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Abstract

We propose the relaxation algorithm as a simple and powerful
method for simulating the transition process in growth models. This
method has a number of important advantages: (1) It can easily deal
with a wide range of dynamic systems including multi-dimensional sys-
tems with stable eigenvalues that differ drastically in magnitude. (2)
The application of the procedure is fairly user friendly. The only input
required consists of the dynamic system. (3) The variant of the relax-
ation algorithm we propose exploits in a natural manner the infinite
time horizon, which usually underlies optimal control problems in eco-
nomics. Overall, it seems that the relaxation procedure can easily cope
with a large number of problems which arise frequently in the context
of macroeconomic dynamic models. As an illustrative application, we
simulate the transition process of the well-known Jones (1995) model.
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1 Introduction

Dynamic macroeconomic theory nowadays relies heavily on infinite horizon

optimization models which usually give rise to a system of nonlinear differ-

ential equations. This dynamic system is then interpreted to describe the

evolution of the economy under consideration. Many studies in the field

of growth theory have confined their analysis to the balanced growth path

(BGP). A comprehensive understanding of the respective model under study

requires, however, that we investigate in addition the transition process. At

least two important arguments support this view: First, the positive and

normative implications might differ dramatically depending on whether an

economy converges towards its BGP or grows along the BGP (e.g. Jones,

1995). Second, dynamic macroeconomic models are often employed to con-

duct comparative welfare investigations of different policy regimes or in-

struments. In this context, the transition process needs to be taken into

account. Linearizing the dynamic system might be appropriate in many

cases but can be potentially misleading especially when the analysis aims at

a Pareto-ranking of different policy instruments. This overall perspective is

best summarized by the following statement due to Jonathan Temple (2003,

p. 509): Ultimately, all that a long-run equilibrium of a model denotes is its

final resting point, perhaps very distant in the future. We know very little

about this destination, and should be paying more attention to the journey.

Especially in growth theory the models under study are very often multi-

dimensional in the sense that there is more than one (predetermined) state

variable. Usual stability properties then imply that the stable manifold

is also multi-dimensional.1 Examples for models which fit into this class

comprise R&D-based growth models (e.g. Romer, 1990; Jones, 1995; Eicher

and Turnovsky, 1999) as well as human-capital based growth models (e.g.
1In the case of saddle-point stability, the dimension of the stable manifold equals the

dimension of the state space, while indeterminacy implies that the dimension of the stable
manifold exceeds the dimension of the state space.
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Lucas, 1988; Mulligan and Sala-i-Martin, 1993; Benhabib and Perli, 1994).

Moreover, if the dynamic system is characterized by (stable) eigenvalues

which differ substantially in magnitude, then usual procedures are either

not applicable or highly inefficient.2 It is important to notice that this

characteristic property is not at all a special (or even pathological) case but

instead occurs quite frequently.

The paper at hand contributes to the literature on dynamic macroeco-

nomic theory by proposing the relaxation algorithm as a powerful method

to simulate the transition process in growth models. We will argue that

this procedure is in general well-suited and highly efficient. This will be

demonstrated by simulating the transition process of the well-known Jones

(1995) model, which is characterized by a two-dimensional stable manifold

with the potential of non-monotonic adjustments.3

Turning to the related literature, there are, of course, a number of proce-

dures to simulate the transition process of dynamic macroeconomic models.

In the context of growth theory, the most prominent approaches comprise

shooting (e.g. Judd, 1998, Chapter 10), time elimination (Mulligan and Sala-

i-Martin, 1991), backward integration (Brunner and Strulik, 2002), the pro-

jection method (Judd, 1992) as well as the discretization method of Merce-

nier and Michel (1994). The similarities and differences of the relaxation

procedure and the methods mentioned above will be discussed concisely be-

low. This enumeration shows that there are already some procedures which

have been used in economics to solve dynamic systems. Nonetheless, we

think that there are a number of good reasons to include additionally the

relaxation procedure into the toolbox of dynamic macroeconomic theory:

