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How Effective Was the UK Carbon Tax?—A Machine
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By JAN ABRELL, MIRJAM KOSCH, AND SEBASTIAN RAUSCH*

While carbon taxes are generally seen as a rational policy response
to climate change, knowledge about their performance from an ex-
post perspective is still limited. This paper analyzes the emissions
and cost impacts of the UK CPS, a carbon tax levied on all fossil-
fired power plants. To overcome the problem of a missing control
group, we propose a policy evaluation approach which leverages eco-
nomic theory and machine learning for counterfactual prediction.
Our results indicate that in the period 2013-2016 the CPS lowered
emissions by 6.2 percent at an average cost of €18 per ton. We
find substantial temporal heterogeneity in taz-induced impacts which
stems from variation in relative fuel prices. An important implica-
tion for climate policy is that in the short run a higher carbon tax
does not necessarily lead to higher emissions reductions or higher
costs. JEL Codes: C54, Q48, Q52, Q58, L9}

To avoid dangerous and costly climate change, the disposal space for carbon
dioxide (COg2) in the atmosphere is “scarce” and will soon be exhausted (McGlade
and Ekins, 2015; IPCC, 2018). In tackling this major 21%'-century challenge, and
based on an elementary understanding of how today’s market-oriented systems
organize economic activity based on scarce resources, economists have long been
advocating for carbon pricing as an effective and efficient policy response (Nord-
haus, 1994; Goulder and Parry, 2008; Metcalf, 2009). About one quarter of global
COgq emissions are currently regulated under some form of carbon pricing (World
Bank, 2018). While a plethora of studies offers ex-ante assessments of carbon pric-
ing using theoretical and quantitative simulation-based work,! there is much less
research on the the ex-post effects of carbon pricing. This, however, is pivotal for
designing effective and efficient climate policies.

This paper contributes by providing an ex-post evaluation of a real-world policy
experiment of carbon pricing: the UK carbon tax, also known as the Carbon
Price Support (CPS). The CPS was introduced to enhance economic incentives for

* Abrell: Centre for Energy Policy and Economics ETH Zurich and Center for Energy and Environment
of ZHAW Winterthur, Zuerichbergstrasse 18, CH-8032 Zurich, Switzerland, phone: +41-44-632 06 52
(email: jabrell@ethz.ch). Kosch: Center for Energy and Environment of ZHAW Winterthur and Centre
for Energy Policy and Economics ETH Zurich, Switzerland (email: mirjam.kosch@zhaw.ch). Rausch:
Department of Management, Technology and Economics, ETH Zurich, Switzerland, Center for Economic
Research at ETH (CER-ETH), Centre for Energy Policy and Economics ETH Zurich, and Massachusetts
Institute of Technology, Joint Program on the Science and Policy of Global Change, Cambridge, USA
(email: srausch@ethz.ch).

1See, for example, Tavoni et al. (2014), Golosov et al. (2014), Liski and Gerlagh (2016), Goulder,
Hafstead and Williams III (2016), Bretschger et al. (2017), and a series of papers from multi-model
comparison studies carried out under the framework of the Stanford Energy Modeling Forum for the
U.S. (Fawcett et al., 2014) and Europe (Weyant et al., 2013).
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carbon abatement in the heavily fossil-based UK electricity sector. As the CPS
affects the output and operating decisions of all fossil-fueled generation facilities
in the UK electricity market, the challenge arises that no suitable control group or
counterfactual exists against which the impact on treated units can be evaluated.
In order to estimate the causal effects of the CPS policy intervention, it is thus
not possible to use standard program evaluation methods based on comparing
treated and untreated units—such as e. g. difference-in-differences (DiD) methods
(Angrist and Pischke, 2008; Athey and Imbens, 2017). To overcome this problem,
we develop and implement a new approach which combines economic theory and
machine learning (ML) techniques to estimate the treatment effect of a policy
intervention in settings with observational, high-frequency data when no control
group exists. We apply our approach to analyze the environmental effectiveness
and costs of the UK carbon tax. To our knowledge, this is the first paper in
economics to incorporate ML methods to estimate the ex-post effects of carbon
pricing.

Our proposed approach leverages economic theory on price and production de-
cisions in electricity markets and ML techniques to estimate the treatment effect
of a policy intervention when no control group exists. The main idea is to train
a model, based on an equilibrium model of the wholesale electricity market and
ML, which predicts outcomes under observed and counterfactual treatment, and
derives a treatment effect based on these predictions. First, to train the model,
we use data before the introduction of the carbon tax and after its introduction.
As the UK carbon tax is adjusted annually, it provides insufficient variation in
terms of tax rate changes. To overcome this, we exploit the variation in relative
market prices for coal and natural gas, which influence input costs and thus power
plant output decisions through the same channel as the carbon tax itself. We
use high frequency (hourly) panel data of power generation at the plant level to-
gether with market information on hourly demand, production capacities by power
plant, fuel and carbon prices, and factors affecting the thermal efficiency of power
plants, such as temperature. Second, we use the prediction model, which has been
“machine-learned” using data under observed treatment (i.e., with the carbon tax),
to predict outcomes under unobserved, counterfactual intervention (i.e., no carbon
tax). Third, the estimator of the treatment effect is based on the difference of
these predictions. It accounts for the influence of observed and unobserved vari-
ables, and systematic prediction errors. We show that under the assumption that
prediction errors are independent of the treatment variable, the difference between
two predictions yields an unbiased estimate of the impact on power-plant output
caused by the carbon tax.

An important advantage of our approach is its ability to explicitly represent the
channels through which the policy intervention affects the outcome variable. As
our proxy for treatment—the relative fuel prices—is already observed before the
CPS policy is introduced, we can use observations from both the pre- and post-
treatment period to train the model. This improves the basis for learning about
the key mechanisms between input prices and output through which the policy
intervention affects power plant output decisions. In addition, the application



of ML techniques enables the development of nonparametric predictors and thus
the nonparametric identification of treatment effects. Beyond the estimation of
total treatment effects, we can perform simulations with the ML-trained model to
assess the impacts of different (hypothetical) treatment intensities—a feature we
exploit to analyze the empirical determinants of the environmental effectiveness
and abatement costs of a carbon tax policy.

Our ex-post evaluation of the UK carbon tax policy yields the following main in-
sights. First, our analysis provides strong evidence that a carbon tax is an effective
regulatory instrument to reduce COs2 emissions: the CPS induced a substitution
away from “dirty” coal to cleaner natural gas-fired power plants—replacing about
15 percent or 46 TWh of coal-based generation and reducing emissions by 6.2 per-
cent between 2013 and 2016. Second, the abatement of one ton of CO4 has brought
about on average additional costs of €18.2 in total for consumers and fossil-based
electricity producers. Third, there is substantial heterogeneity in the carbon tax-
induced abatement quantity and costs over time. Simulating the machine-learned
model, we characterize the empirical conditions which influence the environmental
effectiveness and costs of the tax policy. We find that the heterogeneity is mainly
driven by the variation in the relative carbon tax-exclusive prices for coal and nat-
ural gas and only to a limited extent by the carbon tax rate itself. The important
implication for climate policy is that a higher carbon tax does not necessarily de-
liver higher emissions reductions. At the same time, a higher carbon tax need not
necessarily result in higher abatement costs.?

Our paper contributes to the literature in several important ways. First, we add
to the recent and emerging literature on the use of ML techniques in economics
and quantitative social science. Traditionally, ML methods have been used for
pure prediction problems such as demand estimations (Bajari et al., 2015). More
recently, ML methods have provided important new tools to improve the estimation
of causal effects from observational data in high-dimensional settings as they enable
to flexibly control for a large number of covariates (for overview articles see, for
example, Varian, 2014; Athey, 2017; Athey and Imbens, 2017; Mullainathan and
Spiess, 2017). Burlig et al. (2019) is a recent example using ML algorithms to
estimate causal effects.? Estimating the impact of the German nuclear phase-out
on production levels of other plants in the market, Jarvis, Deschenes and Jha (2020)

2A by-product of our ex-post evaluation of the UK CPS is the derivation of empirical marginal abate-
ment cost (MAC) curves for the UK electricity sector, i.e. relationships between tons of emissions abated
and the CO2 price. MACs have been widely used as reduced-form tools to inform policy-making and to
illustrate simple economic concepts such as the benefits of emissions trading (Ellerman and Decaux, 1998;
Klepper and Peterson, 2006; Morris, Paltsev and Reilly, 2012).

30ur approach differs in two important ways. First, Burlig et al. (2019) use the pre-treatment period to
train a model predicting the post-treatment outcome without the intervention. In contrast, in our setting
treatment is continuous and the data generating process is invariant to treatment. We thus train the model
on the full sample, but at the same time have to rely on the continuity of treatment or, alternatively, have
to identify a (continuous) variable with the same causal impact as the treatment variable. Second, ML
based predictions have to deal with prediction errors. Burlig et al. (2019) assume that prediction errors
have similar trends across treatment and control groups. They employ a DiD estimator to eliminate
biases caused by prediction errors. In contrast, we eliminate this bias comparing predicted values of
observed and counterfactual values, i.e. we assume that prediction errors are independent of treatment
levels. Importantly, this allows us to estimate the impact of treatment in the absence of a control group.
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use ML methods to predict generation for years without observational data as well
as without the phase-out. Varian (2016) mentions the possibility of estimating
treatment effects by constructing the unobserved counterfactual when no control
group is available. To the best of our knowledge this paper provides the first
empirical implementation of this idea in economics.

Second, there exists only a handful of studies using econometric and program
evaluation methods to quantify the environmental impacts of carbon pricing, be it
through a tax- or quantity-based approach to regulation. An overview of the work
focusing on the impacts of the EU ETS is provided by Martin, Mufils and Wagner
(2016). The paper by McGuinness and Ellerman (2008) estimate the impact of
permit prices on the output of power plants in the UK. Using a panel regression,
they quantify the emissions offset in the British power sector for the pilot trading
period of the EU ETS. Martin, De Preux and Wagner (2014) analyze the impacts
of the Climate Change Levy on manufacturing plants in the UK. Using panel data
on manufacturing plants in the UK, their identification strategy builds on the
comparison of outcomes between plants subject to the full tax and plants paying
only 20 percent of the tax. Bretschger and Grieg (2020) estimate the impact of a
fuel tax in the UK on COy emissions from traffic.? Recently, a few studies have
been looking at the impacts of the UK CPS itself: Gissey et al. (2019) analyze
the impact of the UK CPS on wholesale electricity trading, Chyong, Guo and
Newbery (2020) analyze the merit order effect of the CPS and its impact on carbon
abatement induced by wind generation, Leroutier (2019) and Gugler, Haxhimusa
and Liebensteiner (2020) estimate the impact of the UK carbon price floor on CO4
emissions. The latter two are closely related to our research question, yet they differ
in methods. Leroutier (2019) uses a synthetic control group method which relies
on constructing a “no-policy” counterfactual UK power sector from a combination
of other European countries, and Gugler, Haxhimusa and Liebensteiner (2020) use
regression discontinuities in time. Both studies find a significantly larger impact of
the CPS on emissions (26 % in the case of Gugler, Haxhimusa and Liebensteiner
(2020) and 49 % in the case of Leroutier (2019)). One main explanation for this
difference is that we concentrate on estimating the short-run impact of the CPS
on fuel switching. That is, we assume that all observed changes in capacities have
not been induced by the CPS but potentially by other policies such as the “Large
Combustion Plant Directive”. Given the possibility that the CPS had an impact
on plant closure, our results tend to be a lower bound estimate. With this paper,
we contribute to the scarce empirical evidence on the economic impacts of carbon
taxes by applying an estimation strategy which can be used in a setting without a
control group.

Third, a recent and growing literature, following the U.S. shale gas boom after
2005, uses the variation in natural gas prices to empirically estimate the impact
of fuel prices on CO2 and other pollutants stemming from electricity generation

4Fowlie, Holland and Mansur (2012) evaluate the NO, emissions reduction delivered by the Southern
California’s emission trading program. To construct the counterfactual, they exploit program-specific par-
ticipation requirements allowing them to match regulated facilities with similar facilities in non-attainment
areas.



