.20)

R (t) = Y (t)
�� 1
�

~S (w (t) ; p (t))

p (t)
; (A.21)

where ~S (w; p) is the resource share in the �rm�s total variable cost:

~S (w; p) � pRi

C(w; p)Z��i Xi

=
@ logC(w; p)

@ log p
: (A.22)

Normalizing the wage rate w (t) = 1 in each instant t, the cost function reduces to C(w; p) =
C(1; p) and the resource cost share can be re-de�ned as

S (p) � ~S (1; p) =
@ logC(1; p)

@ log p
: (A.23)

Because the resource cost share S (p) equals the elasticity of the cost function with respect to
the resource price, it exhibits the properties reported in (22) as well as

(i) Complementarity: limp!0 S (p) = 0; limp!1 S (p) = 1;
(ii) Substitutability: limp!0 S (p) = 1; limp!1 S (p) = 0;
(iii) Cobb-Douglas: S (p) = �S 2 (0; 1) :

(A.24)

Multiplying both sides of (A.21) by p (t) =L (t) and substituting R (t) = 
 from (16), we obtain
equation (21) in the text.
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Proof of Proposition 1. Eliminating time-arguments and treating (!; h) as parameters,
the system formed by (19), (20) and (21) can be rewritten as

y1 (b;h) �  

h+ (�=b)
; (A.25)

y2 (b; p;!) � 1�  b
1� �� +

!

1� �� � p; (A.26)

y3 (b; p) � 1�  b
1� ��� ��1

� S (p)
; (A.27)

where (A.27) is obtained by plugging (21) in (20) to eliminate p! and solving for y. The
proof of Proposition 1 involves three steps. First, we prove the existence and uniqueness of the
equilibrium. Second, we assess the marginal e¤ects of variations in !. Third, we assess the
marginal e¤ects of variations in h.

Step #1. The subsystem formed by (A.26) and (A.27) can be represented graphically in
the (p; y) plane: given b and !, function y2 (b; p;!) is a linear increasing function of p, whereas
the behavior of y3 (b; p) depends on the elasticity of substitution: from (22), it is (i) increasing
and concave under complementarity; (ii) decreasing and convex under substitutability; (iii) a
�at horizontal line in the Cobb-Douglas case. The three cases are respectively described in
diagrams (a), (b) and (c) of Figure 1. The vertical intercepts and horizontal asymptotes of
y3 (b; p) are de�ned in (A.24) and (A.27). In all cases, the intersection y2 (b; p;!) = y3 (b; p) is
unique and determines the conditional values �y (b;!) and �p (b;!). In particular, �y (b;!) exhibits
the property

ymin (b) �
1�  b
1� �� < �y (b;!) <

1�  b
1� ��� ��1

�

� ymax (b) : (A.28)

In all cases, a ceteris paribus increase in b shifts down the vertical intercept of y2 (b; p;!) as well
as the vertical intercept and the horizontal asymptotes of y3 (b; p). This implies that �y (b;!) is
monotonically decreasing in b with

@

@b
�y (b;!) < 0; lim

b!0
�y (b;!) = �y (0;!) > 0; lim

b!1= 
�y (b;!) = 0: (A.29)

Reporting the �y (b;!) locus in the (b; y) plane in the three cases, we respectively obtain diagrams
(d), (e) and (f) in Figure 1. In the same diagrams, we plot the y1 (b;h) schedule de�ned in (A.25),
which is strictly increasing and concave in b. In all cases, the intersection �y (b;!) = y1 (b;h) is
unique and thus determines a unique couple of equilibrium values, b� (!; h) and y� (!; h). Given
b� (!; h) and y� (!; h), there exists a unique value of the resource price p� (!; h) satisfying the
monotonous relation (A.26).

Step #2. The marginal e¤ects of ! can be studied by means of Figure 1. In all cases, an
increase in ! increases the slope of y2 (b; p;!) leaving y3 (b; p) unchanged, so that

@�p (b;!)

