
CER-ETH – Center of Economic Research at ETH Zurich

Stochastic Frontier Models for Long Panel Data Sets: Measurement of the

Underlying Energy Efficiency for the OECD Countries

M. Filippini and E. Tosetti

Working Paper 13/198
June 2014

Economics Working Paper Series



Stocastic Frontier Models for Long Panel Data Sets:
Measurement of the “Underlying Energy Effi ciency”

for the OECD Countries

Massimo Filippini,
ETH Zurich and University of Lugano

Elisa Tosetti,
Brunel University and ETH Zurich

June 11, 2014

Abstract

In this paper we propose a general approach for estimating stochastic frontier mod-
els, suitable when using long panel data sets. We measure effi ciency as a linear combi-
nation of a finite number of unobservable common factors, having coeffi cients that vary
across firms, plus a time-invariant component. We adopt recently developed economet-
ric techniques for large, cross sectionally correlated, non-stationary panel data models
to estimate the frontier function. Given the long time span of the panel, we investigate
whether the variables, including the unobservable common factors, are non-stationary,
and, if so, whether they are cointegrated.
To empirically illustrate our approach, we estimate a stochastic frontier model for

energy demand, and compute the level of the “underlying energy effi ciency” for 24
OECD countries over the period 1980 to 2008. In our specification, we control for
variables such as Gross Domestic Product, energy price, climate and technological
progress, that are known to impact on energy consumption. We also allow for hetero-
geneity across countries in the impact of these factors on energy demand.
Our panel unit root tests suggest that energy demand and its key determinants

are integrated and that they exhibit a long-run relation. The estimation of effi ciency
scores points at European countries as the more effi cient in consuming energy.

Keywords: Energy demand, panels, common factors, principal components.
JEL Classification: C10, C31, C33.
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1 Introduction

The literature on the measurement of productive effi ciency of firms using econometric ap-
proaches is relatively large and well documented. In the past two decades, empirical studies
have been increasingly using panel data sets for the estimation of stochastic frontier mod-
els, since they overcome some limitations of models based on cross-sectional data (Murillo-
Zamorano (2004), Greene (2008)). A wide range of assumptions on the effi ciency component
have been proposed, that are needed for measuring effi ciency and disentangle it from the ran-
dom noise (Porcelli (2009)). A number of studies model effi ciency as a stochastic variable,
often assumed to have a one-sided distribution and independent of the explanatory variables
(inputs, input prices, outputs etc.) (e.g. Aigner, Lovell, and Schmidt (1977), Battese and
Coelli (1992), and Greene (2005b)). More recent studies try to relax strong distributional
assumptions on the effi ciency term, by proposing general specifications where the level of
productive effi ciency can be correlated with the inputs, and is characterised by complicated,
time-varying, functions, such as dynamic, partial adjustment processes (e.g., Park, Sickles,
and Simar (2003)), factor models (e.g., Ahn, Lee, and Schmidt (2007)), semi-parametric or
non-parametric functions (Kneip, Sickles, and Song (2003)). Generally, all these stochastic
frontier models have been developed for short panel data sets, i.e. using variables observed
over a relatively short period of time, generally lower than 10-15 time periods. On the con-
trary, only few studies estimate stochastic frontier models using long panels, i.e., data set
where the time series dimension (T ) and cross-section dimension (N) are relatively large (T
and N larger then 20) (e.g., Mastromarco, Serlenga, and Shin (2009), Hsu, Lin, and Yin
(2012), and Mastromarco, Serlenga, and Shin (2013)).
Recently, a growing literature on panel time series econometrics has introduced new

