Mathematical supplement

1 Cost of K

$\theta \mathrm{s}$ denote cost shares and $\lambda \mathrm{s}$ factor shares, as in the main text. Then, \hat{c}_{K} is calculated as:

$$
\begin{aligned}
\hat{c}_{K} & =\theta_{P K}\left(\theta_{L P} \hat{w}+\theta_{E P} \hat{p}_{E}\right)+\theta_{N K}\left(\theta_{H N} \cdot\left(\theta_{L H} \hat{w}+\theta_{E H} \hat{p}_{E}\right)+\theta_{B N}\left(\theta_{L B} \hat{w}+\theta_{E B} \hat{p}_{E}\right)\right) \\
& =\theta_{P K} \theta_{L P} \hat{w}+\theta_{P K} \theta_{E P} \hat{p}_{E}+\theta_{N K} \theta_{H N} \theta_{L H} \hat{w}+\theta_{N K} \theta_{H N} \theta_{E H} \hat{p}_{E} \\
& +\theta_{N K} \theta_{B N} \theta_{L B} \hat{w}+\theta_{N K} \theta_{B N} \theta_{E B} \hat{p}_{E} \\
& =\left[\theta_{P K} \theta_{L P}+\theta_{N K} \theta_{H N} \theta_{L H}+\theta_{N K} \theta_{B N} \theta_{L B}\right] \hat{w} \\
& +\left[\theta_{P K} \theta_{E P}+\theta_{N K} \theta_{H N} \theta_{E H}+\theta_{N K} \theta_{B N} \theta_{E B}\right] \hat{p}_{E} \\
& =\theta_{L K} \cdot \hat{w}+\theta_{E K} \cdot \hat{p}_{E} .
\end{aligned}
$$

with $\theta_{L K}=\theta_{P K} \theta_{L P}+\theta_{N K} \theta_{H N} \theta_{L H}+\theta_{N K} \theta_{B N} \theta_{L B}>0$ and $\theta_{E K}=\theta_{P K} \theta_{E P}+$ $\theta_{N K} \theta_{H N} \theta_{E H}+\theta_{N K} \theta_{B N} \theta_{E B}>0$.

2 Proof of lemma 1

Differentiate (9) and (10) to obtain:

$$
\begin{aligned}
\hat{E} & =\lambda_{E X}\left(\hat{a}_{E X}+\hat{X}\right)+\lambda_{E K}\left(\hat{a}_{E K}+\hat{g}_{K}\right) \\
0 & =\lambda_{L X}\left(\hat{a}_{L X}+\hat{X}\right)+\lambda_{L K}\left(\hat{a}_{L K}+\hat{g}_{K}\right) \\
0 & =\hat{c}_{K}+\left(\frac{g_{K}}{g_{K}+\rho}\right) \hat{g}_{K}
\end{aligned}
$$

With $\tilde{\rho}=\left(\rho+g_{K}\right) / g_{K}>1$ we can write:

$$
\hat{g}_{K}=-\tilde{\rho} \cdot \hat{c}_{K}=-\tilde{\rho} \theta_{E K} \hat{p}_{E}-\tilde{\rho} \theta_{L K} \hat{w}
$$

Use this as well as:

$$
\begin{aligned}
& \hat{a}_{E q}=\theta_{L q} \sigma_{q}\left(\hat{w}-\hat{p}_{E}\right) \\
& \hat{a}_{L q}=-\theta_{E q} \sigma_{q}\left(\hat{w}-\hat{p}_{E}\right)
\end{aligned}
$$

for $q=X, K$ which yields:

$$
\begin{aligned}
\hat{E} & =\lambda_{E X}\left[\theta_{L X} \sigma_{X}\left(\hat{w}-\hat{p}_{E}\right)+\hat{X}\right] \\
& +\lambda_{E K}\left[\theta_{L K} \sigma_{K}\left(\hat{w}-\hat{p}_{E}\right)-\theta_{E K} \tilde{\rho} \hat{p}_{E}-\theta_{L K} \tilde{\rho} \hat{w}\right] \\
0 & =\lambda_{L X}\left[-\theta_{E X} \sigma_{X}\left(\hat{w}-\hat{p}_{E}\right)+\hat{X}\right] \\
& +\lambda_{L K}\left[-\theta_{E K} \sigma_{K}\left(\hat{w}-\hat{p}_{E}\right)-\theta_{E K} \tilde{\rho} \hat{p}_{E}-\theta_{L K} \tilde{\rho} \hat{w}\right]
\end{aligned}
$$