@!
< 0; lim

!!0+
�p (b;!) =1; lim

!!1
�p (b;!) = 0; (A.30)

independently of the elasticity of substitution. With respect to �y (b;!), we have to consider
each case in turn. Under complementarity, the positive e¤ect of ! on the slope of y2 (b; p;!)
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implies

(Compl.):
@�y (b;!)

@!
< 0; lim

!!0+
�y (b;!) = ymax (b) ; lim

!!1
�y (b;!) = ymin (b) (A.31)

Result (A.31) implies that, in diagram (d) of Figure 1, the �y (b;!) schedule moves down rotating
counter-clockwise around the horizontal intercept b = 1=!. We thus have @

@!y
� (!; h) < 0 and

@
@! b

� (!; h) < 0. From the equilibrium relation (A.27) evaluated in the equilibrium, the signs
@
@!y

� (!; h) < 0 and @
@! b

� (!; h) < 0 require

@S (p� (!; h))

@!
=
@S (p)

@p
� @p

� (!; h)

@!
< 0;

which �given @S (p) =@p > 0 �implies @
@!p

� (!; h) < 0. Now consider the case of substitutability :
the positive e¤ect of ! on the slope of y2 (b; p;!) implies

(Subs.):
@�y (b;!)

@!
> 0; lim

!!0+
�y (b;!) = ymin (b) ; lim

!!1
�y (b;!) = ymax (b) ; (A.32)

Result (A.32) implies that, in diagram (e) of Figure 1, the �y (b;!) schedule moves up rotat-
ing clockwise around the horizontal intercept b = 1=!. We thus have @

@!y
� (!; h) > 0 and

@
@! b

� (!; h) > 0. From the equilibrium relation (A.27) evaluated in the equilibrium, the signs
@
@!y

� (!; h) > 0 and @
@! b

� (!; h) > 0 require

@S (p� (!; h))

@!
=
@S (p)

@p
� @p

� (!; h)

@!
> 0;

which �given @S (p) =@p < 0 �implies @
@!p

� (!; h) < 0. Next consider the Cobb-Douglas case:
the positive e¤ect of ! on the slope of y2 (b; p;!) yields a decline in �p (b;!) but no e¤ect on
conditional expenditure, @

@! �y (b;!) = 0. This implies that, in diagram (f) of Figure 1, the
�y (b;!) schedule is the horizontal line

(Cobb-Douglas): �y (b;!) =
1�  b

1� ��� ��1
�
�S
; (A.33)

obtained by substituting the constant S (p) = �S 2 (0; 1) in (A.27). Hence, we get @
@!y

� (!; h) =

0 and @
@! b

� (!; h) = 0. The only e¤ect of ! is on the resource price, which is negative:
@
@!p

� (!; h) = @
@! �p (b;!) < 0.

Step #3. From de�nition (A.23), the combined function � (p) � p=S (p) exhibits

@� (p)

@p
> 0; lim

p!0
� (p) = 0; lim

p!1
� (p) =1; (A.34)

and allows us to rewrite the equilibrium relation (21) as

y� (!; h) = ! � �

�� 1 � � (p
� (!; h)) : (A.35)
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The marginal e¤ects of h can be studied by means of diagrams (d), (e) and (f) in Figure 1. In
all cases, an increase in h leaves the �y (b;!) schedule unchanged whereas the y1 (b;h) schedule
de�ned in (A.25) exhibits

@y1 (b;h)

@h
< 0; lim

h!0+
y1 (b;h) =

 

�
b; lim

h!1
y1 (b;h) = 0: (A.36)

Result (A.36) implies that y1 (b;h) moves down rotating clockwise around the origin as h in-
creases. Consequently, we have @

@hb
� (!; h) > 0 and @

@hy
� (!; h) < 0 independently of the

elasticity of substitution. The e¤ect of h on the resource price is obtained by di¤erentiating
(A.35) with respect to h, which yields

@

@h
y� (!; h) = !