First, our experiences with the relaxation algorithm are positive through-
2In the mathematical literature, differential equations exhibiting this structural char-

acteristic are labelled “stiff differential equations”.
3In addition, for usual calibrations the Jones (1995) exhibits stable eigenvalues which

differ drastically in magnitude. To the best of our knowledge, there is no study simulating
the transition process of the Jones (1995) or the Eicher and Turnovsky (1999) model.
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out. We have applied the procedure to a wide range of dynamic systems,

including multi-dimensional systems (showing non-monotonic adjustments)

with stable eigenvalues that differ drastically in magnitude as well as highly

dimensional computable general equilibrium models. The algorithm per-

formed amazingly well. It is remarkable that an increase in the dimension

of the model under study does not cause any conceptual problems. The

researcher need not take restrictions with respect to the model dimension

into account. In addition, the procedure seems to be efficient with respect

to computer time.

Second, the application of the procedure is fairly user friendly. Specifi-

cally, the only input which must be provided by the researcher consists in

the dynamic system and the set of underlying parameters. No preliminary

manipulations of the dynamic system under study must be conducted before

the procedure can be applied; this is different from most other procedures

as described in Section 3.

Third, the variant of the relaxation algorithm we propose exploits in a

natural manner the infinite time horizon which usually underlies standard

optimal control problems. This is achieved by a simple transformation of

real calendar time into a transformed time scale (as explained in Section

2.1). For most other procedures, this issue must explicitly be dealt with

(explained in Section 3).

Overall, it seems that the relaxation algorithm can easily cope with a

large number of problems which arise frequently in the context of multi-

dimensional, infinite-time horizon optimal control problems.

The paper is structured as follows: In Section 2, the relaxation proce-

dure is described concisely and then evaluated numerically employing the

Ramsey-Cass-Koopmans model as a basic example. Section 3 provides a

short comparison to alternative methods. In Section 4, we apply the pro-

cedure to simulate the transition process of the well-known Jones (1995)

model. Section 5 summarizes and concludes. The appendix (Section 6) pro-
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vides a more formal description of the relaxation procedure. Finally, the

relaxation algorithm has been programmed in MatLab. This program to-

gether with a concise instruction manual is available for free download at:

www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm.

2 The relaxation procedure

2.1 Description of the relaxation procedure

The principle of relaxation can be applied to various numerical problems.

Here we use it to solve a differential equation numerically. Relaxation type

algorithms applied to differential equations have two very useful proper-

ties. First of all, they can easily cope with boundary conditions, such as

initial conditions for state variables and transversality conditions of opti-

mal growth. Second, additional equations, e.g. equilibrium conditions or

feasibility constraints, can be incorporated straight away. Beyond, by trans-

formation of the (independent) time variable one can solve infinite horizon

problems, as they arise from many dynamic optimization problems in eco-

nomics.

Suppose we want to compute a numerical solution of a differential equa-

tion in terms of a large (finite) sequence of points representing the desired

path. To start with, we take an arbitrary trial solution, typically not satisfy-

ing the slope conditions implied by the differential equation nor the bound-

ary conditions. We measure the deviation from the true path by a multi-

dimensional error function and use the derivative of the error function to

improve the trial solution in a Newton type iteration. Hence, at each point

of the path the correction is related to the particular inaccuracy in slope and

in solving the static equation. The crucial difference to the various shooting

methods is the simultaneous adjustment along the path as a whole.

Figure 1 illustrates the adjustment by relaxation of a linear initial guess

towards the saddle path in the Ramsey-Cass-Koopmans model. The initial
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guess starts with a fixed initial value of the state variable k and an arbitrary

initial value of the control variable c. It consists of 30 mesh points lined

up equidistantly between the starting point and the known steady state

of the model. Evaluating the multidimensional error function the algorithm

realizes that the fit to the differential equation can be improved by an upward

shift of the curve without jeopardizing the boundary conditions. After a few

steps the error is sufficiently small and the algorithm stops.
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0.6
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initial guess
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Figure 1: Relaxation in the Ramsey-Cass-Koopmans model