(see, for example, Knittel, Metaxoglou and Trindade, 2015; Linn, Muehlenbachs
and Wang, 2014; Holladay, Soloway et al., 2016; Holladay and LaRiviere, 2017).
Cullen and Mansur (2017) and Lu, Salovaara and McElroy (2012) exploit the
fact that the introduction of a carbon price impacts emissions through the same
economic mechanism as a change in relative fuel prices. Similar to our approach,
these studies use the variation in natural gas prices to estimate the impact of a
hypothetical carbon pricing policy on emissions. We contribute with an ex-post
assessment of a real-world carbon tax policy.

Fourth, studies investigating the environmental impact of carbon pricing in the
electricity sector are abundant but the vast majority of the work relies on nu-
merical simulation methods based on strong theory-driven behavioral assumptions
and, sometimes, insufficiently validated empirical hypotheses (see, for example,
Delarue, Ellerman and D’Haeseleer, 2010b; Delarue, Voorspools and D’Haeseleer,
2008; Rausch and Mowers, 2014; Goulder, Hafstead and Williams III, 2016; Abrell
and Rausch, 2016). Some of the economic mechanisms at work, which we empiri-
cally identify in our analysis, have already been analyzed using ex-ante policy anal-
ysis based on analytical and simulation models. For example, Kirat and Ahamada
(2011) show that the high permit prices induced a switch in the merit order from
coal to gas. Delarue, Ellerman and D’Haeseleer (2010a) show that abatement does
not only depend on the level of carbon prices but also on demand and the ratio
between coal and gas prices. Some studies model the fuel switching potential for
hypothetical carbon pricing policies as in Pettersson, Soéderholm and Lundmark
(2012) for the EU ETS and Chevallier et al. (2012) for the UK.

The remainder of this paper is organized as follows. Section I presents our
empirical strategy to estimate the treatment effect of a policy intervention in the
absence of a control group. Section II details how we apply the framework to
assess the COs abatement quantity and costs of the UK carbon tax, including a
description of data sources. Section III scrutinizes the validity our approach for
estimating the causal effects of the policy intervention. Section IV presents our
main findings. Section V analyzes the determinants of environmental effectiveness
and costs of the UK carbon tax. Section VI concludes.

I. Estimation Strategy: Conceptual Framework

The primary challenge in assessing the emissions impact of the UK carbon tax on
the electricity market is to estimate the treatment effect of a policy that affects all
entities in the market, i.e. there exists no control group (or all units are assigned
to treatment with probability one). Our proposed approach leverages economic
theory on price and production decisions in electricity markets and ML techniques
to estimate the treatment effect of a policy intervention. The main idea is to train a
model, based on an economic equilibrium model and ML, which predicts outcomes
under observed and counterfactual treatment. The estimator of the treatment
effect is based on the difference of these predictions and accounts for the influence
of observed and unobserved variables and prediction errors.
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FI1GURE 1. Prediction-based estimator of treatment effect

Notes: y;; denotes outcome of unit i at time 7 (i.e. electricity output of a given power plant) which has
been subject to treatment (i.e., a carbon tax). z; and Z; refer to observed and counterfactual levels of

treatment which apply to all units equally, respectively. Hats refer to predicted values. &;; and &;; denote
the true and estimated treatment effect, respectively.

A. Basic Idea

Consider a population model according to which the outcome y;; of unit i at
time r—here, the output of power plant i—is generated according to

(1) Vit = fi (Xizs hir, 2¢) + €ir .

Z; is the time-varying treatment which is received uniformly by all units—here, a
carbon tax levied uniformly on all power plants in the market at time ¢. x;; and h;;
are vectors of observed and unobserved control variables, respectively. €, ~ (0, 02)
is a random noise with mean zero E[¢;;] = 0 and variance 0'52- € is independent
of controls and treatment: €; I (x;7, his, 2¢), Vi,t. We assume that the function
fi is invariant or autonomous to changes in the treatment and control variables
(Haavelmo, 1944; Aldrich, 1989; Peters, Biithlmann and Meinshausen, 2016).

The goal is to identify the effect on outcome y;; caused by a change in the
treatment from its observed values z; to counterfactual values z; (i.e., power plant
output which would have been chosen without a carbon tax). The treatment effect
is defined as:

(2) Si 1=y =y Vit

Figure 1 graphically illustrates the treatment effect where solid and dashed lines
denote observed and unobserved outcomes, respectively. Of course, the funda-



mental problem—also known as the missing data problem (Rubin, 1974; Holland,

1986)—is that we do not observe y7/ and y; at the same time.

To obtain an estimate of the treatment effect ¢, the basic idea of our approach
is to derive a predictor ﬁ for the function f; that produces reliable predictions.
To this end, we use economic theory to provide a basis for specifying the predic-
tor function. Specifically, we use a dispatch and peak-load pricing model of the
wholesale electricity market (Boiteux, 1960) to impose structure on the underlying
data generating process and to construct a population model which “pre-selects”
the factors influencing the outcome. In a second step, we harness the power of
ML methods which—in contrast to traditional econometric methods focused on
consistently estimating parameters of f—are optimized to predict the value of
the outcome variable (Mullainathan and Spiess, 2017).5 In applying ML methods
to estimate the predictor function, economic theory is of ultimate importance to
inform about the choice of control variables. An agnostic “let the data speak” ap-
proach, which would leave model selection entirely to the ML algorithm, is highly
problematic.

While making use of economic theory in a first step adds structure to the pre-
diction problem, obtaining an unbiased estimate for § requires controlling for the
impact of unobserved variables and systematic prediction biases. We thus estimate
the treatment effect as (see also Figure 1 where dotted lines represent predicted
values):

(3) Oir 1= 3 = 9% Vit

vir denotes predicted values of the outcome variable under a situation with or
without treatment which, naturally, involve prediction errors &;;:

(4) Vir = ﬁ (Xits 20) = Yir + Eir (Xig, hizy 2¢) + €37 -

Our main identifying assumption to obtain é;; is that the prediction error only
depends on observed and unobserved variables, but does not change between the
prediction of outcomes under observed and counterfactual treatments keeping con-
trol variables constant. That is:

ASSUMPTION 1: Prediction errors &i(xis, hir, 7;) are independent of the treat-
ment: &ir(Xir, hirs 2¢) = Eir(Xigs hits 2t) = Eir(Xirs hir), ¥ 24

Using predicted outcomes under observed and counterfactual treatment differ-
ences out prediction errors then yields an unbiased estimate of &;;:

(5) it = yi7 + Eir (Xir, hi) + € = | vi) + Eip (Xies hag) + €/
= ythf - yiztt + ¢it,

5Using cross-validation, i.e. repeated re-sampling methods, ML methods construct an estimate of ex-
pected prediction errors that are minimized by regularizing the underlying function f; (see, for example,
Hastie, Tibshirani and Friedman, 2008; Gareth et al., 2013, as well as Appendix B for a more detailed
explanation of the ML approach).
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where ¢;; = € — €
unbiased: E(&t) = 0is.

It is important to understand that the estimator in (5) involves using predicted
outcomes under observed and counterfactual treatment. To see this, consider a
naive approach which would alternatively estimate the treatment effect as the

difference between the observed outcome under treatment (y;/) and the predicted

outcome under no treatment (y;7). Such an approach would yield a biased estimate
of § due to the prediction error.

Besides removing prediction errors, the estimator in (5) also controls for the
indirect impacts of observed and unobserved variables on outcome if the following
assumptions hold true:

is random noise with mean zero. The estimator is thus

ASSUMPTION 2: Observed controls are independent of the changes in the treat-
ment variable: xj; W z; .

ASSUMPTION 3:  Unobserved controls are conditionally independent to changes
in the treatment variable given the observed controls: hi; 1L z¢|xir .

Assumption 2 rules out effects of the treatment variable on observed controls. This
assumption is necessary as the observed controls are held constant in the counter-
factual simulation. Otherwise, if z influences x, there would be an indirect effect on
the outcome, which would bias é. Likewise, Assumption 3 rules out effects of the
treatment variable on unobserved variables once observed variables are controlled
for. Assumptions 1, 2 and 3 are essential for identification and can be viewed as
analogous to the parallel trend assumption in a difference-in-differences setting.’

B. Additional Assumptions

Assumptions 1-3 are imposed on the population model for identification. For
the feasibility of our estimation strategy, we need additional properties in the data
that must be met.

To be able to identify the impact of treatment on outcome, there has to be
sufficient variation in the treatment variable:

ASSUMPTION 4: The variation in the level of treatment and controls over time
is sufficiently large.

Typically, the level of treatment—in our case the carbon tax—does not change
frequently (if at all). One can, however, find a proxy variable which affects the
outcome through the same mechanism as the treatment variable. A carbon tax
is an input tax that directly affects input costs (and thus the output decisions
of power plants) in the same way as input prices. It is thus possible to use the

SIn fact, Assumption 1 is the key difference in comparison to the approach used by Burlig et al. (2019).
They ”...require treated and untreated schools to be trending similarly in prediction errors...”. (Burlig
et al., 2019, p. 15). In contrast, and given that we do not observe a control group, we need to assume that
the prediction error is independent of the treatment in order to difference out the impact of unobservables
and systematic prediction errors.



variation in carbon-based fuel prices, such as the prices of coal and natural gas, as
a proxy for the insufficient variation in the carbon tax rate.

A potential concern for the validity of Assumption 1 is the quality of predictions
based on unobserved counterfactual control and treatment values. Although ML
algorithms are designed to produce reliable predictions, they only locally approx-
imate the true model within the range of observed treatments and controls. It is
thus unclear how the estimated functions behave for covariate and treatment com-
binations which lie outside of the range of observed combinations. The following
positivity or covariate overlap assumption (Samii, Paler and Daly, 2016) rules out
such cases:

ASSUMPTION 5:  Fach combination of the counterfactual treatment z; and co-
variates x;; has been observed. (i.e., Prob[z|x;] > 0).

While it is highly unlikely that all combinations of z and x were observed, Assump-
tion 5 only requires that these combinations should lie within the range of the
observed data.

II. Applying the Framework: The Case of the UK Carbon Tax

We apply the empirical strategy presented in Section I to assess the market
impacts of the UK carbon tax. Sections II.A and II.B provide contextual detail
about the carbon tax policy and draw on economic theory to derive the population
model. Section II.C presents the data. Section II.D describes how we implement
the conceptual idea behind our empirical strategy in the given context. Section III
scrutinizes the validity of our identifying assumptions.

A. Policy Context and Confounding Factors

The main policy instrument of the UK government to decarbonize the heavily
fossil-based UK electricity sector is the Carbon Price Support (CPS), an annual
constant tax on fossil fuel use in the wholesale electricity market (Department of
Energy & Climate Change, 2016). The CPS intends to close the gap between an
envisaged minimum carbon price, the so-called Carbon Price Floor (CPF) and
the price of European Emission Allowances (EUA) traded under the European
Emissions Trading System (ETS).” Table 1 shows the evolution of the EUA, CPS,
and the total carbon price over time. Since the introduction of the CPS in 2013,
the CPF always exceeded the EUA price, thus resulting in a positive CPS. In
2013, the modest level of the CPS led to a more than two-fold increase of the total
carbon price for the UK electricity industry. In 2016, the CPS was set at the level
of €21.60, six times higher than the annual EUA price in this year.

"Prior to the introduction of the CPS, the CPS level was conceptualized to be determined two years in
advance as the difference between the EUA future price and the CPF. In 2013, the CPF was announced
to increase up to 34.5 (69) €/tCO2 in 2020 (2030). At the end of 2015, however, the UK government fixed
the CPS rate to 21.6 €/tCOg until 2021 (Hirst, 2017). In the 2017 budget, the UK government expressed
its confidence that “the Total Carbon Price, currently created by the combination of the EU Emission
Trading System and the Carbon Price Support, is set at the right level [...]” (HM Treasury, 2017, Article
3.46), thus indicating that the CPS is likely to stay at its current level in future years.
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TABLE 1. Descriptive statistics of UK electricity market: carbon prices, generation and import capacity,
fuel prices, output, and demand.

