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Abstract
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finiteness and the randomness of life duration is provided. We emphasize

the role of intertemporal correlation aversion and explain why multiplica-
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are discussed.
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1 Introduction

Looking at the economic literature one may distinguish two main categories of

theoretical works on intertemporal preferences: those that consider an infinite

horizon and those that consider a finite horizon. In between the two, however,

lies an intermediate setting, which has barely been studied to date: the case of

an infinite possibility of finite horizons. This corresponds to the case of agents

who care for flows of payments, which will stop after some finite time, but whose

stopping time is random or a matter of choice.

The most obvious case where such a setting is relevant is life cycle planning.

Human beings are indeed sure to die within a finite time, but do not know when

they will die. They have therefore to consider an infinite possibility of finite

horizons. A number of other problems, however, such as firm behavior, dynasty

behavior, political modeling, could also fit into this domain.

The economic literature has not paid special attention to this setting because

it is perceived as a particular instance of the infinite horizon case. The standard

argument is that a finite payment flow can always be seen as an infinite payment

flow where payments equal zero after some finite time. Thus, assuming an infinite

horizon would provide a general framework allowing to account for cases where

payments have to be null after some finite amount of time. However, the economic

literature, in particular that on social choice, abounds with examples where it is

found that working on too large a domain may well lead to too restrictive results.

The present paper provides an illustration of this general principle in the domain

of intertemporal choice. We will indeed emphasize that considering the set of

finite payment flows, rather than the larger set of infinite payment flows, makes

it possible to derive new preference representations, with potentially important

implications.

Our contribution is threefold. First, we will suggest an axiomatic construction

of preferences based on very simple axioms: rationality, continuity, independence

(in the sense introduced by von Neumann and Morgenstern) and stationarity.

This will provide the foundations for widely used models (as with Yaari’s model

of intertemporal choice under uncertain lifetime) as well as suggest new speci-
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fications for life-cycle preferences. In particular, we will underline the case of

multiplicative preferences which provide a way to disentangle intertemporal elas-

ticity of substitution and risk aversion, without abandoning the expected utility

framework or the assumption of preference stationarity.

Second we discuss fundamental properties of stationary life-cycle preferences

and discuss how they relate to what can be observed from choices of agents having

an uncertain lifetime. We will in particular provide a formal decomposition of

the rate of time discounting, explaining how pure time preferences, mortality and

risk aversion contribute to human impatience.

Last, as an illustration we will apply our framework to life cycle consumption

planning. The standard result, obtained when considering additive preferences

and perfect credit markets, is that people with stationary preferences should opt

for a consumption profile which has a constant growth rate (see Yaari, 1965).

However, this prediction was contradicted by empirical observations, where it

is found that the life cycle consumption profile is hump shaped. Allowing for

temporal risk aversion, we find that Yaari’s predictions do not extend to non-

additive preferences. The increase of mortality rates at old age together with

a positive intertemporal correlation aversion may generate non-monotonic con-

sumption profiles - even when focusing on stationary preferences and considering

perfect markets.

The paper is organized as follow. Section 2 discusses the related literature.

Section 3 details the setting, making clear what is meant by an infinite possibility

of finite horizons. Sections 4 and 5 provide an axiomatic construction of prefer-

ences. Properties of stationary preferences are then discussed in Sections 6 and

7. Section 8 is about time discounting when agents’horizons are random. Sec-

tion 9 looks at the problem of consumption smoothing when considering realistic

mortality data. Section 10 concludes.

2 Related Literature

The axiomatic construction of preferences developed in the current paper relies

on an assumption of stationarity of preferences. Such an assumption was first
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introduced by Koopmans (1960) in a deterministic setting. It was extended by

Epstein (1983) to the case of choice under uncertainty within the expected utility

framework, and by Epstein and Zin (1989) to non-expected utility models. As

our work fits into the expected utility framework, our formulation of preference

stationarity will be exactly the same as the one proposed by Epstein (1983). We

will also make use of the same recursivity arguments to provide an explicit repre-

sentation of preferences. The originality lies therefore neither in the stationarity

assumption nor in the techniques used, but on the fact that we consider a do-

main that is smaller than usual. As we will see, this explains why even if our

results look similar to those of Epstein (1983) in some respects, they also differ

in suggesting models that could not be obtained when considering infinite hori-

zons. Even if the idea of constraining consumption to be in a given state after a

finite amount of time has been used in several instances (starting from Ramsey,

1928, could we say1), we are not aware of other papers providing an axiomatic

construction of preferences on the domain we consider.

One of the findings of the paper is that stationary preferences can have a

multiplicative representation, making it possible to study the role of risk aver-

sion, keeping intertemporal substitutability constant. As a consequence, our work

relates to the literature devoted to studying the role of risk aversion in intertem-

poral frameworks, and in particular to Kihlstrom and Mirman (1974) and Epstein

and Zin (1989). The relevance of these different approaches is now discussed in

Bommier, Chassagnon, Le Grand (2010), who propose an abstract definition of

what it means “to be more risk averse than someone else”and examines which

classes of utility functions are well ordered in terms of risk aversion.

Since the preferences we derive are not necessarily time additive, we will often

refer to the literature on multi-attribute utility theory. For example, the notion of

“intertemporal correlation aversion”(ICA, hereafter), which is explained in Sec-

tion 6, was discussed -under different names- in Keeney and Raiffa (1976), Richard

(1975), Epstein and Tanny (1980), Dorfleitener and Krapp (2007) or Tsetlin and

1Ramsey’s assumption is slighty different as he considers the case where utility has to reach
a given level -called Bliss- in a finite amout of time or "at least approximate to it indefinitely"
(Ramsey, 1928 p.545).

4



Winkler (2009). Bommier (2007) showed how ICA, risk aversion and intertempo-

ral elasticity of substitution are related. Eeckhoudt, Rey and Schlessinger (2007)

explained how ICA could be identified through simple experiments. Recently,

Andersen, Harrison, Lau and Ruström (2011) provide experimental results mea-

suring ICA.

Allowing for ICA generates a significant shift in life cycle modeling, in partic-

ular when accounting for lifetime uncertainty. Bommier (2006) first highlighted

that the combination of ICA (or risk aversion with respect to life duration) and

mortality risk generates time discounting, in a paper which focused on weakly

separable preferences. Formal results on the rate of time discounting were de-

rived, but only in the limit case where the value of life tends towards infinity, so

that additivity of the expected utility function could be recovered. One of the

results of the present paper also bears on time discounting under lifetime uncer-

tainty. Departing from the focus of Bommier (2006), it applies to the whole set

of stationary preferences (including those which are not weakly separable) and is

independent of any asymptotic approximation. We will indeed provide a general

decomposition of the rate of time discounting into elements that arise from pure

time preference, mortality and risk aversion.

As ICA generates a strong link between mortality risks and impatience, opting

for models with non-zero ICA provides new insights on a number of topics, such

as the impact of mortality decline, the value of life or lifecycle portfolio choice.

These points are discussed in other papers: Bommier (2008), for the impact of

mortality decline, Bommier and Villeneuve (2010) for the value of life, Bommier

and Rochet (2006) and Bommier (2010) for issues related to portfolio choice.2

Giving up additive separability may also lead to new policy recommendations

when there is asymmetric information. Such a point is addressed in Bommier,

Leroux and Lozachmeur (2010), who consider the design of pension systems when

agents have private information on their mortality.

There are actually many other applications that could be developed to illus-

trate the role of ICA. We shall only mention one of them in the current paper:

2Bommier and Rochet (2006) ignore lifetime uncertainty. Bommier (2010) introduces ran-
dom mortality, but focuses on weakly separable preferences.
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the possibility of providing an explanation for the hump shape of life cycle con-

sumption profiles. In that perspective, the paper relates to the empirical liter-

ature that estimates the shape of consumption profiles, as with Gourinchas and

Parker (2002) or Fernández-Villaverde and Krueger (2007). It also connects with

those who suggested explanations for this hump shape (see for example Attana-

sio, Banks, Meghir and Weber, 1999), and more particularly those who wondered

whether mortality could be at the origin of this shape, such as Bütler (2001),

Hansen and Imrohoroglu (2008) or Feigenbaum (2008).

