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Abstract  
 

 The productive efficiency of a firm can be seen as composed of two parts, one 
persistent and one transient.  The received empirical literature on the measurement of 
productive efficiency has paid relatively little attention to the difference between these two 
components.  Ahn, Good and Sickles (2000) suggested some approaches that pointed in this 
direction.  The possibility was also raised in Greene (2004), who expressed some pessimism 
over the possibility of distinguishing the two empirically.  Recently, Colombi (2010) and 
Kumbhakar and Tsionas (2012), in a milestone extension of the stochastic frontier 
methodology have proposed a tractable model based on panel data the promises to provide 
separate estimates of the two components of efficiency.  The approach developed in the 
original presentation proved very cumbersome actually to implement in practice. Colombi 
(2010) notes that FIML estimation of the model is ‘complex and time consuming.’ In the 
sequence of papers, Colombi (2010), Colombi et al. (2011, 2014), Kumbhakar, Lien and 
Hardaker (2012) and Kumbhakar and Tsionas (2012) have suggested other strategies, 
including a four step least squares method.  The main point of this paper is that full maximum 
likelihood estimation of the model is neither complex nor time consuming.  The extreme 
complexity of the log likelihood noted in Colombi (2010), Colombi et al. (2011, 2014) is 
reduced by using simulation and exploiting the Butler and Moffitt (1982) formulation. In this 
paper, we develop a practical full information maximum simulated likelihood estimator for 
the model. The approach is very effective and strikingly simple to apply, and uses all of the 
sample distributional information to obtain the estimates.  We also implement the panel data 
counterpart of the JLMS (1982) estimator for technical or cost inefficiency.  The technique is 
applied in a study of the cost efficiency of Swiss railways. 

 
Keywords: productive efficiency, stochastic frontier analysis, panel data, transient and persistent 
efficiency 
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1. Introduction 

The productive efficiency of a firm can be seen as composed of two parts, one 

persistent and one transient.  The persistent part is related to the presence of structural 

problems in the organization of the production process of a firm or the presence of systematic 

shortfalls in managerial capabilities.  The transient part may be due to the presence of non-

systematic management problems that can be solved in the short term.  The received empirical 

literature on the measurement of productive efficiency has paid relatively little attention to the 

different between these two components of productive efficiency. 1  Generally, the studies 

using stochastic frontier models for panel data do recognize that some econometric models 

produce indicators of efficiency that vary over time, whereas other econometric models 

provide the estimation of time invariant indicators of efficiency.2  However, these studies 

generally do not address the possibility that the productive efficiency can be split into two 

parts, i.e. transient and persistent. 

Some studies utilize several stochastic frontier models for panel data and compare the 

ranking and the values of the estimated indicators of efficiency (e.g., Farsi et. al. (2005b), 

Abdulai and Tietje (2007), Faust and Baranzini (2014)). This comparison, usually performed 

by calculating a rank correlation coefficient of the index of efficiency, will ignore the 

possibility that the values obtained with the time invariant models reflect something different 

from those obtained from models with time varying inefficiency. 

Ahn, Good and Sickles (2000) suggested an approach that pointed in the direction of 

distinguishing short-run and long-run efficiency levels.  For this purpose, they proposed to 

use a stochastic frontier model with an autoregressive specification.  The possibility was also 

raised in Greene (2004), who expressed some pessimism over the possibility of distinguishing 

empirically the persistent and transient part of the productive efficiency.  Recently, Colombi 

(2010), Colombi et al. (2011, 2014) and Kumbhakar and Tsionas (2012), in a milestone 

extension of the stochastic frontier methodology, have proposed a tractable model based on 

panel data that promises to provide separate estimates of the two components of efficiency.  

As suggested by Kumbhakar and Tsionas (2012), we will call this four-way error component 

stochastic frontier model the Generalized True Random Effects model (GTRE).  The 

approached developed by Colombi et al. (2011, 2014) in the original presentation proved 

1 Books and surveys on the measurement of the level of productive efficiency do make the distinction between 
models that estimate time-varying inefficiency indicators and models that produce time invariant indicators. See 
for instance Kumbhakar and Lovell (2000) or  Greene (2008).  Measurement of the distinct parts has proved 
challenging. 
2 For a discussion of these models see Greene (2008). 
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extremely cumbersome to actually implement in practice.  Kumbhakar and Tsionas (2012) 

proposed a partial Bayesian Solution, but stopped short of a full practical implementation of 

the MLE.  (The sensitivity of the Bayesian approach to the need to have informative priors 

over the main objects of estimation remains to be settled.)  Finally, Kumbhakar, Lien and 

Hardaker (2012), in their survey of panel data models, proposed a method of moments 

estimator for the LR/ST models based on simple OLS. 

