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Abstract 

The purpose of this study is to analyze the cost efficiency of electricity distribution systems in order 

to enable regulatory authorities to establish price- or revenue cap regulation regimes. The increasing 

use of efficiency analysis in the last decades has raised serious concerns among regulators and com-

panies regarding the reliability of efficiency estimates. One important dimension affecting the relia-

bility is the presence of unobserved factors. Since these factors are treated differently in various 

models, the resulting estimates can vary across methods. Therefore, we decompose the benchmarking 

process into two steps. In the first step, we identify classes of similar companies with comparable 

network and structural characteristics using a latent class cost model. We obtain cost best practice 

within each class in the second step, based on deterministic and stochastic cost frontier models. The 

results of this analysis show that the decomposition of the benchmarking process into two steps has 

reduced unobserved heterogeneity within classes and, hence, reduced the unexplained variance pre-

viously claimed as inefficiency. 
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1 INTRODUCTION 

In the last two decades the electricity distribution sector in Europe has witnessed a wave of 

regulatory reforms aimed mainly at improving the economic efficiency. Thereby, information on 

several efficiency concepts in production theory, including scale and scope efficiency as well as cost 

efficiency has become very important. The concept of cost efficiency is a measure of the regulated 

electricity distribution company’s ability to minimize costs, given specific demand and market 

conditions. Cost inefficiency, also called ‘X-inefficiency’, occurs when the company fails to produce 

with full efficiency at the cost frontier, defined by best-practice companies. 

Regulatory authorities increasingly use empirical cost norms, such as parametric or non-

parametric benchmarking methods, in various incentive regulation schemes (Haney and Pollitt 

(2009). One of the most widely used regulatory regimes in electricity networks is price- or revenue-

cap regulation (often denoted CPI-X regulation, cf. Littlechild (1983)). This method determines a 

maximum price or revenue index in real terms, less a productivity improvement parameter, referred 

to as the ‘X-factors’.
6
 The X-factors include a general productivity improvement requirement 

(usually called the ‘general X-factor’) and potentially an individual efficiency improvement 

parameter (frequently denoted the ‘Xi-factor’ or the individual X-factor). Whereas the purpose of the 

general X-factor is to share the productivity gains in the sector between the consumers and the 

companies, the individual factor is intended to remove incumbent efficiency differences between 

companies. The exact translation of an estimated static cost inefficiency to an annual real 

productivity target (Xi) depends on the allowed period to catch up inefficiency, the type of 

inefficiency detected (capital and/or operating costs) and the type of by-pass mechanism (Z) used for 

certain costs that may be proportional to the inefficiency (e.g. network losses). Notwithstanding, the 

mechanism allows the regulator to set differentiated price or revenue caps based on the individual 

company’s empirically estimated productive efficiency performance.
7
 An alternative to the CPI-X 

regulation, addressing the arbitrariness of the adjustment parameters and the risk induced by the lag, 

is the yardstick regulation paradigm (cf. Shleifer (1985)). In this model, the reimbursement of the 

regulated firm is linked to a dynamic norm, excluding the cost report of the specific company in its 

calculation. Although Shleifer presented the model for a stylized cost function, the use of frontier 

analysis tools enables the application of yardstick methods also to multi-output production and 

service provision. Several regulators in Europe, thereof Germany and Norway, use DEA for dynamic 

yardstick regimes in electricity distribution regulation.
8
 

                                                 
6
 In addition to inflation, the changes beyond companies’ control may include changes in input factor prices 

and exogenous changes in demand and network characteristics, generally referred to as ‘Z-factors’. 
7
 The level of productive efficiency or cost efficiency of a firm is composed by the levels of technical and al-

locative efficiency. For a discussion of these concepts see Kumbhakar and Lovell (2003). 
8
 The theory for dynamic applications of DEA in yardstick and a comparison with a conventional CPI-X ap-

proach are found in Agrell et al. (2005a). 
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However, the increasing use of efficiency analysis has raised serious concerns among 

regulators and companies regarding the reliability of efficiency estimates.
9
 In fact, empirical evidence 

suggests that the estimates are sensitive to the adopted efficiency measurement approach.
10

 This 

implies that the choice of the approach may have important effects on the financial situation of the 

companies as well as on the industrial structure of the regulated sector. 

One important dimension affecting the reliability of efficiency estimates is the presence of 

unobserved factors. The regulated companies operate in different regions with various environmental 

and network characteristics that are only partially observed. This heterogeneity in the service area is 

an important factor to consider in a benchmarking analysis. Recall that the purpose of the 

benchmarking method is to create a cost norm for efficient, structurally comparable companies under 

similar operating conditions. Some methods of estimating efficiency take account for such 

unobserved factors, but in different ways. Generally, in deterministic models such as the non-

parametric linear programming approach, the unobserved factors that influence the level of 

production costs are not considered in the analysis. The explicit assumption in these approaches is 

that all relevant cost differences are captured by observed variables. The few efficiency analysis 

models accounting for part of the unobserved heterogeneity factors are parametric and based on panel 

data. The seminal paper for the development of models for unobserved heterogeneous factors is 

Greene (2005). The main idea is to introduce an individual effect in an econometric model capturing 

the unobserved heterogeneous factors that remain constant over time. The main problem hereby is 

that the individual effects can capture also part of the inefficiency that remains constant over time. In 

addition, the complexity of the models developed by Greene (2005) and the entailed assumptions 

remain important obstacles in applying panel data models in regulatory practice. Given that the 

unobserved factors are considered differently in various models, the resulting estimates can vary 

across methods. The magnitude of variation depends on the importance of the unobserved factors, 

which might change from one case to another. 