To end this Section we shall emphasize that this paper fits into the litera-

ture on intertemporal choice under uncertainty, which has developed over several

decades, providing numerous contributions that cannot be extensively reviewed

here. The way our paper innovates in this domain is rather atypical, in the

sense that we do not extend an existing framework. Many previous develop-

ments involved looking at what happens when relaxing some assumption. The

literature on hyperbolic discounting on habit formation, or on rank dependent

expected utility, are examples illustrating what can be achieved by relaxing some

"classical" assumptions. Rather than following the same line, the current paper

focuses on strong and standard assumptions, but innovates by defining prefer-

ences on a smaller domain. This is definitely not to mean that these classical

assumptions should not be weakened in future works. On the contrary, it would

be extremely interesting to consider non-stationary preferences or non-expected

utility approaches. But, instead of focusing on extensions of the additive model,

as has been done so far, one could also build upon the models that are suggested

in the paper, and in particular upon the multiplicative model. In other words,

while emphasizing that there are some interesting specifications which were not

developed, though compatible with the most standard assumptions, the paper

does not want to argue that departures from the "classical" assumptions should

be disregarded. Instead, it aims at providing a different basis, upon which exten-

sions could be developed.
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3 Setting

Time is assumed to be discrete. We are interested in the problems of agents

who care for a flow of consumption (or payments) but who know that, for some

reason, this flow will have to stop after a finite amount of time. Speaking of life

and death is probably the easiest way to illustrate our setting, but it is clear that

our work does not exclusively apply to the modelling of human beings. It could

also apply to firms, dynasties, political parties or other sort of agents.

An agent will be considered to be "alive" when consuming a positive amount

and "dead" when the consumption flow has come to its end.

Formally, consumption is assumed to take values in R∗+ and there is a death

state denoted by the letter d . Thus, at any moment in time, the state of an

individual is an element of the set:

X = R∗+ ∪ {d}

Technically speaking, we could confuse being dead and having zero consumption.

This could however be misleading. We would indeed end up working with a

connected, convex and ordered set X and tempted to impose standard assump-

tions of continuity, convexity or monotonicity of preferences. However, in many

cases these assumptions could not relate to any sensible or plausible statement.

Think of human life for example: it makes no sense to think of a state where the

agent is half dead and half alive. A lottery that gives one unit of consumption

(x = 1) or being dead (x = d) with equal probabilities does not need to have

a certainty equivalent. This seems clear when considering that death is not like

any consumption level, while it could look counter-intuitive if we had artificially

set d = 0. Similarly, with our approach, there may exist a consumption level

c∗ > 0 providing the same utility as death. The existence of such a consumption

level, and its value, are determined by the agent’s preferences and not imposed by

construction. Had we artificially set d = 0, we would find that an agent could be

indifferent between consuming c∗ > 0 and "consuming" 0, which could seem odd,

if one forgets that "zero consumption" actually means being dead - something
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different from being alive and consuming nothing.

Considering (zi)i∈N ∈ XN an infinite sequence of elements of X, we shall say

that (zi)i∈N is a "life" (or a "feasible flow of payments") whenever it fulfills the

two following properties:

Property 1: (Life finiteness) There exist j ∈ N such that zj = d.

Property 2: (Death Irreversibility) If zj = d for some j ∈ N, then zk = d for

all k ≥ j.

We will denote by Z the set of lives, that is the set of elements ofXN which ful-

fill the above two properties. Note that with this definition the sequence (d, d, ...)

is considered as a life. An important feature of this set Z is that it is stationary

in the sense that

(z0, z1, z2, ....) ∈ Z =⇒ (z1, z2, ....) ∈ Z

This property is essential as it will enable the notion of preference stationarity

to be defined (Axiom 4, introduced later on).

We denote by L(Z) the set of simple lotteries (i.e: lotteries with a finite

number of possible outcomes) with outcomes in Z. This set of lotteries is endowed

with a mixture operation ⊕, defined as usual.
Moreover, for any l ∈ L(Z) and any c0 in R∗+ we define

c0 ∗ l ∈ Z

as the lottery that involves consuming c0 for sure in the first period and then

living (and dying) according to the lottery l, delayed by one period. For example,

if l is the lottery that gives (x0, x1, x2...) or (y0, y1, y2...) with equal probability,

then c0 ∗ l is the lottery that gives (c0, x0, x1, x2...) and (c0, y0, y1, y2...) with equal

probability.

4 Assumptions

We now state the axioms that will lead to our representation result.
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Axiom 1 (Ordering) Individuals have a rational preference relation (i.e. a com-

plete preorder) on L(Z).

We denote by � the preference relation, � the strict preference relation, and
∼ the indifference relation.

Axiom 2 (Independence) For any l1, l2, l3 ∈ L(Z) and any λ ∈ (0, 1)

l1 � l2 ⇔ λl1 ⊕ (1− λ)l3 � λl2 ⊕ (1− λ)l3

Axiom 3 (Continuity) For any l1, l2, l3 ∈ L(Z) such that

l1 � l2 � l3

there exists λ ∈ (0, 1) such that

l2 ∼ λl1 ⊕ (1− λ)l3

Axioms 1 to 3 are the usual axioms of expected utility theory. As such,

they could be open to of discussion. A number of empirical and experimental

papers have stressed that the independence axiom is probably too strong. Several

theoretical frameworks have been suggested relaxing the independence axiom, as

with rank dependent expected utility theory. It would of course be interesting to

develop extensions of the current paper applying these approaches, but that is a

matter for the future.

The last axiom expresses the assumption of stationarity.

Axiom 4 (Stationarity) For any c0 ∈ R∗+ and any l, l′ ∈ L(Z) we have:

l � l′ ⇔ (c0 ∗ l) � (c0 ∗ l′)

In a dynamic setting, the assumption of stationarity would imply that pref-

erences are history independent and time consistent. Therefore, two individuals

of different ages, say a 30 year old and 60 year old, would have the same pref-

erences regarding their futures. That does not imply that they would behave in
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the same way. They would do so only if they faced the same constraints: that is

the same budget constraints and the same mortality risks. In practice mortality

strongly depends on age, and a 30 year old and a 60 year old are confronted with

radically different constraints. Consequently, we expect them to behave very dif-

ferently, even if they have the same preferences. Stated otherwise, stationarity

involves assuming that age is a relevant variable only because it affects individual

constraints (in particular those related to mortality). Such an assumption can

of course be criticized. The literature on habit formation emphasizes that past

consumption may impact preferences regarding the future. Departing from the

stationarity assumption to introduce history dependence would surely be another

interesting extension to develop. The present paper, which focus on stationary

preferences, should thus be seen as a starting point providing economic insights on

how individual behavior may change along the life cycle as a direct consequence

of decreasing life expectancy, independent of any changes in taste.

An important feature of our axiomatic formulation is that it applies to the set

of atemporal lotteries and uses the axioms introduced by von Neumann and Mor-

genstern. Therefore, we remain within the realm of expected utility theory and

do not follow the direction initiated by Kreps and Porteus (1978) who extended

the von Neumann-Morgenstern framework to temporal lotteries in order to obtain

more general models of dynamic choice. Corollary 3 of Kreps and Porteus (1978)

tells us that our framework can be considered as a particular case of Kreps and

Porteus’s dynamic choice theory where individuals are indifferent to the timing

of resolution of uncertainty. Whether or not such an assumption of indifference

should be relaxed is open to debate. Dynamic choice theory indisputably offers a

greater flexibility. But it is also much more complex than expected utility theory.

In fact, most papers that use dynamic choice theory respond to this increase in

complexity by assuming particular specifications. Instead, we prefer to remain in

the simpler framework provided by the expected utility theory but consider all

the specifications that are consistent with the stationarity axiom.