Year
2009 2010 2011 2012 2013 2014 2015 2016
Carbon prices [€ per ton of CO2]¢
EUA 13.23 14.36 13.02 7.37 4.76 6.22 7.34 5.26
CPS - - - - 5.85 12.17 24.70 21.60
Total carbon price 13.23 14.36 13.02 7.37 10.61 18.39 32.04 26.86
(=EUA4CPS)
Installed capacities [GW]
Coal 25.3 25.3 25.3 24.5 19.9 18.8 19 13.8
Gas 27.3 29.5 30.2 30.3 29.3 27.4 26.6 26.1
Import 2.5 2.5 3.5 3.6 4.0 4.0 4.0 4.0
Fuel prices [€ per MWh thermal energy]
Coal 7.60 10.46 13.20 10.90 9.28 8.55 7.70 8.12
(0.74)  (1.55)  (0.45)  (0.68)  (0.54)  (0.35)  (0.56)  (2.27)
Gas 11.82 16.84 22.17 25.07 27.34 21.16 20.03 14.38
(447)  (353)  (1.31)  (201)  (2.79)  (329)  (2.19)  (2.53)
Ratio? 0.89 0.79 0.71 0.51 0.43 0.59 0.69 0.88

(0.19)  (0.07)  (0.05)  (0.06)  (0.04)  (0.09)  (0.08)  (0.08)
Hourly demand and generation [GWh]

Demand 27.10 28.33 25.81 24.99 23.77 22.16 20.01 19.54
(6.51) (6.58) (6.63) (6.77) (6.93) (6.23) (6.36) (6.43)
Gas generation 17.14 18.29 14.56 9.50 9.17 9.81 9.47 14.23
(3.01) (3.07) (3.79) (4.16) (5.12) (4.87) (4.43) (4.75)
Coal generation 9.81 9.97 10.70 14.35 13.11 10.13 8.17 3.27

(580)  (5.29)  (5.14)  (4.04)  (3.18)  (4.10)  (3.45)  (2.88)

Notes: Standard deviations in parentheses. CPS taken from Hirst (2017) and HM Revenue & Customs
(2014) converted with exchange rate data from ECB (2017). Daily European Emission Allowances (EUA)
spot prices taken from EEX (2017). Further detail about data sources and calculations is provided in
Section II.D. ¢As the CPS is adjusted in April of every year, the annual EUA and CPS carbon prices
for the years 2013-2016 are calculated based on the period from April to March of the subsequent year.
b Coal-to-gas fuel price ratio, inclusive of EUA and CPS carbon prices, calculated according to equation
(12).

To develop some first intuition for the impacts of the CPS on electricity supply
and emissions, Figure 2 plots the short-run supply curve (i.e., ordering marginal
cost of fossil-based power plants from low to high) for two situations:® a hypothet-
ical situation without the CPS where marginal emissions are only priced at the
costs of an EUA (Panel a) and the observed situation with the CPS (Panel b).
We observe two main changes. First, the supply curve shifts upward—indicating
the increase in the marginal cost of all fossil plants. Second, as natural gas-fired
power plants are less carbon-intensive, they are less affected by the carbon price
increase and, therefore, become relatively cheaper. Gas plants are thus dispatched
into the market and replace emissions-intensive coal-fired plants, in turn reducing
emissions.

Consistent with this basic mechanism, Panel (a) in Figure 3 shows that starting
with the introduction of the CPS in 2013 the annual market share of coal-fired

8The illustrative calculation shown in Figure 2 is based on one particular hour and assuming average
heat efficiencies for plants; it ignores the fact that heat efficiencies, and hence the impact of CPS on
individual plants, varies over time depending on temperature and other factors.
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FIGURE 2. Illustrative impact of the UK carbon tax on the short-run market supply curve for electricity

Notes: The graph shows the merit order curve of fossil-based power plants on December 19, 2016, at 5:00
p.m. based on the data described in Section II.C. Hydro, nuclear, and renewable power plants are omitted
and their total generation is subtracted from demand as they are always dispatched first given that their
marginal cost are smaller than those of fossil-based plants. Marginal costs are calculated according to
equation (16).

generation sharply decreased while the share of gas-fired plants increased; over the
same period, UK’s electricity-sector emissions sharply declined.

While Figures 2 and 3 provide some first evidence that the CPS may have led
to a reduction in electricity-sector CO9 emissions, there is arguably a host of other
factors which are likely to have affected the observed market outcomes. First, the
fraction of electricity demand to be covered with domestic fossil-based generation
from coal and natural gas has declined between 2013-2016. This is due to, at least,
three factors: (i) energy efficiency improvements; (i) targeted support policies
have likely pushed in zero (or low) marginal-cost generation from renewable energy
whenever the underlying natural resource (wind or solar) was available; and (7i)
UK’s electricity imports have slightly increased likely due to both an expansion
of newly built inter-connector lines (see Table 1) and the fact that the CPS has
increased the domestic cost of generation relative to import prices.

Second, the switch from coal to natural gas was likely also triggered by substan-
tial changes in relative fuel price. Between 2013-2016, natural gas prices declined
by nearly 50 percent while coal prices remained largely constant (see Figure 3
Panel (b) and Table 1). This suggests that even without the introduction of the
CPS there may have been a marked shift towards gas-fired generation in the UK
electricity market.

Third, the decisions to shut down coal-fired plants, reflected in the available
production capacity for coal (see Table 1), are likely influenced by factors which
are unrelated to the CPS. A main reason for these closures is the European “Large
Combustion Plant Directive”, which sets specific limits on local pollutant emissions
for power plants constructed after the year 1987. It left electricity firms essentially
the choice to either comply with the emissions limits or to “opt out” in which case
a maximum operation time of 20’000 hours was granted until the end of 2015 when
eventually the plant had to be shut down (European Commission, 2001).

In summary, there is ample evidence that the decline in coal generation and COq
emissions in the UK power sector which has occurred since the introduction of the
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FIGURE 3. Generation, emissions and fuel prices

Notes: Own calculations. Electricity generation by fuel is based on ELEXON (2016). “Base” comprises
electricity generated from hydro and nuclear power plants. “ Renewables” comprises wind, solar, and other
(mainly biomass) generation where generation from wind and solar is corrected for generation embedded
in final demand (Nationalgrid, 2016). “Emissions” refer to reported values from the EU Transaction Log
(European Commission, 2016). Fuel prices for coal and natural gas are taken from EIKON (2017). CPS
rates are reported by Hirst (2017) and HM Revenue & Customs (2014), and the EUA price by EEX (2017).
Carbon price inclusive fuel prices refer to MWh of thermal energy.
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CPS in 2013 has likely been the result of a multitude of factors comprising market
developments (international fuel prices and electricity demand) and a variety of
different policy measures (renewable energy support policies, transmission infras-
tructure measures, and the CPS). We next present our empirical framework we use
to disentangle the market impacts brought about by the carbon tax policy alone.

B. Determinants of Wholesale Electricity Market Activity

We apply microeconomic theory based on a dispatch and peak-load pricing model
of the wholesale electricity market (Boiteux, 1960) to pre-select the potentially
relevant variables determining wholesale market impacts in response to a carbon
tax. The pre-selected variables subsequently enter the ML algorithm to estimate
the empirical prediction model which is used to estimate the treatment effect of
the UK CPS.

COMPETITION IN UK’S WHOLESALE ELECTRICITY MARKET.—The UK wholesale elec-
tricity market is a liberalized market based on exchange and over-the-counter
trades. In power exchanges, market participants can trade forward and real-time
contracts.? In the day-ahead market, market participants trade electricity for each
hour of the next day. Given the new information in the market, these trades can
be revised using the intra-day market which closes one hour before delivery time.
In 2014 the UK regulator asked for an investigation of anti-competitive behavior
in the UK energy market. In its final report, the “Competition and Markets Au-
thority” (CMA, 2016) did not find evidence for anti-competitive behavior in the
wholesale electricity market.

A SHORT-RUN EQUILIBRIUM MODEL OF WHOLESALE MARKET ACTIVITY.— We concep-
tualize the UK wholesale electricity market as being composed of firms which are
assumed to operate under perfect competition maximizing profits using production
quantities as the decision variable. Generation units of a firm are represented at
the plant level where total production of plant i € I in hour ¢t € T is denoted by X;;.
The set I comprises thermal carbon-based generation plants (i.e., hard coal, lignite
coal, natural gas) and other conventional plants (i.e., nuclear, hydro, pump storage,
biomass). Generation from wind and solar is modeled exogenously. Production at
any point in time cannot exceed the given effective production capacity Kj;:

(6) Ki[ > Xil 1 HMit >0 Vl,t

where the time-dependency of capacity mainly reflects maintenance and unsched-
uled plant outages. u;; is the shadow price of capacity for technology i at time ¢.
The value of capacity in a given hour is zero (u;; = 0) if production is below the
capacity limit; it is positive (u;; > 0) if the capacity constraint is binding.'”

9Real-time trading of UK electricity mainly takes place in the EPEX-Spot and Nordpool power ex-
changes. Forward contracts are traded via the InterContinental Exchange (ICE) and NASDAQ.

10WWe use the “1” operator to indicate complementarity between equilibrium conditions and variables.
A characteristic of economic equilibrium models is that they can be cast as a complementarity problem,
i.e. given a function F: R" —s R”, find z € R" such that F(z) > 0, z > 0, and z¥ F(z) = 0, or, in short-hand
notation, F(z) >0 L z > 0 (Mathiesen, 1985; Rutherford, 1995).
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Marginal cost ¢;(¥;) of a generation unit at time ¢ depend on exogenous factors
die = (P} 0/ 1 pPVA, pET5Y

comprising the time-dependent price of the fuel f used for electricity generation
(p{), the carbon content (6'), the time-varying EUA and CPS prices on COs
emissions (pFUA and ptCP %), and time-specific heat efficiency (77;;) reflecting the
influence of ambient temperature (temp,) and potential efficiency losses due to
part-load operation.

In equilibrium, the following zero-profit condition, relating unit costs (comprising
marginal costs and the opportunity costs for capacity) to unit revenues determines

the output of generation unit i, y;:
(7) Cil(@ie) + iy 2 Pr Ly 20 Vit

where P; measures unit profits or the wholesale electricity price at time ¢.'! If unit
cost exceed unit profit, positive generation would lead to losses and thus y;; = 0.
Given perfect competition and no barriers for market entry or exit, zero profits
in equilibrium (i.e., unit cost equal to unit profit) determine a positive level of
electricity supply y;; > 0.

The market for electricity in a given hour balances if total supply is equal to
hourly demand D, which, given our short-run analysis, we assume to be given and
price-inelastic:

(8) Zyit =D, L1 P;“ree” Vt.

Equations (6)—(8) imply that given demand the equilibrium allocation of hourly
electricity supplies is determined by the available capacity and the marginal cost
ordering of technologies. The equilibrium outcome of each plant i, y,, thus depends
on demand, and its own as well as the marginal cost and available capacities of all
other plants (indicated by —i):

9) Vi, = Fir Dy, ¢it(Fie), Kizs c<ine (9 =ie) » K=iye) -

Equation (9) identifies the major determinants of the power plants’ outputs,
including the responses to a carbon tax policy, by modelling wholesale market ac-
tivity based on first principles of producer behavior and equilibrium-based market
interactions.

C. Data Sources and Construction

To obtain measurements for the empirical counterparts of all variables in (9),
we combine data from different, publicly available, sources. We use panel data of
hourly generation for each UK fossil-fuel power plant covering the 2009-2016 period.

1 Equation (7) determines the price as the marginal cost of the marginal generator.
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In addition, we use data on available hourly generation and capacity, demand, daily
fuel and carbon prices, and temperature.'?