�

�� 1 �
@�

@p
� @p

� (!; h)

@h
:

Since @�=@p > 0 independently of the elasticity of substitution, the sign of @
@hp

� (!; h) is always
the same as that of @

@hy
� (!; h) < 0. �

Derivation of (25). By symmetry in the manufacturing sector, substitute Xi = X for
each i 2 [0; N ], the demand function (A.1), and the price strategy (A.12), in the consumption
term of the utility function (2) to obtain"Z N(t)

0

�
Xi (t)

L (t)

� ��1
�

di

# �
��1

=
y (t)

Pi (t)
N (t)

1
��1 =

�� 1
�

� y (t)

C(1; p (t))
Zi (t)

�N (t)
1
��1 ; (A.37)

where we have used Zi (t) = Z (t) and C(w (t) ; p (t)) = C (1; p (t)). Recalling that S (p) �
@ logC(1;p)
@ log p by de�nition (A.23), the growth rate of (A.37) is given by (25).
Proof of Lemma 2. Setting w (t) = 1 and Y (t) =N (t) in (A.17), and using (14) to

eliminate LZ=N , we obtain

_Z (t)

Z (t)
=

(
��(��1)

� x (t)� r (t)� � if x (t) > ~xZ (t) � �(r(t)+�)
��(��1)

0 if x (t) 6 ~xZ (t)
:

This proves result (26). From (A.18), we have

r (t) =
1

�

"
1

�
� 1

x (t)

 
�+

1

�
�
_Z (t)

Z (t)

!#
+
_Y (t)

Y (t)
�

_N (t)

N (t)
� �: (A.38)

Plugging r (t) = �+ _Y (t) =Y (t) from (11) and solving the resulting expression for _N (t) =N (t),
we obtain

_N (t)

N (t)
=

8<: 1
�

h
1��(��1)

� � 1
x(t)

�
�� r(t)+�

�

�i
� �� � if x (t) > ~xN (t) �

�� r(t)+�
�

1��(��1)
�

��(�+�)
0 if x (t) 6 ~xN (t)

:

This proves result (27).
Derivation of (28). From (A.38), the growth rate of �rm size equals

_x (t)

x (t)
=
_Y (t)

Y (t)
�

_N (t)

N (t)
= r (t) + � � 1

�

"
1

�
� 1

x (t)

 
�+

1

�
�
_Z (t)

Z (t)

!#
;
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where we can substitute (26) and solve for _x (t) in the case x (t) > max f~xZ (t) ; ~xN (t)g to obtain
(28). To guarantee that �rm size is su¢ ciently large throughout the transition, we assume that
at time 0 agents select a pair (! (0) ; h (0)) such that

x (0) =
Y (0)

N (0)
=
L (0)

N (0)
� y (! (0) ; h (0)) > max f~xZ (0) ; ~xN (0)g ;

where

~xZ (0) =
� (r (0) + �)

�� (�� 1) and ~xN (0) =
�� r(0)+�

�
1��(��1)

� � � (�+ �)
:

The intuition for this assumption is that the condition x (t) > max f~xZ (t) ; ~xN (t)g identi�es a
region in (!; h) space where both R&D activities are turned on. The boundary of this region
is a decreasing line that depends on parameters and the initial mass of �rms N (0), and such
that the two R&D activities are on for values (! (t) ; h (t)) below it. Consequently, given the
model�s parameters, we can always choose a combination of initial population, L (0), resource
endowment, 
, and initial mass of �rms, N (0), such that given ! (0) the economy selects a
value h (0) that implies x (t) > max f~xZ (t) ; ~xN (t)g for all t � 0 on a path that converges to the
steady state with constant population. Similarly, we can ensure that given ! (0) the economy
selects a value h (0) that implies x (t) > max f~xZ (t) ; ~xN (t)g for some t � 0 on a path that
diverges from the steady state with constant population.