To address this problem, we propose an alternative strategy for improve efficiency 

measurement methodology in the presence of unobserved heterogeneity. In our strategy, we 

decompose the benchmarking process into two steps: In the first step, we attempt to identify classes 

of companies that operate in similar environments and with comparable network and structural 

characteristics. For this purpose, we apply a latent class model. In the second step, the best practice is 

obtained within each class, based on deterministic and stochastic frontier models. Provided that the 

identified classes contain reasonably comparable cases and assuming a reasonable explanatory power 

                                                 
9
 Shuttleworth (2005) provides a critical overview of the problems coming along with the use of benchmarking 

in the regulation of electricity networks. 
10

 See e.g. Jamasb and Pollitt (2003), Estache et al. (2004), Farsi and Filippini (2004) or Farsi et al. (2006). 
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for the variables included in the model specification, any deterministic or stochastic approach can be 

used to estimate efficiency. 

The outline of this Chapter is as follows: Section 2 reviews some of the most commonly used 

approaches to efficiency measurement. Section 3 addresses the cost model specifications and 

estimation methods. Section 4 introduces the data and Section 5 provides the estimation results for 

both steps and measures of cost efficiency for different frontier models in the second step. We draw 

our conclusions in Section 6. 

2 REVIEW ON APPROACHES TO EFFICIENCY MEASUREMENT 

This section briefly reviews some of the most commonly used frontier approaches to cost effi-

ciency measurement, based on more extensive reviews in Kumbhakar and Lovell (2003), Murillo-

Zamorano (2004), Coelli et al. (2005), Cornwell and Smith (2008), Greene (2008; Kumbhakar and 

Lovell (2003), and Farsi and Filippini (2009).
11

 The focus here is mainly on cost efficiency and on 

cost functions, the argumentation is analogously valid for production functions and productive effi-

ciency (under a set of regularity conditions, cf. Shepard (1953) and Nerlove (1963)). The frontier ap-

proach assumes that full cost efficiency is defined by those companies that are identified as the best-

practice peers. All other companies are assumed to operate above the cost frontier, hence to have 

non-zero inefficiency. 

Economic literature has developed two different frontier paradigms to empirically measure 

cost efficiency.
12

 The first is based on a non-parametric deterministic and the second on an econo-

metric approach, sometimes also referred to the parametric approach. 

Non-parametric approaches, such as the Data Envelopment Analysis (DEA), proposed by 

Farrell (1957) and Charnes et al. (1978)), use linear programming to construct a company’s efficien-

cy frontier, which is considered as a deterministic function of the observed variables. These methods 

are non-parametric in the sense that they do not impose any specific functional form or distribution 

assumption, i.e. it is assumed that the data are free of noise. Thanks to their relative simplicity and 

availability, such methods, in particular DEA, are quite popular among both researchers and regula-

tors in energy distribution networks. The DEA models can be input- or output-oriented and one of the 

a priori assumptions concerns the returns to scale. The models can be specified as constant returns to 

scale (CRS), variable returns to scale (VRS), non-increasing returns to scale (NIRS), non-decreasing 

returns to scale (NDRS), free disposal hull (FDH) and free replicability hull (FRH), where the latter 

                                                 
11

 The latter review includes also sections on the traditional production theory and on scale and scope econo-

mies. 
12

 A third paradigm, the Bayesian approach is only little-known in applied science. Readers interested in Bayes-

ian stochastic frontier models (sometimes also assigned to non-parametric models) are referred to van den 

Broeck et al. (1994). 
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two merely imposes disposability and additivity, but not convexity of the production space. A basic 

DEA formulation calculating the minimal cost under VRS for company i in a sample of N companies 

with k inputs and m outputs would be  

 

,min '

. .: 0; 0; ' 1; 0

ix i i

i i

w x

s t y Y x X N



         
 (1),

 

where wi and xi are k×1 vectors representing input prices and quantities for company i; yi is an m×1 

vector representing the given output bundle; X and Y are input and output matrices namely, a k×N 

and an m×N matrix consisting of the input and output bundles for all companies in the sample; N is 

an N×1 vector of ones; and λ is an N×1 vector of non-negative constants to be estimated. The VRS 

property is satisfied through the convexity constraint (Nλ=1) that ensures that only similar-sized 

companies are benchmarked against each other. The linear programming algorithm finds a piece-

wise linear isoquant in the input-space, which corresponds to the minimum costs of producing the 

given output at any given point. Cost efficiency (CE) finally is measured by the minimum feasible 

input bundle for each company relative to its actual input bundle, i.e. CEi = wi’xi
*
/wi’xi

0
. 

In contrast to non-parametric methods, most of the econometric approaches include estimating 

an empirical cost function, where the observed variables should include a vector of outputs (q) and a 

vector of input prices (p). The remaining unobserved part, the residual, is completely (in determinis-

tic models) or partially (in stochastic models) assigned to inefficiency. 