The outline of the algorithm proposed in this paper leans on Press, Flan-

nery, Teukolsky and Vetterling (1989, pp. 645-672). We have implemented

the algorithm in MatLab. The code is published for free download in the

internet4 and a print version is available on request.5

4http://www.rrz.uni-hamburg.de/IWK/trimborn/relaxate.htm
5In the appendix we give a detailed description of the algorithm.
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We apply the method to the following kind of problem: Consider a

system of Ñ ordinary differential equations together with N − Ñ (static)

equations in N real variables. This system describes a vector field on an Ñ -

dimensional surface in R
N . We impose a list of n1 boundary conditions at

the starting point and n2 at the end point of a path sufficient to determine a

particular trajectory. To meet all dimensional requirements n1 and n2 must

add up to Ñ .

For the finite representation of the problem we fix a time mesh of M

points in time. In case of an infinite time horizon we choose a transfor-

mation to map the interval [0,∞] to [0, 1]. At each point in time an N -

dimensional vector has to be determined. We approximate the differential

equation by M−1 systems of equations of dimension Ñ for the slope be-

tween neighboring mesh points. Together with Ñ boundary conditions we

have an M × Ñ dimensional system of equations. After adding the N − Ñ

static equations which have to hold at each M mesh point we have incorpo-

rated all restrictions available. The final system of nonlinear equations is of

dimension M ×N and involves the same number of unknowns.

We apply a Gauß-Newton procedure to compute a root of this system.

Step by step we adjust the trial solution until the error is sufficiently small.

This involves the solution of a linear equation with the Jacobian matrix of

the system of nonlinear equations. At first glance there seems little chance to

achieve good solutions because the complexity of the problem is proportional

to the size of the Jacobian matrix which is quadratic in M . However, the

Jacobian is not an arbitrary matrix of dimension M × N .

The Jacobian matrix inherits a specific structure from the approxima-

tion of the differential equation. The boundary conditions and the static

equations each depend only on one respective vector, and the interior slope

conditions only on neighboring vectors. Hence the Jacobian matrix shows

nonzero entries only close to the diagonal. This can be used to solve the lin-

ear system by a special version of a Gauß algorithm carried out recursively
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onN -dimensional blocks along the diagonal. This recursive procedure allows

to increase the number M of mesh points without increasing the dimension

of the blocks. Only the number of blocks increases in proportion to M . The

complexity of the problem is only linear in the number of mesh points and

not quadratic. Hence, a fairly good approximation of the continuous path

is possible without using too much computer time.

2.2 Implementation of the algorithm

In this section, we describe the steps which must be taken when imple-

menting the relaxation algorithm using the Ramsey-Cass-Koopmans model

(Ramsey, 1928; Cass, 1965; Koopmans, 1965) as an example. It should be

noticed that this description serves as an illustration only. The researcher

who intends to simulate a specific model using the program which is provided

as a supplement to this paper need not follow these steps.

It is well known that this simple growth model exhibits saddle-point

stability and hence the determination of the solution is all but trivial.6 The

model gives rise to a system of two differential equations for consumption

and capital per effective labor (Barro and Sala-i-Martin, 2004, Chapter 2):

ċ =
c

θ

(
αkα−1 − (δ + ρ+ xθ)

)
(1)

k̇ = kα − c− (n+ x+ δ)k, (2)

where α denotes the elasticity of capital in production, n the population

growth rate, δ the depreciation rate, x the exogenous growth rate of tech-

nology, ρ the parameter for time preference and θ the inverse of the in-

tertemporal elasticity of substitution, respectively. The steady state is at

k∗ =
(

α
δ+ρ

) 1
1−α and c∗ = (k∗)α − (n+ x+ δ)k∗ and saddle point stable.

As a first step, one must choose a time mesh, i.e. a set of points in time

at which the solution should be calculated. We select the time mesh to be

uniform in the transformed time scale (as explained in section 2.1).
6Nonetheless, the model is comparably simple in that the stable manifold is one di-

mensional. We will turn to a model with a multi-dimensional stable manifold below.
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Second, the two differential equations have to be transformed into two

non-linear equations which describe the slope between two neighboring mesh

points. These equations have to be satisfied between every two mesh points.

For M mesh points this leads to 2 · (M − 1) nonlinear equations.

