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1 Introduction

A few years ago, in an interview, Thomas Piketty argued that "the main force
pushing toward reduction in inequality has always been the diffusion of knowl-
edge and the diffusion of education" (Saunders, 2014). This argument is difficult
to refute. Undoubtedly, the expansion of education is admirable and promotes
economic growth and human development.1 However, we must not indulge in
wishful thinking. Everything comes at a cost, and education is no exception. In
certain circumstances, human capital accumulation may result in unintended and
undesirable outcomes, such as an increase in wage inequality.

In this paper, we introduce a theoretical model of human capital accumulation,
shedding light on the influence of the ability distribution’s shape on the dynamics
of wage inequality. Our key finding highlights that intensifying the role of human
capital in economic development tends to increase wage inequality, a phenomenon
observable across a broad spectrum of ability distributions.

Over the past few decades, certain nations have witnessed a notable rise in
the relative number of skilled workers. During this period their corresponding
wages rose faster than those of unskilled workers. Maliar et al. (2022) construct a
projection for the skill premium for 2017–2037, and conclude that it will continue
to grow in the US economy. Although this pattern is not uniform across all regions,
it poses a conundrum that has garnered considerable attention from economists.

Wage differences are not confined solely to differences between educational
strata. In several cases, a significant proportion of the overall increase in wage
inequality has been attributed to the rise of residual inequality within education
groups. For example, Juhn et al. (1993) and Autor et al. (2008) document this
phenomenon in the United States, whereas Blundell and Etheridge (2010) and
Lindley and McIntosh (2015) provide evidence of the same in the United Kingdom.
Notably, graduate wage inequality has increased in several advanced economies, as
highlighted by Lemieux (2006), who reveals that within-group wage inequality has
grown most rapidly for graduates among all education levels in the United States.

Numerous explanations have been put forth to shed light on these interrelated
phenomena, with Chusseau et al. (2008), Lemieux (2008), Nolan et al. (2019), and
Hoffman et al. (2020) offering comprehensive reviews of the relevant literature.

1However, Wilson (2002) raises doubts regarding the value of education, stating that there
exist "very serious questions about the goodness (desirability, merits, value, worth) of education
that have not been faced squarely, let alone answered" (p. 327).
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While the existing theoretical literature on wage inequality has primarily con-
centrated on wage differentials between education groups, with less emphasis
on within-group wage inequality, several studies have examined both between-
group and within-group wage inequality, including Galor and Moav (2000), Aghion
(2002), Meckl and Zink (2004), Miyake et al. (2009), and Guvenen and Kuruscu
(2012). In this paper we contribute to the literature by focusing on the role of
the ability distribution. The approach adopted in our paper has some similarities
with the frameworks by Galor and Moav (2000) and Meckl and Zink (2004).

In the model by Galor and Moav (2000), the efficiency units of skilled and
unskilled labor are determined by the educational choices of individuals who differ
in their cognitive ability and, thus, in their education and human capital. It is
assumed that a rise in the rate of technological progress increases the rate of return
to skills and, as a result, induces an increase in the supply of educated individuals.
An increase in the return to ability and education leads to a monotonic rise in wage
inequality within and between groups as the economy moves toward a steady-state
equilibrium.

Meckl and Zink (2004) analyze the effect of human-capital investments of het-
erogeneous individuals on the dynamics of the wage structure within a neoclassi-
cal growth model. In their model, the accumulation of physical capital changes
relative factor prices and thus incentives to acquire skills, thereby altering the
composition of the labor force. They show that, during the transition process to
the steady state, the skill premium demonstrates a U-shaped pattern, inequality
among skilled workers rises and inequality among unskilled workers decreases.

In contrast to Galor and Moav (2000) and Meckl and Zink (2004), who assume
a uniform distribution of ability, we study how the shape of the ability distribution
impacts wage inequality. In our single-good model, the output is determined by a
production function with two factors of production: skilled labor, which represents
human capital, and unskilled labor. While individuals possess equal productivity
as unskilled workers, they differ in their ability to acquire skills. If an individual
opts for skill acquisition, her human capital depends on the amount of time devoted
to education and the aggregate level of human capital within the economy. The
latter factor implies that obtaining skills in an educated society is more feasible.
The decision to become a skilled worker is determined by whether her total income
as a skilled worker exceeds that of an unskilled worker, given her ability. At any
given time, there exists a unique threshold level of ability, such that individuals
with an ability level above this threshold opt to become skilled workers, while those
below it choose to become unskilled workers. Intergenerational human capital
externalities incentivize individuals to invest in skills, consequently reshaping the
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composition of the labor force by expanding the proportion of skilled workers from
the lower end of the ability distribution, leading to changes in wage inequality.

In our analysis, we first demonstrate that if the elasticity of substitution be-
tween human capital and unskilled labor exceeds one, which appears empirically
plausible, the fraction of skilled workers in the population rises and monotoni-
cally converges to a steady state. We then examine whether a rise in this fraction
on a transition path leads to an increase in wage inequality. The answer to this
question depends on the direction of the impact of the composition effect, which
is contingent on the distribution of ability. We derive simple formulas for the
skill premium and the Gini coefficient of wage inequality among skilled workers
and then obtain the following two results: 1) if the skill premium increases with
the fraction of skilled workers, then the wage inequality among skilled workers
also increases; 2) while for the Pareto distribution of the ability distribution nei-
ther the skill premium nor the wage inequality among skilled workers depends on
the fraction of skilled workers, for several other common distributions (uniform,
log-normal, exponential, truncated normal, and logit-normal) the impact of the
composition effect is such that both the skill premium and the wage inequality
among skilled workers increase with the fraction of skilled workers. We also pro-
vide examples of ability distributions where the dependence of the skill premium
and/or the wage inequality among skilled workers on the fraction of skilled work-
ers is not monotonic. Based on our theoretical framework, we extend our analysis
to include empirical evidence. Utilizing the results of the Trends in International
Mathematics and Science Study (TIMSS) as a proxy for the ability distribution in
England and the United States, we find that the composition effect contributes to
an increase in wage inequality.

