
CER-ETH – Center of Economic Research at ETH Zurich

A Theory of Threshold Contracts

J. G. Becker and H. Gersbach

Working Paper 13/182
October 2013

Economics Working Paper Series



A Theory of Threshold Contracts∗

Johannes Gerd Becker
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1. Introduction

The present paper is motivated by two aspects of a reappointment setting—reappointment

as an incentive to exert effort on the one hand, and the consequences of a threshold con-

tract on the other.

Typical examples of reappointment decisions in a principal–agent relationship are voters

who reelect or deselect a member of the executive or legislative branch in a democracy.

Similar reappointment situations occur when a manager decides whether to extend an

employee’s contract or not. Prominent reappointment decisions are also taken by govern-

ments. The House of Representatives and the Senate in the United States, for instance,

decide whether to reappoint the President and the board members of the Federal Re-

serve.

A common characteristic of such situations is that the reappointment decision is the sole

incentive device available. This is most obvious in a democracy, but there are many other

cases in which the principal deciding on the renewal of an agent’s contract is confronted

with a fixed wage scheme and thus cannot resort to monetary incentive contracts. In such

reappointment situations, the principal would like to motivate the office holder to exert

high effort by threatening to deselect him otherwise. When, however, reappointment

decisions are taken repeatedly, and new candidates for office are likely to behave like

the preceding incumbents, the threat may turn out to be ineffectual. To what extent a

principal can motivate an agent to work hard by reappointment decisions in a potentially

infinitely repeated game is the first issue this paper addresses.

A recent strand of literature summarized in Gersbach (2012) has suggested that threshold

contracts might increase the utility of voters, who are the principal in a democracy. In

such a contract, a candidate for office commits to a freely chosen particular value that he

will deliver to voters. If he fails to generate this threshold utility for the voters, the office

holder cannot stand for reelection, i. e. he is automatically deselected. If he meets this

self-imposed threshold, voters are free to reelect or deselect him. It is unknown whether

and how reelection threshold contracts affect the utility of voters when repeated elections

with threshold contracts are considered. This is the second issue we deal with in this

paper.

A key element of the threshold contracts we consider is that they are only binding with

respect to deselection, i. e. they forbid reappointment if the threshold has been missed,

but do not enforce reappointment if the threshold has been reached. This is a necessary
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feature of a democratic process, where each appointment decision must be legitimized

by an election. Yet one can think of several other situations in which the principal does

not want to commit to the agent’s reappointment, or is not able to.

We study an infinitely repeated reappointment game played by a principal and an agent.

In each period, the agent chooses costly effort and enjoys a fixed benefit from holding of-

fice. At the end of each period, the principal observes his payoff, which is, in expectation,

monotonically increasing in the agent’s effort, but is affected by random events. The

principal decides whether to reappoint the agent or not. If the agent is reappointed, the

game continues. Otherwise it ends. We first analyse the stationary Markovian equilibria

(henceforth “equilibria”) of this game. Second, we allow the agent to write threshold

contracts. The main results of the first part are:

1. We characterize equilibria by necessary and sufficient conditions.

2. We show how equilibria can be constructed.

3. We illustrate how equilibria can be determined for the case of uniform noise dis-

tribution.

In the second part of the paper, we allow the agent to write threshold contracts from the

outset. We restrict the analysis to threshold strategies; that is, the principal reappoints

the agent if and only if the principal’s payoff is above a particular threshold. The main

results of the second part are:

4. We characterize equilibria with threshold contracts.

5. We establish conditions under which threshold contracts are welfare-improving, or

beneficial from each of the players’ point of view.

6. We illustrate our findings by examples.

7. Finally, we outline various ways to embed the game into larger games, and we

discuss how to eliminate equilibria in which the agent’s effort is low.
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Relation to the literature

Barro (1973), Ferejohn (1986), and Austen-Smith and Banks (1989) have examined re-

peated elections in the presence of moral hazard. Acting as the principal, voters try to

motivate office-holders to work hard. Reappointment decisions, rather than compensa-

tion contracts1, are the only motivational tool available to the principal. Radner (1986)

explores the incentive effects of different strategies to review the agent’s performance

once every k periods and to deselect the agent if the average performance is below some

cut-off level.

In Ferejohn (1986) and Austen-Smith and Banks (1989), the voters choose a reelection

rule to motivate incumbents to take costly actions. The threat of deselection enables

the voters to rein the politicians back. The retrospective voting rule2 used by the voters

gives the incumbents maximal incentive. The principal’s reappointment decision must

be an equilibrium response after he has observed the payoff. Our basic set-up is quite

similar, yet we focus on equilibria involving simple cut-off rules: the current incumbent

is reelected as long as the utility of the voters is above a certain threshold.

In its quest for equilibrium reappointment responses, our paper is closest—and comple-

mentary—to the seminal work of Banks and Sundaram (1993). They allow for both

adverse selection and moral hazard in a model with infinite time horizon. In a second

paper, Banks and Sundaram (1998) identify equilibrium retention rules when the agent

faces a limit of two terms in office.

In contrast to Banks and Sundaram (1993), we focus on stationary Markovian strategies,

rather than trigger strategies. Further, we consider the consequences arising when the

agent can use a threshold contract to commit to a threshold performance level he will

have to achieve in order to stand for reappointment. We explore the circumstances

under which cut-off rules provide high incentives for incumbents and identify cases when

threshold contracts are necessary to generate favourable outcomes.

Our work provides a foundation for threshold contracts as discussed in Gersbach (2012)

and examined in a one-shot game in Gersbach and Liessem (2008). The consequences of

the repeated application of threshold contracts have not yet been explored. This is the

topic of the present paper.

1There is a much larger body of literature on compensation contracts (see Bolton and Dewatripont,
2005).

2See Fiorina (1981) for an in-depth discussion of such voting rules.
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Structure of the paper

Our paper is organized as follows: In Section 2 we describe the game and introduce

the equilibrium concept we are going to use. In Section 3 we introduce the concept of

stationary Markovian strategy and stationary Markovian equilibrium. We then deter-

mine the stationary Markovian equilibria of the reappointment game. We illustrate our

findings for the example of uniformly distributed noise. In Section 4 we analyse the

effects of threshold contracts prohibiting reappointment if the principal’s utility is below

the threshold defined in the contract. Section 5 contains several examples illustrating

our findings. In Section 6 we discuss variants of the model. In particular, we extend

our model by the principal’s initial decision on whether to appoint the agent or not and

examine the consequences of this extension. Section 7 concludes.

2. The Reappointment Game

We consider a reappointment game with a potentially infinite number of periods, played

by a principal (“voter”) and an agent (“politician”). Time is indexed by t = 1, 2, . . .

The agent is already in office at the beginning of period 1. At the end of each period,

the principal decides whether to renew the agent’s contract for the next period. We call

this reappointment. If the agent is reappointed, he stays in office and the game continues

for (at least) one more period; if he is not reappointed, the reappointment game ends.

As long as the agent is in office, he chooses a level of effort et ∈ [e; esup) ⊆ R with

e < esup ≤ ∞ at the beginning of each period t. From this effort level et, the agent

derives utility v(et) in period t. The utility function v : [e; esup) → R is assumed to be

strictly decreasing and strictly concave with lime→esup v(e) = −∞. Thus the agent faces

increasing disutility as well as increasing marginal disutility of effort, and circumstances

become unbearable when effort approaches its theoretical maximum.

The agent discounts future utility with a per-period discount factor of β ∈ (0; 1). If he

is not in office, his fixed per-period utility will be v∗, which thus is his outside option.

In order to rule out trivial cases, we assume v(e) > v∗. This means that to his outside

option the agent will prefer the situation where he is in office exerting the least possible

effort. The agent is also assumed to be risk-neutral.
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For t ∈ N∗ and τ ∈ N0, let rt,τ denote the subjective probability with which, at the

beginning of period t, the agent believes that he will still be in office in period t + τ .

As the agent can only be recalled at the end of a period, we have rt,0 = 1. The agent’s

intertemporal expected utility at the beginning of period t is given by

vt :=

∞∑

τ=0

rt,τβ
τv(et+τ ) +

∞∑

τ=1

(1− rt,τ )βτv∗ ,

which can be rewritten as

vt = (1− β)−1v∗ +

∞∑

τ=0

rt,τβ
τ
(
v(et+τ )− v∗

)
. (1)

When the agent is in office in period t and his effort is et, the principal’s utility in period t

shall be given by

wt := et + at,

where at is a realization of a random variable At representing stochastic fluctuations of

the environment beyond the control of the decision-maker. These are called “noise”.

The random variables At are assumed to be stochastically independent across time and

identically distributed with E[At] = 0 for all t. We use the capital letter At for the

random variables and the corresponding small letter at for their realizations. Further,

we drop the index t in connection with the random variable A when the period does

not matter. The principal is risk-neutral and discounts future utility with a per-period

factor of γ ∈ (0; 1). We use w∗ to denote the principal’s per-period expected utility when

the agent is not in office. Thus, w∗ is the principal’s outside option.

Analogously to rt,τ , we use st,τ to denote the principal’s period-t belief that the agent

will be in office in period t + τ . Trivially, st,0 = 1. Since E[A] = 0, the principal’s

expected utility at the beginning of period t is given by

wt :=

∞∑

τ=0

st,τγ
τet+τ +

∞∑

τ=1

(1− st,τ )γτw∗,

which can be rewritten as

wt = (1− γ)−1w∗ +

∞∑

τ=0

st,τγ
τ (et+τ − w∗) . (2)

In each period, the agent has to choose his effort level et before the noise level At is
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realized. The principal observes the realized utility level wt before deciding on reap-

pointment, but neither the effort level et nor the noise level at are imparted to him. The

chronological sequence in each period is as follows:

1. The agent chooses his effort level et, which is private information and cannot be

observed by the principal.

2. Principal and agent observe the principal’s utility level wt.

3. The principal decides whether to reappoint the agent or not.

Formally, every pure strategy of the agent can be described by an infinite sequence

e = (e1, e2, . . . ) of measurable functions et : R
t−1 → [e; esup). The value et(w1, . . . , wt−1)

is the effort level chosen by the agent in period t if he is still in office in that period

and utility levels of w1, . . . , wt−1 have been realized in the previous periods. The first

function e1 is a constant. Analogously, every pure strategy of the principal is given by a

sequence p = (p1, p2, . . . ), with pt : R
t → {0, 1} being measurable functions. The value

pt(w1, . . . , wt) = 1 indicates that the principal reappoints the agent at the end of period

t after having observed utility levels of w1, . . . , wt.

For τ ≥ 1, we define δt,τ by

δt,τ (pt, . . . , pt+τ−1;w1, . . . , wt+τ−1) := pt(w1, . . . , wt) · . . . · pt+τ−1(w1, . . . , wt+τ−1).

In addition, we set δt,0 := 1. Thus δt,τ indicates whether the agent will be in office in

period t+τ , provided that he is in office in period t. To simplify notation, we sometimes

write functions that depend only on a finite number of past values as functions of the

entire series of all past and future values, which means we will write expressions like

pt(w) and δt,τ (p; w) instead of pt(w1, . . . , wt) and δt,τ (pt, . . . , pt+τ−1;w1, . . . , wt+τ−1),

with w := (w1, w2, . . . ).

Note that δt,τ is defined for values of p and w that would, in fact, lead to the agent’s

recall before period t; in these cases, δt,τ is to be understood as a hypothetical statement:

Suppose the agent were in office in period t, would he persist until period t+ τ? We will

use this hypothetical question to define the equilibrium concept.

The players’ subjective probabilities rt,τ and st,τ that the agent will be in office in

period t + τ provided he is in office in period t are given by the expected value of

δt,τ , conditioned on the players’ assumptions about each other’s behaviour and their

information about the future. Hence, if we use P to denote the probability measure
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underlying the model, and if we assume that the players are correctly informed and

rational when developing their expectations, we have, for τ ≥ 1,

rt,τ = st,τ =

∫
δt,τ
(
pt, . . . , pt+τ−1;w1, . . . , wt−1, et +At, . . . , et+τ−1 +At+τ−1

)
dP.

Placing these probabilities in expressions (1) and (2), we obtain the players’ expected

future payoffs as functions vt and wt of the strategies e and p chosen by the players and

of a vector of the principal’s utility levels (w1, . . . , wt−1), respectively.

We introduce some notation. The symbol Γ(−∞) is used to denote the reappointment

game just defined. We use Σ̃P(−∞) to denote the principal’s strategy space, while Σ̃A

stands for the agent’s strategy space. The meaning of the argument −∞ will become

clear in Section 4, where we introduce threshold contracts. For the time being, it should

be considered as a mere notational item.

Now we can introduce the equilibrium concept we shall be using:

Definition 1 (equilibrium). A pair (e,p) ∈ Σ̃A × Σ̃P(−∞) is called an equilibrium of

the reappointment game Γ(−∞) if for all t ∈ N∗ and for all (w1, . . . , wt−1) ∈ Rt−1 the

following conditions hold:

(i) vt
(
e,p;w1, . . . , wt−1

)
≥ vt

(
e′,p;w1, . . . , wt−1

)
for all e′ ∈ Σ̃A,

(ii) wt

(
e,p;w1, . . . , wt−1

)
≥ wt

(
e,p′;w1, . . . , wt−1

)
for all p′ ∈ Σ̃P(−∞).

The definition means that in equilibrium both players intend to behave optimally in

any period—regardless of whether this point will actually be reached or not—and that

their assumptions about the opponent’s strategy conform to the strategy that is actually

played. Thus, the equilibrium concept employed is, in fact, subgame-perfectness.

3. Stationary Markovian Strategies

3.1. Definition

The structure of the game remains the same as long as the agent is reappointed. Ac-

cordingly, we focus on equilibria where the players’ behaviour is persistent. We call such
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equilibria stationary Markovian equilibria3 and define them as follows:

Definition 2 (Markovian strategies, stationary strategies).

(i) A strategy e = (e1, e2, . . . ) of the agent is called a Markovian strategy if the agent’s

behaviour does not depend on any previous utility level of the principal, i. e. if all

the et are constant functions. A strategy p = (p1, p2, . . . ) of the principal is called

Markovian if no pt depends on the principal’s utility levels w1, . . . , wt−1 from earlier

periods.

(ii) A Markovian strategy is called stationary if all elements of the strategy vector

are equal. We use ΣA to denote the set of all the agent’s stationary Markovian

strategies and ΣP(−∞) to denote the set of all the principal’s stationary Markovian

strategies.

(iii) An equilibrium (e,p) is called a Markovian equilibrium if both e and p are Marko-

vian strategies. Analogously, an equilibrium (e,p) is called a stationary Markovian

equilibrium if both e and p are stationary Markovian strategies.