The goal of this paper is to provide an alternative econometric approach for the 

estimation of the GTRE model based on maximum simulated likelihood that allows the 

distinction between persistent and transient levels of efficiency. As we will discuss later in the 

paper, the advantage of this approach is in the transparency and effectiveness of the 

estimation procedure. 

The paper is organized as follows. The next section presents a short overview of the 

most important stochastic frontier models for the estimation of the transient part of efficiency 

and of the persistent part of efficiency, while section 3 discusses the novel model/estimator 

based on maximum simulated likelihood. Section 4 illustrates the application of this new 

stochastic frontier model using a public available data set on the cost of a sample of Swiss 

railway companies. The final section contains a summary and conclusion. 

 

2.  Stochastic Frontier Models for the Estimation of the Persistent 
or the Transient Part of Productive Inefficiency 
 

There are several different panel data stochastic frontier model (SFA) specifications 

that have been considered for the econometric estimation of one of the two components of the 

productive efficiency. Some will estimate the time invariant values of productive efficiency 

that tend to reflect the persistent part of the level of productive efficiency. Others estimate 

time varying values of productive efficiency that tend to capture the transient component. 

These received models do not provide the information if a firm is characterized by the 

presence of both parts of the productive inefficiency. 

Most of these frontier models using panel data are based on the fixed and the random 

effects models. For our application, we will consider the estimation of a cost frontier. The first 

stochastic frontier model that specifically developed the persistent part of inefficiency is Pitt 

and Lee (1981)(hereafter RE). They specified a model in which the inefficiency term ui is 

assumed to be constant through time: 
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where Cit is total cost incurred by company I in year t, xit is a vector of outputs and  

input prices in logs, β is the associated vector of parameters to be estimated; ui, is a one-

sided non-negative disturbance measuring the level of inefficiency, and vit, is a 

symmetric disturbance representing the random noise. Usually vit is assumed to be 

normally distributed, while the inefficiency term, ui is assumed to follow a half-normal 

distribution.3  This model, due to Pitt and Lee (1981), is a variant of the classical 

random effects model for panel data, where the individual effects are assumed to have a 

specific, non-normal distribution. 

Several variants of the Pitt and Lee (1981) model have been proposed. to 

accommodate time variation in the inefficiency term. Most of these specify that the 

inefficiency term can be represented as a product of a deterministic function of time and 

the random effects, ui, with the one-sided non-negative disturbances now reflecting the 

transient effect of inefficiency. For instance, Kumbhakar (1990) specifies the 

inefficiency term as 2 1[1 exp( )] | |,it iu bt ct U−= + + Battese and Coelli (1992) as 

exp[ ( )] | |,it iu t T U= −η − Battese and Coelli (1995) as  exp[ ( , , )] | |it it iu g t T U= z and 

Cuesta (2000) as exp[ ( )] | |it i iu t T U= −η − .  We note at least some ambiguity in the 

interpretation of uit in these contexts as time varying or time fixed inefficiency. 

Schmidt and Sickles (1984) propose a model that estimate the persistent part of 

the inefficiency without specifying an explicit distribution of the inefficiency as in Pitt 

and Lee (1981). They propose to reinterpret the linear fixed effect model as: 

2
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it v

C v
v N
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σ

xβ
       (2) 

where inefficiency ˆiu is computed from ( )ˆ ˆˆ mini i i iu = α + α   where ˆ iα is the ith fixed 

effects estimate in the within groups fixed effects linear regression model.  The model 

proposed by Schmidt and Sickles (1984) has been extended by Cornwell, Schmidt and 

3  Other extensions of the basic frontier model have also considered exponential and truncated normal 
distributions for the inefficiency term. See for instance Battese and Coelli (1992). 
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Sickles (1990) in order to estimate a transient part of inefficiency without specifying an 

explicit distribution of the inefficiency. In this model, the transient part of the 

inefficiency is defined as  2
0 1 2 it i i it tα = α + α + α .   This interpretation would seem to 

remove the ambiguity in the interpretation of uit.  Since both the time invariant 

components, α0i and the time varying components, α1it + α2it2 are firm specific, this 

model could suggest a decomposition.  It has two features that warrant further 

investigation: first, it leaves unaccounted for time invariant heterogeneity that is not 

inefficiency; second, it places a very strong assumption on the trajectory of time varying 

inefficiency – a firm specific quadratic function of time.  (We do note, the authors did 

not make the distinction between permanent and transient inefficiency in their 

development.  Cornwell, Schmidt and Sickles (1990) treated the estimator as time 

varying inefficiency.) 