methods for estimating long, possibly non-stationary panels, also allowing for contempora-
neous correlation in the errors (Bai and Ng (2004), Pesaran (2006), Kapetanios and Pesaran
(2007), Bai (2009), and Bai and Carrion-i-Silvestre (2013)). In this paper, we draw from this
literature to propose a new general approach for estimating stochastic frontier models, suit-
able for long panel data sets. We assume that our frontier function is a panel data regression
model with group effects, group-specific linear trends, and a multifactor structure. Hence,
we proxy firm’s effi ciency by a linear combination of a finite number of unobservable time
effects, or common factors, having coeffi cients that vary across firms, plus a time-invariant
component. The advantage of such specification relative to other approaches when modelling
effi ciency, is that the estimation of effi ciency scores does not require strong distributional
assumptions on the common factors and their loadings. Moreover, in panel data covering a
relatively long time period, the variables, including the unobservable common factors, are
potentially non-stationary. It is well know that ignoring non-stationarity of the variables
leads to spurious statistical results under the Ordinary Least Squares (Engle and Granger
(1987)). Non-stationarity of the time-varying effi ciency components may exist if, for example,
technical effi ciencies measured in various firms do not converge over time (Ahn and Sickles
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(2000)). Some firms may experience sluggish adoption of new technologies, leading to low
effi ciency firms not catching up or converging to the frontier with high effi ciency firms. On
the contrary, stationarity may occur when effi ciencies observed in laggard firms catch up in
the long run, for example thanks technological diffusion (see Cornwell andWachter (1999) for
a discussion). Hence, in this paper we adopt recently developed econometric techniques for
large, cross-sectionally correlated, non-stationary panel data models by Pesaran (2006), Bai
(2009) and Bai and Carrion-i-Silvestre (2013) to investigate whether the variables, including
the unobservable common factors, are non-stationary, and, if so, whether they are cointe-
grated. Existing literature has used cross-section averages to proxy unobservable common
factors in stochastic frontier models with a multifactor structure (Mastromarco, Serlenga,
and Shin (2009)). However, as discussed later on (see Section 2), while this approach de-
livers consistent estimates of the slope coeffi cients, estimation of the unobservable common
factors and their loadings through the cross-section averages is more problematic. Hence,
differently from this literature, in this paper, we adopt Bai (2009)’s principal components
approach to consistently estimate common factors and attached loadings. Given the possible
non-stationarity of data, following Bai and Carrion-i-Silvestre (2013), we estimate common
factors and residuals from data expressed in first difference. Hence, we re-cumulate these
estimated quantities and use them to construct statistics to test for cointegration. The main
contribution of this paper respect to previous studies is to provide an econometric approach
for the estimation of cost and production stochastic frontier models using long panels that
allow to consistently estimate the unobservable common factors, whether or not they are
integrated, under a set of broad regularity conditions.
Our econometric approach can be adopted for estimating a production or a cost frontier

function, using data sets at the firm’s or country level. In this paper, to empirically illustrate
our procedure, we estimate a stochastic frontier model for energy demand using aggregate
data for a sample of OECD countries. Following Filippini and Hunt (2011), we control for
variables that are known to impact on energy consumption, such as Gross Domestic Product,
energy price, climate and technological progress. In the computation of our effi ciency score,
we follow Farsi, Filippini, and Kuenzle (2005) and Filippini and Hunt (2012) and apply the
Mundlak (1978)’s adjustment to sweep out effi ciency from time-invariant heterogeneity.

This paper is organised as follows. Section 2 briefly reviews the literature on stochastic
frontier modelling using panel data. Section 3 illustrates the main features of our model and
summarises the estimation strategy. Section 4 describes the data while Section 5 comments
on the empirical results. Finally, Section 6 concludes.
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2 Stochastic frontier modelling using panels

In this section we illustrate some econometric approaches to estimate stochastic frontier
models using panel data. We discuss these models using an energy demand frontier function
introduced by Filippini and Hunt (2011). A country total aggregate energy demand is derived
from the demand for several energy services used in an economy, all of which are produced
by combining capital, energy and labour (Filippini and Hunt (2011)). Accordingly, suppose
that the energy demand in country i at time t, Eit, with i = 1, 2, ..., N and t = 1, 2, ..., T ,
follows

Eit = f(Xit)τ itwit, (1)

where Xit is a set of country-specific characteristics that impact on energy consumption,
wit captures the stochastic nature of the frontier, and τ it it is the level of ‘underlying en-
ergy effi ciency’. One standard assumption in the literature is that there exists a log-linear
relationship amongst the variables Eit and Xit, so that

eit = α + β′xit + εit. (2)

where eit = ln(Eit), xit = ln(Xit) is a k-dimensional vector, and εit is a random error. It is
then assumed that εit consists of two components

εit = vit + uit, (3)

where vit = ln(wit) is an idiosyncratic noise, while uit = ln(τ it) represents the underlying
energy level of effi ciency, and can be interpreted as an indicator of the ineffi cient use of
energy.1

A number of alternative assumptions on uit have been suggested in the literature, needed
to identify the ineffi ciency component and disentangle it from the idiosyncratic noise. One
of the most popular assumptions is that uit is a one side non-negative IID disturbance term,
often taken to be distributed as a half-normal or a truncated normal (Aigner, Lovell, and
Schmidt (1977)). A further widely used specification for the ineffi ciency component is that it
is made up of three firm-specific terms, a time-invariant firm effect, a linear and a quadratic
time trend (Cornwell, Schmidt, and Sickles (1990)). Battese and Coelli (1992) assume that
uit varies over time as a linear function of a set of explanatory variables. Greene (2005b)
and Greene (2005a) propose to add to model (2) a random individual effect that accounts
for all time-invariant, unobserved socio-economic and environmental characteristics, and in-
terpret the residual term, uit, assumed to be half normal or truncated normal, as ineffi ciency
component. This model, known as true random effects, is therefore able to differentiate