Proof of Proposition 3. If limt!1 _y (t) = limt!1 _p (t) = limt!1 _L (t) = 0, equations
(25) and (29) respectively imply

lim
t!1

G (t) = � �
_Z (t)

Z (t)
+

1

�� 1 �
_N (t)

N (t)
; (A.39)

lim
t!1

r (t) = �: (A.40)

Substituting (A.40) in (??), the asymptotic critical threshold for obtaining positive vertical
innovations is

lim
t!1

x (t) > ~x (1) � � (�+ �)

�� (�� 1) : (A.41)

Consequently, from (28), we have two possible steady-state levels for �rm size,

lim
t!1

x (t) =

(
(�=�) � ���(�+�)

1��(��1)���(�+�) if �+ � < ���(��1)
1���(�+�)

��
1���(�+�) if �+ � > ���(��1)

1���(�+�)
; (A.42)

where � + � < ���(��1)
1���(�+�) implies strictly positive vertical innovations and � + � > ���(��1)

1���(�+�)
implies, instead, constant Z (t) in the long run. Substituting (A.42) in (26), we have

lim
t!1

_Z (t)

Z (t)
=

(
�(��1)[���(�+�)]
1��(��1)���(�+�) � (�+ �) if �+ � < ���(��1)

1���(�+�)
0 if �+ � > ���(��1)

1���(�+�)
; (A.43)

where the case of operative vertical R&D does not require any further restriction on parameters.
Plugging (A.43) in (27), we also have

lim
t!1

_N (t)

N (t)
=

(
0 if �+ � < ���(��1)

1���(�+�)
0 if �+ � > ���(��1)

1���(�+�)
: (A.44)
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Using (A.39), results (A.43) and (A.44) imply (30) and (31). �
Derivation of (34) and (35). Using (32) and (33) to eliminate bss and hss from the

equilibrium conditions (19) and (20), respectively, we obtain expressions (34) and (35) in the
text.

Proof of Proposition 5. Proposition 5 is proved in three steps. First, we show that
the stationary loci h( _!=0) and h( _h=0) are both increasing (decreasing) in the (!; h) plane under
complementarity (substitutability), and are both horizontal straight lines in the special Cobb-
Douglas case. Second, we show that under substitutability (complementarity), h( _h=0) cuts
h( _!=0) from below (above). Third, we show that under substitutability (complementarity), the
steady state (!ss; hss) is a stable saddle-point (unstable node or focus).

Step #1. Equation (34) and condition (A.27) evaluated at (yss; bss) imply

� + � (�=d) =
 �� (1�  d)

1�  d �
�
1� ��� �� 1

�
S (p)

�
(A.45)

For future reference, de�ne the constants

�0 � 1� ���
�� 1
�

and �1 � 1� ��; (A.46)

where �0 < �1. Imposing _! = 0 in (23), the resulting locus h( _!=0) is characterized by b� (!; h) =
d. From the Proof of Proposition 1, we know that, given b� (!; h) = d, the equilibrium is
characterized by the conditional values �y (b;!) and �p (b;!) determined in Figure 1 and evaluated
in b = d. In particular, results (A.31), (A.32) and (A.33) respectively imply the three cases8>>><>>>:

Comp: @�y(d;!)
@! < 0; lim

!!0
�y (d;!) = 1� d

�0
; lim

!!1
�y (d;!) = 1� d

�1
;

Subs: @�y(b;!)
@! > 0; lim

!!0
�y (d;!) = 1� d

�1
; lim

!!1
�y (d;!) = 1� d

�0
;

C-D: @�y(b;!)
@! = 0; �y (d;!) = 1� d

1���� ��1
�
�S
:

9>>>=>>>; (A.47)

From (19), given b� (!; h) = d, the locus h( _!=0) is represented by

h( _!=0) =
 

y� (!; h)
� �

b� (!; h)
=

 

�y (d;!)
� �

d
: (A.48)

Plugging results (A.47) in (A.48), we obtain8>>><>>>:
Comp: @h( _!=0)