Third, two boundary condition have to be chosen to complete the set

of equations to 2 · M . In this example the relaxation algorithm needs one

initial boundary condition and one terminal boundary condition. We set the

initial value of the state variable (capital) equal to 10% of its steady state

value. For the terminal boundary condition there are several possibilities

to formulate an equation. It would be possible to choose each of the two

equations (1) or (2) and set the RHS equal to zero. However, here the steady

state values for consumption and capital can be computed analytically and,

therefore, we can set consumption equal to its steady state value as the

terminal boundary condition. It should be noted that only one boundary

condition is needed. Thus the algorithm does not make use of the knowledge

of the steady state value of capital. It is reached automatically.

At last an initial guess for the solution has to be made. Here we choose

c and k to be constant at their steady state values (ct, kt) ≡ (c∗, k∗).7 The

Newton procedure always converged quickly, indicating a high degree of

robustness with respect to the initial guess.

2.3 Evaluation of the procedure

For the special parametrization θ = δ+ρ
α(δ+n+x)−x the solution can be ex-

pressed analytically; this is due to the fact that the representative consumer

chooses a constant saving rate s = 1
θ (Barro and Sala-i-Martin, 2004, pp. 106-

110).8 This allows us to compare the computed results with the analytical

solution, which has a precision close to the machine epsilon. The relative er-
7This is in contrast to Figure 1 where the initial guess is an upward sloping line.

8The analytical solution is k(t) =
[

1
(δ+n+x)θ

+
(
k1−α
0 − 1

(δ+n+x)θ

)
e−(1−α)(δ+n+x)t

] 1
1−α

and c(t) = (1− 1
θ
)k(t)α.
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ror is computed for every mesh point. Table 1 shows the maximum relative

error of consumption and capital per effective labor for different numbers

of mesh points. In addition, the quadratic mean error of combined c and k

provides information about the distribution of the error.9 Table 1 reveals

that multiplying the number of mesh points by x reduces the maximum er-

ror of each solution vector by the factor 1
x2 , which indicates the order 2 of

the difference procedure. Even with a moderate number of mesh points and

therefore a short computation time, a sufficiently high degree of accuracy can

be achieved. Moreover, the accuracy can be improved to a very high degree

by increasing the number of mesh points.10 The treatment of higher dimen-

Table 1: Accuracy of the relaxation algorithm for the Ramsey-Cass-
Koopmans model

number of mesh points max error c max error k mean error
10 < 1.3 · 10−2 < 3.4 · 10−2 < 3.0 · 10−3

100 < 1.1 · 10−4 < 8.6 · 10−5 < 2.7 · 10−6

1,000 < 1.1 · 10−6 < 8.5 · 10−7 < 8.2 · 10−9

10,000 < 1.1 · 10−8 < 8.5 · 10−9 < 2.6 · 10−11

100,000 < 1.1 · 10−10 < 8.5 · 10−11 < 8.2 · 10−14

sional systems with multi-dimensional stable manifolds is largely analogous

to the example described above. This is the reason why the the algorithm

performs similarly well for more complicated models.

3 Comparison to other procedures

In this section, we compare very briefly the relaxation procedure to com-

mon alternative solution methods. Other solution techniques for this type

of problem are backward integration (Brunner and Strulik, 2002), multiple

9It is defined as ε = 1
NM

√∑N
i=1 ε2

ci
+

∑N
i=1 ε2

ki
with εci and εki denoting the relative

error of k and c at mesh point i, respectively.
10It should be mentioned that the allocation of the mesh was chosen exogenously. The

accuracy of the algorithm could be improved with a self allocating time mesh.
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shooting (e.g. Judd, 1998, Chapter 10), time elimination (Mulligan and Sala-

i-Martin, 1991), projection methods (e.g. Judd, 1992; Judd, 1998, Chapter

11) and the method of Mercenier and Michel (1994). We keep this sec-

tion brief and restrict our comparison to related methods since most of the

procedures and their relative advantages are described in Judd (1998) and

Brunner and Strulik (2002).