Note that the definition of stationarity is sensible in the Markovian case because the

elements of the strategy vectors can be seen as choices of a constant value in [e; esup) (for

the agent) or as functions of one argument (for the principal). Accordingly, “equality”

of the elements across various periods is well-defined. The “Markovian strategy” notion

is motivated by the fact that, with such strategies, a player’s action is a response to the

last action of the opponent only.

With Markovian strategies e and p, the utility levels vt(e,p,w) and wt(e,p,w) do not

depend on the noise levels realized previously, so in that case we can omit the third

argument and simply write vt(e,p) and wt(e,p). Since stationary Markovian strategies

are determined by a single function p or number e, we will simply write p or e for such

strategies. If both the agent and the principal pursue stationary Markovian strategies,

we simply write v(e, p) and w(e, p) instead of vt(e, p) and wt(e, p). Special stationary

Markovian strategies are given by the constant functions

0 : R→ {0, 1}, w 7→ 0,

3In Sections 1 and 3 of their paper, Haller and Lagunoff (2000) discuss the restrictiveness of Markovian
strategies in great detail, and give a comprehensive literature overview.
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under which the agent is never reappointed, regardless of the principal’s utility level,

and

1 : R→ {0, 1}, w 7→ 1,

under which the agent is always reappointed.

In the case of stationary Markovian strategies, many of the above formulae can be greatly

simplified. In particular, we can frequently drop the index t. Using

q(e, p) :=

∫
p(e+A) dP (3)

to denote the probability that the agent will be reappointed at the end of a period in

which he was in office, we have rt,τ = st,τ = q(e, p)τ .

We use v(e, q) to denote the agent’s expected utility if he exerts effort e as long as he is

in office and the probability of reappointment is q in each period. The expected utility

amounts to

v(e, q) = (1− β)−1v∗ +
∞∑

t=0

qtβt
(
v(e)− v∗

)

= (1− β)−1v∗ +
v(e)− v∗
1− qβ . (4)

The corresponding expected utility of the principal is denoted by w(e, q) and given by

w(e, q) = (1− γ)−1w∗ +

∞∑

t=0

qtγt
(
e− w∗

)

= (1− γ)−1w∗ +
e− w∗
1− qγ . (5)

With these definitions, we have

v(e, p) = v
(
e, q(e, p)

)
and w(e, p) = w

(
e, q(e, p)

)
. (6)

3.2. Characteristics of equilibrium

As the following proposition states, stationary Markovian equilibrium can be character-

ized by considering only stationary Markovian deviations:
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Figure 1: Indifference curves of the principal (green) and the agent (blue). The red line is
the function e 7→ q(e, p) with a threshold strategy and for uniformly distributed
noise (i. e. for A being uniformly distributed on some interval [−a; a] ⊆ R).

Proposition 1. A pair (e∗, p∗) ∈ ΣA × ΣP(−∞) of stationary Markovian strategies is

an equilibrium of the game Γ(−∞) if and only if v(e∗, p∗) ≥ v(e, p∗) for any stationary

Markovian strategy e ∈ ΣA of the agent and w(e∗, p∗) ≥ w(e∗, p) for any stationary

Markovian strategy p ∈ ΣP(−∞) of the principal.

The proposition reflects Bellman’s principle of optimality4. If the opponent pursues a

stationary Markovian strategy, the situation in which a player has to decide remains the

same in each period. Hence, if the player could profitably deviate from his strategy in

one period, it would be profitable to repeat this deviation in all subsequent periods. The

proof of the proposition is based on this idea and is given in the Appendix A.1.

Together with Equations (4), (5), and (6), the proposition permits an instructive graph-

ical illustration of the players’ decision problems.

Consider Figure 1. The variables that appear in it will be explained shortly. The blue

curves are indifference curves of the agent, along which v is constant. As can be seen

from solving Equation (4) for q, they are copies of the graph of the function e 7→ v(e),

mirrored and scaled vertically. If the agent’s indifference curves were extended to values

of q strictly larger than 1 by permitting such values of q in Equation (4) (which would

4“An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision” (Bellman, 1957, p. 83).
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not make sense economically), they would intersect at the point (eindiff; 1/β), with eindiff

determined by the condition v(eindiff) = v∗. The farther to the left an indifference curve

is, the higher is its associated utility level v(·, ·).

The indifference curves of the principal are described by Equation (5), with w being held

constant. In Figure 1 they are represented by the green straight lines intersecting at the

point (w∗; 1/γ). The more a green line inclines to the right, the higher the represented

utility level w.

By Equation (3), a strategy p of the principal leads to a function q(·, p) : e 7→ q(e, p)

that relates effort levels to reappointment probabilities. As a special case, we shall be

examining threshold strategies, which we will now define. For any set C, we use 1C to

denote its indicator function, i. e.

1C(x) :=





1 for x ∈ C,

0 for x /∈ C.

Definition 3. A threshold strategy (with threshold b ∈ [−∞; +∞]) is a stationary

Markovian strategy p ∈ ΣP(−∞) of the principal such that p(w) = 1[b;∞)(w) for all

w ∈ R, i. e. the agent is reappointed if and only if the principal’s period utility has

reached threshold b.

For thresholds −∞ and +∞, we obtain two special cases of a threshold strategy. If

the threshold is −∞, the principal always reappoints the agent—formally, we have

1[−∞;∞) = 1. If the threshold is +∞, the agent is never reappointed—we have 1[+∞;∞) =

0. If p is a threshold strategy with a finite threshold b ∈ (−∞; +∞), then the function

q(·, p) is the cumulative distribution function of −A, shifted to the right by b units:

q(e, p) =

∫
1e+A≥b dP = P (−A ≤ e− b) = F−A(e− b).

The red line in Figure 1 shows the function q(·, p) with such a threshold strategy and

for uniformly distributed noise.

A pair (e, p) ∈ ΣA×ΣP(−∞) is a stationary Markovian equilibrium of the game Γ(−∞)

if and only if (i) the point
(
e, q(e, p)

)
is a contact point of the graph of q(·, p) (red

line) and the uppermost indifference curve of the agent that is touched by the graph,

and (ii) no reappointment strategy p′ exists for which
(
e, q(e, p′)

)
is located on a higher

indifference curve of the principal than
(
e, q(e, p)

)
.
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Since by choosing the effort level e the agent can always ensure a utility level of at

least v(e, 0) for himself, the agent’s utility in any equilibrium must be at least v(e, 0).

Graphically, this means that point
(
e, q(e, p)

)
must not lie below the indifference curve

that runs through point (e, 0). In particular, there are no equilibria (e, p) with e > e,

where we use e to denote the effort level at which this indifference curve intersects the

horizontal straight line defined by q = 1. Formally, e is determined by the equation

v(e, 1) = v(e, 0).

Since v is assumed to be strictly decreasing, since v(e) > v∗, and since lime→esup v(e) =

−∞, the effort level e is well-defined and unique; furthermore, e < e < eindiff. Consider

any e ∈ [e; esup). Then, we have e ≤ e if and only if v(e, 1) ≥ v(e, 0), i. e. if and only if

v(e) + βv∗ ≤ v(e) + βv(e),

which is equivalent to

v(e)− v(e) ≤ β
(
v(e)− v∗

)
. (7)

Hence, e ≤ e if and only if the gain in utility from behaving sluggardly today, i. e.

choosing e instead of e, is not higher than the gain from being in office in the next

period and behaving sluggardly then.

Now we can give necessary and sufficient conditions for a stationary Markovian equilib-

rium. For this purpose we define

E := [e; e] \ (e;w∗).

Proposition 2. Consider the game Γ(−∞).

(i) Let (e, p) be a stationary Markovian equilibrium. If e < w∗, then q(e, p) = 0; if

e > w∗, then q(e, p) = 1.

(ii) A “critical” effort level ecrit ∈ E exists such that the following statements hold:

(a) If (e, p) is a stationary Markovian equilibrium, then e ∈ E with e ≤ ecrit.

(b) For every e ∈ E with e ≤ ecrit, a strategy p exists such that the pair (e, p) is a

stationary Markovian equilibrium.

(iii) If w∗ ≥ e, then the pair (e, 0) is a stationary Markovian equilibrium.
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Figure 2: If the red line is shifted to the left, the position of the optimum relative to the
red line does not change.

(iv) If w∗ ≤ e, then the pair (e, 1) is a stationary Markovian equilibrium.

Note that in Part (ii) we did not state ecrit > w∗; hence the set of effort levels e ∈ E
with e ≤ ecrit may degenerate to {e} or {e, w∗}.

Proof. Part (i): Consider a pair (e, p) with e < w∗. Since w(e, 0) > w(e, p) for any p

with q(e, p) > 0 (which reflects the fact that the principal strictly prefers his “outside

option” of w∗ to the agent’s exerting effort below w∗), a necessary condition for (e, p) to

be an equilibrium is q(e, p) = 0.

If e > w∗, the principal is strictly better off with the agent than without him, so w(e, 1) >

w(e, p) for any p with q(e, p) < 1, which means a necessary condition for (e, p) to be an

equilibrium is q(e, p) = 1.

Part (ii): Let (e, p) be an equilibrium with e < w∗. From Part (i) we know that

q(e, p) = 0. This implies v(e, 0) > v(e, p) for e > e. Thus, for a pair (e, p) with

e < w∗ to be an equilibrium, e must equal e. In addition, for e > e and any p,

we have v(e, p) < v(e, 1) = v(e, 0) ≤ v(e, p); hence (e, p) will not be an equilibrium.

These considerations show that e ∈ E is a necessary condition for a pair (e, p) to be an

equilibrium.

We will demonstrate the following:
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Fact. Let (e, p) be an equilibrium with w∗ < e ≤ e and let e′ ∈ [w∗; e]. Then, a strategy

p′ of the principal exists such that (e′, p′) is an equilibrium as well.

From this fact one can readily conclude that the set of effort levels within [w∗; e] which

can occur in equilibrium is either empty or a non-empty interval of the form [w∗; ecrit)

or [w∗; ecrit], for some ecrit. Lemma 1 below, which we shall prove without recourse to

Proposition 2, tells us that such an interval must be closed from above; hence the Fact

and Lemma 1 together yield Part (ii).

We prove the Fact, using Figure 2 to develop the argument. Since the effort level e is

optimal for the agent, the point in which the red line touches the highest of the agent’s

indifference curves is
(
e, q(e, p)

)
. From Part (i) we know that necessarily q(e, p) = 1,

which means that the point is associated with a reappointment probability of one. When

the solid red line is shifted to the left by e − e′ units (dotted red line), the agent’s

optimal point is shifted to the left by e − e′ units as well—to the point (e′, 1) —, since

the agent’s indifference curves become only flatter as one moves to the left. Thus, if(
e, q(e, p)

)
= (e, 1) is optimal for the agent under the reappointment scheme represented

by the solid red line, (e′, 1) is optimal for the agent under the reappointment scheme

represented by the dotted red line. A shift of the red line corresponds to a shift of p.

Hence we should shift p by e′ − e units to attain e′ as an equilibrium effort level.

Formally, we define p′ by p′(w) := p(w− e′ + e) and show that (e′, p′) is an equilibrium.

We first prove that v(ẽ′, p′) ≤ v(e′, p′) for any strategy ẽ′ of the agent. For ẽ′ ≥ e′ the

inequality is obvious; hence we are restricted to the case ẽ′ < e′. Let ẽ := ẽ′ + e − e′.
Since (e, p) is an equilibrium, v(ẽ, p) ≤ v(e, p), which implies

1− βq(e, p)

1− βq(ẽ, p)
≤ v(e)− v∗
v(ẽ)− v∗

.

By the strict concavity of v, the right-hand side is strictly less than
(
v(e′)−v∗

)
/
(
v(ẽ′)−

v∗
)
. Hence, since q(e, p) = q(e′, p′) and q(ẽ, p) = q(ẽ′, p′),

1− βq(e′, p′)
1− βq(ẽ′, p′)

<
v(e′)− v∗
v(ẽ′)− v∗

,

and, therefore, v(ẽ′, p′) < v(e′, p′).5

5For this reasoning, a reappointment probability of one is not necessary. It is generally true that if the
red line is shifted to the left, the best response only moves to the right (or does not change), relative
to the red line. Thus a best response will never drop by more than δ units due to a left-shift of p by
δ units. This argument underlies Part (iv) of Lemma 2.
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Since q(e′, p′) = 1 and e′ ≥ w∗, we have w(e′, p̃′) ≤ w(e′, p′) for any strategy p̃′ of the

principal. Thus, the principal will not want to deviate from (e′, p′).

Part (iii): Since e is the smallest effort level the agent can choose, we have v(e′) ≤ v(e)

for all e′. This implies v(e′, 0) ≤ v(e, 0); hence the agent, who assumes that the principal

will never reappoint him, has no incentive to deviate from choosing e. If w∗ ≥ e, then

w(e, 0) ≥ w(e, p) for all p; hence the principal will not deviate, either. This shows that

(e, 0) is an equilibrium.

Part (iv): Similar to the last paragraph, we have v(e′, 1) ≤ v(e, 1) for all e′. Further, if

w∗ ≤ e, we have w(e, 1) ≥ w(e, p) for all p. Hence, (e, 1) is an equilibrium.

It remains to state Lemma 1, used in the proof of Proposition 2:

Lemma 1. Consider a sequence of stationary Markovian equilibria
(
(en, pn)

)∞
n=1

such

that en ∈ (e; e] for all n. Suppose the sequence (en)∞n=1 of effort levels is strictly increasing

and converges to some effort level ẽ ∈ (e; e]. Then a strategy p̃ ∈ ΣP(−∞) exists such

that (ẽ, p̃) is an equilibrium.

The Lemma is proved in Appendix A.1.

3.3. Example: Uniform distribution

To illustrate the results obtained so far, we derive the stationary Markovian equilibria in

the case of uniform noise distribution. We will pick this example up again in Section 5.2,

when we illustrate the effects of a threshold contract. Note that as the function v is

assumed to be concave, the left-hand derivative ∂−v exists everywhere in (e; esup).

Proposition 3. Let the noise A be uniformly distributed on an interval [−a; a] ⊆ R for

some a > 0. Let e∗ ∈ (e; eindiff). A stationary Markovian strategy p∗ such that (e∗, p∗)

is an equilibrium of the game Γ(−∞) exists if and only if w∗ ≤ e∗ ≤ e and

− ∂−v(e∗)
v(e∗)− v∗

≤ β

1− β ·
1

2a
. (8)

p∗ can be chosen as p∗(w) = 1[e∗−a;∞)(w).

16



Proof. Sufficiency. Consider an arbitrary effort level e∗ ∈ [w∗; e] satisfying Condition (8).

We will demonstrate that (e∗, p∗) with

p∗ = 1[e∗−a;∞) (9)

is an equilibrium. Since q(e∗, p∗) = 1 and, by assumption, e∗ ≥ w∗, the strategy p∗ is a

best response of the principal to the agent’s playing e∗.