The first econometric frontier models that appeared in the literature were deterministic and es-

timated by OLS. Usually, their cost function is expressed in logarithms as 

 ln Cit = f(qit,pit;β) +  + it (2), 

where Cit is total cost incurred by the unit i at time t, f(.) is a parametric cost function, qit and pit 

are vectors of outputs and input prices, respectively, β is the vector of parameters and  the intercept 

to estimate, and it is the residual. As the error term in deterministic models only reflects the ineffi-

ciency, it is assumed to be non-negative. Therefore, Winsten (1957) suggested shifting the estimated 

intercept down by the minimal residual value. This model is called Corrected OLS (COLS). The cost 

efficiency of unit i in the COLS model is thus given by exp(-uit) with uit = it – min(it) ≥ 0. Afriat 

(1972) proposed a slightly different model, usually referred to as Modified OLS (MOLS), where the 

OLS intercept is shifted by the expected value of the inefficiency term that is, E(uit). The cost effi-

ciency of unit i at time t in the MOLS model is thus given by exp(-uit) with uit = it + E(uit). The effi-

ciency term uit is not necessarily positive (some units are below the cost frontier). Truncation at zero 

assigns the respective units with full efficiency. 
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Deterministic models are similar to DEA and other linear programming models in that the best 

practice (the cost frontier) is a fixed function that does not vary across observations or units. As main 

drawback, these models attribute the residual to inefficiency, i.e. they do not account for other 

sources of stochastic variation such as measurement errors.
13

 Nevertheless, deterministic models are 

still widely used in applied economic literature and in regulation (see e.g. Haney and Pollitt (2009)). 

To overcome the drawbacks of deterministic models, Aigner et al. (1977) and Meeusen and 

van den Broeck (1977) proposed a stochastic frontier model (SFA), which divides the residual it into 

two parts: uit is reflecting inefficiency, and vit is capturing the random noise. The basic cost function 

of the stochastic frontier model can be written as 

 ln Cit = f(qit,pit;β) +  + uit + vit (3). 

With certain distribution assumptions on uit and vit, this model can be estimated using the Max-

imum Likelihood (ML) estimation method. Typically, it is assumed that the inefficiency term uit has 

a one-sided non-negative distribution that is, a normal distribution truncated at zero: uit  |N(0,
2

u )|
14

, 

and the random noise term vit is normally distributed: vit  N(0,
2

v ). Additionally, uit and vit are con-

sidered as being independently distributed from each other. As in the models above, one would ex-

pect the most efficient unit to take uit = 0, and the efficiency value to be calculated as exp(-uit). Un-

fortunately, E(uit) cannot be calculated for an individual unit. Jondrow et al. (1982) proposed there-

fore a different estimator to measure efficiency. This estimator is based on the conditional expecta-

tion function of the residual, (E[uit|it]), and is known as the JLMS estimator referring to the au-

thors.
15

 This is a highly non-linear function that only slightly increases the inefficiency for units close 

to the frontier leaving no unit with full efficiency. The other estimator proposed by these authors is 

based on the conditional mode (M[uit|it]) that normally assigns full efficiency to several units. It has 

been used much less in the empirical literature than the JLMS estimator. 

The models described so far can be applied either to cross-sectional or panel data. However, 

the panel structure in the data is ignored, as these models require pooling all observations and treat-

ing them as being independent from each other. Temporal variations can be captured using time 

trends or time-interactions. Moreover, these models are not suited to account for unmeasured, i.e. un-

observed heterogeneity. This is due to the fact that with pooled data, each observation is considered 

                                                 
13

 Semi-parametric frontier models such as quantile regression (Koenker and Bassett (1978)) sometimes count 

as deterministic models. Unlike least squares methods, quantile regression techniques do not approximate the 

conditional mean of the response variable, but either its median or quantiles and offer therefore a systematic 

strategy for examining the entire distribution of the population. Readers interested in applied quantile regres-

sion models for efficiency measurement are referred to Behr (2010) and to Knox et al. (2007). 
14

 Other extensions of the SFA model have considered exponential, gamma, or truncated normal distributions 

for the inefficiency term. 
15

 J. Jondrow, C.A.K. Lovell, I.S. Materov, and P. Schmidt in Jondrow et al. (1982). 
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as a single, discrete unit. With only one observation per unit, it is not possible to disentangle efficien-

cy and time-invariant, unit-specific heterogeneity. Therefore, the presence of unobserved heterogene-

ity influences the estimation results of the regressors in case of correlation, or the residuals (referred 

to heterogeneity bias, Chamberlain (1982)). The structure of panel data offers the opportunity to ap-

ply models that account for the individual effect that should capture the unobserved heterogeneity 

and hence free from the heterogeneity bias. The time dimension in panel data sets allows us to ob-

serve the same unit repeatedly over a certain time span. This enables us to extract time-invariant fac-

tors such as unit-specific characteristics that do not necessarily accrue to the unit’s inefficiency, but 

do affect the costs across different networks. Especially structural inefficiencies (inefficiency that is 

constant over time) and inefficiencies following a certain time path can be better identified using 

panel data. Most of the developments of the panel data models go back to the stochastic frontier 

models of Aigner et al. (1977) and Meeusen and van den Broeck (1977) expressed in Equation (3). 

An early application to panel data of this stochastic frontier model was the Random Effects 

(RE) model by Pitt and Lee (1981) which was estimated by ML and assumed that the inefficiency uit 

is fixed through time, but still half-normally distributed: ui  |N(0, 2

u )|. Important variations of this 

model were presented by Schmidt and Sickles (1984) who relaxed the distribution assumption, and 

by Battese and Coelli (1988) who assumed a truncated normal distribution. Schmidt and Sickles 

(1984) proposed also a Fixed Effects (FE) model to avoid the possible heterogeneity bias in case of 

correlation of uit with the explanatory variables. One of the drawbacks of models with time-invariant 

efficiency is that time-varying components of heterogeneity are entirely interpreted as random noise. 