10



5 The set of stationary preferences

As is known from Fishburn (1970), Axioms 1 to 3 imply that preferences on L(Z)

have an expected utility representation, which means that there exists a function

U : Z → R

such that

l1 � l2 ⇔ El1 [U ] ≥ El2 [U ]

where El1 [.] and El1 [.] denote the expectation operator associated with the lot-

teries l1 and l2. In the following we will call U a utility index. Our first result

provides the structure that this utility index must have for preferences to be

stationary :

Proposition 1 Preferences fulfill Axioms 1 to 4 if and only if they can be rep-

resented in the expected utility framework with a utility index U such that

U(z) =

+∞∑
i=0

u(zi) exp(−
i−1∑
j=0

v(zj)) for all z = (zi)i∈N ∈ Z (1)

where u and v are two functions from X into R, with u(d) = 0.3

Proof. 1. Suffi ciency

Consider two functions u and v from X into R with u(d) = 0 and the utility

index U(z) =
+∞∑
i=0

u(zi) exp(−
i−1∑
j=0

v(zi)). For any c0 ∈ R+, and any l ∈ L(Z) we

have:

Ec0∗l [U ] = u(c0) + exp(−v(c0))El [U ]

and therefore, for any l, l′ and c0

l � l′ ⇔ El [U ] ≥ El′ [U ]⇔ Ec0∗l [U ] ≥ Ec0∗l′ [U ]⇔ c0 ∗ l � c0 ∗ l′

3When i = 0, the second sum in equation (1) reads as
−1∑
j=0

, which, by convention, should

be considered as being equal to zero. Such a convention will be used throughout the paper.

Similarly, for products, we will use the convention
−1∏
j=0

= 1.
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Preferences are thus stationary.

2. Necessity

Axioms 1 to 3 imply that preferences admit an expected utility representation

(Fishburn 1970). Let us denote by U a utility index associated with such a

representation. As adding a constant to U does not impact preferences, it can be

assumed without loss of generality that U(d, d, ...) = 0. Let us now show that U

may be expressed as in (1) for some functions u and v.

For any c0 ∈ R+ and any l, l′ ∈ L(Z), we know from Axiom 4 that:

l � l′ ⇔ (c0 ∗ l) � (c0 ∗ l′)

With the expected utility representation:

(c0 ∗ l) � (c0 ∗ l′)⇔ Ec0∗l [U ] ≥ Ec0∗l′ [U ]

For a given c0 define:

V : Z → R

z = (zi)i∈N ⇒ V (z) = U(c0, z0, z1, ...)

For any l ∈ L(Z) we have Ec0∗l [U ] = El [V ]. Thus:

l � l′ ⇔ El [V ] ≥ El′ [V ]

which means that V is another utility index representing the preference relation.

Since, in the expected utility representation, two utility indices represent the

same preferences if and only if they are related by a positive affi ne transformation,

there must exist u(c0) ∈ R and ω(c0) > 0, such that, for all (zi)i∈N ∈ Z:

V (z0, z1, ...) = u(c0) + ω(c0)U(z0, z1, ...)
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By definition of the function V , we thus have:

U(c0, z0, z1, ...) = u(c0) + ω(c0)U(z0, z1, ...)

Since ω(c0) > 0 we can define v(c0) = − log(ω(c0)), to obtain:

U(c0, z0, z1, ...) = u(c0) + exp(−v(c0))U(z0, z1, ...) (2)

Now, because of life finiteness and death irreversibility, any element of Z

different from (d, d, ...) is of the form (c0, c1, ..., cn,d, d, d, ...) for some n ∈ N and
some ci ∈ R∗+. Iterating (2) n times, we obtain:

U(c0, c1, ..., cn,d, d, d, ...) = u(c0) +

n∑
j=1

u(cj) exp

(
−

j−1∑
k=1

v(ck)

)

+ exp

(
−

n∑
k=1

v(ck)

)
U(d, d, d, ...)

=

n∑
j=1

u(cj) exp

(
−

j−1∑
k=1

v(ck)

)

Extending the function u, which was defined on R∗+, to X by posing u(d) = 0 we

obtain that for all (zi)i∈N ∈ Z

U(z) =

+∞∑
i=0

u(zi) exp(−
i−1∑
j=0

v(zi))

which proves the Proposition.

Before discussing this representation result and explaining how it relates to

past contributions, let us give formal names to two particular cases that will be

of special importance throughout the paper.

Definition 1 Preferences will be called “additive”if they can be represented with

a utility index of the form (1) with a constant function v. In such a case, setting
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β = e−v, equation (1) can be rewritten:

U(z) =

+∞∑
i=0

βiu(zi) (3)

Definition 2 Preferences will be said to be “multiplicative”if they can be repre-

sented with a utility index of the form (1) with functions u and v such that v =

−kw(c) and u(c) = 1−e−kw(c)
k

for some constant k and some function w : X → R

with w(d) = 0. In such a case, equation (1) can be rewritten:

U(z) = 1
k

(
1− exp

(
−k

+∞∑
i=0

w(zi)

))
if k 6= 0

U(z) =
+∞∑
i=0

w(zi) if k = 0
(4)

Now, let us discuss the interest of Proposition 1 and the novelty of our ap-

proach. A representation result that looks very similar was provided by Epstein

(1983). The similarity between Epstein’s representation and ours is not surprising

since both Epstein (1983) and the current paper deal with stationary expected

utility preferences. The assumption of preference stationarity imposes a recursive

structure to the utility index, as shown in equation (2), which leads to the gen-

eral expression given in Proposition 1.4 The difference with the representation of

Epstein (1983), however, is that we do not have constraints on the function u and

v, while in Epstein (1983) it is found that v must be positive and u and (1− e−v)
should not be proportional. This is because Epstein deals with infinitely long

lived agents, which makes it impossible to obtain well-behaved representations

where agents have no time preferences - as is known from Diamond (1965).

The constraints on u and v in Epstein (1983) lead to ruling out the multiplica-

tive model, which is precisely obtained whenever v = 0 or when u and (1− e−v)
are proportional. However, the multiplicative specification becomes possible in

our framework, which accounts for the finiteness of human life. Multiplicative

representations of preferences are not new to the economic literature. They were

advocated by several theoretical papers (in particular by Richard, 1975) and used

4The first appearance of this recursive structure may be attributed to Uzawa (1968) who
suggested a similar specification in continuous time.
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to deal with very concrete issues (Pye, 1973, Ahn, 1989, van der Ploeg, 1993).

But these multiplicative representations remained unpopular. When they were

used in an infinite horizon setting, they were augmented with an exogenous time

discounting factor, and then explicitly disregarded for being non-stationary (see

for example the discussion in Epstein and Zin, 1989, p. 951).

Our results emphasize that multiplicative preferences can be stationary. More-

over, they emerge from the set of stationary preferences as being of particular in-

terest. First, as we will see, the multiplicative model appears to be one of the two

polar cases that combine stationarity and separability, the other being the usual

additive specification. Secondly, the multiplicative model provides a straightfor-

ward way to separate intertemporal substitution and risk aversion within the sta-

tionary and expected utility framework. By increasing the constant k in the equa-

tion (4) that defines the multiplicative utility function, one increases risk aversion

without changing ordinal preferences. The multiplicative model therefore makes

it possible to analyze the role of risk aversion in intertemporal problems, without

abandoning the expected utility framework or the stationarity assumption.

6 Properties of stationary preferences

The general form of the von Neumann-Morgenstern utility functions that repre-

sent stationary preferences is given in equation (1). However, the meanings of the

functions u and v that appear in this formulation are not obvious. For example,

we know that when v is constant it represents the rate of time preference. But

it is not clear what the rate of time preference is when v is not constant. Simi-

larly, it is not trivial, a priori, to interpret the derivative of v, etc. This section

provides general definitions of two important concepts -time preference and ICA-

and deduces what their expressions turn out to be when the utility function has

the form given in (1). The meanings of u and v will then become clearer. The

additive and multiplicative specifications will then appear as corresponding to

fundamental assumptions.

In order to avoid technical diffi culties we make two additional assumptions.
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Assumption 1 The functions u and v that appear in equation (1) are twice

continuously differentiable.

Assumption 2 The functions u and v are such that for any life (zi)i∈N and any

age t such that zt 6= d we have:

∂U(z)

∂zt
6= 0 .

Time preference is a familiar notion, usually measured by the rate of time

preference. The rate of time preference at time t is usually defined from the

marginal rate of substitution between consumption at two subsequent periods of

time, when controlling for variation in consumption. More precisely if we take a

life (zi)i∈N and time t such that zt 6= d we define the rate of time preference at

time t by:

RTPt(z) = 1−
∂

∂zt+1
U(z)

∂
∂zt
U(z)

|zt+1=zt . (5)

The rate of time preference simply describes how marginal utility of consumption

varies along the life cycle when controlling for variations in consumption. With

the utility index provided in (1) simple derivations lead to:

RTPt(z) =
u′(zt)(1− e−v(zt))− v′(zt)u(zt)e

−v(zt)

u′(zt)− v′(zt)
∑+∞

i=t+1 u(zi) exp(−
∑i−1

j=t v(zj))
(6)

With the additive specification, RTPt(z) = 1 − β, which explains the usual
interpretation of β. The multiplicative model provides RTPt(z) = 0, consistent

with the fact that ordinal preferences, independent of k, can be represented by
+∞∑
i=0

w(zi).