1In the production and cost frontier function framework, uit represents the level of technical effi ciency
and cost effi ciency, respectively.
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unobserved heterogeneity from time-varying ineffi ciency. However, this model excludes from
the ineffi ciency estimates the persistent component, i.e. that part of ineffi ciency that remains
constant over time. The true random effects model may also suffer from endogeneity prob-
lems, due to the potential correlation between the group effects and the regressors. To deal
with these issues, Farsi, Filippini, and Kuenzle (2005) and Filippini and Hunt (2012) propose
to incorporate the Mundlak (1978)’s adjustment within the random effects frontier frame-
work. Under this approach, the random effects model is augmented with the group means
of time-varying regressors. By doing this, time-invariant unobserved factors are captured by
the Mundlak (1978)’s adjustment rather than by the ineffi ciency term, thus alleviating the
bias in ineffi ciency estimates.

An alternative approach is taken by Ahn, Lee, and Schmidt (2007). The authors assume
that firms’ineffi ciencies in (3) consist of a linear combination of m unobserved components,
or factors, that vary over time and that are common to all units (or pervasive):

uit = γi1f1t + γi2f2t + ...+ γimfmt =

m∑
j=1

γijfjt. (4)

In the above, f1t, ..., fmt are the so-called unobserved common factors, or ineffi ciency com-
ponents, that are common to all countries, with m assumed to be small relative to N . The
coeffi cients γi1, ..., γim are known as factor loadings, and represent the sensitivity of cross-
section units to movements in the factors. The above set up is very general, and renders a
variety of regression models used in stochastic frontier analysis as special cases. For example,
by setting m = 3, f1t = 1, f2t = t and f3t = t2, this specification reduces to the Cornwell,
Schmidt, and Sickles (1990) model, while the familiar fixed or random effects models cor-
respond to the case where m = 1 and f1t = 1. Ahn, Lee, and Schmidt (2007) suggest
a Generalised Method of Moments estimator of (2)-(3) with effi ciencies (4), valid when N
is large and T is fixed. We observe that, while the authors incorporate time dummies in
their model, they do not include group effects. A similar framework is also adopted by
Kneip, Sickles, and Song (2003), who propose a semiparametric estimation method based
on smoothing spline techniques. The authors use this approach to explore the effi ciency of
banking industry.
A number of recent studies have adopted the above specification for stochastic frontier

models, in the context of long panel data sets. Mastromarco, Serlenga, and Shin (2009) take
a factor-based approach to model productivity differentials across 24 OECD countries over
the period 1970-2005. The authors applies the Pesaran (2006)’s Common Correlated Effects
(CCE) method and propose to directly estimate the effi ciency components by using the cross-
section averages of the dependent variable and regressors as proxies for the unobservable
common effects. A similar methodology is adopted by Mastromarco, Serlenga, and Shin
(2013), who assume that the time-varying technical ineffi ciency consists of three components,
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a time-invariant individual effects, a time trend, and a single common factor structure. The
authors estimate technical effi ciency using a data set of the 18 EU countries over 1970-2004.
A regression model with unobservable common factors is also adopted by Hsu, Lin, and Yin
(2012) with data on 311 commercial banks from a set of OECD countries, and covering the
period 1996-2009. The authors assume that the factor structure represents the technological
progress, while setting uit in (3) as IID half normal. Hence, they adopt a CCE approach with
the aim to filter out the technological components. It is important to note that all existing
studies on stochastic frontier models using long panels, ignore potential non-stationarity of
the variables. However, it is well know that ignoring non-stationarity of the variables may
lead to spurious statistical results. The existence of a long-run relationships should be tested
to reduce the risk of finding spurious conclusions.