Therefore, Cornwell et al. (1990), Kumbhakar (1990) and Battese and Coelli (1992) suggested the 

first stochastic models which allow the cost efficiency to vary over time. However, the first two 

models were vulnerable to multicollinearity and the third was characterized by a deterministic func-

tional form of the inefficiency term over time. 

The main restriction of all of the models presented above is that unobserved factors are as-

sumed to be random over time. This implies that time-invariant factors such as physical network and 

environmental characteristics are not considered as heterogeneity. The family of ‘true’ panel data 

models (Kumbhakar (1991) and Polachek and Yoon (1996) as precursor models of Greene (2005) ex-

tend the original stochastic frontier model as it is formulated in Equation (3) by adding a unit-specific 

time-invariant factor accounting for the individual effect.
16

 Hence, apart from the random noise com-

ponent, these models include two stochastic terms for unobserved heterogeneity, one for time-

varying and one for time-invariant individual effects. This model can be written as 

 ln Cit = f(qit,pit;β) + i + uit + vit (4), 

                                                 
16

 The term ‘true‘ refers to the FE and RE models fully described in Greene (2005). 
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where i is the time-invariant unit-specific factor and the model is estimated by Maximum 

Simulated Likelihood (MSL). In a RE framework, i is an iid random component and must not be 

correlated with the observed variables. In a FE framework, i is a constant parameter for every unit.
17

 

As in all ML models, the inefficiency component can be measured by the JLMS estimator of 

Jondrow et al. (1982). Assuming that physical network and environmental characteristics do not vary 

considerably over time and that the inefficiency is time-varying, these models help to separate unob-

served time-invariant effects from efficiency estimates. However, if inefficiency is persistent over 

time, these models underestimate the inefficiency systematically, e.g. if managers take wrong deci-

sions in every period or make the same mistakes again and again, the corresponding consequences in 

terms of inefficiency are detected as time-invariant unit-specific heterogeneity and not as inefficiency. 

As noted in Greene (2008), the ‘truth’ doubtless lies somewhere between the two strong assumptions. 

The idea of observed parameter variability was early applied to a precise indication of hetero-

geneity of the production environment by Kalirajan and Obowona (1994) in the stochastic frontier 

context. A similar random parameter (RP) model was also formulated by Greene (2005), which is a 

generalization of the True Effects models in that not only the constant but also the parameters of the 

observed variables are unit-specific indicating the effect of different environments or technologies. 

This model is estimated by MSL. As noted by Greene (2008), the estimation of the MSL of this mod-

el can be numerically cumbersome. 

Another approach to accommodate heterogeneity among units into the model is followed by 

latent class (LC) models. Originally introduced by Lazarsfeld and Henry (1968), LC identifies dis-

tinct class membership among subjects regarding their cost structure and estimates a separate cost 

function for each of these classes simultaneously.
18

 LC models can be regarded as the discrete coun-

terparts of RP models. With a sufficient large number of classes, LC approximates a fully parameter-

ized RP model. The LC model can be written as: 

 ln Cit = f(qit,pit;βj) + j + uit|j + vit|j (5). 

The subscript i denotes the unit, and uit and vit are defined as above. j is the constant and βj is 

a vector of discrete random parameters identified in j = 1, 2, …, J classes, assuming that each obser-

vation in the sample follows a specific technology. These technologies differ from each other in the 

values of model parameters {i, βi, σi}. This vector includes also a set of prior probabilities that de-

termines the fraction of each latent class in the sample. It is defined as a discrete random vector with 

the following distribution: 

                                                 
17

 An alternative version of the True FE model uses dummy variables for every unit. However, this specifica-

tion may be affected by the ‘incidental parameter problem’, especially in short panel data sets. 
18

 Latent class analysis has been applied in different fields of science and industry sectors, e.g. in the banking 

sector (Orea and Khumbhakar (2004)) or more recently in the electricity distribution (Cullmann (2010)). 
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 {i, βi, σi} = {j, βj, σj} with probability Pj, where: j = 1,2,…,J, and 
1

1



J

j

j

P  (6).
 

The subscript j denotes the latent class with J being the number of classes. The choice of J is 

usually based on diagnostic criteria such as the Akaike Information Criterion (AIC) or the Bayesian 

Information Criterion (BIC).
19

 These criteria indicate the optimal number of classes from an 

informational perspective, but cannot be used for statistical inference. After the estimation of the LC 

model, posterior probabilities jP  can be calculated for each observation from Bayes rule. 

The choice of the econometric models presented so far is usually not straightforward. For in-

stance, Farsi and Filippini (2009) have found several studies that report discrepancies in efficiency 

estimates between different models and approaches.
20

 Such discrepancies are partly due to methodo-

logical sensitivity in the estimation of individual efficiency scores and partly due to different consid-

eration of unobserved heterogeneity factors, which is particularly relevant in network industries such 

as electricity distribution. Panel data models can be used to control for the firm- or network specific 

unobserved heterogeneity. The use of panel data models is especially interesting as data for several 

years have become available to an increasing number of regulators in many countries. The complexi-

ty of such models remains however as an important obstacle in applying panel data models in regula-

tion. The effort in disentangling inefficiency variations from unobserved factors such as statistical 

noise due to error and omitted variables is a crucial element of all frontier models, in both cross sec-

tional and panel data. The statistical modeling challenge has a parallel in practice: Benchmarking can 

only be effective to the extent that for any specific company with given characteristics, there exists a 

set of comparable companies upon which a ‘best practice’ can be constructed. 