The notion of intertemporal correlation aversion (ICA) is much less

well-known, although it has occasionally featured in the economic literature, as

mentioned in Section 2. We use the three words “intertemporal correlation aver-

sion”to stress that it corresponds to a particular measure of correlation aversion

that can be defined in the intertemporal framework.

Correlation aversion, which itself is not very well known, is a natural concept

when looking at preferences over several attributes under uncertainty. It has been
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separately introduced, under different names, by de Finetti (1952) and Richard

(1975). The terminology “correlation aversion”comes from Epstein and Tanny

(1980). Basically, when considering preferences over bivariate lotteries, correla-

tion aversion tells whether an individual prefers lotteries that exhibit a positive

or a negative correlation. Formally, preferences over bivariate lotteries exhibit a

positive correlation aversion if and only if, for all x1, x2, y1, y2, such that x1 < x2

and y1 < y2, the lottery: (x1, y2) w.p. 1
2

(x2, y1) w.p. 1
2

is preferred to the lottery

 (x1, y1) w.p. 1
2

(x2, y2) w.p. 1
2

One can define a simple index of correlation aversion with respect to consumption

at age t and consumption at age t+ 1 by:

ρt(z) =
− ∂2

∂zt+1∂zt
U(z)

∂
∂zt+1

U(z)
(7)

for all life such that zt+1 6= d. This index is positive (resp. negative) if individuals

prefer consumption lotteries at times t and t+1 to be negatively (resp. positively)

correlated. Moreover, working along the same lines as Bommier (2007), one could

relate this index of correlation to the amount of consumption that is necessary

to compensate for a positive and infinitesimally small correlation.5

The expression that relates ICA to the functions u and v is very simple:

ρt(z) = v′(zt) (8)

ICA is then equal to zero with the additive specification, and positive when we

consider increasing functions v.

ICA proves to be an important characteristic of individual preferences in a

5In Bommier (2007), the index of correlation is defined in a slightly different way and given
by

− ∂2

∂zt+1∂zt
U(z)

1
2
∂
∂zt

U(z) + 1
2

∂
∂zt+1

U(z)

Thus the formula of the correlation premium should be modified accordingly. In the limit case
where the length of the time period goes to zero, both definitions coincide.
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number of instances. For example, Bommier (2007) shows that ICA is simply

related to the difference between local measures of relative risk aversion and

intertemporal elasticity of substitution. It is thus natural to see ICA playing a

major role for determining optimal financial strategies, as shown in Ahn (1989),

van der Ploeg (1993), for example.

Still, ICA is probably even more important when accounting for the risk of

death. The point is that death is an irreversible event. Thus in the case of death

at age t, the individual states at ages greater than t are all set to the “death”

state. A bad outcome (zt = d) in period t is thus necessarily combined with

a bad outcome in period τ > t. Since ICA reflects the aversion for combining

bad outcomes in a given period with bad outcomes in another period, we expect

ICA to strongly affect how individuals respond to the risk of death. But, before

getting there, we explain how the notion of time preferences and ICA lead to

draw a natural partition of the set of stationary preferences.

7 A typology of stationary lifetime preferences

Let us first express very simple facts that summarize in formal terms what appears

from the analytic expressions that were given in the previous section. Some of

these facts are well known and are discussed in Keeney and Raiffa (1973) or in

Wakker, Jansen and Stiggelbout (2004). Others are fairly obvious. They are

formally stated in Results 1 and 2, below, which aim at explaining how simple

considerations about time preferences and ICA lead to delimit particular subsets

within the set of stationary preferences.

Result 1 The following statements are equivalent:

1. Preferences are additive or multiplicative.

2. Preferences are weakly separable.6

3. The rate of time preference is independent of the consumption profile, age

and the length of life.
6Weak separability means that the marginal rate of substitution between consumptions at

two different ages is unaffected by consumption at another age.
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4. The rate of time preference is constant along any (finite) constant consump-

tion path.

Proof. See Appendix A.

Result 2 1. Preferences are additive if and only if intertemporal correlation

aversion always equals zero.

2. Preferences are multiplicative if and only if the rate of time preference al-

ways equals zero.

Proof. The first statement immediately follows from equation (8). As for

the second statement, we know from (6) that the rate of time preference always

equals zero if and only if u′(ct)(1−e−v(ct))−v′(ct)u(ct)e
−v(ct) = 0. This equivalent

to u′(c)h(c)− u(c)h′(c) = 0 where h is the function given by h(c) = (1− e−v(c)).
Under assumption 1, this is the case if and only if u and h are proportional,

which, by definition, means that preferences are multiplicative.

A simple picture of the set of stationary preferences follows from these three

propositions (see Figure 1).

Result 2 emphasizes that stationary preferences can be represented by a mul-

tiplicative utility function if and only if individuals have no pure time preferences.

This may seem an unpleasant feature of the multiplicative model, in contradiction

with empirical findings indicating that individuals prefer present consumption

over future consumption. However, as was first emphasized in Bommier (2006),

the combination of ICA and uncertainty can generate sizable time discounting.

In particular, when lifetime is random, the model with zero time preferences but

positive ICA can generate discount rates that are comparable in size with what it

is usually assumed in the economic literature. This result was obtained by focus-

ing on weakly separable specifications, and assuming an infinite value of life. We

extend below the analysis to any stationary preferences, including those who com-

bine pure time preferences and ICA, in order to obtain a general decomposition

of the rate of time discounting.
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8 Discount rate and intertemporal correlation

aversion with mortality risk

In problems like that of life cycle consumption planning of human beings, there

is ex-ante always considerable uncertainty about the length of life. Therefore, the

concepts that are defined for a given length of life (such as those discussed in Sec-

tion 6) cannot be directly observed. Typically, what can be observed are marginal

concepts that describe individual preferences in a neighborhood of non-degenerate

lotteries on the length of life. For example, we do not observe individuals’rate

of time preference, but how individuals discount consumption knowing that the

length of life is uncertain. Also, we do not observe the marginal rate of sub-

stitution between length of life and consumption, but the willingness to pay for

reducing the hazard risk of death at a given moment in time. The aim of this

section is to make explicit the link between time preferences, ICA and what can

be inferred from the behavior of agents with an uncertain lifetime.

In the following, a mortality pattern, that we will denote by the letter µ, will

be a sequence of age specific mortality rates µ = (µt)t∈N. For all t ≥ 0, µt ∈ [0, 1]

is the probability of dying at the end of period t, conditional on being alive at

the beginning of period t. It will be assumed that for all mortality patterns

considered there exists some finite time τ such that µτ = 1. To any profile of

mortality rates corresponds a distribution of the age at death πt and a survival

profile st. The number πt gives the probability that the agent dies at the end of

period t. We have π0 = µ0 and for t > 0:

πt = µt

t−1∏
i=0

(1− µi)

The number st gives the probability that an individual will be alive during period

t. We have s0 = 1 and for t > 0 :

st =

t−1∏
i=0

(1− µi)

Because we assume that there is always some finite time τ such that µτ = 1 the
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sequences st and πt will be equal to zero after a finite time. In practice, this

guarantees that all the infinite sums we consider below are well defined. Note

that we have the simple relations:

πt = st − st+1 (9)

which also implies:

st =

+∞∑
i=t

πi (10)

In the case where agents face an uncertain lifetime, they make choices that

will generate different "lives" (i.e. different elements of Z) depending on when

they die. For example, they may have to choose a consumption profile c ∈ RN+
which, in case of death at age T, will generate a life z ∈ Z given by:

zi = ci for all i ≤ T and zi = d for all i > T

For practicality we will denote such a life by (c, T ).

For any real function f(x, T ) that depends on some attributes, x, and on the

age at death, T, we define the µ, t−average of f(x, T ) that we denote Eµ,tf(x, .),

by:

Eµ,tf(x, .) =

∑+∞
i=t πif(x, i)∑+∞

i=t πi
(11)

Eµ,tf(x,.) is simply the average of f(x, T ) when T follows the distribution of the

age at death truncated at T ≥ t. For example, in the case where f(x, T ) is the

age at death (that is when f(x, T ) = T ), then Eµ,tf(x,.) is the average age at

death of the individuals that were alive at the beginning of period t.