HOURLY OUTPUT BY PLANT (y;,).— We use “final physical notification” (FPN) data
provided by the operator of the UK electricity balancing system (ELEXON, 2016)
as the hourly generation of each fossil power plant unit for the whole sample period.
FPN reports the final, five minutes before delivery time generation announcement
of power plant owners to the grid operator. Although the grid operator might
adjust this announcement due to the need for re-dispatching measures, these data
can be viewed as a reasonable measures for generation (which is not directly ob-
servable for UK power plants). As the data on carbon emissions are only available
at a plant level, we aggregate power plant units to power plants for our analysis.

FUEL PRICES (p/**)—Data on daily fuel prices for coal and natural gas are taken
from EIKON (2017). For coal, we use the “ICE CIF ARA Near Month Future”.
Natural gas prices are “NBP Hub 1st Day Futures”. All prices are converted to
Euro values using daily exchange rates provided by the ECB (2017). Figure 4
plots the time series of monthly-averaged daily fuel price ratio with and without
the CPS showing a substantial variation—ranging approximately between 0.4 and
1—over the sample period.

CARBON PRICES (pfPS and pFU4).—CPS rates are reported by Hirst (2017) and
HM Revenue & Customs (2014) and the EUA price by EEX (2017). Note that the
CPS rate is an annually constant tax in British Pound but reflects exchange rate
variations due to conversion to Euro values ECB (2017).

AVAILABLE CAPACITY BY PLANT BY HOUR (K;,).—Installed capacities (shown in
Table 2) are provided by Variable Pitch (2016) and Nationalgrid (2011). If observed
generation exceeds installed capacity beyond the 95" percentile, we set the value
of installed capacity equal to the 95 percentile of generation.

In addition, data on the maximal plant-level output in a given hour—accounting
for permanent and temporary outages due to maintenance or other reasons—the
so-called “maximum export limits” (MEL), are provided by ELEXON (2016). Us-
ing hourly MEL, we construct a measure of available generation units for each
plant. 1314

DEMAND (D,;)—We measure D; as residual demand, defined as the total output
generated by all coal- and natural gas-fired plants using data from ELEXON (2016)
on hourly generation aggregated by fuel type.

TEMPERATURE.— We use data on daily temperature provided by ECA&D (2016)
to account for time-specific effects on plant-level heat efficiency.

For the ex-post calculation of the abatement impact, we use the following data:

EMISSIONS, EMISSIONS FACTORS AND PLANT-SPECIFIC HEAT EFFICIENCIES (E;y, 6/ and

12Table Al in Appendix A provides descriptive statistics of demand, generation by technology, and
imports on an hourly level.

138pecifically, we set the availability of a unit to zero if MEL is zero, and to one otherwise. Summing
over all units of a power plant, we obtain a count variable indicating the number of units available per
plant, which we use as a proxy for hourly available capacity.

14Not all plants in our data run over the entire sample period from 2009-2016 (see Table 2). For years
in our sample period during which a plant has been shut down or not yet opened, we set the capacity to
zero. In line with this, we also do not predict its counterfactual generation different from zero for these
periods, i.e. the impact of the CPS will be zero by assumption.
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TABLE 2. Power plant characteristics.

Plant Installed Average heat Emissions rate e; Opening/
capacity [MW] efficiency 1; [-] [ton of CO2/MWh]  closing date?

Natural gas plants
Pembroke 2269 0.60 0.34 end 2012/—
Peterhead 2134 0.55 0.36 —/March 2014
Staythorpe 1792 0.58 0.34 2010/—
Didcot CCGT 1404 0.55 0.36 -/-
Connahs Quay 1380 0.48 0.42 —/-
West Burton CCGT 1332 0.51 0.40 —/-
Grain CHP 1305 0.56 0.36 -/-
South Humber 1239 0.50 0.40 /-
Seabank 1169 0.55 0.36 —/-
Saltend South 1164 0.52 0.38 —/=
Teesside 1155 0.45 0.44 —/Feb. 2013
Immingham CHP 1123 0.44 0.46 -/=
Barking 945 0.46 0.44 —/Dec. 2012
Langage 905 0.55 0.37 —/-
Marchwood 898 0.58 0.34 —/-
Killingholme 854 0.48 0.42 —/March 2015
Severn 850 0.54 0.37 —/-
Spalding 830 0.54 0.37 -/-
Rocksavage 800 0.53 0.38 /-
Sutton Bridge 796 0.52 0.39 —/-
Dambhead Creek 783 0.53 0.38 -/-
Coryton 770 0.52 0.38 /-
Little Barford 740 0.54 0.37 —/-
Rye House 715 0.43 0.46 —/—
Keadby 700 0.47 0.42 —/Feb. 2013
Medway 680 0.53 0.38 —/-
Baglan Bay 520 0.57 0.35 -/-
Deeside 498 0.47 0.42 Dec. 2011/—
Great Yarmouth 420 0.56 0.35 /-
Shoreham 420 0.54 0.37 —/-
Enfield Energy 408 0.53 0.38 -/=
Corby 401 0.39 0.51 —/Oct. 2015
Cottam CCGT 395 0.55 0.36 -/-
Kings Lynn 325 0.52 0.39  -/March 2012
Peterborough 316 0.37 0.54 -/Dec. 2011
Average natural gas plant? 0.51 0.40

Coal plants
Longannet 2304 0.42 0.81 —/March 2016
Didcot COAL 2108 0.39 0.88  -/March 2013
Cottam 2000 0.39 0.86 —/-
Ratcliffe 2000 0.38 0.89 —/-
West Burton COAL 1972 0.38 0.90 —/=
Fiddlers Ferry 1961 0.37 0.92 —/March 2016
Ferrybridge 1960 0.38 0.89 —/March 2016
Drax COAL 1947 0.38 0.90 —/=
Kingsnorth 1940 0.36 0.94 —/Dec. 2012
Eggborough 1932 0.37 0.92 —/-
Aberthaw 1641 0.41 0.82 -/=
Cockenzie 1200 0.38 0.91 —/March 2013
Rugeley 996 0.39 0.88 —/June 2016
Ironbridge 964 0.35 0.98 —/March 2012
Uskmouth 363 0.33 1.04 —/-
Average coal plant? 0.38 0.89

Notes: Installed capacities, fuel type, and plant opening and closure dates are provided by Variable Pitch
(2016) and Nationalgrid (2011). For data sources and calculations of heat efficiencies and emission rates see
text. ¢“~” indicates that the plants’ opening or closure date lies outside of the sample period 2009-2016.
b Calculated using installed capacities as weights.
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Notes: Monthly average values based on daily fuel prices for coal and natural gas taken from on EIKON
(2017). For coal, we use the “ICE CIF ARA Near Month Future”. Natural gas prices are “NBP Hub 1st
Day Futures”. All prices are converted to Euro values using daily exchange rates provided by the ECB
(2017).

ni)— We take fuel-specific emissions factors from IPCC (2006): 0.34 and 0.20 tons
of COy per MWh of thermal energy for coal and natural gas, respectively. COs
emissions for each plant i and year y (E;,) are taken from the official registry of the
EU ETS (European Commission, 2016). Dividing total emissions by total genera-
tion per plant, we obtain plant-specific average emission rates: e; = 3, Eiy /(X; Yir)-
We then calculate average heat efficiencies for each plant as:

(10) ni=6"/e.

Table 2 shows these technical characteristics for each plant in the sample. The
average heat efficiency is around 51 percent for natural gas and 38 percent for coal
plants. The emission rates, on the other hand, are significantly higher for coal
(0.89tCO2/MWh) than for gas (0.40tCO2/MWh). As we only observe emissions
on an annual level, we can only calculate average heat efficiencies. Therefore,
hourly changes in heat efficiencies due to, e.g., start-up or ramping constraints,
are not considered in our calculations of the emissions impact of the CPS. To allow
for time-varying heat efficiencies in our prediction models, we do not use these
average heat efficiencies in our estimations.

D. Empirical Implementation
This section describes how we implement the method for estimating the treat-

ment effect in the absence of a control group put described in Section I to assess
the market impacts of the UK carbon tax.
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ESTIMATION EQUATION.— The empirical analogue of hourly output of power plant
i from the equilibrium electricity model in (9) is given by:

(11) yil = ﬁ [rl (ptcoaly ptgasa gf’ plE‘UAa ptCPS) s tempt’ Dl‘a Kit’ K(—i)tv (Pl‘:| + €t -

Here, we include daily mean temperature (temp,) as a proxy for heat efficiency
and marginal costs which we do not observe directly. We further include time
fixed effects for each hour of the day and each month of the year (®,) to account
for possible unobserved factors which may impact plant output. We also include
the carbon price inclusive ratio of relative fuel prices:

p;:oal + gcoal (p{E'UA +ptCPS)

12 1y = .
(12) t pfas + goas (pFUA + ptC'PS)

While we are interested in the impact of the CPS on plants’ output decisions,
there is not sufficient variation in the treatment variable (p¢%) as the CPS changes
only in annual steps. As the CPS directly impacts the fuel costs for coal and
natural gas, we can, however, exploit the variation in carbon-inclusive fuel prices—
instead of including fuel prices (p&® and p?**) and carbon prices (p¢"% and pFU4)
separately. The implicit assumption here is that a change in fuel prices has the same
impact on plants’ marginal cost and, hence, output as a change in the carbon price
(taking into account the emissions factor of the respective fuel 8/“¢!. Furthermore,
the use of r, in equation (11) is well in line with the view that it is not the absolute
but the relative fuel prices that determine which plants leave or remain in the
market.

MACHINE LEARNING ALGORITHM.—From the electricity model in (9), and its em-
pirical counterpart in (11), we know which variables affect plants’ output decisions;
we do not know, however, the functional form of f;. To obtain an estimator f; of
the function f;, we use ML techniques, allowing for flexible functional forms to
predict plant-level output y;;.

We employ the LASSO algorithm (Tibshirani, 1996)—a penalized linear regres-
sion model—and use k-fold cross-validation dividing the sample into eight groups
to train a prediction model fl."* for each plant individually. The LASSO algorithm
requires a pre-defined set of input features. In addition to the variables which
appear on the right hand side of (11), we include (i) interaction terms of all these
variables with electricity demand, the coal-to-gas price ratio, and temperature,
and (ii) second order polynomials of these three variables. Each prediction model
consists of the set of coefficients ﬁA"* and the optimal regularization parameter a*,
which lead to the best possible prediction.!

ESTIMATING THE IMPACT OF THE CPS.—To simulate plants’ outputs that would
have occurred in the absence of the UK carbon tax, we set the CPS treatment

15 Appendix C assesses the prediction performance of the ML algorithm as compared to standard regres-
sion analysis (OLS) for our data set. We find that the LASSO algorithm outperforms OLS, supporting
the well-known result that ML techniques can be beneficially employed to use prediction to construct an
unobserved counterfactual.
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variable to zero while leaving all other data unchanged. The counterfactual “no-
policy” level of the fuel price ratio is given by:

tcoal+ gcoal EUA

- p P
13 = .
( ) ry ptgas + HgasptEUA

Based on the estimator in equation (5), the impact of the CPS on the output
decision of each plant i in each hour 7 can then be calculated as:

(14) SSPS _ owith CPS _ swithout CPS

=it it )
where

A

ﬁgith oS = fa* (rh tempp Dt, Kils K(—i)t’ tﬁl't)

12
)’};’;’ithOUt cPs = f;_(l* (7, tempt’ Dt’ Kita K(—l')ta Qil‘) .

As a closed-form solution of standard errors of the prediction is not available for
the LASSO regression (see, for example, Tibshirani, 1996), we use bootstrapping to
estimate the standard errors of & l.(tjp S (Venables and Ripley, 2002). We generate a
bootstrap sample with the same length as the original data by using random draw-
ings with replacement. We individually bootstrap by year to get the same amount
of values from each year, thus ensuring that all years are equally represented in
each sample so as to not violate Assumption 5.