The method of backward integration as described in Brunner and Strulik

(2002) exploits the numerical stability of the backward looking system by

inverting time. By starting near the steady state of the transformed system,

the resulting initial value problem is stable and the solution converges to-

wards the stable manifold of the forward looking system quickly. Therefore,

the method can solve systems with one-dimensional stable manifolds very

conveniently. For multi-dimensional manifolds Brunner and Strulik (2002)

suggest to generate starting values on an orbit around the steady state.

To pass through a pre-specified point, which is determined by a specific

shock under study, it is necessary to iterate until the trajectory hits this

point. However, if the real parts of the eigenvalues associated with the sta-

ble manifold of the forward looking system differ substantially, the problem

of stiff differential equations occurs. It is well-known that these problems are

very hard to handle numerically. If the difference of the stable eigenvalues is

sufficiently high, it is impossible to meet the pre-specified point, because the

backward shooting trajectories will be attracted by the submanifold, which

is determined by the eigenvalue with the smallest real part. Therefore, the

resulting trajectories cannot represent a specified shock and potentially have

no economic meaning.

Mercenier and Michel (1994) propose to transform the continuous time,

infinite horizon problem into a finite horizon maximization problem in dis-

crete time with the same steady state. The transformed problem can be

solved with a static optimization procedure. This leads to a system of non-

linear equations, which can be solved with a Newton algorithm similar as
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in the relaxation algorithm. Our approach is to solve the system of differ-

ential equations. Here the discretisation is done at a later stage. To apply

the relaxation algorithm the researcher simply has to paste the system of

differential equation into the algorithm instead of converting the whole max-

imization problem. Apart from simplicity, the relaxation algorithm has some

further advantages.

First, the relaxation procedure is more general, since the system of dif-

ferential equations can be attained in different ways, not only by a single

maximization problem. In particular, the approach of Mercenier and Michel

for steady state invariance requires the discount factor to be constant. How-

ever, if the firm also faces an intertemporal optimization problem the dis-

count factor is related to the real interest rate which might not be constant

during the transition. Therefore, steady state invariance cannot be guaran-

teed and the performance of the method deteriorates. Second, the relaxation

algorithm can deal with a compactification of the time interval. Therefore, it

is not necessary to choose an adequate terminal time where the optimization

is truncated. Also, the treatment of a post terminal stationary phase does

not apply. Third, in the approach of Mercenier and Michel the discretiza-

tion procedure is fixed. The relaxation algorithm leaves room for selecting

different discretisation rules, also of higher order. This leads to a higher

level of accuracy with the same number of mesh points. The discretisation

rule of the method of Mercenier and Michel is a first order rule, whereas the

relaxation procedure uses a second order rule.11

Projection methods as they are introduced in Judd (1992) and Judd

(1998, Chapter 11) cover a very wide range of algorithms. They are con-

sidered to be fast and accurate, but also they require a high programming

effort. Moreover, they are usually applied to solve for the policy function.

This does not work for non-monotonic adjustments along multi-dimensional
11When multiplying the number of mesh points with x a first order rule leads to a

reduction of the global error by 1
x
whereas a second order rule reduces the error by 1

x2 .
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(stable) manifolds since the policy function cannot be computed at the turn-

ing points. In addition, the polynomial bases and therefore the computation

costs grow exponentially when the dimension of the problem increases. To

avoid this “curse of dimensionality”, a special complete polynomial basis is

chosen. But then also the dimension of the basis grows polynomially com-

pared to the relaxation algorithm, where the cost of computation grows only

quadratically.

For the time elimination method part of the same critique holds. With

multi-dimensional stable manifolds the policy functions cannot be computed

at the turning points and therefore this procedure cannot be applied.

4 An illustrative application

The relaxation procedure is employed to investigate the transition process of

the well-known R&D-based semi-endogenous growth model of Jones (1995).

This model is chosen since it implies a two-dimensional stable manifold

with the potential of non-monotonic adjustments. Moreover, for standard

calibrations the two stable eigenvalues differ drastically (by about a factor of

ten) and, hence, usual procedures are inappropriate to solve the underlying

dynamic system.