Multiplying gives:

$$
\begin{aligned}
\hat{E} & =\lambda_{E X} \theta_{L X} \sigma_{X} \hat{w}-\lambda_{E X} \theta_{L X} \sigma_{X} \hat{p}_{E}+\lambda_{E X} \hat{X} \\
& +\lambda_{E K} \theta_{L K} \sigma_{K} \hat{w}-\lambda_{E K} \theta_{L K} \sigma_{K} \hat{p}_{E}-\lambda_{E K} \theta_{E K} \tilde{\rho} \hat{p}_{E}-\lambda_{E K} \theta_{L K} \tilde{\rho} \hat{w} \\
0 & =-\lambda_{L X} \theta_{E X} \sigma_{X} \hat{w}+\lambda_{L X} \theta_{E X} \sigma_{X} \hat{p}_{E}+\lambda_{L X} \hat{X} \\
& -\lambda_{L K} \theta_{E K} \sigma_{K} \hat{w}+\lambda_{L K} \theta_{E K} \sigma_{K} \hat{p}_{E}-\lambda_{L K} \theta_{E K} \tilde{\rho} \hat{p}_{E}-\lambda_{L K} \theta_{L K} \tilde{\rho} \hat{w}
\end{aligned}
$$

Collecting for \hat{w} and \hat{p}_{E} gives:

$$
\begin{aligned}
\hat{E} & =\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K} \sigma_{K}-\lambda_{E K} \theta_{L K} \tilde{\rho}\right] \hat{w} \\
& -\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K} \sigma_{K}+\lambda_{E K} \theta_{E K} \tilde{\rho}\right] \hat{p}_{E}+\lambda_{E X} \hat{X} \\
0 & =\left[-\lambda_{L X} \theta_{E X} \sigma_{X}-\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{L K} \tilde{\rho}\right] \hat{w} \\
& +\left[\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{E K} \tilde{\rho}\right] \hat{p}_{E}+\lambda_{L X} \hat{X}
\end{aligned}
$$

For a constant w the impact of \hat{p}_{E} on \hat{E} is $-\lambda_{E X} \theta_{L X} \sigma_{X}-\lambda_{E K} \theta_{L K} \sigma_{K}-$ $\lambda_{E K} \theta_{E K} \tilde{\rho}<0$ that means it is negative as expected. Collecting further and solving the labour market for \hat{w} gives:

$$
\begin{aligned}
\hat{E} & =\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K}\left(\sigma_{K}-\tilde{\rho}\right)\right] \hat{w} \\
& -\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K} \sigma_{K}+\lambda_{E K} \theta_{E K} \tilde{\rho}\right] \hat{p}_{E}+\lambda_{E X} \hat{X}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K} \sigma_{K}+\lambda_{L K} \theta_{L K} \tilde{\rho}\right] \hat{w} } \\
& =\left[\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{E K} \tilde{\rho}\right] \hat{p}_{E}+\lambda_{L X} \hat{X} \\
\hat{w} & =\frac{\left[\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)\right] \hat{p}_{E}+\lambda_{L X} \hat{X}}{\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K} \sigma_{K}+\lambda_{L K} \theta_{L K} \tilde{\rho}} \\
& =\frac{\left[\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)\right] \hat{p}_{E}+\lambda_{L X} \hat{X}}{\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)}
\end{aligned}
$$

which shows that, for constant X, \hat{w} and \hat{p}_{E} have the same sign when $\sigma_{K}>\tilde{\rho}$ and that the opposite happens when $\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)<0$ which
requires large values of $\theta_{E K}$ and $\tilde{\rho}$. By inserting \hat{w} in the energy equation and collecting we obtain:

$$
\begin{aligned}
\hat{E}= & -\left\{\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K}\left(\sigma_{K}-\tilde{\rho}\right]\right.\right. \\
& \frac{\left[\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)\right]}{\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)} \\
& \left.+\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K} \sigma_{K}+\lambda_{E K} \theta_{E K} \tilde{\rho}\right]\right\} \hat{p}_{E} \\
& +\left(\frac{\lambda_{L X}}{\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)}+\lambda_{E X}\right) \hat{X}
\end{aligned}
$$