MEASURING EMISSIONS AND ABATEMENT COSTS.—To calculate electricity-sector
emissions, which derive from the combustion of coal and natural gas in power
generation, we aggregate CO9 emissions from all plants:

E, = Z eiy;x;ithout CPS
Plant-level
emissions
where the emissions of plant i are obtained by multiplying output by the plant-
specific emissions rate e; (see Table 2). Given the estimator for the CPS impact
on plant-level output (6513 $), we can calculate the change in electricity-sector emis-
sions impact due to the CPS as follows:

(15) AE = e 65T .
i SN——
Policy-induced change in
emissions of plant i (=: AE;;)

For our ex-post calculations, we assume marginal cost to be linear in fuel and
carbon prices. Specifically, based on average heat efficiencies (given by equation
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(10) and shown in Table 2) marginal cost are calculated as
1
(16) cir (i) = - (P{ +6 (pP " + pj PS))

Aggregate production costs are obtained by summing over marginal generation
costs of all plants in the market at time ¢:

swith CPS swithout CPS
W= ) I i () = 50 i (D)

ptCPS:O

Using the definition of the treatment effect from equation (14) and plant-specific
heat efficiency from equation (10), this can be rewritten as follows:

(17) y, = Zéc‘PS (Pz +o EUA) chpsel }A]lv;nth CPS
=T; =:R;
Technical abatement Tax payments
due to CPS

¥, can thus be decomposed into two parts. T reflects the technical abatement costs
for the supply side of the market as the CPS affects plant output by re-ordering
the supply or merit order curve. In other words, the CPS leads to an increase in
(expensive) natural gas, and a decrease in (cheap) coal generation. This results in
higher total production cost for the same amount of electricity generation.

R takes into account the costs incurred due to the CPS tax paid on each unit
of generated emissions. While ¥ reflects the costs borne by the supply side of the
electricity market, this decomposition is useful as the tax payments by electricity
firms are typically recycled in a way which does not destroy the value of R. If, for
example, the tax revenues from the CPS are fully rebated to electricity consumers,
the costs of the CPS aggregated over both sides of the markets amount to T only.

III. Evaluating the Assumptions Underlying the Treatment Effect
Estimation

This section examines the validity of the assumptions underlying the estimation
strategy presented in Section I for the specific context of our data and application.
We first evaluate the assumptions regarding the properties of the data (Assump-
tions 4 and 5) and the assumptions for identification (Assumptions 1-3).

A.  Assumptions on Data

SUFFICIENTLY LARGE VARIATION IN TREATMENT AND CONTROLS (ASSUMPTION 4).—
As described in Section I1.D, we exploit the fact that the relative price of natural
gas to coal influences input costs and power plant output decisions in the same
way as the carbon tax (which exhibits little variation as it is only adjusted on an
annual basis). Figure 5 shows that there is substantial variation in our modified
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fuel price ratio

treatment variable (r; and 7;) and demand, as one key observed control variable,
over the sample period.

POSITIVITY OR CO-VARIATE OVERLAP (ASSUMPTION 5).—ML methods construct pre-
dictors of the outcome variable based on a local approximation of the underlying
unknown data generating process. The predictor is thus based on the observed
sample but may not necessarily perform well in predicting out of the sample. To
ensure a high prediction quality under counterfactual treatment, Assumption 5
requires that the counterfactual fuel price ratio 7, lies within the range of observed
fuel price ratios r, conditional on observed control variables. Figure 5 shows the
joint distribution of the observed fuel price ratio and residual demand over the
full sample period 20092016 (Panel (a)) and the joint distribution of the counter-
factual fuel price ratio and residual demand for the period after the CPS became
effective, i.e. from April 2013 until the end of 2016 (Panel (b)). A comparison of
Panel (a) and (b) shows that the imposed counterfactual fuel price ratios are well
covered by the observed distribution.

B. Identifying Assumptions

INDEPENDENCE OF PREDICTION ERROR AND TREATMENT (ASSUMPTION 1).— We find
strong evidence that this assumption is valid in the context of our application.
First, we can assess the independence of the prediction error under observed treat-
ment (i.e., & in Figure 1) with the treatment level. Computing the correlation
between the fuel-price ratio r; and fl.zl’ for each power plant i at time ¢, we find that
they are virtually independent.'® Second, we observe that counterfactual levels of

16The mean of correlation coefficients for all power plants i at different times ¢ is 0.01 with a standard
deviation of 0.07.
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r lie within the range of the observed levels-as is evident from Figure 5 (and the
discussion of Assumption 5). Given the low correlation between the observed pre-
diction error and ry, it quite plausible that the prediction error is also independent
from counterfactual treatment levels ¥. Third, as we argue below related to the
discussion of Assumption 3, we do not seem to miss important unobserved vari-
ables which could affect the errors differently for the observed and counterfactual
predictions in the treatment period.

INDEPENDENCE OF OBSERVED CONTROLS FROM TREATMENT (ASSUMPTION 2).— This
assumption excludes indirect effects of controls on outcome. In terms of our applica-
tion context, this means the following. First, we require that the price of European
Emission Allowances (EUA) traded under the European Emissions Trading System
(ETS) and fuel prices are independent of the CPS. The EUA carbon price is de-
termined by the EU ETS market, of which the UK electricity sector covers only
a negligible part. The market share of UK electricity companies on international
fuel markets is too small to influence fuel prices. Hence, both assumptions seem
to be reasonable.

Assumption 2 excludes the possibility that the CPS will lead to a decrease in
EUA carbon prices and coal prices due to lower demand for carbon and coal. If
these prices were to react, we may slightly overestimate the treatment effect, as
the price decline would favor carbon-intensive coal production.

Second, we require that available capacity is independent from treatment. As we
measure the short-term market reactions to the CPS, this assumption is innocuous,
as the installed capacity cannot easily be adjusted in shorter periods of time. It
also rules out that plant closures are caused by the introduction of the CPS. The
introduction of the CPS in 2013 coincides with the closure of several coal-fired
power plants. Although the official reason for decommissioning is to be seen in a
different policy—mamely the European “Large Combustion Plant Directive” (see
Section IT.A)—we cannot entirely exclude the possibility that the closure of a few
power plants may have been influenced by the announcement of the CPS policy.

Third, residual electricity demand is assumed to be inelastic, reflecting the short-
term nature of our analysis. Hence, electricity demand is not responsive to hourly
wholesale electricity prices, which could in turn be affected by a carbon tax. More-
over, the exogeneity of residual electricity demand also implies that the production
of renewable energy sources, i.e. wind and solar, and base-load technologies, i.e.
nuclear and hydro, are independent of the CPS. Output by these renewables and
hydroelectric power is essentially governed by the availability of natural resources,
and nuclear power plants typically do not change output levels much.

Essentially, assuming capacities and residual demand to be independent of the
CPS reflects our focus on the short-term abatement induced by the CPS through
a switch from coal to gas-based generation. Our estimates neglect longer-term
effects such as plant closure, energy efficiency improvements, and investments into
wind and solar generation. Thus, our results should be viewed as a lower-bound
estimate of short-run abatement induced by the CPS.

CONDITIONAL INDEPENDENCE OF UNOBSERVED CONTROLS FROM TREATMENT (AS-
SUMPTION 3).—Unobserved controls comprise known and unknown unobserved vari-
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FIGURE 6. Monthly average impacts of the UK carbon tax (CPS) on electricity output by technology

Notes: Shaded areas represent 95 % confidence intervals (based on bootstrapped standard errors). Values

shown refer to estimated plant-level impacts SSPS, based on model specification M1 and equation (14),
aggregated by technology category and month.

ables. For example, our population model of the UK electricity market ignores
transmission and network restrictions which affect power generation. Whether
these restrictions and other unknown factors are influenced by the level of CPS is
naturally difficult to assess. We test the robustness of our model using a variety of
different specifications for fixed effects. We find that our results are robust across
different model specifications (see Table 3), suggesting that there do not seem to be
unobserved variables, with significant systematic variation at the monthly and/or
hourly level, that impact power plant output decisions. Moreover, we find that in
all specifications the total net impact of the CPS on generation, i.e. the sum of the
impacts on coal and natural gas, both on an annual and monthly basis does not sta-
tistically differ from zero (see Table 3 and Figure 6). A priori, this result was not to
be expected as (1) the output decision of each power plant is estimated separately
and (2) we do not impose an ezplicit market-clearing constraint in the empirical
model—in contrast to the theoretical market model which requires that demand
always equals supply as in equation (8). We interpret the statistical rejection of
a violation of implicit market clearing as additional evidence that our empirical
model is correctly specified and that we are not missing unobserved variables which
affect power plant performance and depend on treatment.

IV. Results I: How Effective Was the UK Carbon Tax?
This section summarizes our main results on the plant-level and aggregate out-

put, emissions, and cost impacts of the UK carbon tax in the period 2013-2016.
Importantly, we also explore the drivers for environmental effectiveness and abate-
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TABLE 3. Assessing unobserved heterogeneity: impact of the UK carbon tax (CPS) on aggregated power
plant output by technology category for different model specifications.

Model specification

M1 M2 M3 M4

Monthly fixed effects yes no yes no

Hourly fixed effects yes no no yes

Coal

TWh -46.29 -42.78 -43.17 -42.72

(1.69) (1.01) (1.71) (1.20)

% of total generation® 14.7 13.6 13.7 13.6
Natural gas

TWh 45.55 45.00 46.01 45.23

(1.06) (0.92) (1.07) (0.75)

% of total generation® 15.0 14.9 15.2 14.9

Total (TWh) -0.75 2.23 2.84 2.51

(2.00) (1.37) (2.02) (1.42)

Notes: Plant-level impacts éi(’;PS based on equation (14). “Refers to situation without the CPS. Boot-
strapped standard errors are shown in parentheses.

ment costs of the carbon tax.
A.  Output and Emissions Impacts

PLANT-LEVEL AND MARKET OUTPUT.— Figure 7 shows the yearly impact of the
CPS on generation of each plant in our sample. A clear main finding emerges:
the CPS was quite effective in affecting the output decisions of UK power plants,
leading to a pronounced decrease in coal- and an increase in gas-fired electricity
generation (also see Table A3 in the Appendix A).

Table 4 shows the aggregate generation impacts of the CPS on coal and gas power
plants for each year and the cumulative impact since its introduction in April 2013
until the end of 2016. We find that, in aggregate over all fossil-based power plants
and until the end of 2016, the CPS caused a reduction in the output from coal-
fired plants of 46.3 TWh and an increase from gas-fired plants of 45.6 TWh. These
changes amount to a fuel switch from coal to natural gas in the order of 15 percent
compared to a situation where the CPS policy would not have been introduced.
Notably, the impact of the CPS on generation varies substantially over time. The
fuel switch was initially low at a level of 4 TWh in the 2013 period and increased
over the years with the highest value of 22 TWh in 2015. The impacts for both
natural gas and coal are much larger in the 2015 than in the 2016 period. In
relative terms, coal experienced the largest decrease in the 2016 period. In addition
to the heterogeneity of the annual generation effects, Figure 6 shows that the CPS-
induced effects on the monthly production of coal- and gas-fired power plants also
vary considerably over time.

EMISSIONS AND ABATEMENT COSTS.— Table 5 summarizes the total and yearly im-
pacts of the CPS on electricity-sector CO2 emissions and abatement cost. We esti-
mate that over the period 2013-2016, the CPS has reduced cumulative emissions
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FIGURE 7. Generation impacts by plant

Notes: Gas-fired power plants are shown on the left side; coal-fired on the right.

by 26.1 million tons—corresponding to a 6.4 percent reduction of total emissions as
compared to a situation without a CPS. Applying our measure of technical abate-
ment costs T (see equation (17)), the CPS has reduced one ton of CO5 emissions
at an average cost of €18.2 over this period.!”

B.  Temporal Heterogeneity of Impacts

An important empirical finding is that there is considerable temporal heterogene-
ity in the abatement quantity and cost impacts of the UK carbon tax—both across
and within CPS periods. First, aggregate CO4 emissions reductions vary between
1.7 and 11.9 percent relative to a situation without a CPS and average technical
abatement cost amount to €2.7 in 2016 to €47.5 in 2013 per ton abated COq
(see Table 5). Second, Figure 8 shows unequivocally that abatement quantity and
costs impacts largely vary within a given period for a given level of the carbon
tax level. Hence, the variation of the CPS level alone can thus not explain the
observed variation in the impacts of the carbon tax.