All these models that estimate a level of productive efficiency that varies over 

time are variants of the random or fixed effects models. Therefore, it is not completely 

clear if these models are really able to isolate the transient part of inefficiency, because 

all these inefficiency measures include a persistent part ui or αi.  Moreover, in all these 

models any unobserved, time-invariant, individual-specific heterogeneity is captured by 

ui or α0i, and therefore,  considered as inefficiency.  Consequently, these models tend 

generally to underestimate the level of efficiency. 

Greene (2005a and 2005b) proposes two models based on the extension of the 

panel data version of the Aigner, Lovell and Schmidt (1977) half normal model by 

adding to the classical stochastic frontier model firm specific time-invariant effects. 

These models, called true fixed effects model (hereafter TFE) and true random effects 

model (hereafter TRE), include a term for time invariant unmeasured unobserved 

heterogeneity, a random noise term and a firm-specific inefficiency term. These models 

help to separate unobserved time-invariant effects from time-varying efficiency 

estimates. Therefore, the efficiency estimates obtained with these models provide 

information on the transient component of productive efficiency.  The generic 

formulation of the model is 

2
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In the true fixed effects model, wi represents time invariant heterogeneity that might be 

correlated with the included variables, xit.  The estimator is simply pooled SFA with 

firm dummy variables added to the model to accommodate wi.  The characteristics of 

the  TFE model have been examined in some recent studies, such as Chen et al. (2013) 

who develop an ML estimator based on likelihood function that applies after the ‘within 

groups’ transformation removes hi.  The TRE model is 

2
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The model is estimated bymaximum simulated likelihood. The term wi is an i.i.d. random 

component in random-effects framework. The inefficiency term is assumed to be an iid 

random variable with a specific non-normal distribution (half-normal, exponential or 

truncated-normal distribution). This implies that the inefficiency is varying over time. 

In the TRE and TFE settings, any time-invariant or persistent component of 

inefficiency is completely absorbed in the individual-specific constant term. Therefore, for 

example, in contexts characterized by certain sources of efficiency that result in time-invariant 

excess of inputs, the estimates of these models could be expected to provide relatively high 

levels of efficiency.  

The TRE can also suffer from the ‘omitted variables bias’, because the unobserved 

variables may be correlated with the regressors.  (This motivates the FTE approach.)  In order 

to solve this problem, Farsi et al. (2005b) suggest to use in the TRE an auxiliary equation 

introduced by Mundlak (1978). The use of this auxiliary equation allows considering the 

econometric problem of unobserved heterogeneity bias. The auxiliary equation is given by:  
2,   ~ (0, )i i i i ww w iid′α = α+ +xφ σ  (4) 

where ix  is the vector of the firm means of all the time varying explanatory variables and φ is 

the corresponding vector of coefficients. Equation (4) can be incorporated in the TRE.4 

4 The Mundlak auxiliary equation has been proposed for a random effects linear regression model.  This 
approach, based on normality and the linear model, might not strictly apply to stochastic frontier models 
estimated by ML, as these models possess an asymmetric composite error term εi. As the model captures the 
correlation between the individual effects and the explanatory variables at least partly, the resulting 
heterogeneity bias is expected to be minimal.  The general approach has been used elsewhere in a variety of 
settings under the heading of ‘correlated random effects models.’  See, e.g., Wooldridge (2010). 
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From this short review of some previous models, we can observe that there is an 

interest in an econometric model that allows at once the estimation of the persistent and 

transient parts of the productive efficiency.  The recent papers on this topic mentioned in the 

introduction (Colombi (2010), Colombi et al.(2011, 2014),  Kumbhakar and Tsionas (2012), 

Kumbhakar, Lien and Hardaker (2012)), provide a theoretical platform on which to distinguish 

persistent from transient inefficiency.  In what follows, we suggest a practical completion to 

the development by proposing a straightforward, transparent empirical estimation method. 