Combining (9), (10) and (11), one readily obtains:

Eµ,tf(x, .) = f(x, t) +

+∞∑
i=t+1

si
st

[f(x, i)− f(x, i− 1)] (12)

so that the µ, t−average of f(x, T ) can be expressed as a function of the survival

probabilities, instead of a function of the distribution of the age at death.

Life cycle planning involves choosing a consumption path c ∈ RN+, knowing
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that, in the case death occurs at age T, this will generate the life (c, T ) and a

utility:

U(c, T ) =

T∑
i=0

u(ci) exp(−
i−1∑
j=0

v(cj))

When T is random, individuals aim at maximizing the expected utility, given the

distribution of T, that is Eµ,0U(c, .) given by:

Eµ,0U(c, .) =

+∞∑
T=0

πTU(c, T )

Using (12), this can be rewritten as:

Eµ,0U(c, .) = u(c0) +

+∞∑
i=1

si [U(c, i)− U(x, i− 1)] (13)

=

+∞∑
i=0

siu(ci) exp(−
i−1∑
j=0

v(cj)) (14)

We recognize here a generalization -in discrete time- of the lifetime utility function

suggested by Yaari (1965), which is obtained when v is constant.

Local properties of individual preferences in the neighborhood of elements of

L(Z) characterized by a given consumption profile and a non-degenerate mortality

pattern can then be defined. For any mortality pattern and any consumption

profile, we define the µ−rate of discount at time t by:

RTPµ,t(c) = 1−
∂

∂ct+1
Eµ,0U(c, .)

∂
∂ct
Eµ,0U(c, .)

|ct+1=ct , (15)

the µ−intertemporal correlation aversion at time t by:

ρµ,t(c) =
− ∂2

∂ct+1∂ct
Eµ,0U(c, .)

∂
∂ct+1

Eµ,0U(c, .)
, (16)

and the value of a statistical life at age t by:

V SLµ,t(c) = −
∂
∂µt
Eµ,0U(c, .)

∂
∂ct
Eµ,0U(c, .)

.
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Equations (15) and (16) extend the definitions given by (5) and (7) to the case

where the length of life is not known with certainty. The value of a statistical life,

V SLµ,t, is nothing other than the opposite of the marginal rate of substitution

between mortality at time t and consumption at time t. The terminology Value

of a Statistical Life is consistent with that used in Johansson (2002).

We can now express the following result:

Proposition 2 For any consumption profile, c, any mortality pattern, µ, and

any time, t, we have

ρµ,t(c) = ρt (c, T ) for all T > t (17)

RTPµ,t =
1

Eµ,t[
1

RTPt(c,.)
]

+ µt + µtρtV SLµ,t(c)− µt
1

Eµ,t(
1

RTPt(c,.)
)

(18)

Proof. See Appendix B.

The first part of Proposition 2, which is a consequence of the recursive struc-

ture of the expected utility function (14), indicates that the µ−ICA age t is simply
equal to the ICA when life duration is certain, and greater than t. Observation of

ICA is therefore not complicated by the presence of mortality. Direct estimations

of ICA can be achieved through simple experiments, as with those developed by

Andersen, Harrison, Lau and Ruström (2011). The same statement is not true

however for the rate of time preference.

We can observe from equation (18) that the µ-rate of discount is the sum of

four terms. The first one, 1
Eµ,t(

1
RTPt

)
, is the harmonic mean of the rate of time

preference. This term accounts for individuals’pure time preferences. In the case

of the additive or multiplicative model, the rate of time preference is a constant

and the first term is simply the exogenous rate of time preference. However, in

the general case, the rate of time preference may depend on the length of life.

Equation (18) indicates that its harmonic mean is what matters when the length

of life is random.

The second term is the mortality rate. It accounts for the fact that mortality

creates a risk on future consumption. Consumption only occurs in case of survival.

The third term stresses the role of ICA. It vanishes when ICA equals zero,
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and consequently has remained unnoticed in the economic literature that relies

on time additive models to account for lifetime uncertainty.

Two parallel lines of argument can be followed to provide intuition about

the origin of this third term. The first one sticks to the crude meaning of ICA.

Mortality generates a risk on tomorrow’s consumption that is positively correlated

to a much greater risk: the risk of losing life for ever. If tomorrow’s consumption

proves to be impossible, because of death, so will be the case of consumption at

any date after tomorrow. Agents with positive ICA will react to this correlation

by decreasing the risk on tomorrow’s consumption: that is by consuming more

today and less tomorrow. The magnitude of the reaction depends on the mortality

risk, ICA and the value of the other items at risk (life, whose value is given by

V SLµ,t). This explains the structure of this third term.

Another way of thinking about the third term of (18) involves considering the

(ex-post) distribution of lifetime utility. Mortality makes lifetime utility random:

in the standard situation where u(c(t)) remains positive, lifetime utility is low in

case of an early death, and high in case of a late death. However, reallocating

consumption towards early periods of life is a way to make the distribution of

lifetime utility less unequal. By consuming early in the life cycle, one increases

lifetime utility of short lives and lowers the utility gap between short and long

lives. The willingness to reallocate consumption for that purpose depends on

individuals’ ICA. It vanishes when individuals are indifferent to intertemporal

correlation (that is in the additive model) and increases with ICA.

The fourth term in equation (18) is an interaction term between mortality and

pure time preference. This term appears because we work with discrete time, but

would disappear in continuous time. In fact, when the length of the time period

goes to zero, all the first three terms decrease proportionally to the length of the

time period. For example if mortality rate at some age is x% per year -with x

small- and we shift to monthly periods, we roughly get a mortality rate of x
12

%

per month. The same is true with the rate of time discounting. The fourth term,

which is the negative of the product of the mortality rate and the harmonic mean

of the rate of time discounting, would decrease -in absolute value- proportionally

to the square of the length of the time period. Shifting from a yearly time period
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to a monthly one, would lead to divide this term by 144, while the others would

be divided by 12 only. As the length of the time period tends towards zero, this

second-order term becomes negligible; it eventually disappears in the continuous

setting.

If time discounting may be only partially driven by time preferences, the

key question is how, in theory at least, we could identify individuals’pure time

preferences. Looking at the role of mortality in Proposition 2 provides a solution.

Indeed, from equation (18), if we consider that the length of the time periods are

small enough so that second-order terms can be neglected, we obtain that the rate

of time discounting at age t is a linear function of µt, with slope (1 + ρtV SLµ,t)

and intercept 1
Eµ,t(

1
RTPt

)
.7 In absence of pure time preferences the elasticity of

the µ−rate of discount at age t with respect to mortality at age t equals 1.
If individuals have positive pure time preferences then this elasticity is smaller

than one. More generally, a regression of the rate of discount at age t with a

list of variables including the mortality rate at age t could theoretically provide

estimates of both Eµ,t(
1

RTPt
) and ρtV SLµ,t. The diffi culty of the task should

not be underestimated, however, since one needs to control for mortality rates at

ages greater than t, which are strongly correlated with the mortality rate at age t.

Following this direction would thus require us to have simultaneous estimates on

individual rates of discount, on the one hand, and mortality rates at all (present

and future) ages, on the other hand.

Proposition 2 makes it clear that ICA plays a central role when considering

the impact of mortality. In the case where ICA is neglected (or assumed to equal

zero) then equation (18) reduces to RTPµ,t = RTP +µt(1−RTP ).8 In that case,

mortality does contribute to the rate of time discounting, but, quantitatively

7Interpretation of equation (18) requires to account for the fact V SLµ,t and Eµ,t( 1
RTPt

) also
depend on mortality at age t. However, as is explained at the end of Appendix B, where the
role of µt is made fully explicit, this dependence only generates second order terms that can be
neglected if we assume that the length of the time period is small.