4.1 The Jones model

As in Jones (1995), the focus here is on the market solution. The final-output

technology is given by Y = αF (φL)σL
∫ A
0 x(i)1−σLdi, where Y denotes final

output, φ the share of labor allocated to final-output production, x(i) the

amount of differentiated capital goods of type i, A the number of differen-

tiated capital goods, αF a constant overall productivity parameter and σL

the elasticity of labor in final-output production. Noting the general symme-

try among x(i) and using the definition of aggregate capital K := Ax, the

final-output technology can be written as Y = αF (AφL)σLK1−σL . The

R&D technology is Ȧ = J = αJA
ηA [(1 − φ)L]ηL with ηL := ηp

L + ηe
L,
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ηp
L = 1,−1 < ηe

L < 0, where Ȧ := dA/dt, αJ denotes a constant overall

productivity parameter, ηA the elasticity of technology in R&D and ηL the

elasticity of labor in R&D.

To simulate the transition process, one needs the complete dynamic sys-

tem governing the evolution of the economy under study. Moreover, we

conduct an adjustment of scale such that the long-run levels of all endoge-

nous variables are constant. This dynamic system can be summarized as

follows:12

k̇ = y − c− δk − βKnk (3)

ȧ = j − βAnk (4)

ċ =
c

γ
[r − δ − ρ− (1− γ)n]− βKnc (5)

v̇a = va[r − (βK − βA)n]− π (6)

σLy

φ
= va

ηp
Lj

1− φ
(7)

with y = αF (aφ)σLk1−σL , j = αJa
ηA(1 − φ)ηL , r = (1−σL)2y

k , π =
σL(1−σL)y

a , βK = 1−ηA+ηL
1−ηA

, βA = ηL
1−ηA

. The scale-adjusted variables are

defined by y := Y/LβK , k := K/LβK , c := C/LβK , a := A/LβA , j := J/LβA

and va := v/LβK−βA . The (unique) stationary solution of this dynamic

system corresponds to the (unique) balanced growth path of the economy

expressed in original variables.

Equations (3) and (4) are the equations of motion of (scale-adjusted) cap-

ital and technology, (5) is the Keynes-Ramsey rule of optimal consumption c,

(6) shows capital market equilibrium with va denoting the (scale-adjusted)

price of blueprints and (7) determines the privately efficient allocation of

labor across final-output production and R&D.
12For a detailed derivation of the dynamic system for the general R&D-based non-scale

growth model see Steger (2005).
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4.2 Investigation of the transition process

The objective is to solve the four-dimensional system of differential equations

(3) - (6), taking into account the static equation (7), which must hold at all

points in time. The steady state is a saddle point with a two-dimensional

stable manifold. Since the steady state can be determined numerically only,

the algorithm computes the steady state of the system first by applying a

Newton algorithm. The choice of k(0) = k0 and a(0) = a0 as initial bound-

ary conditions is obvious since k and a are the state variables. Again, there

is some freedom when it comes to the determination of boundary conditions.

We have set the RHS of equations (5) and (6) equal to zero. Moreover, we

choose once more, as an initial guess, all variables to be constant at their

steady state values. This always leads to quick convergence indicating that

the procedure is relatively robust with respect to the initial guess.

The transition process considered below results from a combination of

two simultaneous shocks. Specifically, it is assumed that the overall pro-

ductivity parameter in the production function for final output αF increases

from 1.0 to 1.3, while the overall productivity parameter in the production

function for new ideas αJ decreases from 1.0 to 0.9. This shock was cho-

sen to demonstrate that the adjustment can be non-monotonic (as can be

recognized by inspecting Fig. 2 (vi), for instance) and therefore the policy

functions cannot be computed at certain points with conventional meth-

ods.13 Figure 2 gives a summary of the adjustment process. The plots (i)

to (iii) show the time path of the jump variables c, φ, va, plots (iv) and (v)

display the time path of the state variables k and a, while plot (vi) contains

the projection of the adjustment trajectory into the (k,a)-plane.