Therefore, as discussed previously, we propose in this paper an alternative strategy to consider 

unobserved heterogeneity factors in that we decompose the benchmarking analysis into two steps: In 

the first step, we attempt to identify classes of companies that operate in similar environments and 

with comparable network and structural characteristics. For that step, we use a latent class model. In 

the second step, best practice is obtained within each class applying different benchmarking methods. 

Provided that the identified classes include reasonably comparable cases and assuming a reasonable 

explanatory power for the variables included in the model specification, any deterministic or stochas-

tic approach can provide accurate values of efficiency. Therefore, we use the DEA, MOLS and SFA 

                                                 
19

 However, compared to the BIC, the AIC corrects the likelihood function only by the sample size and not by 

the number of parameters to estimate. This is a clear disadvantage with increasing number of classes. 
20

 See e.g. Jensen (2000), Jamasb and Pollitt (2003), Street (2003), Estache et al. (2004), Farsi and Filippini 

(2004). The results show substantial variations in estimated efficiency scores and, for some of them, in effi-

ciency rankings across different approaches (econometric and non-parametric) and among model specifica-

tions. 
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methods for the second step. In the next section, we will apply this approach using a sample of Nor-

wegian electricity distribution companies. 

3 COST MODEL SPECIFICATION AND ESTIMATION METHODS 

We specify a cost model that explains total costs of the Norwegian electricity distribution 

system operators (DSO) with two input and one output variable, one environmental and one network 

characteristics. We write this model as follows: 

 ( , , , , )L CTC f P P Q D LS
 

(7), 

where the dependent variable TC represents the total costs of the DSO. PL and PC are the input prices 

of labor and capital, respectively. Q is the delivered electricity, D the network density and LS, finally, 

the share of high voltage network. For a complete description of the data and variables, see Section 4. 

For the identification of the comparable technology classes in the first step, we apply a Latent 

Class (LC) approach (cf. Lazarsfeld and Henry (1968), see Section 2)
21

 to estimate cost model in 

Equation (7).
22

 Using a Cobb-Douglas functional form and imposing the linear homogeneity 

restriction, the LC model in Equation (5) can be adapted to: 

 
0ln ln ln lnit Lit

j Pj Qj it Dj it LSj it it j

Cit Cit

TC P
Q D LS

P P
            (8), 

where subscript i denotes the electricity distribution company i = 1, 2, ..., I, subscript t the years 

1998 – 2002, and εit ~ N(0,σi) the error term. The subscript j denotes the latent class with J being the 

number of classes. 

After the identification of comparable technology classes, we estimate the cost efficiency in 

the second step separately for each class. As the heterogeneity within classes is expected to be low 

due to comparable technologies, any deterministic or stochastic approach can be considered. For 

general overviews on approaches to efficiency measurement, see e.g. Murillo-Zamorano (2004) or 

Greene (2008), or, for an empirical application, Farsi and Filippini (2009). With respect to current 

regulatory practice (see Haney and Pollitt (2009) for an overview over 40 countries), we apply the 

three following, most prevalent methods: The Data Envelopment Analysis (DEA, proposed by Farrell 

(1957) and Charnes et al. (1978)), the Modified OLS (MOLS, proposed by Afriat (1972)) and the 

Stochastic Frontier Analysis (SFA, proposed by Aigner et al. (1977)).  

                                                 
21

 Different models could be considered to identify technology classes. LC is a statistical method that has been 

used in literature to identify classes (see Orea and Khumbhakar (2004) or Greene (2005)). 
22

 All estimations have been conducted by Nlogit software version 4.0. 
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The DEA is a non-parametric method to calculate cost efficiency as a deterministic function of 

the observed variables, i.e. it is assumed that the data are free of stochastic variation due to 

measurement errors or noise. The cost model given in Equation (7) can be readily used for the 

efficiency measurement with the DEA method. Assuming variable returns to scale (VRS), the 

Equation (1) reduces to the following minimization problem: 

 

min

. .: 0; 0; ' 1; 0

it

it it

TC

s t Y Y TC TC N



         
 (10), 

where Yit represents the vector of the output bundle including output Qit and output 

characteristics Dit and LSit, as both characteristics take resources. However, in the DEA model, D is 

defined as the inverse of the network density, since a higher network density implies lower costs. N 

and λ are vectors of ones and non-negative constants, respectively. Cost efficiency (CE) is measured 

as the minimum feasible costs for each company relative to its actual costs, i.e. CEit = TC
*
/TCit. 

The MOLS and the SFA are parametric methods that use regression techniques to construct the 

efficiency frontier. Both require the specification of a functional form of the cost function as well as 

assumptions about the error term(s). Similar to Equation (8) in the first step, we estimate cost model 

in Equation (7) using a Cobb-Douglas functional form and impose the linear homogeneity restriction. 

The MOLS and SFA models in Equations (2) and (3) can be adapted to: 

 
0ln ln ln ln          it Lit

P Q it D it LS it it

Cit Cit

TC P
Q D LS

P P
 (11). 

The MOLS approach is based on the OLS estimation. The residuals εit are corrected using a 

constant shift, which is the expected value of the inefficiency term, E(uit). The cost efficiency in the 

MOLS is thus deterministic and given by CEit = exp(-uit) with uit = it + E(uit). uit is not necessarily 

positive, as some units may lie below the cost frontier. Truncation at zero assigns the respective units 

with full efficiency. 

The SFA approach is based on the Maximum Likelihood estimation. The residuals εit are 

composed of the inefficiency term uit and the random noise term vit. In this study, it is 

assumed that uit follows one-sided non-negative distribution, i.e. a normal distribution 

truncated at zero: uit  |N(0, 2

u )|, and that vit is normally distributed: vit  N(0, 2

v ). 