8In the case where agents have zero ICA, preferences are additive and the rate of time
preference is a constant. In the particular case whereRTP = 0, then the rate of time discounting
equals the mortality rate. Assuming constant mortality, no exogenous time preference (RTP =
0) and no ICA (ρt = 0) could then be a way to provide suppport for the additive model with
exponential discounting. This was noted in Mas-Colell, Whinston and Green (1995, p. 734),
with no explicit mention of the assumption of intertemporal correlation neutrality, however.
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speaking, when considering human mortality, the contribution is small unless

considering people at old ages or with low life expectancy. Indeed, in a country

like the US, average mortality rates equal 0.1% per year at 40 and do not reach

1% per year before age 62, and are therefore small compared to usual estimates

for the rate of discount. When agents have a positive ICA (that is: ρt > 0),

there is an another term, µtρtV SLµ,t(c), through which mortality contributes to

time discounting. This term can generate substantial time discounting, even if

mortality and ICA are small, since the value of statistical life is usually estimated

to be very large.9

9 Life cycle consumption

Allowing for non zero ICA significantly changes the predictions of life cycle models

and provides new insights on a number of topics. As mentioned in Section 2,

applications bearing on the impact of mortality decline on aggregate savings, the

value of life, the design of social security systems and on life-cycle portfolio choices

are developed in other papers. We shall not return to these aspects, but focus on

a simple issue related to consumption smoothing.

There is an on-going debate on the shape of the life cycle consumption profile,

and how this can be rationalized. It is indeed found that the relation between age

and consumption has an inverse U-shape, consumption increasing during the first

part of the lifecycle and then declining. There is of course some heterogeneity

in the estimates of this consumption profile, and at which age consumption is

peaking, but the inverse U-shape relationship is quite robust. The literature also

agrees that variation in household composition may partly - but not completely-

account for the age variation of consumption. In order to have a plausible ex-

planation, while relying on the standard additive life cycle model, one has to

incorporate numbers of features, including imperfect (or inexistent) annuity mar-

kets and the need for precautionary savings. The particular role of mortality is the

object of Feigenbaum (2008), who explains that, in the absence of annuity mar-

9The priceless life context approximation suggested in Bommier (2006) is a limit case where
ICA tends to zero (preferences being almost linear) and the VSL goes to infinity, the product
of the two having a finite limit.
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kets, mortality can indeed generate a hump shape consumption profile, but which

does not match what is documented by empirical papers. Feigenbaum actually

concludes that "mortality is an unlikely answer to the question of consumption

hump" (Feigenbaum, 2008, p. 846).

The object of the current section is to discuss whether departing from the

additive specification, and opting for a model that allows for ICA, may provide

an explanation for the shape of the consumption profile which was estimated

empirical studies. More precisely, we will investigate whether the additive and

the multiplicative models may generate consumption profiles that match the one

estimated by Fernández-Villaverde and Krueger (2007).10

In practice we consider the 1990 (male-female average) US mortality rates,11

downloaded from the Human Mortality Database, and look at the optimal con-

sumption profile of agents who have to allocate some exogenous wealth endow-

ment having access to perfect credit and annuity markets. We do not model

labor supply and/or retirement behavior. Though in presence of perfect credit

markets, agents face a single budget constraint (expected lifetime consumption

should not exceed expected lifetime earnings) and are therefore confronted by a

problem which is very similar to the one we consider.

Given initial wealth (or lifetime earnings), Ω0, agents have to choose a con-

sumption profile solving:

maxEµ,0U(c, .) subject to
+∞∑
t=0

stR
−tct ≤ Ω0 (19)

where R is the gross return of the risk-free asset. The budget constraint accounts

for survival probabilities since, in absence of bequest motives, agents should invest

all their wealth in annuities, which provide a return R
1−µt

in case of survival,

10Our choice to use the results of Fernández-Villaverde and Krueger (2007) as a reference is
partly due to the fact they provide estimates until old ages, contrary to many other studies
that focus on what happen at younger ages.
11Estimates from Fernández-Villaverde and Krueger come from a US data gathered during

the years 1980-2001. This is why why we use 1990 US mortality data.
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exceeding the return of the risk free asset, R.12

We solve this problem for both the additive and multiplicative specification.

We therefore compare what is obtained when assuming:

U(c, T ) =

T∑
i=0

βiu(zi) (additive case)

with what is obtained when:

U(c, T ) =
1

k

(
1− exp

(
−k

T∑
i=0

w(zi)

))
(multiplicative case)

For both the additive and multiplicative specifications we assume that agents

have a constant intertemporal elasticity of substitution. This means that − u′(c)
cu′′(c)

and − w′(c)
cw′′(c) should be independent of c or, equivalently,

u(c) = u0 +
c1−γu

1− γu
and w(c) = w0 +

c1−γw

1− γw

for some constants u0, w0, γu and γw. The constants u0 and w0 cannot be normal-

ized to zero, as representations (3) and (4) already assume a specific normalization

for the functions u and w, which must fulfill u(d) = w(d) = 0. These constants

u0 and w0 impact the welfare gap between being dead and being alive and con-

suming c. As such they are the main determinants of the value of a statistical

12The period budget contraints can be written:

Ωt+1 =
R

(1− µt)
(Ωt − ct)

Ωt+1 ≥ 0

By iteration we get:

Ω0 = c0 +
n∑
t=1

(
t−1∏
i=0

(1− µi)
R

)
ct +

(
n∏
i=0

(1− µi)
R

)
Ωn+1

which taking the limit n→∞ provides

+∞∑
t=0

stR
−tct ≤ Ω0 ,

as stated in (19).
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life, for which we have empirical estimates to calibrate our models. However, as

the value of a statistical life also depends on other parameters (and in particular

of β , k, γu and γw), calibrations of the additive and multiplicative models have

to be performed separately leading to different values for u0 and w0.

In practice we will choose u0 and w0 so that an individual having a background

mortality provided by the 1990 US life table and income 1 would be indifferent

between facing an extra risk of death of 0.0001 per year, from age 20 till the end

of his/her life, or having an income of 1.035. This is consistent with a (survival

weighted) average value of a statistical life of 7 million dollars (a reasonable value,

according to Viscusi and Aldy, 2003) if we assume that one unit of income actually

corresponds to 20000 dollars per year.

The parameters β , k, γu and γw are chosen to minimize the (survival weighted)

average distance between the predicted consumption profile and the one provided

in figure 4 of Fernández-Villaverde and Krueger (2007).

In the case of the additive model it is well known that the solution to the

optimization problem (19) involves choosing a consumption profile such that

ct = c0

(
R

β

) t
γu

Thus all combinations of the parameters that give the same value for
(
R
β

) 1
γu will

provide the same solution. There is therefore an indeterminacy when trying to

find the best fit with the profile taken from Fernández-Villaverde and Krueger

(2007). For simplicity, we shall therefore report the value of the optimal con-

sumption growth rate, denoted g (the one which best fits the data), knowing that

for any γu it can be obtained by setting β equal to R(1 + g)−γu.

As for the multiplicative model, the optimization problem is complex, the

expected utility function being non linear. No analytic solution can be provided

and the results rely on numerical optimization.

Figure 2 plots the estimates from Fernández-Villaverde and Krueger (2007)

as well as the predictions obtained when using the additive and multiplicative

models, assuming R − 1 = 2.5% per year. The additive model which constrains
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consumption to be monotonic is unable to provide a good fit or reproduce the

hump-shape profile of consumption. The rate of consumption growth which min-

imizes the average distance with Fernández-Villaverde’s and Krueger’s result is

g = −0.25% per year, obtained for example with γu = 1 and β − 1 = 2.76%

per year. The multiplicative model provides a much better fit, although in order

to match the data quite closely one has to assume a relatively high elasticity of

substitution, 1
γw
, equal to 1.41. We shall note however that there are several stud-

ies including Vissinng-Jorgensen and Attanasio (2003) and Andersen, Harrison,

Lau and Ruström (2011) -both allowing for ICA- that estimate intertemporal

elasticity of substitution in that range. In order to provide some idea of the

our explanation’s potential, we also run simulation where we constrain the elas-

ticity of substitution to equal 1. For the multiplicative model, we still find a

non-monotonic consumption profile, though with a smaller curvature than that

of Fernández-Villaverde and Krueger (Figure 3).

Accounting for ICA may thus help to explain the hump-shape of the observed

consumption profile. This should not be taken to mean that ICA and mortality

might be the single explanation for the hump shape of consumption. In fact,

there are some aspects, such as the low level of consumption before age 30, that

models with ICA have diffi culty in predicting, while they could simply result from

liquidity constraints. The potential role of ICA should not be considered as a sub-

stitute for previous explanations based on market imperfections or precautionary

savings but rather as being complementary.