The CCE has been widely used for estimating stochastic frontier modelling under the
common factor approach. Indeed, this method is easy to apply, and it yields valid inferences
on the slope coeffi cients under general conditions, including when the unobservable common
factors follow unit root processes and are possibly cointegrated (Kapetanios, Pesaran, and
Yagamata (2011)). One important assumption under this approach is that the regressors in
(2) depend on the unobservable common factors via the following model:

xit = Γ′ift + νit, (5)

where Γi arem×k factor loading matrices with fixed components, and νit are the distributed
independently of ft. The CCE method approximates the unobservable factors by cross-
section averages of the dependent and explanatory variables, namely, in our application,

ēt = (1/N)

N∑
i=1

eit, and x̄t = (1/N)

N∑
i=1

xit. Hence, Ordinary Least Squares (OLS) can be

applied to the following auxiliary regression where the cross-section averages are included
among the observed regressors:

eit = α + β′xit + θiēt + ϑ′ix̄t + uit, (6)

Pesaran (2006) shows that estimation of the slope coeffi cients β is consistent under a set of
general assumptions. However, consistent estimation of the unobservable common factors
and their loadings through the cross-section averages is more problematic. In fact, the
relationship between the loadings of the unobservable common factors,γij, and the loadings
attached to the cross-section averages, θi and ϑij in the auxiliary regression (6), is not
straightforward. In the presence of a single common factor (i.e., when m = 1), the factor
loadings can be recovered from θi and ϑij (see Mastromarco, Serlenga, and Shin (2013)).
However, when m > 1, the relationship is much more complicated, and the factor loadings
cannot be not easily recovered from the loadings attached to the cross-section averages.
For stochastic frontier modelling we are mostly interested in a method that delivers simple,
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consistent estimation of common factors and their loadings in (4), and that is valid for any
finite m.

From the above discussion it is evident that there exists a large variety of assumptions
and methods proposed in the literature to model productive effi ciency. The common factor
specification (4), firstly proposed by Ahn, Lee, and Schmidt (2007) in the context of sto-
chastic frontier modelling seems the most general approach, as it encompasses many other
specifications as special cases. However, the CCE often adopted in empirical work does not
seem the most appropriate method for estimating technical ineffi ciency under this framework.
We next present our framework, which is a generalisation of Ahn, Lee, and Schmidt

(2007) approach to deal with the case of long panels.

3 The framework

Consider the following model

eit = dit+ β′xit + uit + vit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (7)

where dit are country-specific time trends that account for differences across countries in
technological factors, and xit is a k × 1 vector of observed individual specific regressors. In
this paper, we use the following general specification for technical effi ciency

uit = αi +

m∑
j=1

γijfjt = αi + γ ′ift. (8)

Hence, effi ciency is given by the sum of a time-invariant component, αi, plus a linear combina-
tion of m unobservable time effects, having coeffi cients that vary across countries. Following
recent literature on panel data with cross-sectionally dependent errors, we allow the unob-
servable common factors and/or factor loadings to be correlated with the included regressors,
xit. Differently from this literature, under our approach the common factors are not regarded
as a nuisance element, but rather important components of firms’/countries’effi ciency that
need to be consistently estimated. To this end, we will adopt the interactive-effects estimator
by Bai (2009). This is the solution of the following set of non-linear equations:

β̂ =

(
N∑
i=1

X′iMF̂Xi

)−1 N∑
i=1

X′iMF̂ei, (9)

1

NT

[
N∑
i=1

(
ei −Xiβ̂

)(
ei −Xiβ̂

)′]
F̂ = F̂V̂, (10)
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where Xi = (xi1,xi2, ...,xiT )′, MF̂ = IT − F̂
(
F̂′F̂

)−1
F̂′, and V̂ is a diagonal matrix with

the m̂ largest eigenvalues of the matrix in the square brackets, arranged in decreasing order.
In practise, this method alternates principal components analysis applied to OLS resid-

uals and least squares estimation several times, until convergence. Given that the panel
covers a long time span, we allow eit and xit to be non-stationary, and investigate whether
there exists a cointegration relation among our variables. This will be achieved by test-
ing whether the unobservable common factors, ft, and/or idiosyncractic component, vit, are
non-stationary, in the context of model (7)-(8), by adopting the cointegration test for panels
with I(1) regressors proposed by Bai and Carrion-i-Silvestre (2013). This approach consists
of carrying the following steps:

1. Transform all variables in equation (7) into their first-differences, to make them sta-
tionary, and then express them in deviations from their temporal mean, to get rid of
group-specific trends. Let

e∗i = M∆ei, X∗i = M∆Xi,

where ∆ei = (∆ei2,∆ei3, ...,∆eiT )′, ∆Xi = (∆xi2,∆xi3, ...,∆xiT )′ and M = IT−1 −
T−11T−11

′
T−1, be the dependent variable and regressors first-differenced and demeaned

2. Apply the Bai (2009)’s interactive-effects estimator outlined in equations (9)-(10) to the
transformed variables, to obtain β̂, γ̂, and F̂∗ = M∆F. Define ẑit = e∗it − β̂