Additionally, uit and vit are considered as being independently distributed from each other. 

The cost efficiency in the SFA is thus stochastic and given by CEit = exp(-uit). 
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In order to compare the results from this two step approach with that of a conventional 

analysis, we estimate the three models (DEA, MOLS, SFA) also in one step, i.e. without 

consideration of classes, but for the whole sample. The according tables are given in the Appendix. 

4 DATA 

The data we use for this study consists of a balanced panel of 555 observations from 111 

companies that have operated in the Norwegian power distribution sector from 1998 to 2002.
23

 The 

available information includes total costs, labor costs, full time equivalents, total transformer 

capacity, distributed electricity, number of customers, line length for each low and high voltage, and 

year dummies. Table 1 provides a descriptive summary of the balanced panel data set for the 

variables included in the models. 

Table 1: Descriptive summary, 1998-2002 

Variable description Variable Mean Std.dev. Min p25 Median p75 Max

Total cost (10
6
 NOK) TC 36.5 73.4 1.28 11.7 18.1 35.8 862

Labor cost (10
6
 NOK) 10.2 16.8 0.47 3.70 5.58 10.2 161

Fulltime equivalents (FTE) 30.0 48.9 2.00 10.0 16.0 31.0 419

Price labor (10
3
 NOK/FTE) P L 349 52.9 120 312 344 383 586

Transformer capacity (MVA) 243 698 4.08 38.8 75.7 201 7'944

Price capital (10
3
 NOK/MVA) P C 176 83.6 31.6 112 160 220 528

Distributed electrcicity (GWh) Q 316 942 6.86 66.4 127 267 11'200

Number of customers 32'622 288 2'812 5'002 10'176 373'290

Line length (km) 1'351 1'871 56.5 467 762 1'609 13'583

Density (customers/km) D 7.00 3.25 1.32 5.16 6.23 7.66 29.0

Line length, high voltage (km) 492 703 10.0 159 267 557 4'995

Line length, low voltage (km) 859 1'209 0.00 292 493 930 10'090

Line length, high voltage share LS 0.37 0.11 0.09 0.30 0.36 0.43 1.00

Year dummies dyear 0.20 0.40 0.00 0.00 0.00 0.00 1.00

T = 5 (panel of years 1998-2002), i = 111, N = 555

11'445

 

From these variables, we calculated the variables included in the models as follows: The 

dependent variable (TC) is the total network costs excluding the cost of purchased electricity. It is 

measured in millions Norway Kroner (NOK) and is in real terms; hence it is adjusted for inflation. 

TC includes all DSO’s network costs consisting of both operating and capital expenditures. The 

explanatory variables involve two input price variables, one output variable and one environmental 

and one network characteristic, hence the DSO’s here are considered to be single-product firms. The 

input price variables include a price for labor (PL) and a price for capital (PC). We derived PL by 

                                                 
23

 In order to get a balanced panel data set, we extracted this data from the data that has been used in several 

scientific studies (Agrell et al. (2005a) and (2005b)) as well as in a research project financed by the Norwegian 

Water Resources and Energy Directorate partly reported in Agrell and Bogetoft (2009) and a research project 

financed by Swiss Federal Institute of Energy reported in Filippini et al. (2012). 
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dividing labor costs by the number of full-time equivalents. PC is an approximation to the real capital 

price, calculated as a residual price by dividing non-labor costs by the installed transformer capacity. 

The output is given by the delivered electricity (Q), measured in Giga Watt-hours (GWh). The 

environmental variable is the network density (D), represented by total number of customers divided 

by total network length in kilometers. The network characteristic (S) is modeled by the share of high 

voltage network length and total network length. 

5 RESULTS 

In the first step, we first determine the optimal number of classes J of the LC model. Using 

model specification in Equation (8), we applied LC models to the data in Table 1 with two to six 

classes.
24

 The specification diagnostics obtained by this analysis show that J = 4 is the optimal 

number of classes for the BIC and J = 6 for the AIC. In cases with J > 4, we observed some 

implausible values for regression coefficients, e.g. statistically insignificant values for the output. 

Considering the interesting statistical features of the BIC, we adopted this criterion and selected four 

classes. 

The estimation results of this LC model estimated in the first step are summarized in Table 2. 

These results show four distinctive technology classes with significant coefficients in most of the 

cases. Differences in the coefficients indicate that there are variations in marginal costs and 

technological characteristics across these classes. We see throughout all classes that total cost 

increase with higher input prices and higher outputs and in three classes with an increasing share of 

high voltage networks. As expected, operation with density reduces costs. Differences in coefficients 

indicate that there are variations in marginal costs and technical characteristics across classes. Prior 

class probabilities indicate also different class sizes. 