or, respectively:

$$
\begin{aligned}
\hat{E} & =-\left\{\frac{\left[b_{1} \sigma_{X}+b_{2}\left(\sigma_{K}-\tilde{\rho}\right]\left[b_{3} \sigma_{X}+b_{4}\left(\sigma_{K}-\tilde{\rho}\right)\right]\right.}{b_{5}}+\tilde{b}\right\} \hat{p}_{E}+\Gamma \cdot(\hat{Y}-\gamma) \\
& =-\left\{\frac{b_{1} b_{3} \sigma_{X}^{2}+\bar{b} \sigma_{X}\left(\sigma_{K}-\tilde{\rho}\right)+b_{2} b_{4}\left(\sigma_{K}-\tilde{\rho}\right)^{2}}{b_{5}}+\tilde{b}\right\} \hat{p}_{E}+\Gamma \cdot(\hat{Y}-\gamma)
\end{aligned}
$$

with:

$$
\begin{aligned}
b_{1} & =\lambda_{E X} \theta_{L X}>0, b_{2}=\lambda_{E K} \theta_{L K}>0, b_{3}=\lambda_{L X} \theta_{E X}>0 \\
b_{4} & =\lambda_{L K} \theta_{E K}>0, b_{5}=\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)>0 \\
\tilde{b} & =\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E K} \theta_{L K} \sigma_{K}+\lambda_{E K} \theta_{E K} \tilde{\rho}>0 \\
\bar{b} & =b_{1} b_{4}+b_{2} b_{3}>0, \gamma=g_{A}+\frac{1-\beta}{\beta} g_{K} \geq 0 \\
\Gamma & =\frac{\lambda_{L X}}{\lambda_{L X} \theta_{E X} \sigma_{X}+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)}+\lambda_{E X}>0
\end{aligned}
$$

which reveals that \hat{p}_{E} has an unambiguously negative impact on \hat{E} when $\sigma_{K}>$ $\tilde{\rho}$. When $\sigma_{K}<\tilde{\rho}$ an ambiguity arises. In this (special) case, according to the expression $\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)$ from above, wages decrease sharply after an energy price increase which causes a strong output effect in the capital sector possibly offsetting the direct energy price effect. This may happen even when taking into account the positive impact of \tilde{b}. In the short run, wages are not flexible; then, the impact of energy prices on energy use is unambiguous according to:

$$
\hat{E}=-\tilde{b} \cdot \hat{p}_{E}
$$

3 Proof of lemma 2

To evaluate \hat{s}_{i} we write:

$$
\hat{s}_{i}=\hat{k}_{i}-\hat{Y}=\hat{\theta}_{k i}-\hat{p}_{k i}+\hat{p}_{X}-\gamma
$$

We use the optimum conditions in the capital sector, i.e. $\theta_{P K} / \theta_{N K}=\left[p_{P} / p_{N}\right]^{1-\sigma_{\tilde{K}}}$ and $\theta_{H N} / \theta_{B N}=\left[p_{H} / p_{B}\right]^{1-\sigma_{N}}$ to derive the cost shares θ for the different capital types i where $\sigma_{\tilde{K}}$ and σ_{N} are the elasticities of substitution between physical and non-physical capital and between human and knowledge capital, respectively. Moreover, we express $\hat{\theta}_{k i}$ as well as \hat{p}_{X} and $\hat{p}_{k i}$ in terms of input prices \hat{w} and \hat{p}_{E}, which yields for capital type P :