It remains to be shown that e∗ is a best response of the agent to the strategy p∗ of

the principal. We shall do this with the help of Figure 1. The function e 7→ q(e, p∗) is

depicted by the red line. Since p∗ is given by (9), the kinks of the red curve are located

at e∗ − 2a and e∗. Recall that the agent’s best response to p∗ is determined by that

point on the red curve which yields the highest utility for the agent.

The slope of the agent’s indifference curve running through the point (e∗, 1) is given by

−1− β
β
· ∂

−v(e∗)
v(e∗)− v∗

.

Thus, Inequality (8) ensures that the graph of e 7→ q(e, p∗) (the red line) does not cross

the agent’s indifference curve there. Since the agent’s indifference curves are strictly

convex and since the red line is concave on the interval [e∗ − 2a;∞) (i. e. to the right of

the first kink), Condition (8) guarantees that e∗ is the unique best response of the agent

on the interval [e∗ − 2a;∞).

The additional condition e∗ ≤ e ensures that v(e∗, p∗) ≥ v(e, p∗), which implies that no

effort level left to the kink is better for the agent than e∗.

Necessity. Let (e∗, p∗) be a stationary Markovian equilibrium with e∗ ∈ (e; esup). From

Proposition 2 it follows that w∗ ≤ e∗ ≤ e. If Inequality (8) is violated, the blue indif-

ference curve passing through (e∗, 1) is steeper than the red line, which means that the

agent can improve his utility by deviating from e∗ towards lower effort levels. Hence,

Condition (8) is necessary.

The left-hand side of Inequality (8) is monotonically increasing in e∗. The critical effort

level ecrit from Proposition 2 is, therefore, the supremum of the values within E that

satisfy Inequality (8). We conclude the example by observing that ecrit will decline if the

variance of the noise increases, i. e. if ā is larger. Hence for a suitably high, equilibrium-

supporting effort levels above e do not exist.
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4. Threshold Contracts

We now turn to the examination of threshold contracts. In Section 4.1 we explain

their consequences for the reappointment game. We focus on equilibria in which the

principal pursues a threshold strategy. Such equilibria are called threshold equilibria.6

In Section 4.2 we start analysing threshold contracts. In Section 4.3 we introduce the

notion of a welfare function and show the existence of a welfare-maximizing threshold

equilibrium. Section 4.4 addresses dominance and uniqueness questions. In Section 4.5

we examine the maximization of the principal’s utility, and Section 4.6 deals with utility

maximization from the agent’s point of view.

4.1. The reappointment game with a threshold contract

We assume that the agent can commit to a reappointment threshold at the beginning of

the game. Such a commitment is called a threshold contract. It works as follows: The

agent announces a certain threshold τ ∈ [−∞; +∞]. The principal is not allowed to

reappoint the agent after a period in which the principal’s utility falls below τ , even if

he would like to do so. The commitment, however, is not binding in the other direction,

i. e. there is no obligation for the principal to reappoint the agent if the threshold has

been reached. We use Γ(τ) to denote the reappointment game with threshold τ . Since

committing to τ = −∞ is equivalent to no commitment at all, this notation is consistent

with our previous definition of Γ(−∞) denoting the reappointment game without a

threshold contract.

What are the consequences of a threshold contract? Formally, the reappointment thresh-

old τ restricts the principal’s strategy space to strategies (p1, p2, . . . ) ∈ Σ̃P(−∞) that

for all t ≥ 1 satisfy the constraint

pt(w1, . . . , wt) = 0 for wt < τ. (10)

We use Σ̃P(τ) to denote the set of all such strategies; thus Σ̃P(τ) is the principal’s

strategy space in the game Γ(τ). The agent’s strategy space is not affected by the

threshold contract and is given by Σ̃A.

6In a technical companion paper (Becker and Gersbach, 2011), we provide sufficient conditions on the
distribution of the noise which ensure that the restriction to threshold strategies does not limit the
scope of the principal.
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For stationary Markovian strategies p, Constraint (10) becomes

p(w) = 0 for w < τ,

which is equivalent to

p(w) ≤ 1[τ ;∞)(w) for all w. (11)

We use ΣP(τ) to denote the set of all stationary Markovian strategies of the principal

that satisfy this constraint.

By replacing the argument −∞ by τ everywhere in Definition 1, we can generalize the

definition of equilibrium given there to Γ(τ) for arbitrary τ ∈ [−∞; +∞]. Thus it is

clear what we mean by an equilibrium of the game Γ(τ). Similarly, Proposition 1 can

be generalized to all games Γ(τ). The proof carries over readily (with one single change

described in footnote 9 on page 51).

A threshold contract can have two effects:

1. Equilibria can disappear as they involve a reappointment strategy of the principal

that is not possible under the commitment.

2. New equilibria can arise as the commitment excludes reappointment strategies that

would be profitable deviations for the principal.

As the following proposition clarifies, the first effect does indeed describe the only reason

why equilibria may disappear.

Proposition 4. Consider thresholds σ, τ with −∞ ≤ σ ≤ τ ≤ ∞. If (e, p) ∈ ΣA×ΣP(τ)

is an equilibrium of the game Γ(σ), then (e, p) is an equilibrium of the game Γ(τ).

Since the statement is obvious, a detailed proof is not needed. From the proposition,

together with Part (iii) of Proposition 2, we immediately obtain a corollary:

Corollary 1. Suppose w∗ ≥ e. Then for all τ ∈ [−∞; +∞], the pair (e, 0) is an

equilibrium of the game Γ(τ).

The equilibrium (e, 0) continues to exist in the presence of a threshold contract, as a

threshold contract never prevents the principal from choosing p = 0.
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In Proposition 2 we saw that, without a threshold contract, any stationary Markovian

equilibrium (e∗, p∗) with an effort level strictly above w∗ necessarily involves a reap-

pointment probability q(e∗, p∗) of one. The reason for this is intuitive. The principal

is willing to reappoint the agent with a probability of one if he expects the agent to

exert effort higher than w∗, since his expected utility from keeping the agent is higher

than the expected utility from firing him. If there is no threshold contract, the principal

can achieve a reappointment probability of one by switching to the strategy of always

reappointing (i. e. formally the strategy 1). This means that from any strategy profile

(e, p) with e > w∗ and q(e, p) < 1 the principal can deviate profitably to the strategy 1;

hence (e, p) cannot be an equilibrium.

Under a threshold contract, equilibria involving a reappointment probability of strictly

less than one may become possible even if the effort level is strictly greater than w∗,

since the threshold may prevent the principal from switching to a higher probability of

reappointment in cases in which he would like to do so. In equilibrium, nevertheless,

the principal will reappoint the agent with the highest probability permitted by the

threshold contract. These considerations lead to the following proposition:

Proposition 5. Consider the game Γ(τ) for some τ ∈ [−∞; +∞]. Let (e, p) be a

stationary Markovian equilibrium. If e < w∗, then e = e and q(e, p) = 0; if e > w∗, then

q(e, p) = q(e,1[τ ;∞)). �

Both Corollary 1 and Proposition 5 generalize some of the statements of Proposition 2.

Proposition 5 is a generalization of Part (i) of Proposition 2, and Corollary 1 is a gener-

alization of Part (iii). Parts (ii) and (iv) of Proposition 2 do not carry over to the case

of non-trivial threshold contracts.7

4.2. Threshold strategies, threshold equilibria, and best responses

Our focus is on equilibria in which the principal pursues a threshold strategy; we are

going to call such an equilibrium a threshold equilibrium:

Definition 4. A stationary Markovian equilibrium (e, p) ∈ ΣA×ΣP(τ) of the game Γ(τ)

with τ ∈ [−∞; +∞] is called a threshold equilibrium of Γ(τ) if p is a threshold strategy

(i. e. if p = 1[b;∞) for some b ∈ [τ ; +∞]).

7See Section II.7.4 of Becker (2011) for counter-examples.
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For any threshold b, we use R(b) to denote the set of the agent’s best responses to the

threshold strategy 1[b;∞), i. e.

R(b) :=
{
e ∈ [e; esup)

∣∣∣ v(e,1[b;∞)) ≥ v(e′,1[b;∞)) for all e′ ∈ [e; esup)
}
.

Obviously, R(b) ⊆ [e; e] for all b ∈ [−∞; +∞]. We are now in a position to characterize

the threshold equilibria of the game Γ(τ):

Proposition 6. For any τ ∈ [−∞; +∞], consider the game Γ(τ). A pair (e,1[b;∞)) with

e ∈ [e; eindiff) and b ∈ [τ ;∞] is an equilibrium of Γ(τ) if and only if e ∈ R(b) and one of

the following conditions holds:

(i) e > w∗ and q(e,1[b;∞)) = q(e,1[τ ;∞)),

(ii) e = w∗,

(iii) e = e < w∗ and q(e,1[b;∞)) = 0.

In particular, any pair (e,1[τ ;∞)) with e ∈ R(τ), e ≥ w∗, is an equilibrium of Γ(τ).

Proof. The “only if” part is clear by the definition of R(·) and by Proposition 5. We

now turn to the “if” part. The condition e ∈ R(b) means that the agent does not

have an incentive to deviate from e. Now suppose the principal had the incentive to

deviate to some stationary Markovian strategy p, which would mean that w(e, p) >

w(e,1[b;∞)). For e > w∗, this would imply q(e,1[τ ;∞)) ≥ q(e, p) > q(e,1[b;∞)), violating

the assumption q(e,1[b;∞)) = q(e,1[τ ;∞)). For e = w∗, we trivially have w(e, p) = w∗ =

w(e,1[b;∞)). For e = e < w∗, the inequality w(e, p) > w(e,1[b;∞)) implies q(e, p) <

q(e,1[b;∞)), which is impossible if q(e,1[b;∞)) = 0.

The proposition enables us to answer the question which strategy profiles (e,1[b;∞)) are

a threshold equilibrium of any of the games Γ(τ): Let T be the set of all such strategy

profiles, i. e. let

T :=
{

(e,1[b;∞)) ∈ ΣA × ΣP(−∞)
∣∣∣

∃ τ ∈ [−∞; +∞] : (e,1[b;∞)) is an equilibrium of Γ(τ)
}
.

The above proposition yields the following corollary:
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Corollary 2. For e ≥ w∗, we have

T =
⋃

τ∈[−∞;+∞]

{
(e,1[τ ;∞))

∣∣ e ∈ R(τ)
}
,

and for e < w∗, we have

T =
⋃

τ∈[−∞;+∞]

{
(e,1[τ ;∞))

∣∣∣ e ∈ R(τ), e ≥ w∗
}

∪
⋃

τ∈[−∞;+∞]

{
(e,1[τ ;∞))

∣∣∣ e ∈ R(τ), q(e,1[τ ;∞)) = 0
}
.

Proof. Proposition 6 tells us that the sets on the right-hand sides of the equations are

contained in T . We demonstrate the reverse inclusion, i. e. we show that T is contained

in the sets on the right-hand sides of the equations. Consider any element (e, p) of T .

Then, thresholds b, τ ∈ [−∞; +∞] exist such that p = 1[b;∞) and (e, p) is an equilibrium

of Γ(τ). By Proposition 4, (e, p) is an equilibrium of Γ(b) as well. Proposition 6 yields

e ∈ R(b) and, further, (A) e ≥ w∗, or (B) e = e < w∗ and q(e,1[b;∞)) = 0.

It is useful to consider the “joint graph” of R(·) and q(·,1[·;∞)), by which we mean the

set

G :=
{

(b, e, q) ∈ [−∞; +∞]× [e; e]× [0; 1]
∣∣∣ e ∈ R(b), q = q(e,1[b;∞))

}
.

The sets G and T are closely related: With the definition

GT :=
{

(b, e, q) ∈ G
∣∣∣ e ≥ w∗ or

(
e = e and q = 0

)}
,

Corollary 2 yields

T =
{

(e,1[b;∞))
∣∣ ∃q ∈ [0; 1] : (b, e, q) ∈ GT

}
. (12)

In the next lemma, we summarize several properties of R(·), G, and GT :

Lemma 2 (Properties of R(·), G, and GT ).

(i) For each b ∈ [−∞; +∞], the set R(b) is non-empty and compact.

(ii) R(−∞) = R(+∞) = {e} and lim
b→−∞

(
maxR(b)

)
= lim

b→+∞

(
maxR(b)

)
= e.

(iii) The sets G and GT are compact.
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(iv) Consider b′, b′′ ∈ (−∞;∞) with b′ < b′′. Then, minR(b′) ≥ maxR(b′′)− (b′′ − b′).
In particular, q(e′,1[b′;∞)) ≥ q(e′′,1[b′′;∞)) for each e′ ∈ R(b′) and each e′′ ∈ R(b′′).

(v) Consider any threshold b and any e ∈ R(b). Then, for all e′ with e ≤ e′ ≤ e, some

b′ ≤ b exists such that e′ ∈ R(b′).

The proof is given in Appendix A.2. Note that the set [−∞; +∞] is the extended real

line; hence Part (iii) of the lemma does not imply that G is bounded—which would be

obviously wrong, since the set G contains the points (−∞, e, 1) and (+∞, e, 0). Part (i)

of the lemma enables us to prove the existence of equilibrium for the game Γ(τ):

Corollary 3. For each τ ∈ [−∞; +∞], the game Γ(τ) possesses a threshold equilibrium.

Proof. If w∗ ≥ e, Corollary 1 tells us that for each τ ∈ [−∞; +∞], the pair (e, 0) is an

equilibrium of Γ(τ). Consider now the case w∗ < e and any τ ∈ [−∞; +∞]. By Part (i)

of Lemma 2, a best response e ∈ R(τ) exists. By Proposition 6, the pair (e,1[τ ;∞)) is

an equilibrium.

Part (iv) of Lemma 2 yields a statement on the “generic” uniqueness of the agent’s best

response:8

Corollary 4. There are at most countably many b ∈ [−∞; +∞] for which #R(b) > 1.

Proof. We prove the Corollary by contradiction, using the notation

d(b) := maxR(b)−minR(b).

Suppose the statement is wrong. Then we can find b, b ∈ (−∞; +∞) such that the set

{
b ∈ (b; b)

∣∣ d(b) > 0
}

is uncountable. Hence, for each c ∈ R, we can find finitely many points b1, . . . , bN with

b < b1 < b2 < · · · < bN < b such that

N∑

n=1

d(bn) > c.

8Note that Corollary 4 is in the spirit of similar “genericity” statements as, for example, derived by
Haller and Lagunoff (2000).
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In particular, we can find such points for

c := b− b−maxR(b) + minR(b).

Part (iv) of Proposition 2 yields

b− b =
(
b− bN

)
+
(
bN − bN−1

)
+ · · ·+

(
b2 − b1

)
+
(
b1 − b

)

≥
(
maxR(b)−minR(bN )

)
+
(
maxR(bN )−minR(bN−1)

)
+ . . .