Table 2: Estimation results latent class model with four classes, first step 

First step

Variable (SE) (SE) (SE) (SE)

Input price ratio (P) 0.8581 *** (0.034) 0.4591 *** (0.020) 0.8675 *** (0.028) 0.6869 *** (0.014)

Distributed electricity (Q) 0.9083 *** (0.016) 0.7752 *** (0.008) 1.0600 *** (0.016) 0.9871 *** (0.008)

Density (D) -0.4228 *** (0.052) -0.3301 *** (0.026) -0.9295 *** (0.067) -0.0537 *** (0.020)

Share HV network (S) 0.5928 *** (0.153) 0.0875 (0.107) 2.7845 *** (0.197) 0.7600 *** (0.056)

Constant 5.0126 *** (0.016) 4.6728 *** (0.007) 4.6591 *** (0.012) 4.7313 *** (0.006)

Sigma (σ
2
) 0.1939 *** (0.009) 0.0739 *** (0.005) 0.0939 *** (0.009) 0.0804 *** (0.004)

Prior class probability 0.2157 *** (0.040) 0.2833 *** (0.046) 0.1752 *** (0.039) 0.3258 *** (0.048)

***, **, *: significant at 1%, 5% and 10%, respectively; standard errors given in brackets. T = 5 (panel of years 1998-2002), i = 111, n = 555

Class 1 Class 2 Class 3 Class 4

Coefficient Coefficient Coefficient Coefficient

 

                                                 
24

 Using several specifications, we also tried models with seven or more classes. Due to non-convergence we 

could not estimate any models with more than six classes. 
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Table 3 provides a descriptive summary of the observed variables for each class as identified 

by the estimated posterior class probabilities. These probabilities show that the companies can be 

distinguished with high probabilities. The fact that even in the worst cases, minimum probabilities 

are greater than 0.5, suggest that companies can be classified without much suspicion. The resulting 

classes have at least 100 observations, which is large enough for reasonable degrees of freedom for 

the second step estimations. The values of the observed variables in each class indicate that we can 

distinguish in an approximate manner certain features that characterize each class. Class 1 faces low 

input prices and a high customer density, whereas class 2 has high input prices and medium customer 

density. Classes 3 and 4 face medium values for most of the variables except for a relatively low 

customer density in class 3. 

Table 3: Identifying the classes 

Variable description Variable

Posterior class probability 0.99 (0.01) 0.91 (0.12) 0.91 (0.16) 0.98 (0.04)

Total cost (10
6
 NOK) TC 36.5 (73.4) 65.2 (136) 14.5 (7.09) 45.9 (67.0) 33.5 (36.7)

Price labor (10
3
 NOK/FTE) P L 349 (52.9) 338 (53.5) 355 (53.9) 352 (55.5) 348 (49.2)

Price capital (10
3
 NOK/MVA) P C 176 (83.6) 155 (81.0) 213 (92.4) 166 (76.2) 161 (67.3)

Distributed electrcicity (GWh) Q 316 (942) 675 (1936) 109 (90.6) 332 (454) 272 (345)

Density (customers/km) D 7.00 (3.25) 7.84 (5.15) 6.92 (2.91) 6.28 (1.49) 6.92 (2.49)

Line length, high voltage share LS 0.37 (0.11) 0.36 (0.10) 0.37 (0.13) 0.38 (0.07) 0.38 (0.09)

Standard errors given in brackets. N 555 115 170 100

Sample Class 1 Class 2 Class 3 Class 4

170
 

The estimation results for the MOLS and the SFA estimated in the second step for each class 

separately are summarized in Table 4. Other than the first step, the estimations are based on cost 

model specification in Equation (11) and on subsamples of the data in Table 1, given by the four 

classes of the first step. In general, the coefficients are of the same magnitude as in the LC model in 

the first step. The coefficients of the MOLS and the SFA differ slightly because of different 

assumptions on the error term. The signal-to-noise ratio λ is significant for three classes indicating 

skewness and existence of inefficiency. The insignificant value of λ in class two means that standard 

errors of the inefficiency terms are low compared to that of the noise terms, which will results in low 

inefficiency values for this class. 
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Table 4: Estimation results MOLS and SFA for each class, second step 

Second step

Variable (SE) (SE) (SE) (SE)

Input price ratio (P) 0.8588 *** (0.048) 0.4623 *** (0.018) 0.8644 *** (0.023) 0.6891 *** (0.018)

Distributed electricity (Q) 0.9080 *** (0.020) 0.7719 *** (0.010) 1.0581 *** (0.010) 0.9856 *** (0.008)

Density (D) -0.4236 *** (0.056) -0.3252 *** (0.017) -0.9255 *** (0.055) -0.0464 ** (0.019)

Share HV network (S) 0.6076 *** (0.202) 0.0802 (0.050) 2.7761 *** (0.164) 0.7582 *** (0.072)

Constant 5.0162 *** (0.019) 4.6692 *** (0.007) 4.6642 *** (0.010) 4.7317 *** (0.007)

Input price ratio (P) 0.8961 *** (0.050) 0.4624 *** (0.017) 0.8669 *** (0.022) 0.6880 *** (0.018)

Distributed electricity (Q) 0.9027 *** (0.020) 0.7719 *** (0.010) 1.0587 *** (0.010) 0.9867 *** (0.008)

Density (D) -0.4140 *** (0.055) -0.3253 *** (0.017) -0.9329 *** (0.053) -0.0469 ** (0.019)

Share HV network (S) 0.8017 *** (0.188) 0.0802 (0.049) 2.7953 *** (0.161) 0.7538 *** (0.071)

Constant 4.8158 *** (0.020) 4.6472 *** (0.015) 4.6079 *** (0.016) 4.6947 *** (0.011)

Sigma: σ
2
 = σu

2
+σv

2 0.2786 *** (0.002) 0.0764 *** (0.000) 0.1082 *** (0.001) 0.0870 *** (0.000)

Lambda: λ = σu/σv 2.1775 *** (0.395) 0.3866 (0.265) 0.8413 *** (0.275) 0.6256 *** (0.214)

***, **, *: significant at 1%, 5% and 10%, respectively; standard errors given in brackets. T = 5 (panel of years 1998-2002), i = 111, N = 555

M
O

L
S

S
F

A

Class 3 Class 4Class 1 Class 2

Coefficient Coefficient Coefficient Coefficient

 