The remainder of this paper is organized as follows. Section 2 introduces the
basic model with heterogeneous agents. In Section 3, we analyze the dynamics of
the model. Section 4 describes the development of wage inequality in the basic
model. Section 5 reports the results of our empirical analysis. Section 6 concludes.

2 The setting

2.1 Agents

There is a continuum (0, 1] of agents. Each agent is endowed with one unit of
raw labor, however they are heterogeneous in terms of learning ability. At each
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time, the distribution of abilities is exogenous. By Ψ(·) we denote the cumulative
distribution function (CDF) of abilities within each generation. The function Ψ(x)
represents the cumulative mass of agents whose learning ability is less than or equal
to x. We assume that Ψ(·) is continuously differentiable on (Tmin, Tmax), where

Tmin = sup{x|Ψ(x) = 0}, Tmax =




inf{x|Ψ(x) = 1}, {x|Ψ(x) = 1} ≠ ∅;
+∞, {x|Ψ(x) = 1} = ∅.

In other words, the probability density function (PDF), denoted by ψ(·), is con-
tinuous and strictly positive on (Tmin, Tmax). In the case where Tmax = +∞, we
also assume that the distribution Ψ(·) has a finite mean.

Agents are sorted in descending order of their abilities. The ability of agent
j ∈ (0, 1] is denoted by T (j). It is clear that T (·) is the upper quantile function of
the CDF Ψ(·):

T (j) = Ψ−1(1 − j), j ∈ (0, 1],
where Ψ−1(·) is the inverse function of Ψ(·). The function T (·) contains all infor-
mation about the distribution of abilities.2 Its graph can be obtained from the
graph of Ψ(·) by flipping the axes (see Figure 1). The function H : (0, 1] → R+ is
defined by

H(s) =
s∫

0

T (j)dj

will be used further in the model. H(s) can be interpreted as the cumulative ability
of the top s-th quantile. The function H(·) is continuous, strictly increasing, and
concave on (0, 1]. Evidently, H(0) = 0.

Each agent makes a choice between being skilled or unskilled. If an individual
decides to be unskilled, she supplies one unit of raw labor in the labor market.
If an individual j living in period t decides to be skilled, she spends et(j) of her
time acquiring advanced education, while the remaining time, 1−et(j), is spent on
work. Her individual human capital ζt(j) depends on the total amount of effective
human capital in the economy in the previous period, her ability, and time spent
on education:

ζt(j) = χ(Ht−1)T (j)ϕ(et(j)),
where χ : R+ → R+ and ϕ : [0, 1] → R+ are increasing, continuous, strictly concave
and bounded functions such that χ(0) > 0, χ(H)/H −−−→

H→∞
0 and ϕ(0) = 0. The

function χ(·) captures the idea that people living in an educated society find it

2The expression T (1 − j) is sometimes called Pen’s parade.

4



1

0
x

+

b

1 − j

T (j)Tmin

b

10

x

b

j

T (j)

Tmin b

Figure 1: Graph of a CDF Ψ(·) and the corresponding upper quantile function
T (·).

easier to acquire skills. The effective amount of human capital that individual j
supplies in the labor market is

ht(j) = (1 − et(j))ζt(j).

When agent j decides to be educated, she maximizes the effective amount of her
human capital by solving the following problem:

max
e∈[0,1]

χ(Ht−1)T (j)ϕ(et(j))(1 − et(j)).

Since ϕ(·) is a concave function, this problem has a unique solution, ê =
arg max
e∈[0,1]

ϕ(e)(1 − e). Without loss of generality, we assume that ϕ(ê)(1 − ê) = 1.

Therefore, the effective amount of human capital of agent j is:

ht(j) = χ(Ht−1)T (j).

To decide whether to be skilled or unskilled, an individual compares the wages
she earns in the two cases. If being skilled gives her a higher wage income than
being unskilled, she decides to become skilled. If the wage of an unskilled worker
is higher than the wage she would make as a skilled worker, she decides to be
unskilled. Formally, let wHt be the prevailing skilled workers’ wage per unit of
human capital at time t and wLt be the prevailing wage for unskilled workers.
Individual j decides to be educated if wHt ht(j) > wLt . If wHt ht(j) < wLt , then
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she decides not to be educated and supplies one unit of unskilled labor in the
labor market. If wHt ht(j) = wLt , she is indifferent between being educated and
uneducated. Thus, the income of agent j living in period t is equal to the maximum
between wHt ht(j) and wLt .

If agent s ∈ (0, 1) is indifferent between being educated and uneducated, then
all agents more capable than s decide to be educated, and the total supply of
human capital is Ht = χ(Ht−1)H(s), and all agents less capable than s decide to
be uneducated, and the total supply of unskilled labor is Lt = 1 − s.