+
(
maxR(b2)−minR(b1)

)
+
(
maxR(b1)−minR(b)

)

= maxR(b)−minR(b) +

N∑

n=1

d(bn)

> maxR(b)−minR(b) + c

= b− b,

which is the desired contradiction.

4.3. Welfare

We introduce the notion of a welfare function.

Definition 5. A welfare function is a continuous function H : R×R→ R that is weakly

increasing, that is for which

H(x, y) ≥ H(x′, y′) if x ≥ x′ and y ≥ y′.

A welfare function H is used to aggregate the expected utilities of the agent (first ar-

gument) and the principal (second argument). If a pair (e, p) of stationary Markovian

strategies is played, public welfare shall be given by

HH(e, p) := H
(
v(e, p),w(e, p)

)
.

When it is clear to which welfare function H we refer, we drop the index H of H.

Note that we do not require a welfare function to be strictly increasing. In particular,

our analysis applies to the function H(x, y) = y, in which welfare is determined solely

by the principal’s utility (i. e. H ≡ w). We shall put special attention to this case in

Section 4.5. Contrariwise, maximizing the welfare function H(x, y) = x puts the focus

24



on the utility of the agent. As we shall, however, observe later, this case leads to fairly

uninteresting results, due to the asymmetric structure of threshold contracts, which

enforce deselection, but cannot ensure reappointment.

A compactness argument immediately yields the existence of a welfare-maximizing thresh-

old equilibrium:

Corollary 5 (Existence of a welfare-maximizing threshold equilibrium). The set

{
H(e, p)

∣∣ (e, p) ∈ T
}

is compact and non-empty. In particular, it contains a maximum.

Proof. The set
{
H(e, p)

∣∣ (e, p) ∈ T
}

is not empty because, by Corollary 3, the set T is

not empty. By Equation (12), we have

{
H(e, p)

∣∣ (e, p) ∈ T
}

=
{
H
(
v(e, q),w(e, q)

) ∣∣ (b, e, q) ∈ GT
}
. (13)

Since the function [−∞; +∞] × [e; e] × [0; 1] → R, (b, e, q) 7→ H
(
v(e, q),w(e, q)

)
, is

continuous and, by Part (iii) of Lemma 2, the set GT is compact, the assertion follows.

The corollary tells us that we can find a threshold contract involving some threshold τ̂ ∈
[−∞; +∞] and some threshold equilibrium (ê, p̂) of the game Γ(τ̂) such that public

welfare in the equilibrium (ê, p̂) is at least as high as it would be in any threshold

equilibrium under any threshold contract.

This result, however, is only moderately useful. In particular, we face the following

issues:

1. The said equilibrium may involve effort level e or w∗ and a low reappointment

probability.

2. It is possible that τ̂ = −∞, i. e., there is no threshold contract leading to an

improvement over what can be achieved without a threshold contract.

3. The game Γ(τ̂) may possess multiple threshold equilibria, some of which may be

welfare-inferior to (ê, p̂).
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The first of these problems is due to the fact that a threshold contract does not enforce

reappointment of the agent and thus cannot be a measure for ruling out bad equilibria

(equilibria of reciprocal distrust) in which the agent drags his feet because he does not

expect to be reappointed and the principal hesitates to reappoint the agent because

keeping the agent does not promise a strict benefit over deselection. Indeed, Corollary 1

shows that the bad equilibrium at e cannot be avoided. Further, it is not hard to con-

struct an example in which each threshold contract that yields an equilibrium beyond e

also induces an equilibrium at w∗. We will discuss the first and the second of the above

points in Section 6. In the next section, we focus on the third point.

4.4. Welfare-maximizing threshold contracts

As we have seen, Corollary 5 ensures the existence of a welfare-maximizing threshold

equilibrium (ê, p̂), which is an equilibrium of some game Γ(τ̂). Unfortunately, Γ(τ̂) may

well possess other threshold equilibria, which may be strictly welfare-inferior. If w∗ ≥ e,
it will possess the equilibrium (e, 0), which we cannot get rid of. As this equilibrium is

Pareto-dominated by (ê, p̂), one could reasonably argue that the players will resort to

the dominating equilibrium.

Dominance criteria, however, still do not guarantee uniqueness. In Section 5.2 we shall

re-consider the example from Section 3.3 (uniform noise distribution) and show that

each game Γ(τ) in which (ê, p̂) is an equilibrium may have a multiplicity of threshold

equilibria that cannot be ordered in the Pareto sense.

This phenomenon may occur because in the game Γ(τ̂), all threshold strategies 1[b;∞)

with b ≥ τ̂ are admissible strategies and thus the principal is not required to pursue the

threshold strategy 1[τ̂ ;∞); those other strategies, however, may lead to equilibria which

are utility-superior for the principal, but utility-inferior for the agent.

This cannot happen under two additional conditions. First, the set-up must be such that

threshold contracts are able to generate equilibria which are strictly Pareto-superior to

any equilibrium of the game without a threshold contract. We shall call this feature

Pareto-improvability of Γ(−∞).

As a second condition, we require that the support of the noise distribution is connected.

Pareto-improvability of Γ(−∞) ensures that the welfare-maximizing threshold equilib-

rium involves a reappointment probability strictly below one. Connectedness of the
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support then guarantees that the principal will not raise the reappointment threshold

beyond what is required by the contract, since doing so would increase the probability of

deselecting the agent, which he wants to avoid if the agent’s effort is higher than w∗.

To shape the first condition, we define:

Definition 6. (i) A threshold equilibrium (e, p) ∈ T is called a proper contract equi-

librium if (e, p) is not an equilibrium of Γ(−∞).

(ii) We say that a threshold equilibrium (e, p) ∈ T is a Pareto-improvement over

Γ(−∞) if (e, p) strictly dominates every threshold equilibrium of Γ(−∞) in the

Pareto sense—formally, if for each threshold equilibrium (e′, p′) of Γ(−∞) the in-

equalities v(e, p) ≥ v(e′, p′) and w(e, p) ≥ w(e′, p′) hold and at least one of the

two inequalities is strict. If a Pareto-improvement exists, we call Γ(−∞) Pareto-

improvable.

We collect some simple properties, which we will make use of later:

Remark 1. (i) A threshold equilibrium (e, p) ∈ T can be a proper contract equilibrium

only if e > w∗ and q(e, p) ∈ (0; 1).

(ii) If an equilibrium is a Pareto-improvement, it must be a proper contract equilibrium.

(iii) If Γ(−∞) is Pareto-improvable, then necessarily w∗ > e.

(iv) If Γ(−∞) is Pareto-improvable, then q(e, p) ∈ (0; 1) for all (e, p) ∈ T with e ≥ w∗.

(v) If Γ(−∞) is Pareto-improvable, then a proper contract equilibrium (ê, p̂) exists

that is welfare-maximizing in the sense of Corollary 5, that is, for which H(ê, p̂) =

max
{
H(e, p)

∣∣ (e, p) ∈ T
}

.

Proof. Part (i): From Proposition 6 it immediately follows that every (e, p) ∈ T with

e ≤ w∗ or q(e, p) ∈ {0, 1} is an equilibrium of Γ(−∞).

Part (ii) is trivial.

Part (iii): Suppose w∗ ≤ e. Then, by Proposition 6, the pair (e, 1) is an equilibrium of

Γ(−∞). Now consider any pair (e, p). If e > e, then v(e, p) < v(e, 1). If e = e, then

v(e, p) ≤ v(e, 1) and w(e, p) ≤ w(e, 1). Hence (e, p) does not strictly dominate (e, 1).
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Part (iv): Let (e∗, p∗) be a Pareto-improvement of Γ(−∞). Consider (e, p) ∈ T with

e ≥ w∗. Since e > e, the agent has to be rewarded for his effort with a strictly positive

probability of reappointment. If we had q(e, p) = 1, then (e, p) would be an equilibrium

of Γ(−∞), by Proposition 6. Since, by Parts (i) and (ii), q(e∗, p∗) < 1, it follows that

e∗ < e, as otherwise we would have v(e, p) > v(e∗, p∗), contradicting the fact that (e∗, p∗)

is a Pareto-improvement. The inequalities e∗ < e and q(e∗, p∗) < q(e, p), however, imply

w(e∗, p∗) < w(e, p), which is again a contradiction.

Part (v): By Corollary 5, a welfare-maximizing equilibrium (ê, p̂) exists. Suppose (ê, p̂)

is not a proper contract equilibrium. Then, (ê, p̂) is an equilibrium of Γ(−∞). Since

Γ(−∞) is Pareto-improvable, some (ê′, p̂′) ∈ T exists such that v(ê′, p̂′) ≥ v(ê, p̂) and

w(ê′, p̂′) ≥ w(ê, p̂). From the monotonicity of the welfare function in the individual

utilities it follows that H(ê′, p̂′) ≥ H(ê, p̂); hence (ê′, p̂′) is a proper contract equilibrium

that is welfare-maximizing.

By the reasoning outlined above, we obtain the following proposition, which is the key

step towards the desired results:

Proposition 7. Suppose that Γ(−∞) is Pareto-improvable. Suppose, further, that the

support of the noise distribution is connected. Consider a threshold τ . If Γ(τ) possesses a

threshold equilibrium that is a proper contract equilibrium, then the threshold equilibria of

Γ(τ) can be ordered in the Pareto sense. The ordering is strict for all threshold equilibria

involving an effort level of at least w∗.

A formal proof of the proposition is given in Appendix A.2. This proposition permits

a corollary which states the existence of a threshold contract whose associated game

has a unique welfare-maximizing threshold equilibrium that strictly dominates all other

threshold equilibria of the game. The corollary is the first main result of this section:

Corollary 6. Suppose that Γ(−∞) is Pareto-improvable. Suppose, further, that the

support of the noise distribution is connected. Then a threshold τ̂ ∈ (−∞; +∞) and a

threshold equilibrium (ê, p̂) of Γ(τ̂) exist such that

(i) (ê, p̂) is welfare-maximizing, i. e.

H(e, p) ≤ H(ê, p̂) for all (e, p) ∈ T , (14)

(ii) (ê, p̂) strictly Pareto-dominates all other threshold equilibria of Γ(τ̂).
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Proof. Let Γ(−∞) be Pareto-improvable and let the support of the noise distribution

be connected. By Part (v) of Remark 1, a proper contract equilibrium (ê, p̂) satisfying

(14) exists. A threshold τ̂ exists such that (ê, p̂) is a threshold equilibrium of Γ(τ̂).

By Proposition 7, the threshold equilibria of Γ(τ̂) can be ordered in the Pareto sense,

and the ordering is strict for effort levels strictly larger than e. Hence, without loss of

generality, (ê, p̂) strictly dominates all threshold equilibria of Γ(τ̂).

At the cost of an arbitrarily small loss in welfare, we can strengthen the preceding

Corollary into a uniqueness result, which we shall give in Corollary 7. Corollary 4 tells

us that the agent’s best response is “generically” unique. By reducing τ̂ by an arbitrarily

small amount, one can ensure that the resulting game possesses a unique equilibrium—

apart from equilibria involving effort levels of e or w∗. As Corollary 1 suggests, the bad

equilibrium at e cannot be avoided. Further, it is not hard to construct examples with

lots of equilibria at w∗. Uniqueness up to e and w∗ is, therefore, the best we can hope

to achieve.

Heading for this result, we start by demonstrating that the welfare loss induced by a

reduction of the threshold can be controlled. For each b′, define

R(b′) :=
{
e′ ∈ R(b′)

∣∣ e′ > max{e, w∗}
}
.

Proposition 8. Consider some welfare function H, some b ∈ (−∞; +∞), some e ∈
R(b), and some ε > 0. Then, δ > 0 exists such that for each b′ ∈ (b − δ; b), one has

R(b′) 6= ∅ and

H(e′,1[b′;∞)) > H(e,1[b;∞))− ε for all e′ ∈ R(b′).

A proof of this proposition is given in Appendix A.2. The proposition leads the path to

what we want to achieve. Let (ê, p̂), with p̂ = 1[b̂;∞), be a proper contract equilibrium.

Then (ê, p̂) is an equilibrium of the game Γ(τ̂), with τ̂ := b̂. Now we can reduce τ̂

by an arbitrarily small amount to, say, τ . The generic uniqueness of the best response

ensures that this can be done in a way that the best response e to 1[τ ;∞) is unique, and

Proposition 8 guarantees that the welfare resulting from the equilibrium (e,1[τ ;∞)) is

only slightly below the maximum welfare resulting from (ê,1[τ̂ ;∞)). This is formalized

in the following corollary, the proof of which is given in Appendix A.2. Observe that, by

Part (v) of Remark 1, a welfare-maximizing equilibrium is, without loss of generality, a

proper contract equilibrium; thus the corollary indeed applies to any welfare-maximizing
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equilibrium (ê, p̂) if Γ(−∞) is Pareto-improvable. It is the second main result of this

section.

Corollary 7. Suppose that Γ(−∞) is Pareto-improvable. Suppose, further, that the sup-

port of the noise distribution is connected. Let (ê, p̂) ∈ T be a proper contract equilbrium.

Then, for all ε > 0, some threshold τ ∈ [−∞; +∞] exists such that

(i) the game Γ(τ) possesses a threshold equilibrium (e∗, p∗) satisfying the inequality

H(e∗, p∗) ≥ H(ê, p̂)− ε, (15)

(ii) (e∗, p∗) strictly Pareto-dominates all other threshold equilibria of Γ(τ), and

(iii) (e∗, p∗) is the only threshold equilibrium of Γ(τ) with e∗ /∈ {e, w∗}.

4.5. Maximizing the utility of the principal

In this section, we are going to examine further the case in which the welfare function

depends only on its second argument. Then, welfare is determined entirely by the utility

of principal, and our previous results turn into statements about threshold contracts

maximizing this utility. For example, Corollary 5, when applied to the welfare func-

tion H(x, y) = y, states the existence of a threshold equilibrium in which the principal’s

utility is maximized. The analogue to Corollary 7 reads as follows:

Proposition 9. Suppose the support of the noise distribution is connected. Then, for

all ε > 0, there is some threshold τ ∈ [−∞; +∞] such that

(i) the game Γ(τ) possesses a threshold equilibrium (e∗, p∗) satisfying the inequality

w(e∗, p∗) ≥ max
{
w(e, p)

∣∣ (e, p) ∈ T
}
− ε, (16)

(ii) every threshold equilibrium (e∗, p∗) of Γ(τ) with e∗ > max{e, w∗} satisfies Inequal-

ity (16) and strictly Pareto-dominates all threshold equilibria of Γ(τ) involving an

effort level of e or w∗.