 

3. Maximum Simulated Likelihood Estimation of the Generalized 
True Random Effects Model 
 
 The generic normal – half normal stochastic production frontier model is  

 yit =  α + β′xit +  vit–uit        (5) 

  =  α + β′xit  +  εit 

where vit is normally distributed with mean zero and variance σv
2 and uit = |Uit| where Uit is 

normally distributed with mean zero and variance σu
2.  In the second line, εit has a two 

parameter skew normal distribution with parameters λ  =  σu/σv and σ =  (σv
2 + σu

2)1/2.  [See 

Azzalini (1985).] The log likelihood for this stochastic frontier model is  

1

1
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    (6) 

where φ(z) is the standard normal density and Φ(z) is the standard normal cdf.  [See Aigner, 

Lovell and Schmidt (1977).]  The form in the second line displays the skew normal 

distribution of εit.5 

The true random effects (TRE) model [Greene (2005)] adds a time invariant random 

effect to the normal-half normal stochastic frontier model; 

yit =  α + wi + β′xit +  vit  – uit       (7) 

where vit and uit are as defined earlier and the time invariant wi is normally distributed with 

mean zero and variance σw
2.  The random effect in (7) is understood to capture persistent firm 

5A stochastic cost frontier function will result from the simple change of  –uit to +uit in (5).  A few sign changes 
will also result in the log likelihood function.  See, e.g., the survey in Greene (2008 ). 
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level heterogeneity, not inefficiency. The log likelihood for the TRE model is formed as 

follows:    Conditioned on wi, the T observations for firm i are independent.6   [See Butler and 

Moffitt (1982).]  The conditional density is 

 

f(εi1,…,εiT|wi)  1

( ) ( )2= T it i it i
t

w w
=

ε + − ε + λ   φ Φ   σ σ σ   
∏     (8) 

 

The unconditional density that will form the basis for MLE is obtained by integrating out wi;  

f(εi1,…,εiT)  
1

( ) ( )2 1= .T it i it i i
it

w w

w w w dw
∞

=−∞

  ε + − ε + λ    φ Φ φ      σ σ σ σ σ      
∏∫  (9) 

It is convenient to use a change of variable and write wi =  σwWi where Wi is normally 

distributed with mean zero and variance one.  Combining terms, the log likelihood for the true 

random effects model is 
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The integral does not exist in closed form, but it can be evaluated by simulation.  The 

simulated log likelihood is 

1 1 1

log ( , , , , ) 

2
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In the inner summation, Wir is R simulated draws from the standard normal population.  (In 

our applications, we use Halton sequences rather than pseudo-random numbers.)    We rely on 

received results for properties of the MSLE.  [See, e.g., Train (2003).]  Derivatives for 

gradient based optimization and for computing the estimator of the asymptotic covariance 

matrix are also simulated.  The model is otherwise conventional, and satisfies the regularity 

6There is no requirement that the number of observations, Ti, be the same for each firm.  Ti is assumed here to be 
constant only for convenience to avoid another subscript in the presentation. 
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conditions that underlie familiar maximum likelihood estimation.  Full results for the true 

random effects estimator appear in Greene (2004, 2005) and references therein.7 

We now consider the ‘Generalized True Random Effects’ model (GTRE).  The 

extension of the model adds to the TRE model above a time persistent counterpart to uitin the 

time varying stochastic frontier.  The two level stochastic frontier model is 

yit =  α + (wi – hi) + β′xit +  (vit–uit)      (12) 

The random components vit, uit and wi are as defined earlier while hi = |Hi| has a half normal 

distribution with underlying variance  σh
2.   The form in (12) might appear to include a four 

part disturbance with two time varying components and two time invariant components. [See, 

e.g., Colombi et al. (2011), Sec. 2, p. 4 where it is described as such.]  By this view, 

identification and estimation would seem to be optimistic in the extreme.  The crucial insight 

is that it is not a four part disturbance; it is a two part disturbance, one time varying, one time 

invariant, in which each of the two parts has its own skew normal distribution rather than 

normal distribution.  I.e., it is a random effects model with skew normal error components. 

Thus,  εit  =  (vit – uit) has the now familiar skew normal distribution with parameters σ and λ 

shown earlier while δi = (wi – hi ) also has a skew normal distribution with parameters  

γ = σh/σw and θ = (σw
2 + σh

2)1/2.         (13) 

The full unconditional log likelihood function for this model based on the joint 

distribution of (εi1,…,εiT,δi) is derived by Colombi (2010) and Colombi et al. (2011).  Before 

considering our preferred method of estimation, it is useful to show their result in detail.  For 

the GTRE model, the full log likelihood is 

 

1
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i T T T T T

iT iT
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T T
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′     
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ei  = yi  -  Xiβ  -  1Tα 

7 The estimation strategy in (11) could, in principle, be applied to estimation of the stochastic frontier model in 
(6) by integrating uit out of the conditionally normal linear regression model in (5).  Maximization of (6) directly 
is extremely straightforward, however, and the MSLE would provide no improvement over direct MLE. 
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and Tφ (z|µ,Ω) denotes aT-variate normal density evaluated at z for random vector with mean 

µ and covariance matrix Ω while 1( , )T +Φ τ Γ is the joint probability that aT+1-variate normal 

vector with mean vector τ and covariance matrix Γ belongs to the nonnegative orthant.8  Note 

that the full unconditional log likelihood involves the T-variate normal density and T+1 

variate normal integrals in both of which the covariance matrix (which is, itself a complex 

function of the underlying parameters) is one of the objects of estimation.  Maximization of 

log likelihoods of this sort is a notoriously challenging exercise. 