2.2 Production

The economy produces a single consumption good. The output Yt at time t is
determined by the CES production function:

Yt = F (Ht, Lt),

where Ht and Lt are the inputs of effective human capital and unskilled labor at
time t and

F (H,L) =





(
αL

σ−1
σ + (1 − α)H σ−1

σ

) σ
σ−1

, σ > 0, σ ̸= 1,

LαH1−α, σ = 1,
(1)

where σ is the elasticity of substitution between the skilled and unskilled workers.
We refer to skilled and unskilled workers as gross substitutes when the elasticity of
substitution σ > 1 and gross complements when σ < 1. In what follows, without
any loss of generality, we assume that α = 1

2 .

Markets for production inputs are perfectly competitive. Given the wage rates
of skilled and unskilled labor at time t, wHt and wLt respectively, the representative
producer chooses the level of employment of skilled labor, Ht, and unskilled labor,
Lt, so as to maximize its profit:

(Ht, Lt) = arg max
(H,L)∈R2

+

[F (H,L) − (wHt H + wLt L)].

Therefore, in equilibrium,

ξ(ηt) = wLt
wHt

, (2)
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where ηt = Ht/Lt is the human capital to unskilled labor ratio and ξ(η) is the ratio
of the marginal productivities of unskilled labor and human capital as depending
on η = H/L:

ξ(η) := FL(H,L)
FH(H,L)

∣∣∣∣∣
H/L=η

= η
1
σ .

Note that 1/ξ(η) = FH(H,L)
FL(H,L)

∣∣∣
H/L=η

is the ratio of the marginal productivities of
human capital and unskilled labor, which has a natural interpretation as the inverse
relative demand for human capital.

3 Equilibrium dynamics

In equilibrium, the producer’s profit is maximized (and equal to zero because of
constant returns to scale), human capital and unskilled labor are optimally sup-
plied, and the markets for skilled labor and unskilled labor are cleared. Formally,
given the time t − 1 total stock of human capital, Ht−1 ≥ 0, a time-t equilibrium
is defined by the following conditions:

a) ξ(Ht/Lt) = wLt /w
H
t ;

b) wLt = wHt ht(st) with ht(st) = χ(Ht−1)T (st);

c) Ht = χ(Ht−1)H(st), Lt = 1 − st.

Here st is the fraction of agents who decide to be educated at time t, and also,
st is the pivotal agent that is indifferent between being educated and uneducated.
Conditions (a) to (c) have standard interpretations. Condition (a) is the profit
maximization condition. Condition (b) states that no agent wishes to change her
decision about whether to be educated or not. Condition (c) describes the labor
market equilibrium.

Therefore, in equilibrium, the fractions of both skilled and unskilled individuals
in the population are positive. Situations in which all agents are skilled, or all
agents are unskilled are not feasible. Indeed, if all agents decided to be unskilled,
then the wage paid to skilled workers would be so high compared to the wage of
unskilled workers that all unskilled agents would have incentives to become skilled.
Conversely, if all agents decided to be skilled, then the wage rate of unskilled
workers would be so high that each skilled agent would prefer to be unskilled.

It is easy to note that for a given Ht−1, the time-t equilibrium is optimal in the
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sense that in equilibrium, (Ht, Lt) is the solution to the following maximization
problem:

maxF (H,L) s.t. H ≤ χ(Ht−1)H(1 − L), 0 ≤ L ≤ 1.
Therefore, the equilibrium output at time t is increasing in the stock of human
capital at time t− 1, Ht−1.

It follows from (2) and equilibrium conditions that

st = s̃(Ht−1),

where s̃(H) : R+ → (0, 1] is the function defined for H ≥ 0 as the solution to the
following equation in s:

ξ
(
χ(H)H(s)

1 − s

)
= χ(H)T (s). (3)

Note that for any H ≥ 0,

lim
η→0

ξ(η) = 0 < χ(H)Tmax, lim
η→∞ ξ(η) = ∞ > χ(H)Tmin,

and
lim
s→0

χ(H)H(s)
1 − s

= 0, lim
s→0

χ(H)T (s) = χ(H)Tmax,

lim
s→1

χ(H)H(s)
1 − s

= +∞, lim
s→1

χ(H)T (s) = χ(H)Tmin.

Hence, the LHS of Equation (3) is increasing in s, while its RHS is decreasing in
s. Therefore, for any H ≥ 0, the solution of Equation (3) exists and is unique.
Graphs of both sides of Equation (3) as well as the fraction of skilled agents, st,
effective human capital of marginal agent, ht, and the total stocks of labor, Lt,
and human capital, Ht, at the time-t equilibrium are illustrated in Figure 2.

Equation (3) can be rewritten as

[H(s)]1/σ
(1 − s)1/σT (s) = [χ(H)]1−1/σ.

The LHS of this equation increases in s, while the RHS increases in H if σ > 1
and decreases in H if σ < 1. Therefore,

• if σ > 1, then s̃(H) is monotonically increasing in H;

• if σ = 1, then s̃(H) is constant in H;
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Figure 2: The time-t equilibrium.

• if σ < 1, then s̃(H) is monotonically decreasing in H.

We now describe the equilibrium dynamics of our model. The dynamics of the
total stock of human capital are given by:

Ht = χ(Ht−1)H(st) = χ(Ht−1)H(s̃(Ht−1)). (4)

and the steady-state equilibrium levels of human capital are determined as solu-
tions to the following equation:

H = χ(H)H(s̃(H)), (5)

which has at least one solution because 0 < χ(0)H(s̃(0)) and H > χ(H)H(s̃(H))
for sufficiently large H. The qualitative picture of the equilibrium dynamics in our
model is as follows.