The proof of this proposition is very similar to that of Corollary 7; it is given in Ap-

pendix A.2. The main difference between the two results is that Pareto-improvability
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of Γ(−∞) is no longer required. In Corollary 7, it was needed to ensure that the reap-

pointment probability in equilibrium was strictly below one, which, together with the

connectedness of the support, ensured that the principal does not raise the threshold

beyond τ , which would give room for other, welfare-inferior equilibria. This is not a

problem in Proposition 9. If, on the one hand, the reappointment probability in equi-

librium is below one, the arguments used in the proof of Corollary 7 still apply. If, on

the other hand, reappointment probability in equilibrium is one, the principal’s using a

higher threshold does not harm, as any equilibrium involving a higher threshold (and an

effort level beyond max{e, w∗}) will still imply a reappointment probability of one, yet

a higher effort of the agent, and thus yield even higher utility for the principal.

In Section 5.3, we will demonstrate that resorting to equilibria that approximate a wel-

fare optimum (Section 4.4) or the maximal utility of the principal (Section 4.5) is indeed

necessary to guarantee uniqueness (up to equilibria involving e or w∗). Otherwise mul-

tiple equilibria or even a continuum of equilibria associated with a particular threshold

may emerge.

4.6. Maximizing the utility of the agent

Having examined utility maximization of the principal, we now take the opposite view. It

turns out, however, that threshold contracts are of no help in establishing the equilibrium

that would be best for the agent, due to their asymmetric nature, in that they prevent,

yet do not enforce reappointment. The following proposition summarizes the result:

Proposition 10. A threshold equilibrium exists in which the agent’s utility is maximal,

i. e. (ê, p̂) ∈ T exists such that v(ê, p̂) = max
{
v(e, p)

∣∣ (e, p) ∈ T
}

. Necessarily, ê ∈
{e, w∗}.

Proof. The existence of (ê, p̂) follows from Corollary 5 with H ≡ v. If w∗ < e, then the

statement is trivial, since (e, 1) is a v-maximizing equilibrium. Suppose ê > w∗ ≥ e.

The strategy p̂ is a threshold strategy, hence p̂ = 1[b̂;∞) for some b̂. By Part (v) of

Lemma 2, some threshold b′ ≤ b̂ exists such that w∗ ∈ R(b′). By Proposition 6, the pair

(w∗,1[b′;∞)) is an equilibrium of all games Γ(τ) with τ ≤ b′; thus (w∗,1[b′;∞)) ∈ T . By

Part (iv) of Lemma 2, q(w∗,1[b′;∞)) ≥ q(ê, p̂). Thus, v(w∗,1[b′;∞)) > v(ê, p̂), which is a

contradiction.
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As mentioned in the proof, the v-maximizing equilibrium (ê, p̂) is an equilibrium under

any threshold contract that does not rule out the strategy p̂. In particular, it is an equi-

librium of the game Γ(−∞), in which no minimum threshold is fixed. Since, generally,

the principal is not prohibited from pursuing a strategy involving a threshold higher

than fixed in the contract, a threshold contract cannot guarantee to the agent that the

equilibrium optimal for him will be played.

The reader should, however, note that all this does not necessarily imply that the agent

will not be interested in establishing a threshold contract. When, for instance, several

candidates compete for office, candidates can gain credibility by offering threshold con-

tracts. In addition, as threshold contracts may enlarge the set of possible equilibria (an

example will be given in Section 5.1), they increase the scope for negotiation.

5. Examples

In this section we illustrate our findings by several examples. The key tool for analysing

equilibria under threshold contracts is Proposition 6. In Section 5.1 we look at the

case of exponentially distributed noise, demonstrating how threshold contracts yield

Pareto-superior outcomes. Section 5.2 then deals again with uniformly distributed noise.

Section 5.3 illustrates Corollary 7 and Proposition 9 by showing that one has to permit a

small reduction in welfare or utility if the number of equilibria is supposed to be small.

5.1. Example: Exponential distribution

Let noise follow a shifted and mirrored exponential distribution. Specifically, we assume

that for some λ > 0 the expression −A + 1/λ is exponentially distributed with the

parameter λ. The term 1/λ is the expected value of an exponential distribution with

parameter λ; hence E[A] = 0. The cumulative distribution function of −A reads

F−A(x) =





1− exp(−λx− 1) for x > −1/λ,

0 for x ≤ −1/λ.
(17)

To avoid distinguishing left-hand and right-hand derivatives, we assume that v is con-

tinuously differentiable.
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Figure 3: This figure illustrates the example from Section 5.1. Like the previous figures,
it shows the indifference curves of the principal (green) and the agent (blue).
The noise follows a shifted and mirrored exponential distribution. The red
lines depict the functions e 7→ q(e,1[b;∞)), for different values of b. The violet
curve, together with the point (e, 0) and the violet-coloured small segment on
the vertical axis, is the set of points

(
e, q(e,1[b;∞))

)
for which e ∈ R(b). The

points on the grey curve are “local” best responses (best responses within the
concave part of the corresponding red curve), but are, from the agent’s point
of view, strictly worse than point (e, 0).
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Figure 3 gives a graphical illustration. The functions e 7→ q(e,1[b;∞)) for different values

of b are represented by the red curves. Since q(e,1[b;∞)) = F−A(e−b), they are generated

by shifting the graph of the cumulative distribution function F−A horizontally to the right

by b units. As we have already seen in Section 3.2, the agent’s best response is the effort

level at which the red curve hits the highest indifference curve (blue line) of the agent.

Since the F−A is concave in the segment where it takes strictly positive values, and since

the agent’s indifference curves are convex, there exists a unique effort level within the

concave part of the red line that is a best response for the agent, compared to all other

effort levels in the concave part of the red line. We use z∗(b) to denote this optimal effort

level within the concave part—formally, z∗(b) is the—uniquely defined—point from the

interval [−1/λ+ b; esup) satisfying the inequality

v
(
z∗(b),1[b;∞)

)
≥ v
(
e,1[b;∞)

)
for all e ∈ [−1/λ+ b; esup).

For b ≥ esup + 1/λ (i. e. if the concave part of the red curve starts to the right of esup),

z∗(b) does not exist. The geometric locus of the points

(
z∗(b), q

(
z∗(b),1[b;∞)

))

is given by the violet/grey-coloured curve (with the exception of the point (e, 0)) in

Figure 3.

The “local” best response z∗(b), however, may yield a lower utility for the agent than

the minimum effort level e. Graphically, this is the case if the corresponding point in

the diagram is below the blue indifference curve running through the point (e, 0). In the

diagram, the “global” best responses of the agent are marked violet; the grey part of the

curve indicates those local best responses that are strictly worse than e.

We use b to denote that threshold level for which

v
(
z∗(b),1[b;∞)

)
= v(e, 0).

Hence z∗(b) is the effort level where the violet segment ends and the grey segment starts.

With this notation, we can characterize the agent’s best responses as follows:

R(b) =





{
z∗(b)

}
for b < b,

{
e, z∗(b)

}
for b = b,

{e} for b > b.
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Figure 4: The points (e, p) on the violet curve with e ∈
[
w∗; z∗(b)

]
, as well as the point

(e, 0), can result as the equilibrium outcome under a threshold contract. At
the points (e, p) on the violet curve with e < w∗ (drawn dashed violet), the
agent plays a best response, but the principal would like to deviate to the
strategy 0. The red curve and the green dot represent the equilibrium yielding
the highest expected utility of the principal.

Having considered the agent, we now turn to the principal. For w∗ > e, the pair(
z∗(b),1[b;∞)

)
does not constitute an equilibrium if z∗(b) < w∗ and the probability of

reappointment is strictly larger than zero, since the strategy profile would then lead to

an expected outcome for the principal that would be lower than his outside option, so the

principal would like to deviate to a strategy involving no reappointment (for instance,

to the strategy 0). In Figure 4, the corresponding segment of the violet curve is dashed.

Hence, the set of threshold equilibrium outcomes (i. e. those effort level/reappointment

probability pairs that can occur in a threshold equilibrium)

{(
e, q(e,1[b;∞))

) ∣∣ (e,1[b;∞)) ∈ T , b ∈ [−∞; +∞]
}

corresponds to the non-dashed segment of the violet curve, including its endpoints, as

well as the point (e, 0).

Note that in all threshold equilibria involving an effort level strictly greater than e, the

reappointment probability is strictly below one. Hence a pair
(
z∗(b),1[b;∞)

)
∈ T with

z∗(b) > w∗ constitutes an equilibrium of a game Γ(τ) if and only if τ = b.
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We use this example to illustrate the welfare and utility considerations from Sections 4.3–

4.5.

We first consider maximization of the principal’s utility. The existence of a threshold

equilibrium yielding maximum utility for the principal is guaranteed by Corollary 5 with

H = w. With the help of Figure 4, determining this equilibrium is easy. Its outcome

is given by that point within the set of violet points which is located on the highest

indifference curve of the principal. This point is represented by the green circle in

Figure 4. It can be calculated numerically by deriving an equation for the violet curve

and then determining that point on the curve which yields the highest utility for the

principal. As the diagram indicates, the w-maximizing equilibrium is uninteresting if

w∗ > z∗(b); then the associated outcome is (e, 0). If w∗ ≤ z∗(b), the equilibrium is of

the form
(
ê,1[τ̂ ;∞)

)
with ê = z∗(τ̂), for some threshold τ̂ ∈ [−∞; b]. It is an equilibrium

of the game Γ(τ̂). For any τ 6= τ̂ , it is not an equilibrium of Γ(τ).

The location of the w-maximizing point on the violet curve depends on the principal’s

discount factor γ. For lower values of γ, the principal’s indifference curves will be steeper,

and the green point will move to the right. With a lower discount factor γ (i. e. a higher

discount rate), the principal favours a higher effort level, at the cost of a higher risk of

inadvertently deselecting the agent in the future.

We summarize our findings:

Fact. Suppose −A follows a shifted exponential distribution. If w∗ ≤ z∗(b), a unique

threshold τ̂ (i. e. a unique threshold contract) exists such that the associated game Γ(τ̂)

possesses a threshold equilibrium yielding the maximum utility for the principal. The

game may possess other threshold equilibria. In all these other equilibria, effort is e and

the probability of reappointment is zero.

Figure 4 presents a parameter constellation for which the outcome in the favourable

equilibrium under a non-trivial threshold contract is strictly Pareto-superior to the equi-

librium outcome without a threshold contract.

We generalize this example by considering the maximization of an additive welfare func-

tion: Let public welfare be given by a weighted sum of the players’ utilities:

H(e, p) = ξv(e, p) + (1− ξ)w(e, p), (18)
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Figure 5: Similar set-up as in Figure 4. The brown curves represent contour lines of an
additive welfare function where welfare is a weighted sum of both players’ util-
ities. Higher curves represent higher welfare levels. The brown dot represents
effort and reappointment probability in the welfare-maximizing equilibrium.

with the parameter ξ ∈ [0; 1] describing the weight of the agent. Thus our analysis so

far—maximization of the principal’s utility—corresponds to welfare maximization with

ξ = 0.

The brown curves in Figure 5 represent equipotential lines of H for some ξ ∈ (0; 1). The

brown circle represents the outcome in the welfare-maximizing threshold equilibrium.

Since, in this equilibrium, the reappointment probability is strictly below one, the equi-

librium must be supported by a threshold contract. The threshold fixed in the contract

is lower than the threshold required for the equilibrium in which the principal’s utility is

maximal (analysed above and represented by the green circles in Figures 4 and 5). The

left end-point of the solid violet curve (represented by a violet circle and located at w∗)

is welfare-maximizing for ξ = 1, thus being the equilibrium best for the agent.

If we let the parameter ξ, the agent’s weight in the welfare function, run from 0 to 1, the

welfare optimum moves, starting from the green circle, along the violet curve, until it

reaches the left end point of the solid violet curve, the violet circle located at w∗. Hence

the higher the weight of the agent, the lower is the welfare-optimal equilibrium effort

level, and the higher is the probability of reappointment.
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Figure 6: The example with uniform distribution of the noise discussed in Section 5.2.

5.2. Example: Uniform distribution (continued)

In this section we continue the example from Section 3.3 in which the noise is uniformly

distributed. We analyse the equilibria under threshold contracts and determine the

w-maximizing equilibrium.

For simplicity, we again assume that v is continuously differentiable. With −A being

uniformly distributed on the interval [−a; +a], the cumulative distribution function is

concave on the segment where it takes values strictly greater than zero; hence we can

use similar arguments as in the previous example. Again, we have two candidates for

the agent’s best response—a “local” best response z∗(b) in the concave part of the red

curves as well as the minimum effort level e.

As in the previous example, the violet/grey curve in Figure 6 represents the function

z∗(·). As the diagram shows, there is a maximum effort level ě that can occur as a local

best response; this effort level is given as that value of e∗ for which Inequality (8) holds

with equality. If v(ě, 1) ≥ v(e, 0), which we shall assume in the following, this local best

response is not outreached by e. With b̌ := ě − a, the pair (ě,1[b̌;∞)) is a threshold

equilibrium of all games Γ(b) with b ∈ [−∞; b̌]. The reappointment probability in this

equilibrium is one.

Further equilibria involving an effort level of at least w∗, however, may exist. For τ ≤ b̌,
all pairs (e,1[b;∞)) with max{τ, w∗− a} ≤ b ≤ b̌ and e = b+ a constitute an equilibrium
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Figure 7: Welfare maximization for uniform noise distribution. The brown curves rep-
resent contour lines of a welfare function. The brown circle represents the
outcome in the welfare-maximizing threshold equilibrium.

of Γ(τ). In all these equilibria, the reappointment probability is one.

For b ≥ b̌, the “local” best response z∗(b) is strictly decreasing in b. For b > b̌ with

v
(
z∗(b),1[b;∞)

)
≥ v(e, 0), the pair

(
z∗(b),1[b;∞)

)
is a threshold equilibrium of the game

Γ(b). From the diagram one immediately observes that all these threshold equilibria are

Pareto-dominated by (ě,1[b̌;∞)). In particular, Γ(−∞) is not Pareto-improvable.

Hence, with respect to utility maximization for the principal, one can say the following:

The w-maximizing threshold equilibrium is given by the strategy profile (ě,1[b̌,∞)). It

is an equilibrium of Γ(τ) if and only if τ ≤ b̌. Hence the w-maximizing threshold

equilibrium can be reached without a threshold contract (in contrast to the previous

example, in which noise followed a shifted exponential distribution). By installing a

threshold contract of b̌, one can ensure that all threshold equilibria above max{e, w∗}
except the w-maximizing one disappear.