@! > 0; lim
!!0

h( _!=0) =  �0
1� d �

�
d ; lim

!!1
h( _!=0) =  �1

1� d �
�
d ;

Subs: @h( _!=0)

@! < 0; lim
!!0

h( _!=0) =  �1
1� d �

�
d ; lim

!!1
h( _!=0) =  �0

1� d �
�
d ;

C-D: @h( _!=0)

@! = 0; h( _!=0) =
 (1���� ��1

�
�S)

1� d � �
d :

9>>>=>>>; (A.49)

Now consider the locus h( _h=0). From (24), we have

h(
_h=0) =

1

�

�
� +

1�  b� (!; h)
y� (!; h)

�
=
1

�

�
1� ��� �� 1

�
S (p� (!; h)) + �

�
; (A.50)
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where we have used condition (A.27) evaluated in equilibrium to obtain the last term. Using the
properties of S (p) listed in (22) and (A.24), as well as the result @

@!p
� (!; h) < 0 in Proposition

1, we have8>>><>>>:
Comp: @h(

_h=0)

@! > 0; lim
!!0

h(
_h=0) = �0+�

� ; lim
!!1

h(
_h=0) = �1+�

� ;

Subs: @h(
_h=0)

@! < 0; lim
!!0

h(
_h=0) = �1+�

� ; lim
!!1

h(
_h=0) = �0+�

� ;

C-D: @h(
_h=0)

@! = 0; h(
_h=0) = 1

�

�
1� ��� ��1

�
�S + �

�
:

9>>>=>>>; (A.51)

Results (A.49) and (A.51) imply that both h( _!=0) and h( _h=0) are increasing (decreasing) in the
(!; h) plane under complementarity (substitutability) while they are both horizontal straight
lines in the Cobb-Douglas case.

Step #2. Denote by � (0) the distance between the vertical intercepts of h( _!=0) and h( _h=0)

and, similarly, denote by � (1) the vertical distance between the asymptotic levels of h( _!=0)
and h( _h=0) as ! !1, i.e.,

� (0) � lim
!!0

h( _!=0) � lim
!!0

h(
_h=0) and � (1) � lim

!!1
h( _!=0) � lim

!!1
h(
_h=0): (A.52)

First, consider the case of complementarity. From (A.49) and (A.51), we have

Comp: � (0) =
1

�

�
 �� (1�  d)

1�  d � �0 � � � � (�=d)
�
:

Substituting (A.45) and recalling the de�nition of �0 in (A.46), the above expression reduces
to

Comp: � (0) = �1
�
�  �� (1�  d)

1�  d � �� 1
�

� (1� S (pss)) < 0: (A.53)

Similarly, calculating � (1) from (A.49) and (A.51), using (A.45) and (A.46) to eliminate �1,
we get

Comp: � (1) = 1

�
�  �� (1�  d)

1�  d � �� 1
�

� S (pss) > 0: (A.54)

Results (A.53)-(A.54) imply that, under complementarity, h( _h=0) cuts h( _!=0) from above. Re-
peating the same steps for the case of substitutability, we obtain the symmetric results

Subs: � (0) =
1

�
�  �� (1�  d)

1�  d � �� 1
�

� S (pss) > 0; (A.55)

Subs: � (1) = �1
�
�  �� (1�  d)

1�  d � �� 1
�

� (1� S (pss)) < 0; (A.56)

so that, under substitutability, h( _h=0) cuts h( _!=0) from below.
Step #3. Linearizing system (23)-(24) around (!ss; hss), we obtain�

_!
_h

�
'
�
m1 m2

m3 m4

��
(! � !ss)
(h� hss)

�
; (A.57)
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where the coe¢ cient matrix is

m1 � �!ss � @b(!;h)@!