If σ > 1, then the expression χ(H)H(s̃(H)) is increasing in H, and the stock
of human capital (the sequence (Ht)∞

t=0 given by (4)) is either monotonically non-
decreasing or non-increasing over time and hence converges to a steady-state equi-
librium level. It is important to note that the stock of human capital, Ht, increases
over time (or decreases over time) together with the fraction of skilled agents, st.3

3It should be noted that multiple steady-state equilibria may exist in this case.
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In the case where σ = 1, st and hence H(st) are constant over time, while the
stock of human capital either monotonically increases or monotonically decreases
over time because χ(H) is increasing in H.

If σ is slightly smaller than 1, the stock of human capital either monotonically in-
creases or monotonically decreases over time because the expression χ(H)H(s̃(H))
is still increasing in H while the fraction of skilled agents moves in the opposite
direction. If σ is even smaller, the behavior of the human capital stock is not
monotonic in time; moreover, in this case, the capital stock and the fraction of
skilled agents change in opposite directions each time.

Among the above cases, the case where σ > 1 seems to be the most empirically
relevant.4

4 Income inequality

Let us now examine the case in which the fraction of skilled agents in the popula-
tion goes up with an accumulation of human capital and investigate the dynamics
of income inequality.

The inequality between skilled and unskilled workers is measured by the skill
premium defined as

W̄H − W̄L

W̄L
,

where W̄L is the mean wage of unskilled workers and W̄H is the mean wage of
skilled workers.

Let st be the time-t equilibrium fraction of skilled workers in the population.
Then the mean wage of skilled workers is equal to W̄H

t = χ(Ht−1)H(st)
st

wHt , and the
mean wage of unskilled workers is equal to W̄L

t = wLt . Since wLt = χ(Ht−1)T (st)wHt
and H′(j) = T (j), we obtain that the skill premium in the time-t equilibrium is
equal to S(st), where

S(s) := 1
ϵH(s) − 1,

with ϵH(s) := T (s)
H(s)/s being the elasticity of H(s).

4Bils et al. (2022) show that growth accounting points to a long-run elasticity of substitution
across schooling groups of 4, or above.
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It follows that when the stock of human capital increases and the fraction of
skilled workers in the population goes up, then the skill premium either increases
or decreases depending on whether the elasticity of H(s), ϵH(s), is increasing or
decreasing in s:

• if ϵH(s) is increasing in s, then the skill premium S(s) decreases as the
fraction of skilled workers in the population goes up;

• if ϵH(s) is constant in s, then the skill premium S(s) does not change as the
fraction of skilled workers in the population goes up;

• if ϵH(s) is decreasing in s, then the skill premium S(s) increases as the
fraction of skilled workers in the population goes up.

As noted above, wage inequality literature has typically focused on wage differ-
entials between educational groups, however, wages also vary within educational
categories. In our model, the wages of unskilled workers are the same, but the
wages of skilled workers vary.

What are the dynamics of wage inequality among skilled workers in the process
of human capital accumulation? To answer this question we use the Gini coefficient
to measure the wage inequality among skilled workers, which is equal to the Gini
coefficient of ability inequality among skilled workers. We denote it by G(s).

To calculate G(s′) for a given s′ > 0, we refer to Figure 3, where it is represented
as the ratio of the enclosed area between the graph of H(s) and the straight line
segment OB to the total area of the triangle OAB (the left graph of Figure 3).
Indeed, if we flip and rescale this figure, the graph of H(s) on the interval [0, s′]
will become the Lorenz curve, and the straight line segment OB will become the
line of perfect equality (right graph of Figure 3). Thus, it follows that

G(s′) = Γ(s′) − H(s′)s′/2
H(s′)s′/2 ,

where

Γ(s) :=
s∫

0

H(j)dj.

It follows that
G(s) = 2

ϵΓ(s) − 1,

where ϵΓ(s) := H(s)
Γ(s)/s is the elasticity of Γ(s).
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Figure 3: The graph of H(s) and the Lorenz curve for skilled workers.

We can see that when the stock of human capital increases and the fraction of
skilled workers in the population goes up, then the Gini coefficient of wage inequal-
ity among skilled workers either increases or decreases, depending on whether the
elasticity of Γ(s), ϵΓ(s), is increasing or decreasing in s:

• if ϵΓ(s) is increasing in s, then the Gini coefficient G(s) decreases as the
fraction of skilled workers in the population goes up;

• if ϵΓ(s) is constant in s, then the Gini coefficient G(s) does not change as
the fraction of skilled workers in the population goes up;

• if ϵΓ(s) is decreasing in s, then the Gini coefficient G(s) increases as the
fraction of skilled workers in the population goes up.

In our model, if the skill premium increases with the fraction of skilled workers in
the population, then the Gini coefficient of wage inequality among skilled workers
also increases. More precisely, we formulate the following proposition.

Proposition 1. If, for some 0 < k < 1, S ′(s) > 0 on the interval (0, k), then
G′(s) > 0 on this interval.

Proof. Taking into account that ϵH(s) ≤ 1 for any s > 0, the proposition follows
directly from the following lemma, which implies that if ϵ′

H(s) < 0 on any interval
(0, k) with k ≤ 1, then both S(s) and G(s) are increasing in s on this interval.
Lemma 1. Let the function d : (0, k) → R+ be continuously differentiable and

D(x) =
∫ x

0
d(t)dt.
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Let further ϵd(x) := d′(x)
d(x)/x and ϵD(x) := d(x)

D(x)/x be the elasticities of d(x) and D(x)
respectively.

If ϵd(x) is bounded above and ϵ′
d(x) < 0 on (0, k) ⊂ [0, 1], then ϵ′

D(x) < 0 on
(0, k).

The proof of the lemma is found in Appendix A.