Colombi (2010) notes that FIML estimation of the model is ‘complex and time 

consuming.’9  In the sequence of papers, Colombi (2010), Colombi et al. (2011), Kumbhakar, 

Lien and Hardaker (2012) and Kumbhakar and Tsionas (2012) have suggested other 

strategies, including a four step least squares method.  The main point of this paper is that full 

maximum likelihood estimation of the model is neither complex nor time consuming.  The 

extreme complexity of the log likelihood noted in Colombi (2010) and Colombi et al. (2011, 

2014) is reduced by using simulation and exploiting the Butler and Moffitt (1982) 

formulation.   

The obstacle to FIML estimation is the extreme complexity of multivariate normal 

integrals involving traces and determinants of matrices in the optimization.  In fact, estimation 

of this extended model is no more complicated than the TRE model noted earlier.  The GTRE 

model is simply a TRE model in which the time invariant effect has a skew normal 

distribution, rather than a normal distribution as assumed earlier.  It is trivial to simulate 

draws from a skew normal as simply the sum of a normal minus (or plus) the absolute value 

of a normal draw.  By the natural extension, the log likelihood function for the GTRE model 

is 

1 1

log ( , , , , , ) 

2
2= log .
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 (15) 

8The authors allowed σu
2 to vary by period.  This aspect can be added to the estimating equations by changing 

σu
2I to Ψ = diag(σu,1

2,…,σu,T
2) in the definition of V.  In the formulations below, the parameterization in terms of 

σ and λ would have to be replaced with the original parameterization in terms of σv and σu,t.  Their results on the 
presence of this type of heteroscedasticity are mixed. 
9In the original work, Colombi (2010) notes use of a self-developed R routine named SNF-maxlik. 
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For practical purposes, it is more convenient to use the original parameterization.  Recall, 

δi =  σwWi  -  σh|Hi| 

where Wi and Hi are both normally distributed with mean zero and variance one.  The 

usefulness of the parameterization is for the simulation, which is based on primitive draws 

from the standard normal populations – there are no additional parameters.  Combining terms, 

the simulated log likelihood function for the GTRE model is 

1 1 1
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This estimation problem is only slightly more difficult than that for the TRE model as 

it involves another parameter, σh.  The simulation, itself, involves pairs of independent 

random draws from two standard normal populations. But, the optimization problem itself is 

essentially the same as the TRE. It is worth noting, the appearance that the MLE implied by 

(14) is ‘direct’ while that in (16) which involves simulation is ‘approximate,’ is a bit 

misleading.  The full log likelihood in (14) involves T+1 dimensional integration of the 

normal distribution.  This cannot be done ‘directly.’  Normal integrals of dimension 3 or 

larger require use of the GHK simulator, which approximates the same integral as in (16).  

The reason that maximizing (16) is so much faster than (14) is that (14) is a ‘brute force’ 

approach that does not make use of the greatly simplifying result that the actual integration 

needed to compute the term in the log likelihood involves integration over a single dimension, 

that of hi.  Experience with high dimensional integration using the GHK simulator suggests 

that because a large number of simulation points is needed to gain acceptable accuracy, the 

advantage of (16) over (14) should be substantial as T increases.  In our application, T is 13. 

Computing the technical efficiency uses a result from Colombi (2010) based on the 

moment generating function for the closed skew normal distribution; 
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(The residual, ei, is defined in (14).)  This computation requires multivariate normal 

integration, which we do using the GHK simulator.  Technical or cost inefficiency can be 

computed from the results in (17) using –log[E[exp(t′ui)|ei] element by element.  Kumbhakar, 

Lien and Hardaker (2012) also suggested a total efficiency measure, 

 Overall efficiencyit  =  E[exp(-hi)|ei] × E[exp(-uit)|ei]    (18) 

which can also be computed from the results in (17). 

 

4.  Empirical Analysis 
In this section we illustrate an application of the new estimation approach of the 

four–way error component stochastic frontier model presented in the previous section that 

allows us to distinguish persistent and transient levels of productive efficiency. As discussed 

previously, following Kumbhakar and Tsionas(2012) we call this model “Generalized True 

Random Effects” model (hereafter GTRE), because is a model that nest two other models, i.e. 

pooled frontier model and the true random effects model. Further, in order to take into account 

a possible heterogeneity bias due to the correlation of the explanatory variables with the 

stochastic term, we propose the estimation of the GTRE with the Mundlak adjustment 

(hereafter MGTRE).  