These empirical findings bear out two important results—which run counter to

17 Although not the primary focus of our analysis, Table 5 also reports the tax revenues collected with the
CPS instrument. Since its introduction and until the end of 2016, the British government received around
€ 5.2 billion in tax revenue from the CPS policy. There is temporal heterogeneity in the magnitude of tax
revenues collected: the highest tax revenues (around €2 billion) accrued in 2015 when both, emissions
and the CPS level, were high; in the subsequent period, the CPS tax revenue dropped significantly as CO2
emissions remaining in the market were considerably lower.
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TABLE 4. Impacts of the UK carbon tax (CPS) on aggregated power plant output by fuel type.

Period Total impact

2013 2014 2015 2016 2013-2016

CPS [€ per ton of CO2] 5.85 12.17 24.70 21.60 -

Change in output from coal plants

TWh -4.17 -9.26 -21.92 -10.94 -46.29

(0.27) (0.57) (0.86) (0.21) (1.69)

% of total generation -3.7 -9.8 -27.0 -43.6 -14.7
Change in output from natural gas plants

TWh 4.27 9.37 21.19 10.72 45.55

(0.10) (0.23) (0.57) (0.40) (1.06)

% of total generation 6.1 12.1 29.7 12.8 15.0

Total [TWh] 0.10 0.11 -0.73 -0.22 -0.75

(0.29) (0.62) (1.03) (0.45) (2.00)

Notes: As the CPS is adjusted in April of every year, all reported variables refer to the period from April
to March of the subsequent year. As data is available until December 2016, the 2016 period comprises only
nine months. Values shown refer to estimated plant-level impacts SSP S| based on the model specification
with time fixed effects (M1) and equation (14), aggregated by technology category. Bootstrapped standard
errors are shown in parentheses.

the common intuition about the economic impacts of carbon taxes:

RESULT 1: A higher carbon tax does not necessarily lead to a larger reduction in
COy emissions.

RESULT 2: A higher carbon tax does not necessarily imply greater average abate-
ment costs.

The upshot of these results is that the empirical relationships between the tax
level, abatement quantity, and abatement costs are highly non-linear. This raises
the fundamental question for the design of an effective price-based climate policy:
what drives the environmental effectiveness and abatement costs of a carbon tax?
We next turn to an investigation of this question.

V. Results II: Why Did the Environmental and Cost Effectiveness of the
UK Carbon Tax Vary?

This section uses simulations with the ML-trained model to investigate what
drives the heterogeneity in the abatement quantity and costs impacts caused by
the UK carbon tax. Specifically, we aim to explore the nature of the non-linear
empirical relationships behind Results 1 and 2. We investigate to what extent the
insights gained from our empirical model are compatible with first principles of
microeconomic theory for cost-optimizing firm behavior in electricity markets.

A. Conceptualizing the Determinants of Marginal Abatement Cost

Basic microeconomic theory suggests that cost-optimizing firms choose the level
of abatement which equalizes marginal abatement costs (MAC) and marginal abate-
ment benefits (MAB). MAB reflect the avoided tax payments per unit of emissions,
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TABLE 5. Impacts of the UK carbon tax (CPS) on aggregate emissions and abatement costs

Period Total impact

2013 2014 2015 2016 2013-2016

CPS [€/t] 5.85 12.17 24.70 21.60 -

Emissions without CPS (E) [Mt] 125.8 112.0 98.0 71.3 407.1

COs abatement

AE, [Mt] 2.1 4.7 11.6 7.6 26.1

(0.25) (0.53) (0.81) (0.24) (1.60)

% of total emissions 1.7 4.2 11.9 10.7 6.4
Abatement cost ¥y =T; + R,

Technical cost T; [mio. €] 101.1 129.1 195.1 20.5 445.0

(9.2) (18.4) (29.1) (16.6) (58.7)

Avg. tech. cost T; /AE; [€/t] 47.5 27.2 16.8 2.7 18.2

(12.5) (8.7) (4.0) (2.3) (4.0)

Tax payments R; [mio. €] 725.7 1309.6 2129.4 1372.8 5194.3

Notes: Values shown refer to estimated plant-level impacts 55‘95, based on model specification M1 and
equation (14), aggregated by period. As the CPS is adjusted in April of every year, all reported variables
refer to the period from April to March of the subsequent year. As data is available until December 2016,
we can only estimate the impacts of the CPS for a nine month period. To ensure comparability with
previous years, we scale model values for 2016 to a 12-month basis. Bootstrapped standard errors are
shown in parentheses.

i.e. the level of the carbon tax (p©"). We next provide a theory-founded explana-

tion for the empirically observed non-linear relationships between the carbon tax
level, abatement quantity, and costs behind Results 1 and 2.

SIMPLE MICROECONOMICS.—Consider an electricity firm characterized by a plant
portfolio including coal and gas power plants. The firm seeks to minimize its
carbon tax-induced impact on production costs by choosing abatement:

min Y= T(a;r) +(E—a)pCPS

a>0
~—— ———
Technical
abatement cost Tax payments
due to CPS (=R)
s.t. a < I'(r) (1) .
——
Maximum

abatement potential

The total impact on production costs ¥ = T + R—in line with equation (17)—is
given by the sum of technical abatement costs T (a;r), which are a function of
chosen abatement a and a given carbon tax-exclusive fuel-price ratio r, and tax
payments on unabated emissions R = (E — a)p®"S, where E denotes “no-policy”
emissions in the absence of a carbon tax.

The constraint simply expresses the fact that given a certain portfolio of fossil-
based power plants in the market, there exists a maximum potential or capacity
of abatement I'(r) that is attainable. The maximum potential depends on 7 as
the relative fuel prices of coal and natural gas affect the technology mix of gas-
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where for a given hour HAC are calculated as T; /AE; using estimated treatment effects in equations (15)
and (17).

vs. coal-fired power plants. For example, if the price of coal increases relative to
the gas price the abatement potential decreases as natural gas generation starts
to replace coal even in the absence of a carbon tax. u > 0 denotes the multiplier
associated with the abatement potential constraint.

Deriving the Karush-Kuhn-Tucker (KKT) conditions for the optimal choice of
abatement yields:!®

(18) 0T (a;7)/da + U > prs 1L a=0.
S —— ——
Marginal technical abatement Marginal rent on Marginal benefits of
costs (MTAC) abatement potential abatement (MAB)

Marginal abatement costs (MAC)

The firm seeks to equate the MAB, i.e., the carbon price, to the MAC which
comprise two components: the marginal technical abatement costs (MTAC) and
the marginal rent on the abatement potential (u). The MTAC component reflects
the fuel costs incurred to lower emissions by reducing electricity output from coal-

18Here, the “L” operator expresses complementarity between the difference of MAC and MAB, on the
one hand, and optimal abatement a, on the other hand. It is short-hand notation for writing the KKT
conditions: 8T /da +u > p©PS, a >0, (T /da + u — p©P%)a = 0. For example, in the absence of a carbon
tax (i.e., pCFs = 0), the KKT conditions imply that in the optimum a = 0; a positive amount of abatement
requires that MAC=MAB in the optimum.
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fired while increasing output from gas-fired power plants. For given fuel costs
7, MTAC are typically referred to as the engineering-based estimate of marginal
abatement costs. u represents the shadow price on the maximum capacity or the
potential for abatement. It measures how strongly the abatement constraint binds
at the optimal solution. If the maximum abatement potential constraint is not
binding, u is zero and MAC are given by the MTAC only. Conversely, if only a
limited abatement potential remains (e.g., because most of the coal power plants
have already been driven out of the market), u is large and the MAC exceed the
MTAC.

CONJECTURES.— The KKT conditions in (18) enables deriving several conjectures
about what drives the MAC and how this impacts the environmental effectiveness
and costs of a carbon tax.

CONJECTURE 1: For a given fuel price ratio ¥, marginal abatement cost weakly
increase with abatement (0MAC/da = 0*T (a;7)/da® + du/da = 0).

CONJECTURE 2: The marginal technical abatement cost weakly decreases in the
fuel price ratio (6°T (a;7) /8adr < 0).

CONJECTURE 3: The mazimum abatement potential weakly decreases in the rel-
ative price of coal to natural gas (OT(r)/dr < 0), implying that the marginal rent
on the abatement potential weakly increases in 7 (du/dr > 0).

Conjecture 1 describes the behavior of MAC regarding abatement. It simply
states that MAC, and both of its constituent components, increase in abatement
for a given fuel price ratio.

The next two conjectures state that the two components which make up total
MAC depend on the level of the fuel price ratio 7. Conjecture 2 expresses the
idea that fuel-switching between coal and natural gas becomes cheaper with an
increasing fuel price ratio. This is directly implied by the definition of technical
abatement cost as the cost of switching from coal to gas: if the fuel price of coal is
already relatively high compared to the fuel price of natural gas (high 7), a given
abatement level can be achieved at smaller MTAC. Conjecture 3 can be understood
as follows. As 7 increases, the cost of gas-fired power plants relative to coal plants
decrease, driving some coal plants out of the market even without a carbon tax.
To the extent that fewer coal plants are available for fuel-switching in response to
a carbon tax, the maximum abatement potential declines with 7. If the abatement
potential constraint is binding, a smaller I' due to an increased r implies that the
shadow price on abatement capacity u, which positively contributes to MAC, must
be higher. If Conjectures 2 and 3 hold true, a change in the fuel price ratio has an
ambiguous effect on the MAC: MTAC decrease in 7 while y increase in 7.

IMPLICATIONS FOR THE QUANTITY AND COSTS OF CO; ABATEMENT.— What do the
conjectures imply about the drivers of environmental effectiveness and costs of a
carbon tax? According to Conjecture 1, abatement increases with an increasing
carbon tax and cost increase for a given fuel price ratio. For a given carbon tax the
effect of an increase in the fuel price ratio 7 on abatement is ambiguous. If MAC
decrease, the effect of decreasing MTAC outweighs the increase in the shadow price
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of abatement potential yu. Consequently, environmental effectiveness increases with
increasing 7.

The impact on total abatement cost, however, is ambiguous as abatement in-
creases but MAC decrease. In constrast, if MAC increase, the increase in u exceeds
the effect of decreasing MTAC. Consequently, the environmental effectiveness is de-
creasing as u only becomes positive if the abatement potential is fully used and as
the potential is decreasing in 7. Total abatement cost then also decrease, due to a
decrease in MTAC and abatement.

B. Empirical Marginal Abatement Costs

This section presents results from performing simulations with our ML-trained
model to investigate Conjectures 1-3 in the given empirical context of the UK
carbon tax. This enables us to empirically analyze the determinants of the en-
vironmental effectiveness and costs of the UK carbon tax with a handshake on
microeconomic theory.

COMPUTATIONAL DERIVATIONS.—T0 obtain empirical counterparts of the MAC
(left hand side of (18)), we perform simulations with the ML-trained model deriving
abatement quantities for different levels of the carbon tax (increasing the CPS level
in increments of 1 from 0-50 €/tCO2). To analyze the dependence of MAC on the
fuel price ratio, we derive MAC curves for three different ranges for 7 representing
“Low” (T < 0.55), “Intermediate” (0.55 < 7 < 0.88), and “High” (¥ > 0.88) values.!?

MAIN RESULTS.—Figure 9 shows the empirical MAC curves for the different ranges
of 7;. Several insights emerge. First, for a given level of the fuel price ratio, the em-
pirical MAC curve is monotonically increasing in abatement—which is consistent
with expectations from economic theory that IMAC/da > 0 and therefore Conjec-
ture 1. We also find that empirical MAC curves are convex (i.e. *?MAC/da? > 0).
Second, we find a non-monotonous impact of the fuel price ratio on MAC: moving
from “Low” to “Intermediate”values of r; slightly decreases MAC, while for “ High”
values of r; the MAC increase substantially again. This non-monotonicity is due
to the opposing effects of the different MAC components in (18) with respect to a
change in r hypothesized in Conjectures 2 and 3. As 7 increases, MTAC decrease
as it becomes cheaper to substitute coal by gas-fired plants. At the same time,
however, as gas plants become more favorable, coal plants are driven out of the
market (even without carbon price), in turn lowering the remaining abatement po-
tential which escalates MAC by increasing the shadow costs of available abatement
capacity u.