For some of the most common distributions of abilities we can characterize the
skill premium and the Gini coefficient of wage inequality among skilled workers:

1. Pareto distribution: Ψ(x) = 1 − ( b
x
)a, a > 1, x ≥ b > 0. In this case,

ϵH(s) = a−1
a

, S(s) = 1
a−1 , G(s) = 1

2a−1 , S ′(s) = 0, G′(s) = 0.

2. Uniform distribution: Ψ(x) = x−a
b−a , x ∈ [a, b]. In this case, ϵH(s) = 2 b−s(b−a)

2b−s(b−a) ,
S(s) = 1

2
(b−a)s
b−s(b−a) , G(s) = 1

3
(b−a)s

2b−s(b−a) , S
′(s) > 0, G′(s) > 0.

3. Exponential distribution: Ψ(x) = 1 − e−λx, λ > 0, x ≥ 0; ϵH(s) = ln s
ln s−1 ;

S(s) = −1/ ln s; G(s) = 1
2

1
1−ln s , S

′(s) > 0, G′(s) > 0

4. Log-normal distribution: Ψ(x) = Φ
(

lnx−µ
σ

)
, σ > 0, x > 0, where Φ(·) is

the cumulative distribution function of the standard normal distribution. In
this case, we have no explicit formula for the skill premium and the Gini
coefficient of wage inequality among skilled workers; however, we prove in
Appendix B that S ′(s) > 0 and G′(s) > 0.

5. Truncated normal distribution. The truncated normal distribution is the
probability distribution derived from that of a normally distributed random
variable by bounding the random variable from below (by some a ≥ −∞)
and above (by some b ≤ +∞ such that b > a). Let µ ∈ R, σ2 > 0, and the
function y(·) be given by y(x) = x−µ

σ
. Let, finally, α = y(a), β = y(b).

The cumulative distribution function of the truncated normal distribution
(with parameters µ, σ, a, b), Ψ(·) is given by

Ψ(x) = Φ(y(x)) − Φ(α)
Φ(β) − Φ(α) .

As in the case of a log-normal distribution, we have no explicit formula for
the skill premium and the Gini coefficient of wage inequality among skilled
workers. However, we prove in Appendix B that S ′(s) > 0 and G′(s) > 0.
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6. Logit-normal distribution5: Ψ(x) = Φ
(
l(x)−µ
σ

)
, σ > 0, x ∈ (0, 1), where

l(x) = ln( x
1−x) is the logit function. Analogous to the cases of log-normal

and truncated normal distributions, we develop an implicit argument to show
that S ′(s) > 0 and G′(s) > 0 (see Appendix B).

Thus we can formulate the following proposition.

Proposition 2. 1) If the distribution of abilities is Pareto, then both the skill
premium and the Gini coefficient of wage inequality among skilled workers do not
change as the fraction of skilled agents in the population increases. 2) If the distri-
bution of abilities is uniform, exponential, log-normal, logit-normal, or truncated
normal, then the skill premium and the Gini coefficient of wage inequality among
skilled workers increase as the fraction of skilled agents in the population goes up.

Our model also indicates that other measures of inequality, such as percentile
ratios (P90/P50 or P90/P10), are non-decreasing. Specifically, these measures
increase if the fraction of skilled agents rises between the two percentiles, and
remain constant otherwise.

As shown in Appendix C, the assertion that within-group and/or between-group
inequality invariably rises as the number of skilled agents increases is not univer-
sally valid. We construct several examples, showing that a high concentration of
agents with similar abilities may lead to various types of dependence of inequality
on the fraction of skilled agents6. While such distributions may be single-peaked,
they are significantly different from, e.g., Gaussian distributions.

In the next section, we estimate the functions T (·) and S(·) using empirical
distributions of students’ assessment scores for several developed countries. Note
that such scores can only be used as noisy proxies for ability. There is no way to
look directly at a particular outcome of ability; therefore, we have to deal with
some kind of approximation.

5Arthurs et al. (2019) argue that logit-normal is the best choice among low-dimensional
distributions for modeling exam scores.

6These findings stand in contrast to the conclusions drawn by Meckl and Zink (2004). In
their framework, the inequality within the skilled group exhibits an increasing trend, irrespective
of the underlying distribution of abilities.
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5 Some empirics

Empirical literature emphasizes the increasing role of cognitive skills in pro-
moting economic well-being and wage determination. Hanushek and Woessmann
(2008) conclude that there is strong evidence that the cognitive skills of the pop-
ulation, rather than mere school attainment, are powerfully related to individual
earnings, the distribution of income, and economic growth. They show that coun-
tries with the largest variation in the level of ability in basic skills also have the
highest degree of income inequality. On average, a one-standard-deviation increase
in numeracy skills (measured by a PIAAC survey of adult skills over the full lifecy-
cle in 23 countries) is associated with an 18 percent wage increase among prime-age
workers (Hanushek et al., 2015). Ozawa et al. (2022) perform a meta-analysis of
returns to wages from cognitive ability in developing countries, suggesting that
a standard deviation increase in cognitive test scores was associated with a 4.5
percent increase in wages.