It is worth emphasizing that preferences being stationary, the only source of

variations in the predicted consumption growth rate shown in Figures 2 and 3 is

the positive relation between age and mortality. This positive relation is what

makes life expectancy shrink as an individual is getting older. In that sense,

the hump shape of consumption obtained with the multiplicative model reflects

a pure life cycle effect. We shall also note that the additive and multiplicative

models, which are two extensions of the simplest model that assumes both a

zero ICA and a zero rate of time preference, have the same number of degrees

of freedom. Thus, if one turns out to have a better predictive power than the

other, this is not the result of a greater complexity, but simply the consequence
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of different underlying assumptions.

10 Conclusion

A general representation of stationary preferences was provided. Some particular

specifications were also underlined as corresponding to additional assumptions

on individual preferences (Figure 1). This naturally suggests several candidates

for lifetime utility function. The simplest choice, and also the most restrictive,

involves assuming that individuals have neither pure time preferences nor ICA.

Two natural and symmetrical extensions then seem possible: one introducing

pure time preferences (which gives the additive model) and another one intro-

ducing ICA (as in the multiplicative model). Pure time preferences and ICA may

eventually be combined, as in the general recursive form.

The literature on intertemporal choice contrasts with the symmetric picture

we drew. While the additive model has been extensively considered, and used as

a basis for extensions that do not lie within the general framework we consider,

the multiplicative model remained unexploited.

There are plenty of historical and technical reasons that could explain why life

cycle theory did not explore the case of multiplicative preferences. In particular,

the multiplicative model is an attractive option only when both the finiteness

and the randomness of the length of life are accounted for. Therefore it could

not emerge from studies that considered that the length of life was infinite or

known in advance. Moreover, although the multiplicative model is as simple as

the additive one in terms of degrees of freedom, it is mathematically speaking

less tractable. For example, while it is extremely simple to analytically derive the

shape of the optimal consumption in the additive case (with perfect markets), it

is impossible to find an explicit solution in the multiplicative case. The solution

is closely related to mortality rates and can only be numerically estimated.

Opting for a mathematically convenient theory has an undisputable advan-

tage: it makes economists’ lives easier. But the cost may be high. There are

many aspects of human behavior that are diffi cult to explain with the additive

model, while they seem rather natural when accounting for ICA. We discussed
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above a fact that was identified as an “empirical puzzle”: the hump-shape of life

cycle consumption profiles. But there are other issues that seem as important.

We end the paper by reviewing three of them.

The first one concerns the heterogeneity in discount rates. Women, rich people

and non-whites (in the USA) are usually found to be significantly less impatient

than men, poor people and whites, the difference in discount rates exceeding that

in mortality rates. With the additive model, such heterogeneity can only result

from heterogeneity in pure time preferences. Thus, the dominant interpretation is

that heterogeneity in impatience reflects fundamental differences in taste, whose

origins lie deep in human nature or cultural constructs. Men and women, rich

and poor, whites and non-whites would simply have different rationalities. Con-

versely, a life cycle theory that accounts for ICA would explain a great part of

the heterogeneity in discount rates by the heterogeneity in mortality. Women

and men, rich and poor, etc. could allocate resources over time differently not

because they have different preferences, but simply because of their mortality. As

argued in Peart and Levy (2003), these diverging interpretations may be used to

support fundamentally different ideologies.

The second issue concerns the effect of mortality changes. The huge decline

in mortality rates observed over the last two centuries, as well as the dramatic in-

crease of mortality observed in the regions severely touched by the AIDS epidemic,

are about the most significant events in recent human history. Naturally, several

papers have studied the economic impact of mortality changes.13 But almost all

of them rely on the additive model. Accounting for ICA would radically modify

our view of the effect of mortality changes and indirectly our understanding of

economic development.

The last issue concerns the amount of resources that should be dedicated

to increase longevity. This is a central question in our society where medical

expenses are rising very rapidly. Again, as discussed in Bommier and Villeneuve

(2010), the dominant approach in the value of life literature involves using the

additive model, while accounting for ICA would significantly improve the capacity

13See for example Bloom, Canning and Graham (2003), Boucekkine, de la Croix and Licandro
(2003), Cavalcanti Ferreira and Pessôa (2003) and Becker, Philipson and Soares (2005).
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of the theory to fit empirical data and suggest very different policy guidance.

ICA is a key element for modelling intertemporal choice under uncertainty.

The reason is that in many cases, agents are facing risks which have durable con-

sequences (such as the risk of death, but also the risk of bankruptcy, etc. ). The

time structure then ends up generating a strong positive correlation between what

may happen at different periods of time, so that aversion for correlation appears

to be central for evaluating these risks. The recursive specification obtained in

Proposition 1 and, in particular, the multiplicative model provide simple ways to

account for ICA.

A Proof of Result 1

Using (3) and (4), it is straightforward to check that 1⇒ 2. Moreover, 1 ⇒ 3

follows from (6). 4 is explicitly weaker than 3 and, therefore, 3 ⇒ 4.

Let us now prove that 2⇒ 1. Denote:

A = {c ∈ R+|v′(c) = 0} and M = {c ∈ R+|u′(ct)(1−e−v(ct))−v′(ct)u(ct)e
−v(ct) = 0}

By definition (and because of Assumption 1) preferences are additive if and only

if A = R+ and multiplicative if and only if M = R+. The rate of time preference

at time t is given by:

RTPt =
u′(zt)(1− e−v(zt))− v′(zt)u(zt)e

−v(zt)

u′(zt)− v′(zt)
∑+∞

i=t+1 u(zi) exp(−
∑i−1

j=t v(zj))

and therefore:

2⇒ for any t1 6= t we have
∂RTPt
∂zt1

= 0
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But, by derivation of (6), for t1 > t,such that zt1 6= d we find that

∂RTPt
∂zt1

= 0⇔



u′(zt)(1− e−v(zt))− v′(zt)u(zt)e
−v(zt) = 0

or

v′(zt) = 0

or
∂

∂zt1

(∑+∞
i=t+1 u(zi) exp(−

∑i−1
j=t v(zj))

)
= 0


Assumption 2 implies that:

∂

∂zti

(
+∞∑
i=t+1

u(zi) exp(−
i−1∑
j=t

v(zj))

)
6= 0 for all t1 > t (20)

Thus, it is clear that ∂RTPt
∂zt1

= 0 if and only if u′(zt)(1−e−v(zt))−v′(zt)u(zt)e
−v(zt) =

0 or v′(zt) = 0. Therefore:

2⇒ A ∪M = R+

We now prove that A∪M = R+, together with Assumptions 1 and 2, implies

that A = ∅ (and M = R+) or A = R+.

Denote {A the complement ofA. Because of Assumption 1, {A is open. Assume
that {A is not empty and consider c∗ ∈ {A. Note Ic the largest open interval that
is included in {A and contains c∗. Since A ∪M = R+ we know that {A ⊂M and

Ic ⊂ M . Thus, there must exist a constant kI such that (1− e−v(c)) = kIu(c) for

all c ∈ Ic. This implies that, v′(c)e−v(zt) = kIu
′(c). By continuity (Assumption

1), such a relation must extend to Ic, the closure of Ic. Moreover, the constant

kI is necessarily different from zero (by definition of A) and, with Assumption

2, this implies that Ic ⊂ {A (otherwise there would exist c ∈ R+ such that

v′(c) = u′(c) = 0 which would contradict (20)). But as Ic is the largest open

interval of {A that contains c∗, it is necessarily the case that Ic ⊂ Ic. Therefore

Ic = R+ and {A = R+. Thus

(A ∪M = R+)⇒ 1 (21)

It only remains to prove that 4⇒ 1. Lets consider a life composed of constant
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path at a level c, till an age T , after which the agent is dead. From (6) we have

for all t < T :

RTPt =
u′(c)(1− e−v(c))− v′(c)u(c)e−v(c)

u′(c)− v′(c)u(c)
∑T

i=t+1 exp(−
∑i−1

j=t v(c))

Note that

T∑
i=t+1

exp(−
i−1∑
j=t

v(c))−
T∑

i=t+2

exp(−
i−1∑
j=t+1

v(c)) = exp(−
T−1∑
j=t

v(c)) 6= 0

Thus RTPt = RTPt+1 if and only if u′(c)(1 − e−v(c)) − v′(c)u(c)e−v(c) = 0 or

u(c)v′(c) = 0. In other words 4⇒ A ∪M ∪ {c|u(c) = 0} = R+ . Note that there

exists at most one point c such that u(c) = 0 (otherwise Assumption 2 would

not be fulfilled). Since A ∪M is closed we have A ∪M ∪ {c|u(c) = 0} = R+ ⇒
A ∪M = R+. Using (21), we find that 4⇒ 1.