Again, we conclude the example by considering an additive welfare function. Like in

the previous section, let welfare be given by Equation (18). Figure 7 illustrates such

a situation. If both players have strictly positive weight (i. e. if ξ ∈ (0; 1)), then the

welfare-maximizing equilibrium outcome lies somewhere on the horizontal segment of

the violet curve, with a reappointment probability of one and an effort level strictly

between w∗ and the effort level desired by the principal (green circle).
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Since, generally, nothing prevents the principal from playing a strategy that is higher

than the threshold fixed by the threshold contract and since, in this example, the equi-

librium probability does not go down if the threshold is increased beyond the welfare-

maximizing one—which would keep the principal from doing it—, there is no threshold

contract that can ensure that the brown, rather than, for instance, the green equilibrium

is played. The equilibrium outcomes located to the right of the brown circle are superior

for the principal, but inferior for the agent. We observe that here a threshold contract

cannot ensure a welfare-optimal equilibrium, even if we use dominance arguments. Thus

the present example shows that Pareto-improvability of Γ(−∞) is indeed a necessary

condition in Corollary 6.

5.3. A continuum of threshold equilibria

In this section, we present an example in which

(a) a unique threshold equilibrium (ê, p̂) maximizing w(e, p) among all (e, p) ∈ T exists,

(b) a unique threshold τ̂ exists such that (ê, p̂) is a threshold equilibrium of Γ(τ̂),

(c) R(τ̂) = {e} ∪ [w∗; ê], and

(d) the threshold equilibria of Γ(τ̂) cover all utility levels of the principal that can be

achieved in any threshold equilibrium, i. e.

{
w(e, p)

∣∣ (e, p) is a threshold equilibrium of Γ(τ̂)
}

=
{
w(e, p)

∣∣ (e, p) ∈ T
}
.

The game Γ(τ̂) possesses a continuum of threshold equilibria. Hence, if a threshold

contract fixing τ̂ is established, we need to resort to dominance arguments to justify

why the equilibrium (ê, p̂), of all equilibria, should be played. This is an “extreme”

example showing that Γ(τ̂) may possess many other threshold equilibria besides the

w-maximizing equilibrium (ê, p̂), and that thus one cannot set ε = 0 in Corollary 7 or

Proposition 9.

The example is illustrated in Figure 8. The noise distribution is constructed as follows:

We consider a random variable X whose cumulative distribution function FX is given
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e ẽ w∗ e− δ esup

q

1

Figure 8: This figure illustrates the example from Section 5.3, in which Γ(τ̂) possesses a
continuum of threshold equilibria.

by

FX(x) =





0 for x ≤ e,

β−1 · v(e)− v(x)

v(e)− v∗
for e < x < e− δ,

β−1 · v(e)− v(e− δ)
v(e)− v∗

for e− δ ≤ x < 2e− e,

1 for x ≥ 2e− e,

with δ ∈ (0; e− e) being some constant. By construction, for e ∈ (e; e− δ) the function

FX fulfils the identity

v
(
e, FX(e)

)
= v(e, 0),

i. e. on the interval [e; e−δ] the graph of FX coincides with the agent’s indifference curve

running through the point (e, 0). On the interval [e − δ; 2e − e), the function FX is

constant at a level strictly below 1. At 2e− e, it jumps to 1.

Let ẽ be defined by the equation

v
(
ẽ, 1
)

= v
(
e, FX(e− δ)

)
.

It is straightforward to prove that ẽ exists, that it is unique, and that e < ẽ < e. If δ is

small, then ẽ is near e.
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With η := E[X], let −A be distributed like X − η, i. e. the distribution of X is shifted

such that the expected value is zero. Obviously, η ∈ (e; e). It is easy to verify that

q(e,1[b;∞)) = 1 if and only if e ≥ b− η + 2e− e. Further, q(e,1[b;∞)) = FX(e− δ) if and

only if b− η + e− δ ≤ e < b− η + 2e− e. Using this, we can determine the agent’s best

responses from Figure 8:

R(b) =





{e} for b ≤ 2(e− e) + η,

{b− η + 2e− e} for 2(e− e) + η < b < ẽ+ e− 2e+ η,

{e, ẽ} for b = ẽ+ e− 2e+ η,

{e} for ẽ+ e− 2e+ η < b ≤ e− e+ δ + η,

{b− η + e− δ} for e− e+ δ + η < b < η,

[e; e− δ] for b = η,

{e} for b > η.

For low threshold values b, the agent’s best response is e; the associated probability of

reappointment is 1. When b rises, the best response will ascend toward ẽ and then drop

to e again. Simultaneously, the reappointment probability will drop from 1 to FX(e−δ).
When b rises further, the best response first remains at e, then it rises to e − δ, with

the reappointment probability remaining constant at FX(e − δ). If b = η, there is a

continuum of best responses R(η) = [e; e − δ]. Graphically, this is reflected by the red

curve’s coinciding with the blue indifference curve which runs through the point (e, 0).

For thresholds b > η, the agent’s best response is e, and the associated probability of

reappointment is 0.

FromR(b) we can derive the threshold equilibria of the games Γ(τ). We restrict ourselves

to the most interesting case, in which w∗ ∈ (ẽ; e − δ). The threshold equilibria of Γ(τ)

are given by the set

{
(e,1[b;∞))

∣∣ b ≥ max{τ, η}
}

∪





{
(w∗,1[η;∞)), (τ − η + e− δ,1[τ ;∞))

}
for w∗ − e+ δ + η ≤ τ < η,

{
(e,1[η;∞))

∣∣ e ∈ [w∗; e− δ]
}

for τ = η,

∅ otherwise.

From Figure 8 we observe that this example has the Properties (a)–(d) stated at the

beginning of this section. The w-maximizing threshold equilibrium (ê, p̂) is given by
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ê := e − δ, p̂ := 1[τ̂ ;∞), and τ̂ := η. The strategy profile (ê, p̂) is an equilibrium of

the game Γ(τ) if and only if τ = τ̂ . The game Γ(τ̂) has a continuum of threshold

equilibria—each effort level from the set {e} ∪ [w∗; e − δ] is attainable by a threshold

strategy. The corresponding equilibrium outcomes lie on the agent’s indifference curve

running through point (e, 0).

For τ ∈ (w∗+ η− e+ δ; τ̂), the game Γ(τ) possesses a unique threshold equilibrium that

involves an effort level not in {e, w∗}. For τ approaching τ̂ from below, the outcome in

this equilibrium approaches the outcome of the w-maximizing equilibrium (ê, p̂). This

observation illustrates the approximation result from Proposition 9 and shows that one

has to permit an arbitrarily small reduction in welfare if one wants to ensure uniqueness

up to e and w∗. Moreover, the present example demonstrates that one cannot avoid

the “bad” equilibria at e and w∗ in Proposition 9. The reason is that for τ < η the

strategy profiles (e, 0) and (w∗,1[η;∞)) are equilibria of Γ(τ), and for τ > η each threshold

equilibrium involves the effort level e and a reappointment probability of zero.

In the present example, the fact that δ > 0 guarantees that for τ 6= τ̂ the strategy

profile (ê, p̂) is not an equilibrium of Γ(τ), i. e. that the threshold contract yielding the

w-maximizing equilibrium is unique. In the borderline case δ = 0, the w-maximizing

equilibrium is (e,1[η;∞)). This equilibrium involves a reappointment probability of one,

and it is an equilibrium of Γ(τ) for all τ ≤ η. Hence, for δ = 0, Properties (a), (c), and

(d) on page 40 are fulfilled, while Property (b) is not.

6. Discussion

In this section we discuss various ways of embedding the reappointment game into larger

games and other possible extensions.

6.1. Initial appointment

Let us briefly discuss how the initial appointment decision of the principal can be included

in the reappointment game. For this purpose, consider the following extension of the

game: Before the reappointment game starts, the principal decides whether to appoint

the agent for period 1 or not, i. e., whether to play the reappointment game with the

agent or not. We call the resulting game the augmented game.
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The agent’s strategies in the augmented game correspond to the agent’s strategies in

the reappointment game. The agent’s actions, as described by a strategy e, are now to

be understood as conditional on the fact that the principal initially decided to appoint

the agent. A strategy of the principal is a vector (p0, p1, p2, . . . ), where (p1, p2, . . . ) is

a strategy in the reappointment game, and p0 ∈ {0; 1} indicates whether the principal

initially appoints the agent or not.

If the agent is not appointed initially, the agent’s per-period utility will be v∗, and

the per-period utility of the principal will be w∗. If the strategy profile (e,p) with

e = (e1, e2, . . . ) and p = (p0, p1, . . . ) is played, the principal’s expected utility amounts

to

w0(e,p) = γp0 ·w1

(
e, (p1, p2, . . . )

)
+ (1− p0) · γ

1− γw∗.

Note that we discount utility with an additional factor of γ, taking the perspective of

the principal looking at the game in period 0, i. e. one period before the agent could

produce output. Defining equilibrium for the augmented game is straightforward.

Definition 7. A strategy profile (e,p) in the augmented game with strategies e =

(e1, . . . ) and p = (p0, p1, . . . ) is an equilibrium if
(
e, (p1, . . . )

)
is an equilibrium in the

reappointment game and the principal’s initial appointment decision is a best response,

i. e.

w0(e,p
)
≥ w0(e,p′) for all p′. (19)

Formally, we have simply adapted Definition 1 to the augmented game by requiring

Condition (ii) of that definition to be satisfied for t = 0 as well. By reformulating

Condition (19), we immediately achieve the following characterization of equilibrium in

the augmented game:

Proposition 11. A strategy profile (e,p) in the augmented game with e = (e1, . . . ) and

p = (p0, p1, . . . ) is an equilibrium if and only if it satisfies the following requirements:

(i) The pair
(
e, (p1, p2, . . . )

)
is an equilibrium of the reappointment game.

(ii) If w1

(
e, (p1, p2, . . . )

)
> (1 − γ)−1w∗, then p0 = 1, and if w1

(
e, (p1, p2, . . . )

)
<

(1− γ)−1w∗, then p0 = 0.

Condition (ii) is void if w1

(
e, (p1, p2, . . . )

)
= (1−γ)−1w∗; in this case, p0 can be arbitrary.

The condition says that the principal will appoint the agent if the expected utility from

appointing is higher than his outside option, and that he will not appoint the agent if the
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expected utility is lower than the outside option. In the case of stationary Markovian

strategies e and p, the condition reduces to a condition on e:

Proposition 12. Let (e, p) be a stationary Markovian equilibrium, and let p0 ∈ {0, 1}.
Then the strategy profile

(
(e, e, . . . ), (p0, p, p, . . . )

)
is an equilibrium of the augmented

game if and only if (i) p0 = 0 and e ≤ w∗, or (ii) p0 = 1 and e ≥ w∗.

By definition, an equilibrium in the augmented game implies an equilibrium in the

reappointment game. By Proposition 11, in turn, an equilibrium in the reappointment

game generates an equilibrium in the augmented game by a suitable choice of p0. Thus,

equilibria in the reappointment game and in the augmented game correspond to each

other in a very straightforward way, so that focusing on the reappointment game does

not involve any loss of generality.

6.2. Endogenizing the outside option in stationary environments

In an environment in which the principal faces a pool of potential agents who are all

identical, the principal’s outside option w∗ can be endogenized as being the payoff the

principal expects to obtain when he appoints the next agent after deselecting the current

one. This works for the reappointment game with and without threshold contracts. We

outline the procedure for the game without threshold contracts.

Suppose all potential agents have the same preferences, and suppose the noise distribu-

tion is independent of the agent in office. We define the following correspondence:

Ξ: R� [e; esup), w∗ 7→
{
e
∣∣(e, p) is a stationary Markovian equilibrium

when the principal has the outside option w∗
}
.

We assume that the game the principal plays with the first appointed agent and all

subsequently appointed agents is the same, except for the outside option of the principal.

The latter will be determined as part of the equilibrium. This brings us to:

Definition 8. A strategy profile (e, p) ∈ ΣP(−∞)×ΣA is called a stationary Markovian

equilibrium with endogenous outside options if (e, p) is an equilibrium in the game with

the outside option w∗ = e.

This definition requires that the effort level in equilibrium is a fixed point of Ξ, i. e. that

e ∈ Ξ(e). We note that such equilibria with endogenous outside options always exist.
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By Corollary 1, (e, 0) is an equilibrium with endogenous outside options. Our results

can be used to determine whether other equilibria with outside options exist as well. As

an example, we obtain the following variant of Proposition 3:

Proposition 13. Let noise A be uniformly distributed on an interval [−a; a] ⊆ R for

some a > 0. Let e∗ ∈ (e; eindiff). A stationary Markovian strategy p∗ such that (e∗, p∗) is

an equilibrium with outside options of the game Γ(−∞) exists if and only if w∗ ≤ e∗ ≤ e
and

− ∂−v(e∗)
v(e∗)− v∗

≤ β

1− β ·
1

2a
. (20)

p∗ can be chosen as p∗(w) = 1[e∗−a;∞)(w).

6.3. Eliminating bad equilibria

As we saw in Section 4.4, Proposition 9, threshold contracts exist, say with τ0, that

almost maximize the payoff of the principal, but such contracts cannot avoid the bad

equilibria in which the effort level is e or w∗. To ensure that agents propose τ0, we

can embed the augmented game in an even larger game in which in period −1 a pool of

identical agents can offer threshold contracts. This will encourage agents to offer τ0 when

the principal prefers agents who offer τ0 to any other threshold contract. Avoidance of

the equilibrium (e, 0), however, is impossible without further consideration, even if the

threshold contract τ0 has been offered.

One approach would be to make deselection costly for the principal. The bad equilibrium

vanishes if w∗ < e. Hence, a good design would involve the optimal threshold contract,

while reducing the outside option of the principal. One case in which deselection is

particularly expensive is when the agent makes investments in long-term projects. If

these investments cannot be upheld by another agent—or can only be kept up at high

additional cost—, deselection causes opportunity cost for the principal, which reduces

the value of the principal’s outside option. Accordingly, long-term projects generate an

incumbency advantage for the agent in office, as e.g. discussed by Müller (2009, Chap-

ter 5, pp. 94–122). By enforcing deselection of the agent in response to bad performance,

threshold contracts can prevent the agent from exploiting this incumbency advantage.

At the same time, the existence of an incumbency advantage may avoid equilibria of

reciprocal distrust.

Another possibility for eliminating the equilibrium (e, 0) is the application of refinements

to the equilibrium concept. In particular, Pareto-dominance will eliminate (e, 0). Usually
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coordination devices foster the application of refinements. The choice of τ0 by the agent

could be interpreted as such a coordination device on the set of equilibria that are not

Pareto-dominated.