′
x∗it − γ̂ ′if̂∗t

3. Estimate the common factors, ft, and idiosyncractic component, vit, by re-cumulating
f̂∗t and ẑit, as follows:

f̂t =

t∑
s=2

f̂∗s , v̂it =

t∑
s=2

ẑis, t = 2, 3, ..., T (11)

4. Construct test statistics based on f̂t and v̂it to test the null hypothesis of no coin-
tegration. The idiosyncratic component can be tested for non-stationarity using the
modified Sargan-Bhargava (MSB) statistic:

MSBv,i =
T−2

∑T
t=2 v̂

2
i,t−1

σ̂2i
, (12)

where σ̂2i is an estimate of the long-run variance of v̂it

σ̂2i =
σ̂2i,p[

1− φ̂i (1)
]2 = (T − p)−1

T∑
t=2

v̂2i,t−1,
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with σ̂2i,p = (T − p − 1)−1
∑T

t=p+2 ε̂
2
it, φ̂i (1) =

∑p
j=1 φ̂ij, and ε̂it, φij are obtained from

the OLS estimation of ∆v̂it = φi0∆v̂it +
∑p

j=1 φij∆v̂i,t−j + εit. Hence, the individual
statistics (12) can be combined using the standardized sample average of individual
statistics which is N(0, 1) distributed (see Bai and Carrion-i-Silvestre (2013) for de-
tails). Similarly, if m = 1 (i.e., if there is a single common factor), we can construct a
MSB unit root test statistic for f̂t

MSBf̂ =
T−2

∑T
t=2 f̂

2
t

σ̂2f
(13)

where the long-run variance, σ̂2f , can be estimated as described above. When the
number of common factors is m > 1, ft can be tested for non-stationarity using the
modified Q statistics, (see Bai and Ng (2004) for details on the procedure).

In step 2, correlation of the regressors with common factors and factor loadings can be
controlled by adding in the regression k1 leads and k2 lags of x∗it, k1 and k2 being two finite
scalars. Alternatively, instead of using interactive-effects estimator (9)-(10), we suggest to
use the CCE approach to estimate β, obtain u∗it = e∗it − β̂

′
x∗it and then apply the principal

components analysis to extract gt = ∆ft and associated loadings from u∗it. This compu-
tationally easier approach avoids including leads and lags of ∆xit to control for potential
endogeneity of the regressors and will be adopted in this paper when estimating effi ciency
scores.

Estimation of the effi ciency component, uit, using specification (8) involves estimation of
the group coeffi cients. This is achieved using the following formula:

α̂i = ēi − β̂
′
x̄i − γ̂ ′if̂ − d̂it, (14)

where
d̂i = ē∗i − β̂

′
x̄∗i − γ̂ ′if̂

∗
. (15)

Once uit is estimated, following Ahn, Lee, and Schmidt (2007) and Mastromarco, Serlenga,
and Shin (2009), we can compute a set of energy effi ciency scores for each country as follow:

τ̂ it = exp
[
−
(
ûit −min

i
(ûit)

)]
, τ̂ i = exp

{
−N−1

N∑
i=1

[
ûit −min

i
(ûit)

]}
(16)

which, in the case of specification (8), is

τ̂ it = exp
{
−
[
α̂i + γ̂ ′if̂t −min

i

(
α̂i + γ̂ ′if̂t

)]}
, τ̂ i = exp

{
−N−1

N∑
i=1

[
α̂i + γ̂ ′if̂t −min

i

(
α̂i + γ̂ ′if̂t

)]}
.

(17)
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A score of zero indicates that a country on the frontier is zero per cent effi cient, while
non-frontier countries receive scores above zero. The empirical implementation of the above
estimation strategy is commented in the following sections.

4 Data

Our investigation uses annual data on a balanced panel of 24 OECD countries2 followed over
a period of 28 years, between 1980 and 2008 (hence, in this application, N = 24, T = 29).
Following Filippini and Hunt (2011), in our aggregate energy demand function we assume
that

xit = (yit, pit, indit, servit, tempit, sdtempit)
′,

where yit is real per-capita GDP, pit is an index of real energy prices, indit and servit are
the shares of value added of the industrial sector and service sector, respectively, measured
as percentage of GDP, tempit is average monthly temperature, and sdtempit is the standard
deviation of monthly temperature within the year.
Energy consumption (eit) is measured as per-capita aggregate energy consumption, ex-

pressed in Tonnes of Oil Equivalent (TOE). Real per-capita GDP is expressed in thousand
US dollars per person, while energy price is given by each country’s index of real energy
prices (2000=100). All regressors, except for climate variables, have been gathered from the
IEA World Energy Statistics and Balances3. Average monthly temperature and its standard
deviation have been computed using the CRUTEM4 global surface temperature data set
from University of East Anglia’s Climatic Research Unit (2013).4 This data set has tem-
perature data in degrees Celsius at a monthly frequency for around 4,820 meteorological
stations across the world, over the period 1900 to 2011.
For our empirical analysis, all variables have been transformed in natural logarithms.