The data used in our study were obtained from the 2019 Wave of Trends in
International Mathematics and Science Study (TIMSS). TIMSS is a series of inter-
national assessments of students’ mathematics and science knowledge worldwide.
TIMSS 2019 is the most recent in the TIMSS trend series, which began with the
first assessments in 1995 and continued every four years. TIMSS assesses students
in participating countries in their fourth year of formal schooling, provided the
mean age at the time of testing is at least 9.5 years, and in their eighth year
of formal schooling, provided the mean age at the time of testing is 13.5 years.
The participating students come from diverse educational systems (countries or
regional jurisdictions of countries) in terms of economic development, geographi-
cal location, and population size. The basic TIMSS sample design consists of at
least 150 schools and one or more intact classes per grade for a student sample of
approximately 4,000 students in each country. The data for each student comprise
the resulting TIMSS-test score, an integer value distributed between 300 and 800.
We focus on the results in mathematics of fourth grade in two advanced countries:
England and the US.

Visual inspection of the data shows that the score distribution for these countries
is close to bell-shaped (see histograms in Figure 4). Formal tests indicate that for
each country the TIMSS score deviates7 from a normal, truncated normal, log-

7We used variants of Shapiro-Wilk, Anderson-Darling, Kolmogorov-Smirnov, and Jarque-
Bera tests. It turned out that with a sample size of more than 4, 000 in each country, the power
of each specific test and the type of alternative hypothesis do not matter: any test rejects the
null hypothesis.
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normal, or logit-normal8 distribution. Thus we evaluate the sample analog of
the skill premium function S(s), denoted as Ŝ(s). To do this, we estimate the
empirical density using the kernel density estimation (KDE) method9. The red
curves in Figure 4 represent kernel density estimation of cognitive test results with
Silverman’s rule-of-thumb bandwidth selection.

Figure 4: Score histograms and estimated densities for England and the US.

Furthermore, using estimated density, we evaluate the model implied skill pre-
mium function Ŝ(s) and explore them graphically. Figure 5a presents the esti-
mated upper quantile function, denoted by T̂ (s), and Figure 5b illustrates the
model implied skill premium function Ŝ(s) for the selected countries. The results
demonstrate that for both countries the function Ŝ(s) is increasing. Hence, it is
derived from Lemma 1 and formulas that define functions S(s) and G(s) that, with
the empirical score distribution as a proxy for the ability distribution, it holds that
S ′(s) > 0 and G′(s) > 0.

These distributions are typical for different cognitive ability tests in other de-
veloped countries as well (we use data from the PIAAC survey of adult skills
to further support our findings). Additionaly, we incorporated data from vari-
ous years to examine the temporal dynamics of the distribution. Our analysis
revealed slight variations in distributions over time. Specifically, Figures 6a and
6b present the distribution curves of the TIMSS assessment results for England
and the US, respectively, spanning the period from 2003 to 2019.10 Importantly,

8In the case of a logit-normal distribution, the data were initially renormalized to the (0, 1)
interval.

9We used KDE realization with the Gaussian kernel function. KDE is known to be sensitive
to the choice of bandwidth, whereas it is not really affected by the choice of kernel function.
We use Silverman’s rule of thumb for bandwidth selection, which is often used in practice. The
results are robust to kernel functions and a moderate bandwidth selection.

10In order to ensure comparability of TIMSS scores across different years within each subject,
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(a) graph of T̂ (s) (b) graph of Ŝ(s)

Figure 5: Estimated functions T̂ (s) and Ŝ(s).

the observed lack of substantial variation aligns with our assumption of an exoge-
nous and time-constant distribution of abilities. Therefore, our empirical analysis
provides evidence that the composition effect can serve as a driving force that
contributes to an increase in wage inequality.

(a) England (b) the US

Figure 6: Estimated functions T̂ (s) for the period from 2003 to 2019.

subsequent editions of the survey retain a sufficient number of items from previous waves, and
the grading scale remains consistent, not being renormalized to a mean of 500 each year.
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6 Conclusion

Bourguignon et al. (2005) coined the term "paradox of progress" to describe
the unequalizing effect of expanding education. Their analysis of the impact of
educational expansion on economic development in various developing countries
found that while additional years of schooling had a generally positive impact on
mean household incomes, it more often than not increased inequality measures.
The "paradox of progress" has garnered considerable attention and discussion,
particularly among scholars of Latin American economies. Despite the decrease
in wage inequality in Latin America during the 2000s, a number of studies have
found that the direct impact of educational expansion in the 1990s and 2000s on
earnings inequality was actually unequalizing (see, for example, Battistón et al.,
2014).

In what way can the "paradox of progress" be explained? According to Bour-
guignon et al. (2005), this paradox can be attributed to the convexity of the
earnings functions with respect to education, which results in the same propor-
tional increases in education leading to higher proportional increases in income for
the more educated. They also highlight that their findings are not at odds with
Tinbergen’s (1975) view that increasing schooling levels would reduce inequality
by decreasing the equilibrium rates of return to education in response to higher
supply. They argue that their analysis captures only a partial effect of educational
expansion while holding skill prices constant.

In some circumstances our framework suggests that the unequalizing earnings
effect of expanding education can be considered as a general equilibrium phe-
nomenon. Similar to Galor and Moav (2000), Meckl and Zink (2004), and Miyake
et al. (2009), our theoretical model and empirical findings demonstrate that de-
spite accounting for the downward pressure on skill prices resulting from a rise in
supply relative to the demand for skills, the expansion of education may ultimately
lead to rising wage inequality via the composition effect.