7. Conclusion

We have developed the characteristics of equilibria in infinitely repeated reappointment

games. While threshold contracts are a device that can engineer Pareto-improvements,

they cannot entirely prevent the predisposition of the principal–agent relationship to

reciprocal distrust. Numerous issues deserve further scrutiny. We have detailed a couple

of extensions and applications in the last section. Together with further conceivable

extensions they constitute an entire research programme.
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A. Proofs

A.1. Proofs for Section 3

Proof of Proposition 1. Let (e∗, p∗) be a pair of stationary Markovian strategies with

v1(ẽ, p∗) > v1(e∗, p∗) for some (not necessarily stationary Markovian) strategy ẽ =

(ẽ1, ẽ2, . . . ) of the agent. We are going to prove that a stationary Markovian strategy

e exists that satisfies v1(e, p∗) > v1(e∗, p∗). As this is obvious if v(e∗, 1) < v(e, 0) (take

e = e), we can, without loss of generality, assume that v(e∗, 1) ≥ v(e, 0).

For m = 1, 2, . . . define the strategy ẽm = (ẽm1 , ẽ
m
2 , . . . ) by

ẽmt =




ẽt for t < m,

e∗ for t ≥ m.

For each m, the strategies ẽ and ẽm do not differ in the periods 1, . . . ,m− 1; hence, for

any realization of the noise, the resulting utility levels w1, . . . , wm−1 in the first m − 1

periods do not differ, regardless of whether the strategy profile (ẽ, p∗) or the strategy

profile (ẽm, p∗) is played. Recall that the random variable

δ1,m−1(p∗, . . . , p∗;w1, . . . , wm−1)

indicates whether the agent is in office in period m. Hence, the difference

v1

(
ẽm, p∗

)
− v1

(
ẽ, p∗

)

equals the expected value of

δ1,m−1(p∗, . . . , p∗;w1, . . . , wm−1) · βm−1

·
(
vm(ẽm, p∗;w0, . . . , wm−1

)
− vm

(
ẽ, p∗;w1, . . . , wm−1

))
. (21)

Since

vm
(
ẽ, p∗;w1, . . . , wm−1

)
≤ v(e)

1− β
and since, by v(e∗, 1) ≥ v(e, 0), one has

vm
(
ẽm, p∗;w1, . . . , wm−1

)
= vm

(
e∗, p∗;w1, . . . , wm−1

)
≥ v∗

1− β ,
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Expression (21) is, with probability one, larger than or equal to

−βm−1 · v(e)− v∗
1− β .

Since this term converges to zero for m approaching infinity, we can conclude that

lim inf
m→∞

(
v1

(
ẽm, p∗

)
− v1

(
ẽ, p∗

))
≥ 0.

From this, and from the assumption that v1(ẽ, p∗) > v1(e∗, p∗), it follows that some

m ∈ N∗ exists such that v1(ẽm, p∗) > v1(e∗, p∗). Let M be the smallest of these m,

which means

v1(ẽm, p∗) ≤ v1(e∗, p∗) for m < M (22)

and

v1(ẽM , p∗) > v1(e∗, p∗). (23)

Since we have ẽ1 = (e∗, e∗, . . . ), it holds that M ≥ 2. The inequalities (22) and (23)

imply

v1(ẽM , p∗)− v1(ẽM−1, p∗) > 0. (24)

The left-hand side of this inequality is the expected value of the expression

δ1,M−2(p∗, . . . , p∗;w1, . . . , wM−2) · βM−2

·
(
vM−1

(
ẽM−1, p∗;w1, . . . , wM−2

)
− vM−1

(
ẽM , p∗;w1, . . . , wM−2

))
. (25)

Let the random variable

ε := ẽM−1(w1, . . . , wM−2)

describe the agent’s effort level in period M − 1 if the strategy profile (ẽM , p∗) is played.

Now, expression (25) can be rewritten as

δ1,M−2(p∗, . . . , p∗;w1, . . . , wM−2) · βM−2 ·
(
v1

(
(ε, e∗, e∗, . . . ), p∗

)
− v1(e∗, p∗)

)
.

Inequality (24) implies that a value of ε must exist for which this expression is strictly

positive; hence an effort level e exists such that

v1

(
(e, e∗, e∗, . . . ), p∗

)
> v1(e∗, p∗). (26)
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For m ∈ N∗ define the strategy em = (em0 , e
m
1 , . . . ) by

emt =




e for t < m,

e∗ for t ≥ m.

With this notation, (26) reads

v1(e2, p) > v1(e1, p).

By applying this to the identity

v1(em, p∗) + (1− β)−1v∗ = v(e) + βq(e, p∗)
(
v1(em−1, p∗) + (1− β)−1v∗

)

for m = 2 and m = 3, we reach

v1(e3, p∗) + (1− β)−1v∗ = v(e) + βq(e, p∗)
(
v1(e2, p∗) + (1− β)−1v∗

)

> v(e) + βq(e, p∗)
(
v1(e1, p∗) + (1− β)−1v∗

)

= v1(e2, p∗) + (1− β)−1v∗.

Proceeding by induction, we achieve

v1(em, p∗) > v1(em−1, p∗) for all m ≥ 1,

which means that v1(em, p∗) is monotonically increasing in m. We have

∣∣v1(em, p∗)− v1(e, p∗)
∣∣ ≤ βm · (1− β)−1 ·

(
max
p∈[0;1]

∣∣v(e, p)
∣∣+ max

p∈[0;1]

∣∣v(e∗, p)
∣∣
)
,

which implies v1(em, p∗)→ v1(e, p∗) for m→∞. From this and from the monotonicity

of v1(em, p∗) in m, it follows that

v1(e, p∗) > v1(e∗, p∗),

as we intended to show.

Now let (e∗, p∗) be a pair of stationary Markovian strategies with w(e∗, p̃) > w(e∗, p∗) for

some strategy p̃ of the principal. This implies e∗ 6= w∗, since for e∗ = w∗ the principal’s

expected utility amounts to w(e∗,p′) = w∗/(1− γ) for all strategies p′ and hence is the

same for all strategies of the principal.
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If e∗ > w∗, one has w(e∗, 1) ≥ w(e∗,p′) for all strategies p′. Hence, w(e∗, 1) ≥ w(e∗, p̃) >

w(e∗, p∗).9

If e∗ < w∗, one has w(e∗, 0) ≥ w(e∗,p′) for all strategies p′. Again, w(e∗, 0) ≥ w(e∗, p̃) >

w(e∗, p∗).

We have shown that if (e∗, p∗) is not an equilibrium, a stationary Markovian strategy of

the agent or the principal exists which, for that player, is a profitable deviation. This is

the “if” part of the Proposition.

The “only if” part is trivial.

Proof of Lemma 1. For each n, let

Sn :=
{
a
∣∣ pn(en + a) = 1

}
,

and let S :=
⋂∞
n=1 Sn. Then, for each n and all e, we have

q(e, pn) = P
(
A ∈ (en − e) + Sn

)
.

We define strategies p̃n and p̃ by

p̃n(w) := 1{w − en ∈ S},

and

p̃(w) := 1{w − ẽ ∈ S}.

By Part (i) of Proposition 2, we have q(en, pn) = 1; hence P (A ∈ Sn) = 1 for all n,

and thus P (A ∈ S) = 1. It follows that q(en, p̃n) = 1 for all n. Since Sn ⊆ S, we have

q(e, p̃n) ≤ q(e, pn) for all e ∈ [e; esup). Since, in addition, en is a best response to pn, and

since q(en, pn) = q(en, p̃n) = 1, we can conclude that en is a best response to p̃n. Thus,

for all n, the strategy combination (en, p̃n) is an equilibrium.

Suppose (ẽ, p̃) is not an equilibrium. Then an effort level e′ ∈ (e; ẽ) exists such that

v(e′, p̃) > v(ẽ, p̃), which implies

v(e′)− v∗
1− βq(e′, p̃)

− v(ẽ)− v∗
1− βq(ẽ, p̃)

> 0.

9If one wants to prove the proposition for some game Γ(τ) with τ ∈ [−∞;∞] arbitrary (see Section 4)
instead of the game Γ(−∞), the strategy 1 has to be replaced by the strategy 1[τ ;∞) in this paragraph.
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Let δn := ẽ− en. By the continuity of v and δn → 0, some n exists such that e′− δn > e

and
v(e′ − δn)− v∗
1− βq(e′, p̃)

− v(ẽ− δn)− v∗
1− βq(ẽ, p̃)

> 0.

Since q(e′, p̃) = q(e′ − δn, p̃n), q(ẽ, p̃) = q(ẽ− δn, p̃n), and ẽ− δn = en, it follows that

v(e′ − δn, p̃n) > v(en, p̃n),

which contradicts the fact that (en, p̃n) is an equilibrium.

A.2. Proofs for Section 4

Proof of Lemma 2. Part (i), non-emptiness: Consider a threshold strategy 1[b;∞). If

b ∈ {−∞,+∞}, then e is a best response. Now suppose that b ∈ (−∞; +∞). Since

q(e,1[b;∞)) = F−A(e− b), the function

[e; e]→ R, e 7→ v(e,1[b;∞))

is right-continuous. Further, it is bounded from above. Let

s := sup
{
v(e,1[b;∞))

∣∣ e ∈ [e; e]
}
.

A sequence (ej) of points ej ∈ [e; e] exists such that v(ej ,1[b;∞))→ s for j →∞. Since

the interval [e; e] is compact, the sequence has an accumulation point e∗. By taking a

subsequence if necessary, we can assume that the sequence (ej) converges to e∗ and that

it is (A) decreasing or (B) increasing. Consider Case (A). From the right-continuity of

the function e 7→ v(e,1[b;∞)), it follows that

v(e∗,1[b;∞)) = lim
j→∞

v(ej ,1[b;∞)) = s.

In Case (B), the fact that the function e 7→ q(e,1[b;∞)) = FA(e − b) is monotonically

increasing yields

v(e∗,1[b;∞)) ≥ lim
j→∞

v(ej ,1[b;∞)) = s.

In either case, v(e∗,1[b;∞)) = s; thus e∗ is a best response to 1[b;∞) and, hence, e∗ ∈ R(b).

The compactness of R(b) is proved below.
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Part (ii): The first statement, R(−∞) = R(+∞) = {e}, is obvious. To prove that

limb→−∞
(
supR(b)

)
= e, let, for b ∈ (−∞; +∞),

H(b) := sup
{
e ∈

[
e; eindiff

) ∣∣∣ v(e, 1) ≥ v
(
e, F−A(e− b)

)}
.

For b → −∞, we have F−A(e − b) → 1; hence H(b) → e. Since supR(b) ≤ H(b) for all

b, the assertion follows. Now, for b ∈ (−∞; +∞), let

H̃(b) := sup
{
e ∈

[
e; eindiff

) ∣∣∣ v
(
e, F−A(e− b)

)
≥ v(e, 0)

}
.

Since supR(b) ≤ H̃(b) for all b and since H̃(b) → e for b → +∞, it follows that

limb→+∞
(
supR(b)

)
= e.

Part (iii): Since GT is the intersection of G and the closed set

(
[−∞; +∞]× {e} × {0}

)
∪
(
[−∞; +∞]× [w∗; e]× [0; 1]

)
,

the compactness of GT is clear once we know that G is compact.

In order to demonstrate that G is compact, we will show that G is a closed subset of

the set C := [−∞; +∞]× [e; e]× [0; 1], which is compact. Consider a sequence of points

(bn, en, qn) ∈ G converging to some point (b∗, e∗, q∗) ∈ C. We are going to demonstrate

that (b∗, e∗, q∗) ∈ G. We distinguish the cases (A) b∗ = −∞, (B) b∗ = +∞ and (C)

b∗ ∈ (−∞; +∞).

Case (A): By Part (ii) of the proposition, we have e∗ ≡ limn→∞ en = e. In addition, one

has b∗ ≡ limn→∞ bn = −∞ and thus q∗ ≡ limn→∞ qn = limn→∞ F−A(en − bn) = 1 =

q(e,1[−∞;∞)). Hence, (b∗, e∗, q∗) = (−∞, e, 1), which is contained in G by the definition

of G.

Case (B): As in Case (A), we have e∗ ≡ limn→∞ en = e by Part (ii) of the proposition.

One has b∗ ≡ limn→∞ bn = +∞ and thus q∗ ≡ limn→∞ qn = limn→∞ F−A(en − bn) =

0 = q(e,1[+∞;∞)). Hence, (b∗, e∗, q∗) = (+∞, e, 0), which again is contained in G by the

definition of G.

Case (C): We can obviously without loss of generality assume that bn ∈ (−∞; +∞) for

all n. We first show that q∗ ≡ limn→∞ qn = q′, with q′ := q(e∗,1[b∗;∞)). To reach a

contradiction, suppose this is not the case. Then we can find a convergent subsequence
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(qnk) of the sequence (qn) such that

lim
k→∞

qnk 6= q′.

Without loss of generality (namely through replacing the sequence by the subsequence),

we can assume that this subsequence is the sequence (qn) itself, i. e. that (qn) is conver-

gent with

lim
n→∞

qn 6= q′. (27)

As q(e,1[b;∞)) = F−A(e − b) for b ∈ (−∞;∞), the function e 7→ q(e,1[b;∞)) is right-

continuous and increasing; hence we have

lim sup
n→∞

qn ≤ q′. (28)

Inequalities (27) and (28) yield

lim
n→∞

qn < q′.

Thus, ε > 0 exists such that for all sufficiently large n

log(1− βqn) > log(1− βq′) + ε.

Hence, by the continuity of the function v, some neighbourhood U of e∗ exists such that

for all e ∈ U and all sufficiently large n

log
(
v(en)− v∗

)
− log(1− βqn) < log

(
v(e)− v∗

)
− log(1− βq′)− ε

2
.

For each n, let e′n := max{e, e∗+ bn− b∗}. As q′ = q(e∗,1[b∗;∞)) ≤ q(e′n,1[bn;∞)), we can

deduce that for sufficiently large n

log
(
v(en)− v∗

)
− log

(
1− βq(en,1[bn;∞))

)

< log
(
v(e′n)− v∗

)
− log

(
1− βq(e′n,1[bn;∞))

)
− ε

2
.

It follows that

v(en,1[bn;∞)) < v(e′n,1[bn;∞)),

and hence en /∈ R(bn) for sufficiently large n, which is the desired contradiction. Thus

we have proved that q∗ = q′.

It remains to be shown that e∗ ∈ R(b∗). Suppose e∗ /∈ R(b∗). Then, ẽ ∈ [e; e] exists
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such that

log
(
v(e∗)− v∗

)
− log

(
1− βq(e∗,1[b∗;∞))

)

< log
(
v(ẽ)− v∗

)
− log

(
1− βq(ẽ,1[b∗;∞))

)
.

Now let ẽn := max{e, ẽ+ bn− b∗} and observe that q(ẽ,1[b∗;∞)) ≤ q(ẽn,1[bn;∞)). Since v

is continuous and since we have just proved that limn→∞ q(en,1[bn;∞)) = q(e∗,1[b∗;∞)),

we can conclude that

lim
n→∞

[
log
(
v(en)− v∗

)
− log

(
1− βq(en,1[bn;∞))

)]

< lim
n→∞

[
log
(
v(ẽn)− v∗

)
− log

(
1− βq(ẽn,1[bn;∞))

)]
.