Several aspects are worth being noticed: (1) The transition process shows

a pronounced non-monotinicity for c and k. This overshooting pattern in

scale-adjusted variables implies that the instantaneous growth rate of the
13The set of parameters used for simulation is: σL = 0.6, σK = 0.4, δ = 0.05, n = 0.015,

ηA = 0.6, ηL = 0.5, ηp
L = 0.6, ρ = 0.04 and γ = 1.
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Figure 2: Summary of the transition of the Jones (1995) model

respective original variable is initially above the long-run growth rate, then

undershoots and finally converges to the long-run value. (2) The (average)

speed of convergence appears to be fairly low with half-lifes of more than

50 years. This observation underlines the importance of the analysis of

transitional dynamics. (3) The intersectoral allocation variable φ first jumps

up [indicated by the crosses in plot (ii)] and then converges to the initial

long-run value.
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5 Summary and conclusion

In this paper, we propose the relaxation procedure as a powerful and ef-

ficient procedure to investigate the transition process of dynamic macro-

economic models. At a very general level, this procedure has two main

advantages: First, it is simpler than most other procedures. Second, and

more importantly, the relaxation procedure can easily deal with complex

dynamic systems for which standard procedures are generally inadequate.

More specifically, the procedure can readily handle dynamic systems which

are characterized by multi-dimensional stable manifolds (with the poten-

tial of non-monotonic adjustment patterns) and strongly differing (stable)

eigenvalues. It is important to notice that such dynamic systems are not

at all special cases but arise quite frequently from a large number of widely

employed growth models.

As an example, the relaxation procedure has been used to investigate

the transition process of the well-known Jones (1995), which represents one

of the basic workhorses in modern growth theory. Usual procedures turn

out to be inadequate for the analysis of this model. This is probably the

reason for the fact that there are only few studies which take the adjustment

process of this or related models into account.14

6 Appendix

In this section we go through some details of the algorithm. Consider a

system of Ñ differential equations on an open set in R
N , with Ñ ≤ N . Let

x̃ be the vector of those components of the full vector xεRN affected by f .

dx̃

dt
= f(t, x) , f : R+ × R

N → R
Ñ

14To the best of our knowledge, Papageorgiou and Pérez-Sebastián (2003) is the only
study which, using the projection method of Judd (1992), simulates the adjustment process
of an (extended) non-scale R&D-based growth model.
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If Ñ is strictly smaller than N the differential equations are to be supple-

mented by N−Ñ equations x has to satisfy at any time.

0 = g(t, x) , g : R+ × R
N → R

N−Ñ

Boundary conditions are supposed to be given in form of n1 initial conditions

and n2 final conditions. For the solution to be well determined we need

n1 + n2 to equal Ñ . Finally, it is convenient to denote the codimension

N − Ñ of the manifold given by g(t, x) = 0 by n3. Summing up we have

n1 initial conditions
n2 final conditions
n3 running equations

with n1 + n2 + n3 = Ñ + n3 = N

For convenience, we rescale the time range R+ by introducing a new time

parameter τ running from 0 to 1

τ = νt/(1 + νt)

In terms of τ we get an equivalent differential-algebraic system

dx̃

dτ
= ξ(τ, x) = f( τ

ν(1−τ) , x) / ν(1− τ)2

0 = φ(τ, x) = g( τ
ν(1−τ) , x)

(8)

Define a mesh of M points in (transformed) time τ by T = {τ1, . . . , τM}.
Along the mesh, the dependent variable x falls into a list of vectors. To

avoid confusion we denote it by y = {y1, . . . , yM} where yk is the value of x

at τk. We use the midpoint of each interval (τk, τk+1) for the discretization

of the differential equation

ỹk+1 − ỹk = (τk+1 − τk) ξ(τ̄k, ȳk) for k = 1, . . . ,M − 1 (9)

where τ̄k = (τk + τk+1)/2 and ȳk = (yk + yk+1)/2. An element of this

sequence of difference equations yields an Ñ -dimensional error function H :

([0, . . . , 1]× R
N )2 → R

Ñ

H(τk, yk, τk+1, yk+1) = ỹk+1 − ỹk − (τk+1 − τk)ξ(τ̄k, ȳk)
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Note that the matrix of partial derivatives of H with respect to yk and yk+1

differ only in their derivatives of ỹk+1 and ỹk, respectively, and this is plus

or minus the identity matrix of dimension Ñ .