The results of the efficiency analysis for the four classes and three models each are 

summarized in Table 5. The average efficiency value ranges from 0.56 for DEA in Class 1 to 0.98 for 

SFA in Class 2. In general, the average efficiency values are lowest in Class 1 for all three models 

and highest in Class 2 for MOLS and SFA. The highest average efficiency value for DEA is in 

Class 3 with 0.81. The standard deviations are highest in Class 1 for all three models and lowest in 

Class 2 for SFA, indicated already by the insignificant lambda in Table 4. Throughout all three 

models, SFA produces higher efficiency values than DEA and MOLS. This is expected since the 

model considers statistical noise. Another typical feature is that whereas DEA and MOLS assign full 

efficiency to several observations, SFA does not classify any operator as fully efficient. The 

minimum values are low in Class 1 for all three models. In particular, DEA attributes considerable 

lower minimum values for all classes that the other models. 

Table 5: Efficiency scores, second step 

DEA MOLS SFA DEA MOLS SFA DEA MOLS SFA DEA MOLS SFA

Mean 0.568 0.776 0.829 0.695 0.906 0.978 0.807 0.882 0.946 0.771 0.899 0.964

SDev 0.207 0.131 0.093 0.168 0.062 0.006 0.149 0.076 0.018 0.125 0.065 0.010

Min 0.267 0.362 0.531 0.374 0.732 0.916 0.481 0.695 0.883 0.559 0.740 0.933

p25 0.429 0.702 0.793 0.559 0.860 0.976 0.680 0.836 0.939 0.682 0.861 0.960

Median 0.496 0.773 0.843 0.652 0.902 0.978 0.799 0.881 0.950 0.743 0.895 0.965

p75 0.688 0.854 0.890 0.832 0.954 0.981 0.958 0.938 0.959 0.860 0.947 0.971

Max 1 1 0.962 1 1 0.986 1 1 0.976 1 1 0.983

T =  5 (1998-2002), i = 111, N = 555

Class 2 Class 3 Class 4Class 1
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In general, the efficiency values are higher and more realistic than the corresponding scores of 

a conventional analysis performed in one step (given in Table 7 in the appendix). The decomposition 

of the benchmarking process into two steps and the consideration of technology classes has reduced 

unobserved heterogeneity within classes and, hence, reduced the unexplained variance previously 

claimed as inefficiency. Therefore, conventional cross-sectional or pooled models might 

underestimate cost efficiency. 

6 SUMMARY AND CONCLUSIONS 

Regulatory authorities increasingly use benchmarking practices to identify a company’s 

individual efficiency in various incentive regulation schemes such as price- or revenue cap. The 

identification of cost efficiency in electricity distribution is a challenging task, as the companies 

operate in different regions with various environmental and network characteristics that are only 

partially observed. Therefore, the purpose of this study was to analyze cost efficiency in electricity 

distribution under consideration of these unobserved heterogeneity factors. 

In order to disentangle cost efficiency variations from unobserved factors, we proposed an 

alternative strategy that decomposes the benchmarking process into two steps: The first step is to 

identify classes of comparable companies in order to reduce unobserved heterogeneity within classes 

and the second to obtain the best practice for each class. 

The analysis in the first step has revealed four distinct latent classes. These classes can be 

characterized in an approximate manner by different observed variables, mainly by input prices and 

customer density. The analysis in the second step applying DEA, MOLS and SFA frontier methods 

has shown that average efficiency values vary considerably among methods and classes. In general, 

DEA has produced lowest and SFA highest values. Companies in class 1 are on average considerably 

less efficient than companies in the other classes, and the variation in efficiency scores in class 1 is 

highest. This class involves clearly the largest and most heterogeneous companies concerning output. 

Most importantly, the efficiency values are generally higher and more realistic than the 

corresponding scores of a conventional analysis performed in one step. The decomposition of the 

benchmarking process into two steps and the consideration of technology classes has reduced 

unobserved heterogeneity within classes and, hence, reduced the unexplained variance previously 

claimed as inefficiency. Therefore, conventional cross-sectional or pooled models might 

underestimate the real cost efficiency values. This in turn could lead to too incommensurate 

regulatory measures in account of the affected companies, especially if price or revenue cap 

regulation as incentive regulation scheme is in force. 
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APPENDIX 

Table 6: Estimation results for MOLS and COLS, conventional analysis 

Variable (SE) (SE)

Input price ratio (P) 0.6827 *** (0.024) 0.6637 *** (0.024)

Distributed electricity (Q) 0.9328 *** (0.011) 0.9327 *** (0.011)

Density (D) -0.3423 *** (0.028) -0.3226 *** (0.024)

Share HV network (S) 0.7258 *** (0.091) 0.7679 *** (0.080)

Constant 4.8223 *** (0.009) 4.5888 *** (0.011)

Sigma: σ
2
 = σu

2
+σv

2 0.3175 *** (0.001)

Lambda: λ = σu/σv 2.2973 *** (0.229)

***, **, *: significant at 1%, 5% and 10%, respectively. N = 555

Coefficient Coefficient

MOLS SFA

 

Table 7: Efficiency scores, conventional analysis 

DEA MOLS SFA

Mean 0.554 0.762 0.802

SDev 0.151 0.148 0.104

Min 0.246 0.319 0.498

p25 0.453 0.645 0.727

Median 0.527 0.769 0.827

p75 0.625 0.871 0.887

Max 1 1 0.960

T =  5 (1998-2002), i = 111, N = 555
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