Other empirical observations regarding the impact of higher education expansion
on wage inequality also provide tentative support for our conclusions. Carneiro
and Lee (2011) present evidence suggesting that increases in college enrollment
in the United States between 1960 and 2000 resulted in a decline in the average
quality of college graduates. The primary result of Hendricks and Schoellman
(2014) indicates that a widening skill disparity between high school and college-
educated labor is responsible for the increase in the college wage premium from
1910 to 1960 birth cohorts in the US. Lindley and McIntosh (2015) focus on the UK
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and show that most of the growth in graduate wage inequality has occurred within
subjects and that this growth is due to the acceptance of students from lower in
the ability distribution. The case of Taiwan also illustrates that expanding access
to college without maintaining its quality may result in an increase rather than a
decrease in wage inequality within the economy (Keng et al. 2017).
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Appendix A. Proof of Lemma 1

We first prove that
ϵ′
D(x) < 0 ⇔ ϵd(x) < ϵD(x) − 1, x > 0. (A.1)

We have

ϵ′
D(x) =

(
d′(x)x+ d(x)

)
D(x) − xd2(x)

D2(x) = xd′(x)
d(x)

d(x)
D(x) + d(x)

D(x) − x
d(x)
D(x)

d(x)
D(x) .

Multiplying both sides of the latter identity by x, we obtain
xϵ′

D(x) = ϵD(x) − ϵD(x)2 + ϵD(x)ϵd(x), x > 0. (A.2)
This equality proves (A.1).

Using L’Hopital’s rule, we get

lim
x→+0

ϵD(x) = lim
x→+0

d(x)x
D(x) = lim

x→+0

d′(x)x+ d(x)
d(x) = lim

x→+0
ϵd(x) + 1.
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Therefore,
lim
x→+0

ϵD(x) = lim
x→+0

ϵd(x) + 1. (A.3)

With this we can extend the functions ϵd(·) and ϵD(·) to the whole interval [0, k)
by putting ϵD(0) = ϵd(0) + 1.

Now suppose that while ϵ′
d(x) < 0 on [0, k), ϵ′

D(x̂) ≥ 0 for some x̂ ∈ [0, k).

By (A.1), 1 + ϵd(x̂) − ϵD(x̂) ≥ 0. Since 1 + ϵd(0) − ϵD(0) = 0, there is x̃ ∈ (0, x̂)
such that ϵ′

d(x̃) − ϵ′
D(x̃) ≥ 0. Since, by assumption, ϵ′

d(x̃) < 0, we have ϵ′
D(x̃) < 0

and, taking account of (A.1), 1 + ϵd(x̃) − ϵD(x̃) < 0. By continuity, there exists
δ > 0 such that 1 + ϵd(x) − ϵD(x) < 0 for any x ∈ [x̃, x̃+ δ].

Now let
x̄ = inf{x ∈ [x̃+ δ, k)|1 + ϵd(x) − ϵD(x) ≥ 0}.

Clearly, 1 + ϵd(x̄) − ϵD(x̄) = 0 and hence ϵ′
D(x̄) = 0. Since ϵ′

d(x̄) < 0, we have
(1+ϵd(x̄)−ϵD(x̄))′ < 0. It follows that there exists x̌ ∈ (x̃, x̄) such that 1+ϵd(x̌)−
ϵD(x̌) ≥ 0, which is a contradiction. This contradiction proves the lemma.

Appendix B. Proof of Proposition 2.

Log-normal distribution

We want to prove that S ′(s) > 0 and G′(s) > 0 in the case of a log-normal
distribution. Since ϵT (j) ≤ 0, j ∈ (0, 1), by Lemma 1, it is sufficient to show that
ϵ′
T (j) < 0, j ∈ (0, 1).

First, we prove the following lemma.

Lemma 2. Let Φ(·) be the cumulative distribution and φ(·) be the probability
density function of the standard normal distribution. Then

(1 − Φ(y))y < φ(y) ∀y. (B.1)

Proof. Clearly, this inequality holds true for y ≤ 0. In the case where y > 0, we

22



have:

1 − Φ(y) < 1 − Φ(y) + 1√
2π

∫ +∞

y
t−2 exp (−t2/2)dt

= 1 − Φ(y) + 1√
2π

(
−1
t

exp (−t2/2)
∣∣∣∣
∞

y
−
∫ +∞

y
exp (−t2/2)dt

)
= φ(y)

y
,

and, therefore, (B.1) also holds true for all y.

Recall that the cumulative density function of a log-normal distribution is given
by

Ψ(x) = Φ
(

ln x− µ

σ

)
, x > 0,

with σ > 0, and the probability density function is given by

ψ(x) = 1
σx
φ

(
ln x− µ

σ

)
= 1
xσ

√
2π

exp
(

−(ln x− µ)2

2σ2

)
.

It is easy to show that the elasticity ϵT (j) of T (j) is given by

ϵT (j) = −r(x)|x=T (j), (B.2)

where the function r(·) is defined by

r(x) = 1 − Ψ(x)
ψ(x)x , x > 0.

We have T ′(j) < 0, j ∈ (0, 1). Therefore, to prove that ϵ′
T (j) < 0, j ∈ (0, 1), it is

sufficient to verify that
r′(x) < 0, x > 0. (B.3)

It is easy to note that

r(x) = σ

(
1 − Φ( lnx−µ

σ
)

φ( lnx−µ
σ

)

)
. (B.4)

Also it is not difficult to check that

r′(x) = −1
x

−
(
ψ′(x)
ψ(x) + 1

x

)
r(x)

23



and that
ψ′(x)
ψ(x) + 1

x
= − 1

σ2x
(ln x− µ).

Therefore, we obtain

r′(x) = −1
x

+ 1
σ2x

(ln x− µ)r(x) = 1
x

(
−1 + ln x− µ

σ2 r(x)
)
.

Taking into account (B.4), to prove (B.3), we should note that

ln x− µ

σ2 r(x) < 1 ∀x > 0,

which follows from Lemma 2.

Truncated normal distribution.