Let B denote the initial conditions

B : R
N → R

n1 ,

F denote the final conditions

F : R
N → R

n2

and let C denote the running conditions

C : [0, . . . , 1]× R
N → R

n3

All together this defines a system of equations in y = (y1, . . . , yM )εRN ·M

given a mesh τ = (τ1, . . . , τM )εRM , and we are looking for a root of this

system.

For the description of the algorithm it is convenient to list the equations

according to the unknown vectors yk involved. We start with the initial

conditions which only involve y1 and end with the equations which only

involve yM . Ordered this way the system can be seen as a system of M + 1

vector equations E0(y), . . . , EM (y). The first subsystem E0(y) depends only

on y1 and consists of n1 initial conditions. The intermediate subsystems

Ek(y) for k = 1, . . . ,M − 1 depend on yk and yk+1 and are of dimension N .

Each of these subsystems begins with n3 running conditions and is completed

by n1 + n2 difference equations. The last subsystem EM (y) depends on yM

and consists of n3 interior conditions together with n2 final conditions. It

has dimension n2 + n3.
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E(y) ≡




E0(y)
...

Ek(y)
...

EM (y)



=




(
B(y1)

)
...(

C(yk)
H(yk, yk+1)

)

...(
C(yM )
F (yM )

)




(10)

Each step of the Newton algorithm applied to E(y) = 0 computes a

change ∆y by solving the linear equation

DyE(y) ·∆y = −E(y)

Due to the ordering of subsystems E this equation is of following form:



S0,R

S1,L S1,R 0
S2,L S2,R

. . .
0 SM−1,L SM−1,R

SM,L







∆y1
...

∆yM


 =




−E0(y)
...

−EM (y)




(11)

All Sk,L and Sk,R are Jacobian matrices defined by

Sk,L =
∂Ek(y)
∂yk

, and Sk,R =
∂Ek(y)
∂yk+1

The upper left matrix S0,R has n1 rows and the lower right matrix SM,L

only n3 + n2, whereas all other matrices Sk,L and Sk,R, resp, are N × N .

Hence, the system is not overdetermined. The solution ∆y can be computed

by a specialized Gaussian algorithm. This algorithm starts in the upper left

corner of the matrix and works downward block by block to the lower right

corner. The result is a system in upper triangular form with a sequence of

N × (n2 + n3) non-zero blocks above the diagonal. Finally the vector ∆y

can computed from bottom to top. To be more precise:
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step 0: Diagonalize the first n1 columns of S0,R.
step k, k=1, . . . ,M−1: Eliminate the first N − n1 columns of Sk,L;

diagonalize the remainder of Sk,L together
with the first N − n1 columns of Sk,R.

step M : Eliminate the first N − n1 columns of SM,L;
Diagonalize the remainder of SM,L

step M+k, k=1, . . . ,M : Solve for ∆yM+1−k.

The Newton algorithm refines the current guess of y by adding ∆y or a

fraction of this vector to y. The algorithm stops if the error E is sufficiently

small according to an appropriate norm.
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Papageorgiou, C., and F. Pérez-Sebastián (2002): “Human Capi-

tal and Convergence in a Non-Scale R&D Growth Model,” Departmental

Working Papers, Department of Economics, Louisiana State University,

2002-10.

Press, W., B. Flannery, S. Teukolsky, and W. Vetterling (1989):

Numerical Recipes in Pascal. Cambridge University Press.

Ramsey, F. (1928): “A Mathematical Theory of Saving,” Economic Jour-

nal, 38, 543–559.

Romer, P. M. (1990): “Endogenous Technological Change,” Journal of

Political Economy, 98, S71–S102.

Steger, T. M. (2005): “Welfare Implications of Non-Scale R&D-based

Growth Models,” Scandinavian Journal of Economics, forthcoming.

Temple, J. (2003): “The Long-Run Implications of Growth Theories,”

Journal of Economic Surveys, 17(3), 497–510.

23