Descriptive statistics on the variables under study (not expressed in logs) are reported in
Table 1.

2The countries under investigation are: Austria, Australia, Belgium, Canada, Denmark, Finland, France,
Germany, Greece, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway,
Portugal, Spain, Sweden, Turkey, UK and US.

3See http://www.oecd-ilibrary.org/energy/data/iea-world-energy-statistics-and-balances_enestats-data-
en

4See http://www.cru.uea.ac.uk/cru/data/temperature/crutem4/station-data.htm.
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Table 1: Descriptive statistics for the variables under study

Variable Unit Mean Std. Dev. Min Max

eit TOE per person 2,919.2 1,467.8 577.6 8,566.3

yit 1,000$ per person 21.096 8.831 5.097 65.396

pit (2000=100) 89.178 16.429 12.633 149.332

indit % 31.002 5.354 15.400 46.200

servit % 64.615 6.749 45.900 84.300

tempit
◦C 10.837 4.723 0.193 23.977

sdtempit
◦C 6.675 1.924 2.398 12.111

5 Empirical results

5.1 Panel unit root tests results

Table 2 reports the Pesaran (2007) CIPS statistics for the variables under study for the lag
orders p = 0, 1, 2, 3. The inclusion of lags allow us to control for possible serial correlation
in the data. The bottom panel of the table reports results when the variables are expressed
in their first-differences. Energy consumption is non-stationary when adding an intercept
and a linear trend in the CADF regression, for any choice of p, while the unit root is not
reject for eit in the intercept only case, and when p = 0, 1. The non-stationarity properties
of energy consumption have important implications for time series modelling of energy de-
mand. Indeed, regressions involving I(1) variables will be spurious unless the variables are
cointegrated. The non-stationarity properties of energy consumption have also important
policy implications, given the impact of oil price shocks on macroeconomic variables linked to
energy demand. Failure to reject the null hypothesis of non-stationarity implies that shocks
to energy consumption will have permanent effects, for example due to path dependency
or hysteresis in energy demand equations. Hence, structural changes in the oil market, due
for example to the oil price shocks in the ’70s, will have permanent effects on the energy
consumed. Existing studies on the estimation of aggregate energy demand functions have
yielded mixed results, depending on the size of the sample considered, and on the econometric
methods adopted (for example, univariate vs panel unit root tests). Most studies employing
univariate unit root tests have concluded that energy consumption is an I(1) process. When
using panel data, a number of studies suggest the existence of unit root in per-capita energy
consumption (see, among others, Huang (2011)), while other works support the hypothesis
of stationary energy consumption (Narayan and Smyth (2007)).
As for per capita GDP and energy price, the test statistics reject the unit root hypothesis

both in the intercept only, and in the intercept and trend cases, for any choice of p. The
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null hypothesis is clearly rejected when these variables are transformed in first-differences.
Given the trended nature of our variables, these results lead us to conclude that energy con-
sumption, income and energy price are non-stationary. Our tests also point at the variables
indit and servit as I(1) processes. However, we observe that these variables are bounded by
construction. Recent studies suggest that conventional unit root tests applied to bounded
variables are potentially unreliable, since they tend to over-reject the null hypothesis of a
unit root, even asymptotically (see, for example, Cavaliere and F.Xu (2013)). Our tests,
however, indicate that these variables are stationary when transformed into first-differences.
Finally, as expected, the null hypothesis of a unit root is clearly rejected for the variable
tempit and sdtempit, both in the intercept only and in the intercept and trend cases, pointing
at their stationarity.
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Table 2: Unit roots tests for the variables under study

CADF(0) CADF(1) CADF(2) CADF(3)