For comparison purposes we also estimate the stochastic cost frontier model using 

RE and TRE. We choose these two models because the first provide time-invariant 

inefficiency indicators, whereas the second estimate time variant inefficiency indicator. 

The application of the GTRE is based on an a data set and on a paper by Farsi et al. 

(2005) on the measurement of the cost efficiency of a sample of Swiss railway companies.10 

A description of the model specification and on the variables used in this empirical 

application is available in Farsi et al. (2005). 

The  total cost of a railway company can be specified as a function of input prices 

and outputs. Moreover, as discussed in Farsi et. A. (2005a),in the cost model specification it is 

possible to consider a number of output characteristics, which should take into account, at 

least partially, the railway companies’ production environment.  

The  total cost can be can be written as: 

 

TC = f ( Y1, Y2, PL , PC , PE , N, NS, dt )      (19) 

10 The data set is available at http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF19-1.txt 
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where TC is the total annual costs; Y1 andY2 are two outputs (numbers of passenger-kilometers 

and freight ton-kilometers); PK , PL  and PE are the prices of capital, labor and energy 

respectively; N is the length of network , NS is the number of stops and dt is a vector of 12 

year dummies from 1986 to 1997. With respect to the model used by Farsi et. al (2005a) we 

have included the number of stops in the model to quantify the environmental conditions 

more precisely.  The cost function is concave, non-decreasing in input prices and output and 

linearly homogeneous in input prices. 

To estimate the cost function in (19), a log-linear functional form is used.The cost 

function can be written as: 

 

0 1 1 2 2

1997

1986

ln ln ln ln ln

                 ln ln .
it it

it
y it y it N it NS it

Eit

t
Lit K it

L K t t it
tE E

TC Y Y N NS
P

P P d
P P

=

=

 
= α + α + α + α + α + 

 
   

α + α + α + ε      
   

∑  (20) 

Subscripts iand t denote the company and year respectively. The error term itε in (20) is 

composed of different independent parts depending on the econometric specification chosen 

as explained in table 1. The linear homogeneity restriction is imposed by normalizing the 

costs and input prices by the price of  energy. 

The data set used in this study, as discussed in more details in Farsi et. Al. (2005), is 

based on the financial reports of 50Swiss railway companies over the 13-year period from 

1985 to 1997. Table 1 summarizes the four econometric specifications used in this empirical 

part of the paper. The estimation results for the cost frontier models using the four models 

discussed above are given in Table 2. 

These results show that the output, output characteristics and input price coefficients 

are positive and highly significant across all models. The estimated coefficients are relatively 

similar across the different models. The only exceptions are the coefficients of the outputs in 

the Mundlak version of the GTREM.  In this model these two coefficients are lower than in 

the other models.11  These results suggest the presence of unobserved heterogeneity bias. The 

Mundlak version of the GTRE would be preferred to the other models on this basis. 

11 The values of the coefficients of the MGTRE are very close to the coefficients obtained using a 
classical fixed effects model. 
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Moreover, on the basis of a likelihood ratio test we can reject that all Mundlak terms are equal 

zero (likelihood ratio test statistic is 44.62, higher than the 2
(0.95;6)χ  value 12.592). 

The coefficients of the year dummy positive and indicate that the total costs of 

railway companies increased over time. 

 

Table 1: Econometric Specifications of the Stochastic Cost Frontier  

 
Model I 
 
RE 
(Pitt and Lee) 

Model II 
 
TRE 
 

Model III 
 
GTRE 

Model IV 
 
MGTRE 

Firm 
effects αi 

α N(α,σw
2) N(α,σw

2) i i iw′α = +xφ  
wi~N(α,σw2) 

Full random 
error εit 

 
εit= ui+vit 

ui~N+(0,σu
2) 

vit~N(0,σv
2) 

 
εit= wi+uit+vit 

uit~N+(0,σu
2) 

vit~N (0,σv
2) 

wit ~N (0,σw
2) 

εit=   wi+hi+ 
uit+vit 
uit~N+(0,σu

2) 
hi  ~N+(0,σh

2) 
vit~N (0,σv

2) 
wi~N (0,σw

2) 

εit=   wi+hi+ 
uit+vit 
uit~N+(0,σu

2) 
hi   ~N+(0,σh

2) 
vit~N (0,σv

2) 
wi~N (0,σw

2) 