���
!=!ss

and m2 � �!ss � @b(!;h)@h

���
h=hss

;

m3 � ��1
� � @

@!S (p
� (!; h))

��
!=!ss

and m4 � �+ ��1
� � @

@hS (p
� (!; h))

��
h=hss

:

(A.58)

Denoting the characteristic roots of system (A.57) by ~�1;2, we have

~�1;2 =
(m1 +m4)�

q
(m1 +m4)

2 � 4 (m1m4 �m2m3)

2
: (A.59)

Consider the case of substitutability. By Proposition 1, substitutability implies m1 < 0, m2 < 0,
m3 > 0, m4 > 0. Since both stationary loci are decreasing and h( _!=0) is steeper than h( _h=0),
the linearized slopes must satisfy

Subs: �m1=m2 < �m3=m4: (A.60)

Given that m2 < 0 and m4 > 0, inequality (A.60) implies

Subs: m1m4 < m2m3: (A.61)

From (A.61), the term under the square root in (A.59) is strictly positive and greater than
(m1 +m4)

2, which implies two real roots of opposite sign � i.e., saddle-point stability. Next,
consider the case of complementarity. By Proposition 1, complementarity implies m1 > 0,
m2 < 0, m3 < 0 and m4 > 0.13 Since both stationary loci are increasing and h( _!=0) is steeper
than h( _h=0), the linearized slopes must satisfy

Comp.: �m1=m2 > �m3=m4: (A.62)

Given that m2 < 0 and m4 > 0, inequality (A.62) implies

Comp.: m1m4 > m2m3: (A.63)

From (A.63), the term under the square root in (A.59) is smaller than (m1 +m4)
2, which

implies that the steady state is a node (or a focus). The fact that m1 +m4 > 0 implies that
the node (focus) is unstable.

Dynamics in the Cobb-Douglas case. From (A.49) and (A.51) in the proof of Proposi-
tion 5, the stationary loci are horizontal lines and generate the three cases described in Figure
3.

Derivation of (38)-(39). Equations (38)-(39) are obtained following exactly the same
steps as in the derivations of (20)-(39) using the new wealth constraint (37).

Proof of result (40). Treating (s; h) as parameters, the system formed by (19), (38) and
(39) can be rewritten as

y1 (b;h) �  
h+(�=b) ;

y2 (b; p; s) � 1� b
1��� +

s
1��� � p;

y3 (b; p) � 1� b
1���� ��1

�
S(p)

;

(A.64)

13While the signs m1 > 0, m2 < 0, m3 < 0 can be directly derived from Proposition 1, m4 > 0 follows from
the fact that the h(

_h=0) locus is strictly increasing: being the linearized slope equal to �m3=m4 with m3 < 0,
having �m3=m4 > 0 necessarily requires m4 > 0.
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which is identical to system (A.25)-(A.27) up to the fact that net supply per adult s replaces
endowment per adult !. Consequently, we can follow the same steps as in the proof of Propo-
sition 1 to obtain analogous results. In particular, by analogy with (A.30), the model with
minimum resource requirements yields

(all cases):
@�p (b; s)

@s
< 0; lim

s!0+
�p (b; s) =1; lim

s!1
�p (b; s) = 0; (A.65)

where the �rst limit in (A.65) implies result (40) in the text.
Derivation of (42). Consider the household problem in the presence of minimum resource

requirement (section 6). Given the new constraint (37), the current-value Hamiltonian reads

Ls � log Y + � log b+ � logL+ �s � [rA+ wL (1�  b) + p (
� �L)� Y ] + `s � [L (b� d)] ;

where �s and `s are the dynamic multipliers. The �rst three necessary conditions for optimality
coincide with (A.4), (A.5) and (A.6) after re-de�ning the multipliers accordingly. Instead, the
costate equation (A.7) is now replaced by

�`s (t)� _̀s (t) =
�

L (t)
+ �s (t) � [w (t) (1�  b (t))� p (t) �] + `s (t) � (b (t)� d) : (A.66)

Re-de�ning the shadow value of humanity as h (t) � `s (t)L (t), and substituting �s (t) =
1=Y (t) from (A.4), condition (A.66) implies