B Proof of Proposition 2

By derivation of equation (14), we obtain:

∂

∂ct
Eµ,0U(c) = st exp(−

t−1∑
j=1

v(cj))

[
u′(ct)− v′(ct)

+∞∑
i=t+1

si
st
u(ci) exp(−

i−1∑
j=t

v(cj))

]
(22)

For t > 1, taking the derivative with respect to ct−1 leads to:

∂2

∂ct−1∂ct
Eµ,0U(c) = −v′(ct−1)

∂

∂ct
Eµ,0U(c)

Or again

ρµ,t−1(c) = −v′(ct−1) = ρt−1(c, T ) for all T > t− 1

Equation (17) is just a reformulation of this result, with the index t− 1 replaced

by t.

In order to obtain equation (18), let us first compute the expression of V SLµ,t(c).

From:
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si =

i−1∏
j=1

(1− µi)

one obtains:

∂si
∂µt

= 0 if t ≥ i

∂si
∂µt

= − si
(1− µt)

if t < i

Thus:
∂

∂µt
Eµ,0U(c) = − 1

(1− µt)

+∞∑
i=t+1

siu(ci) exp(−
i−1∑
j=1

v(cj))

Using (22) and st+1 = (1− µt)st, we obtain:

V SLµ,t =

∑+∞
i=t+1

si
st+1

u(ci) exp(−
∑i−1

j=1 v(cj))[
u′(ct)− v′(ct)

∑+∞
i=t+1

si
st
u(ci) exp(−

∑i−1
j=1 v(cj))

] (23)

We now have all elements to derive (18). From (22), applied in t and in t+ 1, we

have:

∂
∂ct+1

Eµ,0U(c)
∂
∂ct
Eµ,0U(c)

|ct+1=ct =
st+1
st

e−v(ct)
u′(ct)− v′(ct)

∑+∞
i=t+2

si
st+1

u(ci) exp(−
∑i−1

j=t+1 v(cj))

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))

Or again:

∂
∂ct+1

Eµ,0U(c)
∂
∂ct
Eµ,0U(c)

|ct+1=ct =
st+1
st

e−v(ct)
u′(ct)− v′(ct)

∑+∞
i=t+2

si
st+1

u(ci) exp(−
∑i−1

j=t+1 v(cj))

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))
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=
st+1
st

u′(ct)e
−v(ct) + v′(ct)u(ct)e

−v(ct)

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))

(24)

−st+1
st

v′(ct)
∑+∞

i=t+1
si
st+1

u(ci) exp(−
∑i−1

j=t v(cj))

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))

(25)

=
st+1
st

(
1− u′(ct)(1− e−v(ct))− v′(ct)u(ct)e

−v(ct)

u′ − v′
∑+∞

i=t+1
si
sk
u(ci) exp(−

∑i−1
j=t v(cj))

)
(26)

+
st+1
st

(
v′(ct)

∑+∞
i=t+1(

si
st
− si

st+1
)u(ci) exp(−

∑i−1
j=t v(cj))

u′(ct)− v′(ct)
∑+∞

i=t+1
si
sk
u(ci) exp(−

∑i−1
j=t v(cj))

)
(27)

Now remarking that:

st+1
st

(
si
st
− si
st+1

) =
si
st

(
st+1
st
− 1) = −µt

si
st

we find that the term (27) equals:

−µtv′(ct)
v′(ct)

∑+∞
i=t+1

si
st
u(ci) exp(−

∑i−1
j=t v(cj))

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))

which is nothing else than −µtρµ,tV SLµ,t.
Substituting st+1

st
by (1− µt) in (26), we get:

RTPµ,t(c) = 1−
∂

∂ct+1
Eµ,0U(c)

∂
∂ct
Eµ,0U(c)

= µt + (1− µt)
u′(ct)(1− e−v(ct))− v′(ct)u(ct)e

−v(ct)

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))

+µtρtV SLµ,t

In a deterministic setting where people would die at the end of period T > t,

we know from (6) that:

RTPt(c, T ) =
u′(ct)(1− e−v(ct))− v′(ct)u(ct)e

−v(ct)

u′(ct)− v′(ct)
∑T

i=t+1 u(ci) exp(−
∑i−1

j=t v(cj))
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Thus

u′(ct)(1− e−v(ct))− v′(ct)u(ct)e
−v(ct)

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st
u(ci) exp(−

∑i−1
j=t v(cj))

=
1

Eµ,t(
1

RTPt(c,.)
)

which leads to

RTPµ,t(c) = µt + (1− µt)
1

Eµ,t(
1

RTPt(c,.)
)

+ µtρtV SLµ,t (28)

which end proving Proposition 2.

As mentioned in the comments coming after Proposition 2, looking at how

mortality at age t impacts the rate of time discounting at time t may be a way

to identify time preferences and intertemporal correlation aversion. However, in

order to do so, one has to account for the fact that both Eµ,t( 1
RTPt(c,.)

) and V SLµ,t

depend on µt. The object of the lines below, is to explicit this dependence and to

explain that this only generates second order-terms, when the length of the time

period tends towards zero.

From (23) and 1
st

= (1− µt) 1
st+1

one can rewrite:

V SLµ,t =
1

1

Ṽ SLµ,t
+ µtv

′(ct)
(29)

where Ṽ SLµ,t, defined by,

Ṽ SLµ,t =

∑+∞
i=t+1

si
st+1

u(ci) exp(−
∑i−1

j=1 v(cj))

u′(ct)− v′(ct)
∑+∞

i=t+1
si
st+1

u(ci) exp(−
∑i−1

j=1 v(cj))

is independent of µt.

Moreover, using (10), (11), st+1
st

= 1− µt and µt = πt
st
one gets:

Eµ,tf(x, .) = Eµ,t+1f(x, .) + µt [f(x, t)− Eµ,t+1f(x, .)] (30)
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Combining (28), (29) and (30) we obtain:

RTPµ,t(c) = µt+

(1− µt) 1

Eµ,t+1(
1

RTPt(c,.)
)+µt

[
RTPt(c,t)−Eµ,t+1( 1

RTPt(c,.)
)
]

+µtρt
1

1

Ṽ SLµ,t
+µtv

′(ct)

(31)

where all dependence in µt is now made explicit (in the above expression, the

terms Eµ,t+1( 1
RTPt(c,.)

), RTPt(c, t) and Ṽ SLµ,t are independent from µt).

The expression shown in (31) seems complex. However, it simplifies when

considering the case where the length of the time period is small. Indeed, when

the length of the time period tends towards zero, the mortality rate as well as the

rate of time discounting decrease proportionally to the length of the time period

and many second-order terms, decreasing as the square of the length of the time

period, can be neglected. Neglecting all second-order terms, we end up with a

very simple formula:

RTPµ,t(c) '
1

Eµ,t+1(
1

RTPt(c,.)
)

+ µt(1 + ρtṼ SLµ,t)

where Eµ,t+1( 1
RTPt(c,.)

) and ρtṼ SLµ,t are independent from µt.

Since
(
Eµ,t+1(

1
RTPt(c,.)

)− Eµ,t( 1
RTPt(c,.)

)
)
and µt(Ṽ SLµ,t − V SLµ,t) are also

second order terms, we may write as well:

RTPµ,t(c) '
1

Eµ,t(
1

RTPt(c,.)
)

+ µt(1 + ρtV SLµ,t)

This approximation is exact for the additive model, or when assuming infinitesi-

mally small periods of time.
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Figure 2: Life−Cycle Consumption Profile (Best Fit)

Empirical Estimates from Fernandez−Villaverde and Krueger (2007)
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Figure 3: Life−Cycle Consumption Profile (imposing IES=1)

Empirical Estimates from Fernandez−Villaverde and Krueger (2007)
Theoretical Predictions: Multiplicative Model
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