As in the case of the log-normal distribution, to prove that S ′(s) > 0 and
G′(s) > 0, it is sufficient to verify that the function r(x) = 1−Ψ(x)

xψ(x) is strictly
decreasing.

To do this, note that the probability density function of the truncated normal
distribution (with parameters µ, σ, a, b), ψ(·) is given by

ψ(x) = φ(y(x))
σ(Φ(β) − Φ(α)) ,

where y(x) = x−µ
σ

, and hence r(x) = q(y(x)) with q(y) being defined by

q(y) = σ
Φ(β) − Φ(y)
(σy + µ)φ(y) .

Let us now prove that
q′(y) < 0. (B.5)

We have

q′(y) = σ
−φ2(y)(σy + µ) − (Φ(β) − Φ(y))((σy + µ)φ′(y) + σφ(y))

((σy + µ)φ(y))2 .

Therefore, to show that (B.5) is satisfied, it is sufficient to demonstrate that:

(σy + µ)φ(y)

σ
(

Φ(β) − Φ(y)
) > −1 − (σy + µ)φ′(y)

σφ(y) . (B.6)
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By Lemma 2, we have (1 − Φ(y))y < φ(y), y ∈ R, resulting

φ(y)
1 − Φ(y) > y.

Thus,
(σy + µ)φ(y)
σ(Φ(β) − Φ(y)) >

(σy + µ)φ(y)
σ(1 − Φ(y)) > y2 + µ

σ
y.

It is straightforward to verify that −φ′(y)
φ(y) = y and hence − (σy+µ)φ′(y)

σφ(y) = y2 + µ
σ
y,

which implies (B.6). This proves (B.5). It follows that the function r(x) = 1−Ψ(x)
xψ(x)

is strictly decreasing.

Logit-normal distribution.

The probability density function ψ(·) of the logit-normal distribution with pa-
rameters µ and σ is given by:

ψ(x) = φ(y(l(x)))
σx(1 − x) , x ∈ (0, 1),

where y(x) = x−µ
σ

is the normalization transformation, and l(x) = ln( x
1−x) denotes

the logit-function. Again to prove that S ′(s) > 0 and G′(s) > 0, we show that the
function r(x) = 1−Ψ(x)

xψ(x) is strictly decreasing. It is straightforward to show that

r′(x) = r(x)
1 − x

(
y

σx
− 1

)
− 1
x
.

Here y stands for y(l(x)). If y > 0 then by Lemma 2 we have r(x)
1−x ≡ σ 1−Φ(y)

φ(y) < σ
y
.

Thus we can estimate that:

r′(x) <




− r(x)
1−x − 1

x
, if y ≤ 0,

− r(x)
1−x , if y > 0.

The latter implies r′(x) < 0.
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Appendix C. Examples of non-increasing depen-
dence of inequality on the fraction of skilled work-
ers.

The goal of this section is to explore the boundaries of applicability of Proposi-
tion 2. We present two examples of distributions where the concentration of the
mass of talented agents brings curious effects. The first example shows that there
exist distributions such that there are intervals where

1. both functions S(·) and G(·) decrease,

2. S(·) is decreasing while G(·) is increasing,

3. G(·) is decreasing while S(·) is increasing.

Example 1. First, we construct a distribution with finite support. It is
convenient to relax the assumption that distribution is continuous. We define the
distribution as a fair mixture of the uniform distribution on [1, 3] and an atom at
x0 = 2. Therefore, the upper quantile function T (·) is flat in some neighborhood of
1/2 (see Figure C.1a). The elasticities εH and εΓ can be then calculated directly.
We do not include calculations here because they are straightforward, but rather
depict the resulting graphs in Figure C.1b, which can be analyzed visually. The
intervals of interest are shown in Figure C.1b. In this figure, we find i) an interval
where εH increases while εΓ decreases, ii) an interval where both εH and εΓ increase,
and iii) an interval where εH decreases while εΓ increases. On these intervals
respectively i) S decreases when G increases, ii) both S and G decrease, and iii)
S increases when G decreases.

Evidently, one can slightly perturb the constructed distribution so that the
atom is smoothed out, but the resulting distribution still has essentially the same
properties.

The second example shows that there exists a heavy-tailed distribution, such
that the skill premium S may be decreasing on the fraction of skilled workers,
even if the initial fraction of skilled labor is arbitrarily small. The intuition behind
this result should be clear: since by Proposition 2 for a Pareto distribution, the
elasticities (and thus both functions S and G) are constant, we can find by –
slightly varying the density ψ in the tail of the distribution – a new distribution
that leads to increasing εH, and, thus, decreasing skill premium S.
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(a) Upper quantile function T (j) with an
atom at x0 = 2.

(b) Corresponding elasticities εH (solid
line) and εΓ − 1 (dashed line).

Figure C.1: Ability distribution with an atom.

Example 2. Let the upper quantile function T (·) be such that T (j) ≍
1

j ln2(j) , j → +0. Since lim
y→+∞

y(1 − Ψ(y)) = lim
j→+0

jT (j) = 0 such a distribution has
a finite mean. One can easily show, that the function εH(j) ≍ − 1

ln(j) , j → +0, and
thus εH is increasing on some interval (0, j∗).
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Monetary Policy under Subjective Beliefs of Banks: Optimal Central Bank Collateral

Requirements

21/356 D. Cerruti, M. Filippini

Speed limits and vehicle accidents in built-up areas: The impact of 30 km/h zones

21/355 A. Miftakhova, C. Renoir

Economic Growth and Equity in Anticipation of Climate Policy
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