��
_h (t)

h (t)
=

�

h (t)
+
w (t) (1�  b (t))� p (t) �

h (t) y (t)
:

Setting w (t) = 1 and rearranging terms in the above expression, we obtain (42).
Derivation of (43). Imposing _s = _h = 0 in system (41)-(4224), we obtain

b� (sss; hss) = d and hss =
1

�
�
�
� +

1�  d� �p� (sss; hss)
y� (sss; hss)

�
: (A.67)

From condition (19), in the steady state we also have

hss =
 

y� (sss; hss)
� �

d
: (A.68)

Combining (A.67) and (A.68) to eliminate hss, we obtain

y� (sss; hss) =
 �� [1�  d� �p� (sss; hss)]

� + � (�=d)
: (A.69)

From (38), we can substitute

p� (sss; hss) � sss = y� (sss; hss) � (1� ��)� (1�  d) (A.70)

into (A.69) to eliminate p� (sss; hss), obtaining (43).
Proof of Proposition 6. Imposing _s = 0 in (41), the locus h( _s=0) is characterized by

b� (s; h) = d and has exactly the same qualitative properties as h( _!=0) in the model with no
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resource requirement (� = 0). Imposing _h = 0 in (42), the locus h( _h=0) in the presence of
minimum resource requirement is characterized by the condition

h(
_h=0) =

�

�
+
1�  b� (s; h)� � � p� (s; h)

�y� (s; h)

=
1

�

�
� +

1�  b� (s; h)� � � p� (s; h)
1�  b� (s; h) �

�
1� ��� �� 1

�
S (p� (s; h))

��
; (A.71)

where we have used the last condition in (A.64) to obtain the last term. Using the properties
of S (p) listed in (22) and (A.24) with reference to s instead of !, as well as @

@sp
� (s; h) < 0 by

analogy with Proposition 1, we have8>>><>>>:
Comp: @h(

_h=0)

@s > 0; lim
s!0

h(
_h=0) = �1; lim

s!1
h(
_h=0) = �1+��1

� ;

Subs: @h(
_h=0)

@s ? 0 lim
s!0

h(
_h=0) = �1; lim

s!1
h(
_h=0) = �0+��1

� ;

C-D: @h(
_h=0)

@s > 0; lim
s!0

h(
_h=0) = �1; lim

s!1
h(
_h=0) = 1

�

�
1� ��� ��1

�
�S + �� 1

�
:

9>>>=>>>; ;

(A.72)

where the sign of @h
( _h=0)

@s under substitutability is positive for s close to zero (the price e¤ect
dominates) whereas it becomes zero and then strictly negative as s assumes higher values (the
fertility/income e¤ect dominates as in the model with � = 0). These results determine the
phase diagrams reported in Figure 4. By analogy with the proof of Proposition 5, the stability
(instability) of the various steady states is determined by the fact that h( _h=0) cuts h( _s=0) from
below (above).
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Figure 1: Equilibrium determination in system (19)-(20)-(21). In the upper graphs, the loci y2
and y3 represent equations (20) and (21), respectively, and the equilibrium determines �y (b;!).
In the lower graphs, �y (b;!) is combined with the locus y (b;h), representing equation (19), to
determine y� (!; h) and b� (!; h). See the proof of Proposition 1 for details.
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Figure 2: Phase diagrams of system (23)-(24) under substitutability (a) and complementarity
(b).

Figure 3: Phase diagrams of system (23)-(24) in the Cobb-Douglas case for three di¤erent
parametrizations.
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Figure 4: Dynamics in the model with minimum resource requirement. Upper panel: the
stationary locus h( _h=0) obtained from (42) under substitutability (a), complementarity (b) and
Cobb-Douglas (c) for increasing values of �. Lower panel: phase diagrams of system (41)-(42).
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Decision Processes of a Suicide Bomber – Integrating Economics and Psychology

08/105 A. Ziegler, T. Busch and V.H. Hoffmann

Corporate Responses to Climate Change and Financial Performance: The Impact

of Climate Policy