With an intercept only

eit -2.309∗ -2.129∗ -2.050 -1.868

yit -1.496 -2.016 -1.518 -1.693

pit -2.358∗ -2.077 -1.872 -1.573

indit -0.345 0.019 0.409 -0.067

servit -1.946∗ -1.348 -0.216 -0.818

tempit -4.021∗ -3.043∗ -2.383∗ -1.970∗

sdtemp -4.292∗ -3.334∗ -2.861∗ -2.463∗

With an intercept and linear trend

eit -2.582 -2.552 -2.609 -2.547

yit -1.529 -1.968 -1.456 -1.528

pit -2.610 -2.347 -2.159 -1.799

With an intercept only

∆eit -5.110∗ -3.454∗ -2.870∗ -2.976∗

∆yit -3.631∗ -3.094∗ -2.128∗ -1.756

∆pit -18.688∗ -10.925∗ -6.487∗ -4.018∗

∆indit -14.035∗ -8.204∗ -3.462∗ -1.518

∆servit -16.224∗ -9.035∗ -4.474∗ -1.068

∆tempit -2.964∗ -4.003∗ -4.984∗ -6.116∗

∆std.temp -6.070∗ -4.937∗ -3.967∗ -3.555∗

Notes: The superscript "∗" indicates that the test is significant at the 5% level. See

Pesaran (2007) for critical values.

5.2 Estimation of the energy demand function

We now turn our attention to the estimation of the energy demand function. Table 3
reports results from the iterative PC estimator (9)-(10) (column I), the CCE Pooled estimator
(column II), and the naive, fixed effects (FE) estimator (column III). We observe that the
iterative PC estimator is performed on the variables expressed in their first-difference, as
recommended by Bai and Carrion-i-Silvestre (2013). Overall, our results show that, as
expected, growth in income boosts energy consumption, while rises in energy prices slow it
down. Estimated income elasticities indicate that one percent increase in income is associated
to an average increase of 0.54 and 0.65 per cent in energy consumption for the iterative
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PC and CCE estimator, respectively. Under the factor approach, the climate variables
significantly impact on energy consumption, while under the naive estimator, which ignores
the factor structure, these variables are not significant.
Table 3 also shows the estimated number of common factors in the residuals, using the

Bai and Ng (2002) ICp2 model selection criterion, and setting mmax = 5. The criterion
suggests the presence of one unobservable common factor (i.e., m̂ = 1), when adopting
either the interactive PC or the pooled CCE estimator.5 Finally, the table reports the Bai
and Carrion-i-Silvestre (2013) cointegration MSB statistics (12)-(13), suitable when m̂ = 1,
on the estimated, re-cumulated common factor and idiosyncratic error. Both MSBf and
MSBv reject the null hypothesis of non-stationarity of the common factor and idiosyncratic
component, respectively, when using either the iterative PC or the pooled CCE estimator.
Hence, these statistics point at the existence of a long-run relationship between energy
consumption and included regressors. In addition, stationarity of the unobservable common
factor indicate that in our sample low effi ciency countries tend to catch up in the long-run
with more effi cient countries.

Table 3: CCE, PC and FE estimation results
(I): Iterative PC estimation (II): Pooled CCE estimation (III): FE estimation
Parameter Std.err. Parameter Std.err. Parameter Std.err.

yit 0.656∗ 0.097 0.543∗ 0.084 0.452∗ 0.119

pit -0.056∗ 0.017 -0.097∗ 0.040 -0.079∗ 0.028

indit 0.026 0.064 0.237 0.166 0.095 0.160

servit -0.003 0.122 0.302 0.248 0.002 0.323

tempit -0.015∗ 0.004 -0.018∗ 0.005 -0.023 0.014

std.temp. 0.021∗ 0.008 0.014 0.016 0.025 0.022

m̂ 1 1 -

MSBf -7.299∗ [0.00] -8.201∗ [0.00] -

MSBv -14.99∗ [0.00] -15.66∗ [0.00] -

Notes: The superscript "∗" indicates that the test on the estimated coeffi cient is significant at the 5% level.

Standard errors are robust to serial correlation, in all regressions. p-values in square brackets.

5.3 Estimation of effi ciency scores

We now turn to the estimation of effi ciency scores using formula (17), which involves estima-
tion of the country-specific effects, αi, using (14). One problem related to the computation
of the level of ineffi ciency using the group effects, is that time-invariant unobserved variables
are considered as ineffi ciency. In this study, in order to deal with this problem we follow

5We tried varying the maximum number of factors between 1 to 5, and obtained the same result.
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Farsi, Filippini, and Kuenzle (2005) and Filippini and Hunt (2012) and apply the Mundlak
(1978)’s adjustment. Such adjustment improve the precision of the ineffi ciency estimates by
separating ineffi ciency from time-invariant unobserved heterogeneity. Specifically, we have
regressed the estimated ûit on the time averages of the regressors, x̄i = T−1