It follows that some n exists such that en /∈ R(bn), which is a contradiction.

Part (i), compactness: Consider the projection

h : [−∞; +∞]× [e; e]× [0; 1]→ [e; e], (b, e, q) 7→ e.

By Part (iii), the set G is compact. Since the function h is continuous and R(b) is the

image of the compact set G ∩
(
{b} × [e; e]× [0; 1]

)
under h, the set R(b) is compact.

Part (iv): For e ∈ [e; e] and b ∈ (−∞;∞) let

M(e; b) := log
(
v(e)− v∗

)
− log

(
1− βF−A(e− b))

)
.

M(e; b) is a monotonic transformation of v(e,1[b;∞)). Consider any e′′ ∈ R(b′′). Then,

since e′′ is a best response, M(e, b′′) ≤M(e′′, b′′) for all e ∈ [e; e′′]; hence

M(e, b′′)−M(e′′, b′′) ≤ 0 for all e ∈ [e; e′′].

Let δ := b′′ − b′. Note that δ > 0. By the strict concavity of the function e 7→
log
(
v(e)− v∗

)
, it follows that

M(e− δ, b′′ − δ)−M(e′′ − δ, b′′ − δ) < 0 for all e ∈ [e+ δ; e′′).

Since b′ = b′′ − δ, we obtain

M(e, b′)−M(e′′ − δ, b′) < 0 for all e ∈ [e; e′′ − δ).
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From this we can conclude that each best response to the strategy 1[b′;∞) is larger than

or equal to e′′ − (b′′ − b′). As this holds for all e′ ∈ R(b′) and all e′′ ∈ R(b′′), we have

minR(b′) ≥ maxR(b′′)− (b′′ − b′),

which is the first statement we had to prove. From this it follows that for e′ ∈ R(b′) and

e′′ ∈ R(b′′),

q(e′,1[b′;∞)) = F−A(e′ − b′) ≥ F−A
(
minR(b′)− b′

)

≥ F−A
(
maxR(b′′)− b′′

)
≥ F−A(e′′ − b′′) = q(e′′,1[b′′;∞)),

which is the second statement we had to prove.

Part (v): Consider some threshold b. By Part (ii), we can without loss of generality

assume that b ∈ (−∞;∞). Consider any e ∈ R(b) and any e′ ∈ [e; e]. For e′ = e or

e′ = e, there is nothing to prove (take b′ = −∞ or b′ = b, respectively). Hence assume

that e′ ∈ (e; e). Let

M :=
{
b′ ≤ b : R(b′) ∩ [e′; esup) 6= ∅

}
.

Since b ∈ M , we have M 6= ∅. Let b0 := inf M . By Part (ii), we have b0 > −∞. By

Part (iii), the set G ∩
(
[−∞; b]× [e′; e]× [0; 1]

)
is compact. Since M is the image of this

set under the projection onto the first component, M is compact, and, hence, b0 ∈M .

For n ∈ N∗, let bn := b0 − 1/n. By Part (iv) and by the definition of M , we have

e′ > minR(bn) ≥ maxR(b0)− (b0 − bn) for all n.

Letting n→∞, we obtain e′ ≥ maxR(b0). This together with the definition of M and

with b0 ∈M yields e′ ∈ R(b0), hence we can take b′ = b0.

Proof of Proposition 7. Consider a threshold τ and an equilibrium (e∗, p∗) of Γ(τ) that

is a proper contract equilibrium. By Parts (i), (ii), and (iv) of Remark 1, we have

q(e∗, p∗) ∈ (0; 1) and e > w∗ > e. Since R(b) = {e} for b ∈ {−∞,+∞}, it necessarily

follows that τ ∈ (−∞; +∞).

Each threshold equilibrium (e, p) of Γ(τ) falls into one of the following groups:

1. e = e and q(e, p) = 0,

2. e = w∗ and q(e, p) ∈ (0; 1),
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3. e > w∗, p = 1[τ ;∞), and q(e, p) ∈ (0; 1).

In the light of Proposition 6 and of Part (iv) of Remark 1, this is clear once we can

show that there are no threshold equilibria (e,1[b;∞)) with e > w∗ and b > τ . For

this purpose, consider any threshold equilibrium (e,1[b;∞)) of Γ(τ) with e > w∗ By

Part (iv) of Remark 1, we have q(e,1[b;∞)) ∈ (0; 1). Since the support of the noise

distribution is connected, F−A is strictly increasing where it takes values from (0; 1).

Since, further, q(e,1[b;∞)) = F−A(e − b) and q(e,1[τ ;∞)) = F−A(e − τ), and since

q(e,1[b;∞)) = q(e,1[τ ;∞)) by Proposition 6, it follows that b = τ .

With the help of the above classification into groups, we now prove that the threshold

equilibria can be ordered in the Pareto sense.

All equilibria within the first group are utility-equivalent for both the principal and the

agent; they are strictly dominated by the second group.

All equilibria within the second group are utility-equivalent for the principal; thus a

Pareto-ordering is given by the utility of the agent. Consider any two threshold equilibria

(w∗,1[b′;∞)) and (w∗,1[b′′;∞)) from the second group. We have q(w∗,1[b;∞)) ∈ (0; 1)

for b = b′, b′′. As q(w∗,1[b;∞)) = F−A(w∗ − b) and as, by the connectedness of the

support, F−A is strictly increasing where it takes values from (0; 1), it follows that

v(w∗,1[b′;∞)) = v(w∗,1[b′′;∞)) if and only if b′ = b′′. Hence the Pareto-ordering is strict

within the second group.

Now consider any equilibrium (w∗,1[b;∞)) from the second group and any equilibrium

(e,1[τ ;∞)) from the third group. Since b ≥ τ and e > w∗, we have q(w∗,1[b;∞)) ≤
q(e,1[τ ;∞)); hence w(w∗,1[b;∞)) < w(e,1[τ ;∞)). Since q(w∗,1[b;∞)) ≤ q(w∗,1[τ ;∞)) and

since e is a best response to 1[τ ;∞), we have v(w∗,1[b;∞)) ≤ v(w∗,1[τ ;∞)) ≤ v(e,1[τ ;∞)).

Thus, the third group strictly Pareto-dominates the second group.

Since e ∈ R(τ) for all equilibria (e,1[τ ;∞)) from the third group, all these equilibria are

utility-equivalent for the agent. Consider any two equilibria (e′,1[τ ;∞)) and (e′′,1[τ ;∞))

from the third group. Since q(e′,1[τ ;∞)) < q(e′′,1[τ ;∞)) for e′ < e′′, the utility of the

principal is strictly increasing in the effort level; thus, a strict Pareto-ordering within

the third group is given by the effort level.

Proof of Proposition 8. Let a welfare function H, b ∈ (−∞;∞), e ∈ R(b) with e >

max{e, w∗}, and ε > 0 be given. By Part (iv) of Lemma 2, we can find δ̃ > 0 such that
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R(b′) 6= ∅ for b′ ∈
(
b− δ̃; b

)
. Without loss of generality, choose δ̃ < e−max{e, w∗}. For

all b′ ∈
(
b− δ̃; b

)
, one has

inf
e′∈R(b′)

v(e′,1[b′;∞)) ≥ inf
e′∈R(b′)

v(e′,1[b′;∞)) ≥ v(e,1[b′;∞)) ≥ v(e,1[b;∞)); (29)

here, the second inequality follows from the fact that R(b′) is the set of best responses,

and the third inequality is due to q(e,1[b′;∞)) ≥ q(e,1[b;∞)).

Since the function (e′′, b′′) 7→ q(e′′,1[b′′;∞)) is increasing in e′′ and decreasing in b′′, and

since δ̃ < e−max{e, w∗}, Part (iv) of Lemma 2 yields, for b′ ∈
(
b− δ̃; b

)
,

inf
e′∈R(b′)

w(e′,1[b′;∞)) ≥ w
(
e− (b− b′),1[b′;∞)

)
≥ w

(
e− (b− b′),1[b;∞)

)
. (30)

Since H is continuous and increasing, and since w is continuous and increasing in the

first argument, we can find δ ∈
(
0; δ̃
)

such that

H
(
v(e,1[b;∞)),w(e− (b− b′),1[b;∞))

)
> H(e,1[b;∞))− ε for all b′ ∈ (b− δ; b). (31)

Since H is continuous and increasing, Inequalities (29), (30), and (31) yield

inf
e′∈R(b′)

H(e′,1[b′;∞)) > H(e,1[b;∞))− ε for all b′ ∈ (b− δ; b).

Proof of Corollary 7. Let (ê, p̂) be a proper contract equilibrium, and let ε > 0. By def-

inition, p̂ is a threshold strategy, hence p̂ = 1[b̂;∞) for some b̂ ∈ [−∞; +∞]. Necessarily,

b̂ ∈ (−∞; +∞); for if b̂ ∈ {−∞,+∞}, then R(b̂) = {e}, and thus, as ê ∈ R(b̂), we should

have ê = e, which by Parts (i) and (iii) of Remark 1 is in contradiction to (ê, p̂) being a

proper contract equilibrium.

Again by Part (i) of Remark 1, we know that q̂ := q(ê,1[b̂;∞)) ∈ (0; 1). By the definition

of GT , we have (b̂, ê, q̂) ∈ GT . By Part (iii) of Lemma 2, the set GT is compact. Hence,

δ > 0 exists such that q(e,1[b;∞)) ∈ (0; 1) for all pairs (b, e) with b ∈ (b̂ − δ; b̂) and

e ∈ R(b). In addition, according to Proposition 8, we can by choosing δ sufficiently

small achieve that for all these b, one has R(b) 6= ∅ and H(e,1[b;∞)) > H(ê,1[b̂;∞)) − ε.
By Corollary 4, we can find b∗ ∈ (b̂− δ; b̂) such that R(b∗) contains exactly one element,

which we call e∗.
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Let τ := b∗. By Part (i) of Proposition 6, the strategy profile (e∗,1[b∗;∞)) is indeed an

equilibrium of Γ(τ). By construction, it satisfies Inequality (15).

We now show that Part (iii) of the corollary is true. Consider any threshold equilibrium

(e,1[b;∞)) of Γ(τ) with e > max{e, w∗}. By construction, q(e∗,1[τ ;∞)) ∈ (0; 1). Since

1[b;∞) ∈ ΣP(τ), we necessarily have b ≥ τ and thus q(e,1[b;∞)) ≤ q(e∗,1[τ ;∞)) < 1, by

Part (iv) of Lemma 2. Since e > w∗, it follows that q(e,1[b;∞)) ∈ (0; 1). By Part (i) of

Proposition 6, we have F−A(e− b) = q(e,1[b;∞)) = q(e,1[τ ;∞)) = F−A(e− τ). Since the

support of the noise distribution is connected, F−A is strictly increasing on the segment

where it takes values in (0; 1); it follows that b = τ . Hence e ∈ R(τ), and thus e = e∗.

It remains to prove Part (ii) of the corollary. Consider any equilibrium (e, p) of Γ(τ) apart

from (e∗, p∗). By Part (iii), e ∈ {e, w∗}. As e∗ > w∗ > e, we have w(e, p) < w(e∗, p∗).

Since p ∈ ΣP(τ) and thus q(e, p) ≤ q(e,1[τ,∞)), and since e∗ is a best response to

p∗ = 1[τ,∞), we further have

v(e, p) ≤ v(e,1[τ,∞)) ≤ v(e∗,1[τ,∞)) = v(e∗, p∗).

Hence (e∗, p∗) strictly dominates (e, p) in the Pareto sense.

Proof of Proposition 9. Consider a threshold equilibrium (ê, p̂) that maximizes the prin-

cipal’s utility, i. e. for which

w(ê, p̂) = max
{
w(e, p)

∣∣ (e, p) ∈ T
}
.

By definition, p̂ is a threshold strategy; hence p̂ = 1[b̂;∞) for some b̂ ∈ [−∞; +∞].

Suppose ê = w∗. Then e ≤ w∗ for all (e, p) ∈ T ; in this case there is nothing to prove.

Suppose ê = e. We distinguish (i) e < w∗ and (ii) e > w∗: (i) If ê = e and e < w∗, all

threshold equilibria in T involve the effort level e and induce a reappointment probability

of 0; hence we can choose τ̂ = −∞. (ii) If ê = e and e > w∗, then the equilibrium (ê, p̂)

induces a reappointment probability of 1 and thus is an equilibrium of Γ(−∞). Again,

we can choose τ̂ = −∞.

Now suppose ê > max{e, w∗}. Let ε > 0 be given. By setting H = w (i. e. choosing

H(x, y) = y) in Proposition 8, we can ensure the existence of some δ > 0 such that

w(e,1[b;∞)) > w(ê,1[b̂;∞)) − ε for all pairs (b, e) with b ∈ (b̂ − δ; b̂), e ∈ R(b), and
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e > max{e, w∗}. Further, the proposition tells us that such a pair (b, e) exists—we call

it (b∗, e∗).

Let τ := b∗. By Part (i) of Proposition 6, the strategy profile (e∗,1[b∗;∞)) is indeed an

equilibrium of Γ(τ). By construction, it satisfies Inequality (16).

Now consider any threshold equilibrium (e,1[b;∞)) of Γ(τ) with e > max{e, w∗}. Since

e > e, necessarily q(e,1[b;∞)) > 0; hence we can distinguish the two cases (A) q(e,1[b;∞)) ∈
(0; 1) and (B) q(e,1[b;∞)) = 1.

Case (A): By Part (i) of Proposition 6, we have F−A(e−b) = q(e,1[b;∞)) = q(e,1[τ ;∞)) =

F−A(e − τ). Since the support of the noise distribution is connected, F−A is strictly

increasing on the segment where it takes values in (0; 1); it follows that b = τ . Hence

e ∈ R(τ), and thus w(e,1[b;∞)) = w(e,1[τ ;∞)) > w(ê,1[b̂;∞)) − ε, by the construction

of τ .

Case (B): By Part (i) of Proposition 6, we have q(e,1[τ ;∞)) = q(e,1[b;∞)) = 1. It follows

that e ≥ e∗, as for e < e∗ we would have q(e∗,1[τ ;∞)) ≥ q(e,1[τ ;∞)) = 1 and thus the

effort level e would be a better response to 1[τ ;∞) than e∗, in contradiction to the fact

that (e∗,1[τ ;∞)) is an equilibrium. Now e ≥ e∗, q(e,1[b;∞)) = 1, and the way τ was

constructed give us w(e,1[b;∞)) ≥ w(e∗,1[τ ;∞)) > w(ê,1[b̂;∞))− ε.
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