Persistent 
Inefficiency 
Estimator 

E(ui |εi1,…εiT)        None 
 

Ε(hi | yi) 
 

 
Ε(hi | yi) 

 

Transient 
Inefficiency 
Estimator 

None E(uit|εit) Ε(uit | yi) Ε(uit | yi) 

 

 
Since total costs and all the continuous explanatory variables are in logarithms, the 

estimated coefficients can be interpreted as cost elasticities. For instance, the output 

coefficients suggest that the increase in cost due to a one percent increase in the number of 

stops, keeping all other explanatory variables  constant, varies between 0.1 to 0.2 percent. The 

coefficient of network length suggest that the increase in cost due to a one percent extension 

in the network keeping all other explanatory variables constant is approximately 0.4 percent. 

Further, the coefficient of number of stops suggests that the increase in cost due to a one 

percent increase in the number of stops, keeping all other explanatory variables  constant, 

varies between 0.02 to 0.1 percent.   

Table 3 provides descriptive statistics for the cost efficiency estimates for the 50 railway 

companies obtained from the econometric estimation of the six models. The estimation results 
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of the new cost frontier models (GTRE and MGTRE) provide estimates the persistent 

(GTRE-P, MGTRE-P)as well the transient component of cost efficiency (GTRE-T, MGTRE-

T).  The RE model produce values of the cost efficiency that are time-invariant and therefore 

should reflect the persistent part of the cost efficiency and the TRE produce values that are 

time-varying and therefore should reflect the transient part of the cost efficiency.  

The values reported in table 3 show that the estimated average values of the 

persistent efficiency varies from 55% in the REM to 74% in the TGTRE and 78% in the 

TMGTRE.  The estimated average values of the transient efficiency in the TRE, the TGTRE 

and in the TMGTRE is approximately 94%.Table 4 provides the correlations between the 

estimated levels of cost efficiency obtained from the different model specifications.  

Generally, the value of the correlation coefficients between the values of the transient 

cost efficiency obtained with TRE and GTRE is relatively high, 0.85. But, the correlation  

between the values of the persistent cost efficiency obtained with RE and GTRE is relatively 

low, 0.15. This result suggests that the result obtained with the RE model is not measuring the 

persistent efficiency of the firms correctly. As Greene (2005) suggested earlier, the reason 

could be that in this model all unobserved time invariant heterogeneity is captured by the 

individual effect that is also used to compute the level of efficiency.  
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Table 2: Swiss Railways, Estimation Results 
(Asymptotic t-ratios in parentheses.  Mundlak terms not shown.) 
 

 RE  TRE  GTRE  MGTRE  

LNY1 0.193 
(6.242) 

*** 0.162 
(31.018) 

*** 0.155 
(27.634) 

*** 0.106 
(3.479) 

*** 

LNY2 0.021 
(7.936) 

*** 0.027 
(19.776) 

*** 0.021 
(14.823) 

*** 0.016 
(5.491) 

*** 

LNN 0.424 
(10.798) 

*** 0.392 
(49.913) 

*** 0.417 
(49.926) 

*** 0.422 
(11.836) 

*** 

LNPL 0.539 
(18.588) 

*** 0.551 
(29.185) 

*** 0.541 
(27.974) 

*** 0.556 
(18.788) 

*** 

LNPE 0.151 
(4.428) 

*** 0.134 
(6.701) 

*** 0.149 
(7.245) 

*** 0.131 
(3.915) 

*** 

LNSTOPS 0.115 
(2.597) 

*** 0.026 
(2.955) 

*** 0.050 
(4.901) 

*** 0.113 
(2.231) 

*** 

YEAR86 0.011 
(0.280) 

 0.017 
(0.600) 

 0.016 
(0.551) 

 0.019 
(0.611) 

 

YEAR87 0.014 
(0.412) 

 0.024 
(1.028) 

 0.024 
(0.985) 

 0.031 
(1.122) 

 

YEAR88 0.029 
(0.691) 

 0.043 
(1.315) 

 0.043 
(1.253) 

 0.050 
(1.194) 

 

YEAR89 0.05332 
(1.159) 

 0.068 
(1.987) 

* 0.068 
(1.913) 

* 0.075 
(1.828) 

* 

YEAR90 0.071 
(2.077) 

** 0.088 
(2.824) 

** 0.089 
(2.913) 

*** 0.096 
(2.873) 

*** 

YEAR91 0.080 
(2.872) 

*** 0.102 
(4.381) 

*** 0.103 
(4.417) 

*** 0.111 
(4.111) 

*** 

YEAR92 0.094 
(2.862) 