∑T
t=1 xit, and

then plugged the residuals from such regression into (17).
Table 4 reports the time averages of effi ciency scores, τ̂ i, where unobservable common

factors are proxied by principal components (column I), and by the cross-section averages
as in Mastromarco, Serlenga, and Shin (2009) and Mastromarco, Serlenga, and Shin (2013)
(column II). As a comparison, the table also reports effi ciency scores obtained by assuming
the conventional half normal distribution of uit in a fixed effects model with time dummies
(Column III) (see Filippini and Hunt (2011), Table 5). In Column I, common factors have
been obtained by following Step 1-2 above. We have also tried using the CCE approach
in step 1 and obtained very similar results which are available upon requests. We observe
that when using cross-section averages as proxies for the unobservable common factors, the
average effi ciency scores are much lower then when using principal component analysis. Such
result can be explained by the fact that the CCE approach, while estimating consistently the
slope coeffi cients, is not designed to estimate consistently the unobserved common factors
and attached loadings. Results in column I points at countries from Europe, with an average
effi ciency score of 0.791, as being the most effi cient in consuming energy, while non-European
countries such as US, New Zeland and Korea have the lowest positions in the ranking with
an average score of 0.673.
The middle panel of Table 4 provides a set of descriptive statistics for the overall un-

derlying energy effi ciency estimates of the countries, showing that the average effi ciency is
around 74 per cent when taking common factors into account, with a fair degree of variability
around it. Finally, the bottom panel reports the correlation among the effi ciency scores. It
is interesting to note that the scores under the PC approach are highly correlated with those
under the CCE and under the Pooled model, while there is weaker correlation between the
scores under the CCE approach and those with the Pooled model.
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Table 4: Estimation of ineffi ciency scores
Factor approach Pooled

PC CCE model(+)

Country Av. eff Rank Av. eff Rank Av. eff Rank

Australia 0.710 16 0.359 19 0.904 8

Austria 0.756 10 0.632 8 0.93 1

Belgium 0.690 19 0.837 2 0.864 17

Canada 0.701 17 0.512 12 0.852 18

Denmark 1.000 1 0.972 1 0.916 4

Finland 0.644 21 0.368 18 0.872 15

France 0.756 11 0.406 16 0.896 10

Germany 0.783 9 0.626 9 0.873 14

Greece 0.829 7 0.698 6 0.923 2

Ireland 0.727 13 0.232 23 0.888 11

Italy 0.980 2 0.434 15 0.923 2

Japan 0.698 18 0.505 1 0.916 4

Korea 0.562 22 0.326 21 0.878 13

Luxembourg 0.651 20 0.215 24 0.845 20

Mexico 0.717 15 0.605 10 0.922 3

Netherlands 0.754 12 0.502 14 0.865 16

New Zealand 0.559 23 0.368 17 0.91 6

Norway 0.867 4 0.722 3 0.922 3

Portugal 0.726 14 0.662 7 0.912 5

Spain 0.829 8 0.515 11 0.922 3

Sweden 0.831 6 0.699 5 0.909 7

Turkey 0.900 3 0.700 4 0.887 12

UK 0.834 5 0.358 20 0.9 9

USA 0.543 24 0.236 22 0.846 19

Min 0.543 0.062 0.647

Average 0.754 0.534 0.897

Median 0.745 0.516 0.919

Max 1.000 1.000 0.992

Std.dev. 0.117 0.220 0.075

Correlation coeffi cients

PC - - 0.590 [0.00] 0.517 [0.00]

CCE - - - - 0.397 [0.00]
(+): Effi ciency scores and relative ranking for the pooled model have been

extracted from Filippini and Hunt (2011), Table 5. Time dummies are included in this model.

p-values in square brackets.
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6 Concluding remarks

From a methodological point of view, this paper has outlined an estimation strategy of a
stochastic frontier model whenN and T are both large. A panel data model with group effects
and unobservable common factors has been proposed and estimated using data on OECD
countries over the years 1980 to 2008. This approach has not, as far is known, been attempted
before. From a policy makers perspective, the indicators of energy effi ciency obtained using
this approach can be used in addition to the simple measure of energy intensity.
It is important to stress some limitations of the proposed approach. First, technological

advances may not be fully captured by the country-specific trends, and part of it may
be incorporated in the common factors structure. Another limitation is that time-invariant
heterogeneity across countries may not be fully captured by Mundlak adjustment, and hence,
the estimated effi ciency component may be inflated.
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