DISENTANGLING MTAC AND ABATEMENT POTENTIAL EFFECTS.—Figure 10 provides
a more detailed analysis of the two MAC components by visualizing the change in
the empirically-measured counterparts of the MTAC and the abatement potential

19The choice of cutoff points for 7; is motivated by the following considerations. The “Low” value
corresponds to the carbon tax-exclusive fuel price ratio for which the most efficient gas plant (Pembroke
plant) substitutes for the most inefficient coal plant (Uskmouth plant)—given the observed, plant-specific
heat efficiencies in Table 2. The lower end of “Intermediate” range thus contains values of 7; for which
gas-fired plants begin to move, in the absence of a carbon tax, to the left of the merit order dispatch curve.
The “High” value corresponds to the fuel price ratio for which the least efficient gas plant (Rye House
plant) breaks even, in terms of fuel costs, with the least efficient coal plant (Uskmouth plant).
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necessary to induce a switch from coal to natural gas triggering a “small” amount of abatement. The
maximum abatement potential I'(F;) is measured as the quantity of COg emissions abated if all coal
plants were replaced by gas plants.

as the fuel price ratio 7, varies. We measure MTAC as the minimum carbon price
necessary to induce abatement, or equivalently, a switch from coal to natural gas
(where we use the data on heat efficiencies from Table 2 and hourly electricity
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demand). The maximum abatement potential I'(r;) is calculated as the quantity of
CO4 emissions abated if all coal power plants were replaced by gas power plants.

Figure 10 documents empirical evidence in support of Conjectures 2 and 3. First,
in the range of “Low” fuel price ratios, the MTAC rapidly diminish as 7; increases;
the abatement potential, however, largely remains on a high level. Second, at the
lower bound of the “Intermediate” range (i.e., 7, = 0.55), gas plants begin replacing
coal plants even in the absence of a carbon tax, implying that I" starts to decrease.
For this range of fuel price ratios, the carbon tax-exclusive fuel costs of gas plants
are roughly equal to those of coal plants, implying that the MTAC are close to
zero, i.e. a very small carbon tax would be sufficient to create a cost advantage for
gas plants. Third, at the transition from “Intermediate” to “ High” values of r;, all
gas plants are cheaper than the least efficient coal plant even without a carbon tax.
Thus, MTAC are very low but the abatement potential is virtually exhausted.

The opposing effects of the constituent components of total MAC visualized in
Figure 10 explain the change in MAC curves as the fuel price ratio varies (compare
with Figure 9). MAC decrease when going from “Low” to “Intermediate” values
of 7, (i.e., green to red curve) due to the fact that MTAC fall while u is small
as the abatement potential constraint is slack. Further increases in 7, drive up
u as the abatement potential diminishes, and in turn drive up total MAC even
though MTAC are close to zero (i.e., red to blue curve). Moreover, the increasing
shadow costs of abatement capacity imply that the degree of convexity of the MAC
curves—for the range of abatement quantities shown in Figure 10—increases with
r¢. For “High” values of the fuel price ratio, MAC increase super-proportionally
with the abatement quantity. MAC curves for “Low” to “Intermediate” values of
7¢, on the other side, are closer to linearity.

C. Does a Higher Carbon Tax Always Imply Larger Costs and Abatement?

Equipped with the theoretical and empirical insights on the counteracting ef-
fects of the fuel price ratio on MAC, environmental effectiveness and abatement
cost, we now return to investigating Results 1 and 2. In particular, we examine
the non-linear relationships between the tax rate, abatement quantity, and aver-
age abatement costs in order to investigate whether or not a higher carbon tax
necessarily leads to more abatement and higher average costs.

ENVIRONMENTAL EFFECTIVENESS AND AVERAGE ABATEMENT COSTS.— 10 assess how
abatement quantity and average cost impacts depend on the fuel price ratio, we
compare COs emissions reductions for different hypothetical levels of the carbon
tax while using observational variation in the data for 7,.2° Figure 11 plots the
empirical relationships between the fuel price ratio 7, and CO5 abatement (Panel
a), total abatement costs (Panel b), and the average technical abatement costs
(Panel c) for different levels of the CPS.

Panel (a) shows that the environmental effectiveness of a carbon tax largely
depends on the prevailing relative (carbon tax-exclusive) fuel prices of coal and

20T his is equivalent to using the ML-trained model to computationally evaluate the KKT conditions in
(18) to find cost-minimizing emissions abatement a for a given carbon tax rate pCrs.
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natural gas. This is consistent with the MTAC and abatement potential effects
analyzed in Sections V.A and V.B. It is straightforward to see that a higher carbon
tax does not necessarily imply a higher COy abatement. Graphically speaking,
there is a substantial overlap for the range of abatement induced by different levels
of tax rates. For example, the carbon tax rate increases and abatement decreases
from point A to point B to point C, i.e. a carbon tax rate of 20 €/ton CO4 induces
larger abatement than higher tax rates of 30 and 40 €/ton COg, respectively.

For a given carbon tax rate, we observe a humped-shaped pattern between abate-
ment quantity and 7,. A carbon tax is most effective at reducing COy emissions
for intermediate values of 7;, i.e. when fuel costs of coal are neither “too” cheap
nor “too” costly relative to the fuel costs of natural gas. In our empirical example,
carbon abatement peaks at the point where the fuel costs of coal are about 60%
of those of natural gas. The explanation is that for these fuel price ratios, gas
plants are just as cheap as coal plants. MTAC are therefore near zero but the
abatement potential is still large. Thus, a given carbon tax is effective at inducing
a fuel switch at modest cost (reflected by low MTAC) while it can tap into a large
abatement potential in the market (thus avoiding large shadow costs of abatement
capacity u).

Panel (b) shows that total abatement costs monotonically fall in 7,, and they
become zero once the abatement potential is exhausted (i.e. 7, > 0.7). Comparing
the different tax levels, the figure bears two main insights. First, a higher carbon
tax does not necessarily imply larger total abatement costs as they crucially depend
on the relative fuel price of coal to natural gas. For example, when 7, is low, a
carbon tax of 30 €/ton COg (see point B’) implies much higher costs than what
is borne out by a carbon tax rate of 40 €/ton CO3 (see point C’) when 7, is high.
Second, comparing abatement B and cost B’ with abatement A and cost A’ we
find that a lower abatement (B) can induce higher total abatement cost (B’) than
a higher abatement (A).

Panel (c) combines the quantity and total costs impacts from Panels (a) and (b).
Average abatement costs monotonically fall in 7;. The important insight is that
while average abatement costs do not vary much in the level of the carbon tax rate,
they crucially depend on the coal-to-gas fuel price ratio.

D. Applying the Conceptual Insights: Heterogeneous Impacts of the UK Carbon Tax

While Figure 11 used hypothetical variations in the carbon tax rate to illustrate
the relationships between policy stringency, abatement, and abatement costs, we
can finally analyze the heterogeneous quantity and cost impacts triggered by the
UK carbon tax. Figure 12 visualizes the effects of the UK carbon tax along the
four relevant dimensions in a single diagram: average abatement costs (vertical
axis), the coal-to-gas price ratio 7, (horizontal axis), abatement quantity (color
code), and CPS periods, corresponding to different levels of carbon tax (marker
type). Several important insights emerge.

First, average abatement costs T;/AE, decrease as 7, increases (similar to the
pattern shown in Figure 11, Panel c): the more expensive coal becomes relative
to gas, the smaller are the MTAC associated with a tax-induced fuel switch (7;
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FI1GURE 12. Relation between daily COg abatement, and daily average technical abatement cost, and daily
(average) fuel price ratio r;.

Notes: All values refer to daily averages of hourly values. Average abatement costs shown refer to daily
averages of hourly average abatement costs (HAC), where for a given hour HAC are calculated as T; /AE;
using estimated treatment effects in equations (15) and (17).

declines). Second, a larger fuel price ratio increases the tax-induced quantity of
COg emission reductions (AE, increases), up to the point where the abatement
potential starts to decrease.

Third, it is evident that the level of the CPS does not solely determine the
environmental effectiveness and abatement costs. In the 2013 period, the UK CPS
was low and it coincided with fuel market conditions which implied a low fuel
price ratio r;. Average abatement costs were thus high (see stars in the range
“Low 7”). In the 2014 period, the CPS was higher and the relative price of coal
to gas increased as compared to 2013. Abatement was thus higher and average
abatement cost decreased (see circles in the regions “Low 7”7 and “Intermediate
77). In the 2014 and 2015 periods, the fuel price ratios were closely around the
values generating peak abatement with low MTAC and a high abatement potential.
While fuel price ratios were similar in 2014 and 2015, a higher CPS tax rate in 2015
implied higher abatement as compared to 2014. In the 2016 period, the fuel price
ratio was high implying that the abatement potential was nearly exhausted. This
implied that despite a still high CPS level, abatement in 2016 was lower relative
to 2015 (see diamonds in the regions “Intermediate 7” and “High 77).

In summary, our results indicate that—while the UK carbon tax has been ef-
fective in reducing COq emissions in the electricity sector—there is considerable
temporal heterogeneity in abatement quantities and costs, resulting from the varia-
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tion of the relative fuel prices for coal and natural gas. The important implication
for climate policy is that a higher carbon tax does not necessarily deliver high
emissions reductions. At the same time, a higher carbon tax need not necessarily
result in higher abatement costs.

VI. Conclusions

While economists see carbon pricing as one of the main policy instruments for
mitigating climate change, knowledge about its performance from an ex-post per-
spective is limited. Assessing ex-post the effects of a broad-based carbon tax,
i.e. one which affects virtually all COz-emitting units in a market, is fraught with
difficulties because a suitable control group or “no-policy” counterfactual typically
does not exist.

Against this background, this paper has made two contributions. First, we
propose an approach for policy evaluation which combines economic theory and
machine learning (ML) techniques in settings with high-frequency data when no
control group exists. Specifically, we exploit economic theory of electricity market
dispatch and peak-load pricing to select the variables of a prediction model which
is then trained using ML to obtain an empirical prediction model for power plant
output. We obtain the treatment effect of a carbon tax on plant-level electricity
output as the difference between predicted outcomes with observed and counter-
factual (i.e., no) carbon tax policy.

Second, this paper has applied this new approach to evaluate the environmental
effectiveness and costs of the UK CPS—a carbon levy imposed on all fossil-based
power plants in the electricity market. To our knowledge, this is the first paper
in economics to incorporate ML methods to assess the ex-post effects of carbon
pricing. Our analysis provides empirical evidence in support of the view that a
carbon tax can be an effective regulatory instrument to reduce CO4 emissions: the
CPS induced a substitution away from “dirty” coal to cleaner natural gas-fired
power plants—replacing about 15 percent or 46 TWh of coal-based generation and
reducing electricity sector emissions by 6.2 percent between 2013 and 2016. Over
that period, we find that the abatement of one ton of COy incurred additional
total costs of €18.2 for consumers and fossil-based electricity producers.

We find that there is substantial heterogeneity in the carbon tax-induced market
impacts over time, which are mainly driven by the level of the tax rate and the
ratio of carbon tax-exclusive prices for coal and natural gas. Our analysis thus
contributes with an empirically-founded characterization of the conditions under
which a tax-based climate policy can be more or less effective. An important policy
implication is that in the short run higher carbon taxes does not necessarily bring
about higher emissions reductions. At the same time, however, a higher carbon
tax need not necessarily result in higher abatement costs.