*** 0.116 
(5.191) 

*** 0.116 
(5.081) 

*** 0.122 
(4.161) 

*** 

YEAR93 0.081 
(2.601) 

*** 0.105 
(4.202) 

*** 0.103 
(4.08) 

*** 0.110 
(3.685) 

*** 

YEAR94 0.064 
(1.708) 

* 0.087 
(2.884) 

** 0.084 
(2.816) 

*** 0.092 
(2.639) 

*** 

YEAR95 0.048 
(1.512) 

 0.064 
(2.749) 

** 0.060 
(2.528) 

** 0.063 
(2.238) 

** 

YEAR96 0.032 
(1.267) 

 0.052 
(2.336) 

*** 0.046 
(2.043) 

** 0.045 
(1.907) 

* 

YEAR97 0.032 
(1.045) 

 0.048 
(1.858) 

* 0.043 
(1.66) 

 0.044 
(1.571) 

 

α -7.727 
(-11.676) 

*** -9.507 
(-36.704) 

*** -6.242 
(-23.684) 

*** -3.687 
(-10.284) 

*** 

σw -  0.353 
(88.250) 

*** 0.522 
(90.153) 

*** 0.365 
(90.639) 

*** 

λ 0.820 
(6.296) 

*** 1.635 
(7.712) 

*** 0.095 
(30.305) 

*** 0.094 
(25.475) 

*** 

σ 11.692 
(1.857) 

* 0.099 
(24.750) 

*** 1.611 
(8.197) 

*** 1.561 
(6.823) 

*** 

σh -  -  0.664 
(12.008) 

*** 0.851 
(13.506) 

*** 

Log 
likelihood 598.644 

 
591.559 

 
599.231 

 
621.544 
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Table 3: Cost Efficiency Scores 

Variable Mean Std.Dev. Minimum Maximum   
RE 0.548 0.208 0.126 0.986   
TRE 0.935 0.036 0.716 0.988   
TGTRE 0.939 0.031 0.733 1.000   
PGTRE 0.747 0.038 0.738 1.000   
TMGTRE 0.941 0.030 0.737 1.000   
PMGTRE 0.784 0.032 0.775 1.000   

 

Table 4: Correlation Coefficients 

 RE TRE TGTRE PGTRE TMGTRE PMGTRE 
RE 1 -0.11 -0.06 0.15 -0.06 0.15 
TRE -0.11 1 0.85 -0.19 0.84 -0.19 
TGTRE -0.06 0.85 1 0.29 1.00 0.28 
PGTRE 0.15 -0.19 0.29 1 0.29 1.00 
TMGTRE -0.06 0.84 1.00 0.29 1 0.29 
PMGTRE -0.15 -0.19 0.28 1.00 0.29 1 
       

 
 
5.  Conclusions 

In the measurement of the level of productive efficiency of a firm, it is possible to 

distinguish between persistent and transient levels of efficiency.  Empirical studies on 

efficiency measurement have paid relatively little attention to the distinction between these two 

components in estimates of productive efficiency.  Recently, Colombi et al. (2011, 2014), 

Kumbhakar and Tsionas (2012), and Kumbhakar, Lien ahd Hardaker (2012) have proposed 

some econometric approaches to provide separate estimates of the two components of 

efficiency.  However, the approaches are relatively cumbersome or are based on a multistep 

manipulation of OLS that is not completely satisfactory from an econometric point of view. 

In this paper, we propose to estimate the two components of productive efficiency 

using a full information maximum simulated likelihood estimator.  The extreme complexity of 

the log likelihood noted in Colombi et. Al. (2011) is reduced by exploiting Butler and 

Moffitt’s (1982) formulation in the simulation.  The approach is then applied with success in 

the estimation of a cost frontier function for a sample of Swiss railways. 

From the methodological point of view we show that this method is relatively 

straightforward and effective to apply. Further, we show that the transient and the persistent 

parts of productive efficiency are relatively different in absolute value and not highly 
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correlated. These indicators measure different things.  We find that the efficiency indicators 

obtained with the TRE are highly correlated with the transient efficiency indicators  obtained 

with the GTRE. Therefore, the TRE model tend to estimate the transient part of efficiency.  

The contribution of the GTRE is to decompose further the time persistent effect built into the 

TREM.  Finally, the indicators obtained with RE model are not correlated with the persistent 

efficiency indicator of the GTRE.  The classical RE model appears not to be measuring the 

level of persistent efficiency of the firms in the sample. This result may be due to the fact that 

in this model all unobserved time invariant variables, notably time invariant heterogeneity, are 

captured by the individual effect that is used to compute the level of efficiency. 
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