Some limitations of our analysis should be kept in mind. First, we focus on
analyzing the short-run market impacts. Thus, we abstract from potential effects
of the CPS on energy demand, installed fossil capacities, and investments in low-
carbon electricity production capacity. This implies that we also do not take into
account the possible impacts of the CPS on plant closure. Although we assume
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plant closures to be driven by existing regulation unrelated to the CPS, i.e. the
European “Large Combustion Plant Directive”, we cannot rule out that the shut-
down decision for some plants may also have been influenced by the announcement
of the CPS as we observe that its introduction in 2013 coincides with the closure of
several coal power plants. Second, by increasing domestic wholesale market prices
relative to the costs of electricity imports, the CPS may have stimulated electricity
imports. To the extent that such effects reduce (domestic) COy emissions for a
given tax level, our analysis should best be viewed as providing a lower-bound
empirical estimate of the environmental effectiveness of the UK carbon tax.
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TABLE Al. Descriptive statistics: annual means and standard deviations of observed hourly electricity
demand, generation, and imports by technology category.

2009 2010 2011 2012 2013 2014 2015 2016
Residual demand 27.10 28.33 25.81 24.99 23.77 22.16 20.01 19.54
(6.51) (6.58)  (6.63)  (6.77)  (6.93)  (6.23)  (6.36)  (6.43)
Total demand 36.55 37.27 35.79 35.88 35.89 34.56 34.21 33.70
(7.76) (8.15)  (7.68)  (7.52)  (7.74)  (7.40)  (7.47)  (7.74)
Gas 17.14 18.29 14.56 9.50 9.17 9.81 9.47 14.23
(3.01) (3.07)  (3.79)  (4.16)  (5.12)  (4.87)  (4.43)  (4.75)
Coal 9.81 9.97 10.70 14.35 13.11 10.13 8.17 3.27
(5.80) (529)  (5.14)  (4.04)  (3.18)  (4.10)  (3.45)  (2.88)
Nuclear 7.41 6.67 7.39 7.51 7.53 6.82 7.50 7.60
(1.03) (1.12)  (1.13)  (0.83)  (0.97)  (1.04)  (0.61)  (0.66)
Hydro 0.41 0.24 0.42 0.37 0.33 0.45 A7 0.38
(0.22) (0.17)  (0.21)  (0.22)  (0.24)  (0.27)  (0.26)  (0.26)
PSP -0.13 -0.11 -0.09 -0.11 -0.11 -0.11 -0.10 -0.12
(1.14) (1.01)  (0.95)  (0.96)  (0.92)  (0.93)  (0.90)  (0.96)
Other 0.00 0.00 0.00 0.24 0.44 0.85 1.29 1.62
(0.00) (0.00)  (0.00)  (0.25)  (0.34)  (0.26)  (0.53)  (0.46)
Wind 1.02 1.16 1.74 2.00 2.80 3.24 3.70 3.63
(0.66) (0.82)  (1.15)  (1.43)  (1L.79)  (2.17)  (2.26)  (3.08)
Solar 0.00 0.00 0.02 0.14 0.35 0.57 0.96 1.11
(0.00) (0.00)  (0.03)  (0.21)  (0.56)  (0.85)  (1.48)  (1.64)
Imports 0.15 0.06 0.54 1.13 1.49 2.22 37 2.03
(1.28) (L44)  (117)  (1.13)  (0.86)  (0.51)  (0.65)  (1.20)

Notes: Standard deviations in parentheses. Data for generation by fuel type is based on ELEXON (2016).
Nationalgrid (2016) provides data for final demand and embedded wind and solar generation.

TABLE A2. Descriptive statistics: installed annual generation capacities by technology category [GW].

2009 2010 2011 2012 2013 2014 2015 2016
Gas 20.9 23.0 23.4 25.0 24.2 24.1 23.7 23.6
Coal 25.3 25.3 25.3 24.5 19.9 19.1 19.1 15.3
Hydro 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Nuclear 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2
OCGT 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3
Oil 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
Other 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
PSP 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
Imports 2.5 2.5 3.5 3.6 4.0 4.0 4.0 4.0

Notes: Installed capacities are provided by Variable Pitch (2016) and Nationalgrid (2011). Plant char-
acteristics of individual coal and gas plants, i.e. heat efficiencies, emission rates, installed capacities as
opening and closure dates are shown in Table 2.
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TaBLE A3. Impacts of UK carbon tax (CPS) on power plant output [TWh].

Period Total impact
2013 2014 2015 2016 2013-2016
Natural gas plants
Pembroke 0.38 0.84 2.01 0.70 3.94
Peterhead 0.00 0.00 0.00 0.00 0.00
Staythorpe 0.19 0.65 1.40 0.29 2.53
Didcot CCGT 0.52 0.85 2.26 1.05 4.68
Connahs Quay 0.28 0.58 1.04 0.68 2.58
West Burton CCGT 0.04 0.36 0.91 0.32 1.63
Grain CHP 0.21 0.66 1.39 0.37 2.63
South Humber 0.17 0.35 0.63 0.41 1.55
Seabank 0.36 0.76 1.36 0.88 3.36
Saltend South 0.07 0.17 0.67 0.49 1.41
Immingham CHP 0.18 0.37 0.66 0.43 1.64
Langage 0.23 0.29 1.00 0.83 2.35
Marchwood 0.04 0.08 0.14 0.09 0.35
Severn 0.12 0.25 0.44 0.28 1.09
Spalding 0.29 0.66 1.67 0.76 3.38
Rocksavage 0.05 0.11 0.46 0.29 0.92
Sutton Bridge 0.08 0.18 0.31 0.20 0.77
Damhead Creek 0.00 0.00 0.00 0.00 0.00
Coryton 0.11 0.24 0.43 0.28 1.07
Little Barford 0.00 0.00 0.00 0.00 0.00
Rye House 0.06 0.11 0.17 0.09 0.43
Medway 0.18 0.61 1.23 0.34 2.36
Baglan Bay 0.05 0.22 0.42 0.33 1.02
Deeside 0.07 0.15 0.26 0.17 0.65
Great Yarmouth 0.23 0.28 0.91 0.44 1.86
Shoreham 0.01 -0.05 0.17 0.12 0.25
Enfield Energy 0.10 0.21 0.37 0.26 0.94
Corby 0.08 0.14 0.13 0.00 0.35
Cottam CCGT 0.18 0.32 0.79 0.63 1.92
Fellside 0.00 0.00 0.00 0.00 0.00
Fawley Cogen 0.00 -0.01 -0.02 -0.01 -0.04
Grangemouth -0.01 -0.01 -0.02 -0.02 -0.06
Coal plants

Longannet 0.00 0.00 0.00 0.00 0.00
Cottam -0.88 -2.15 -6.95 -3.47 -13.46
Ratcliffe -0.39 -0.82 -1.46 -0.95 -3.61
West Burton COAL -1.10 -2.47 -5.98 -3.33 -12.89
Fiddlers Ferry 0.00 0.00 0.00 0.00 0.00
Ferrybridge 0.00 0.00 0.00 0.00 0.00
Drax COAL -0.69 -1.64 -3.71 -2.22 -8.25
Eggborough -0.83 -1.77 -2.74 -0.59 -5.93
Aberthaw 0.00 0.00 0.00 0.00 0.00
Rugeley -0.18 -0.40 -0.71 -0.14 -1.43
Uskmouth -0.09 -0.01 -0.36 -0.26 -0.72

Notes: Values shown refer to estimated plant-level impacts Sgps, based on model specification M1 and
equation (14). As the CPS is adjusted in April of every year, all reported variables refer to the period
from April to March of the subsequent year. As data is available until December 2016, the 2016 period
comprises only nine months. The plants are ordered from high to low according to their installed capacity
(see Table 2).
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APPENDIX B: USING MACHINE LEARNING FOR PREDICTION MODELS

To predict counterfactual outcomes yg, we need an estimator f; of the function f; that produces reliable
predictions. We harness the power of ML methods which—in contrast to traditional econometric methods
focused on consistently estimating parameters of f—are optimized to predict the value of the outcome
variable (Mullainathan and Spiess, 2017).

Machine learning methods typically minimize estimates of the expected prediction error. We use the
mean squared error (MSE) as a measure of prediction quality whose expected value can be decomposed
as follows (see, for example, Hastie, Tibshirani and Friedman, 2008; Gareth et al., 2013):

~\2 ~ 2 ~ ~\2
(B1) BIMSE:| = Bl(yi ~ /) 1 = o2 + (BLA1 - £) +EI(ELA1- ) 1
A

= Bias?(f;) = Variance(f;)

The expected prediction error thus consists of three parts: an irreducible population error, which corre-
sponds to the variance of the random noise o2, and bias and variance terms which are both reducible.
Standard econometric techniques such as OLS aim at minimizing the bias while allowing for high vari-
ance. While these methods are thus capable of representing very well the sample data, they are prone to
over-fitting and they yield prediction outcomes that are highly dependent on the observed sample.

ML methods, in contrast, solve a bias-variance trade-off in order to find the best prediction model.
They address this trade-off by introducing hyper- or tuning parameters in the estimation function. These
parameters control for model complexity by decreasing the variance at the cost of a higher bias. The
selection of hyper-parameters a is achieved through a process called cross-validation (CV), which makes
optimal use of the available data. The CV process starts by splitting the observed sample into several
subsets. One of the subsets, called the training set, is then used to estimate the predictor for a given set
of hyper-parameters, fi", by minimizing the expected in-sample MSE:

(B2) o= arg_l)}ileigzt: [(yn - £ (xies Zt))]2

where ¥ denotes the set of all possible functions f;. The out-of-sample MSE is then computed on the
remaining data—called the test or hold-out set—which has not been used for the estimation. Repeating
this procedure for all subsets and averaging over all out-of-sample MSE yields an estimate of the expected
prediction error for a given set of hyper-parameters a.

The optimal set of hyper-parameters @* is the one that minimizes the expected prediction error which
is obtained from using a grid search over different candidate sets. Given a*, the final predictor fi"* is
obtained by solving the problem in equation (B2) on the full sample of data. Finally, the true value of
outcome in equation (1) can be written as the the sum of the predicted value and the prediction error
& (xit, hir, z¢):

(B3) Yit = fia* (xirs z¢e) + fi (Xies Birs 2t) —f;(” (Xit, 2¢) +€ir -

=:&(xighirzr)

APPENDIX C: MACHINE LEARNING (LASSO) ALGORITHM VERSUS OLS

This section compares the prediction performance of the LASSO algorithm versus a standard linear
OLS regression model. The comparison of both models is based on the same input variables (and data)
as specified in equation (11).

To assess model performance, we proceed in three steps. First, we split out data into eight different
pairs of train- and hold-out samples, i.e. each time we use all but one year to train the model and use
the remaining year as a hold-out set. Consequently, each of the years 2009 to 2016 is used once as a
hold-out set while the rest of the sample is used to train the model. Second, we use each train set
to build the models which predict hourly generation y;; on a set of input features x;; and z; for each
i € I, separately. In this step, we perform cross-validation to tune the regularization parameter @. The
final step compares different types of models with respect to their in-sample and out-of-sample prediction
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performance. We can assess for each plant the predictive performance by hold-out year and model type.
We use the coefficient of determination—defined as 1 - Y;(y; —$:)%/(2; (yi — ¥7)?)—as the score function to
evaluate model performance. A test score of 1.0 indicates that the model perfectly predicts the observed
data. Note that, in contrast to the commonly reported R?, the test score can be negative because the
model can be arbitrarily poor .

Coal

Gas

-3.0 -25 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
Test score

[ Linear Regression [ LASSO

FiGUre C1l. Comparison of the distribution of plant-specific performance scores by fuel type for LASSO
vs. OLS models.

Figure C1 compares the test scores of the LASSO and OLS algorithms assessing the prediction of
the hold-out set. It is evident that the LASSO outperforms the OLS model in terms of out-of-sample
prediction: both average mean scores for coal- and gas-fired plants are higher for LASSO and the respective
inter-quartiles ranges are significantly smaller under LASSO as compared to OLS. While from a conceptual
perspective the qualitative ranking of LASSO and OLS models in terms of out-of-sample performance are
not surprising, Figure C1 makes the important point that in the context of the suggested framework for
policy evaluation (and given the specific empirical context), the use of a ML method is advantageous.
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