$$
\begin{aligned}
\hat{s}_{P}+\gamma & =\theta_{N K}\left(1-\sigma_{\tilde{K}}\right)\left(\hat{p}_{P}-\hat{p}_{N}\right)+\left(\theta_{L X}-\theta_{L P}\right) \hat{w}+\left(\theta_{E X}-\theta_{E P}\right) \hat{p}_{E} \\
& =\theta_{N K}\left(1-\sigma_{\tilde{K}}\right)\left[\left(\theta_{L P}-\theta_{L N}\right) \hat{w}+\left(\theta_{E N}-\theta_{E P}\right) \hat{p}_{E}\right] \\
& +\left(\theta_{L X}-\theta_{L P}\right) \hat{w}+\left(\theta_{E X}-\theta_{E P}\right) \hat{p}_{E} \\
& =\theta_{N K}\left(1-\sigma_{\tilde{K}}\right)\left[\left(\theta_{E N}-\theta_{E P}\right) \hat{w}+\left(\theta_{E N}-\theta_{E P}\right) \hat{p}_{E}\right]+\left(\theta_{E P}-\theta_{E X}\right)\left(\hat{w}-\hat{p}_{E}\right) \\
& =\theta_{N K}\left(1-\sigma_{\tilde{K}}\right)\left(\theta_{E N}-\theta_{E P}\right)\left(\hat{w}-\hat{p}_{E}\right)+\left(\theta_{E P}-\theta_{E X}\right)\left(\hat{w}-\hat{p}_{E}\right) \\
& =\left[\theta_{N K}\left(1-\sigma_{\tilde{K}}\right)\left(\theta_{E N}-\theta_{E P}\right)+\left(\theta_{E P}-\theta_{E X}\right)\right]\left(\hat{w}-\hat{p}_{E}\right)
\end{aligned}
$$

where we have used $\theta_{L X}=1-\theta_{E X}, \theta_{L P}=1-\theta_{E P}$ etc. Similarly, we obtain for H and B

$$
\begin{aligned}
& \hat{s}_{H}+\gamma=\left[\theta_{B N}\left(1-\sigma_{N}\right)\left(\theta_{E B}-\theta_{E H}\right)+\left(\theta_{E H}-\theta_{E X}\right)\right]\left(\hat{w}-\hat{p}_{E}\right) \\
& \hat{s}_{B}+\gamma=\left[\theta_{H N}\left(1-\sigma_{N}\right)\left(\theta_{E H}-\theta_{E B}\right)+\left(\theta_{E B}-\theta_{E X}\right)\right]\left(\hat{w}-\hat{p}_{E}\right)
\end{aligned}
$$

To find $\hat{w}-\hat{p}_{E}$ we use the factor market equlibria and the capital market equilibrium as well as $\hat{X}=-\theta_{L X} \hat{w}-\theta_{E X} \hat{p}_{E}$ to get:

$$
\begin{aligned}
\hat{E} & =\lambda_{E X}\left(\theta_{L X} \sigma_{X}\left(\hat{w}-\hat{p}_{E}\right)-\theta_{L X} \hat{w}-\theta_{E X} \hat{p}_{E}\right) \\
& +\lambda_{E K}\left[\theta_{L K} \sigma_{K}\left(\hat{w}-\hat{p}_{E}\right)-\theta_{E K} \tilde{\rho} \hat{p}_{E}-\theta_{L K} \tilde{\rho} \hat{w}\right] \\
0 & =\lambda_{L X}\left[-\theta_{E X} \sigma_{X}\left(\hat{w}-\hat{p}_{E}\right)-\theta_{L X} \hat{w}-\theta_{E X} \hat{p}_{E}\right] \\
& +\lambda_{L K}\left[-\theta_{E K} \sigma_{K}\left(\hat{w}-\hat{p}_{E}\right)-\theta_{E K} \tilde{\rho} \hat{p}_{E}-\theta_{L K} \tilde{\rho} \hat{w}\right]
\end{aligned}
$$

so that:

$$
\begin{aligned}
\hat{E} & =\lambda_{E X} \theta_{L X} \sigma_{X} \hat{w}-\lambda_{E X} \theta_{L X} \sigma_{X} \hat{p}_{E}-\lambda_{E X} \theta_{L X} \hat{w}-\lambda_{E X} \theta_{E X} \hat{p}_{E} \\
& +\lambda_{E K} \theta_{L K} \sigma_{K} \hat{w}-\lambda_{E K} \theta_{L K} \sigma_{K} \hat{p}_{E}-\lambda_{E K} \theta_{E K} \tilde{\rho} \hat{p}_{E}-\lambda_{E K} \theta_{L K} \tilde{\rho} \hat{w} \\
0 & =-\lambda_{L X} \theta_{E X} \sigma_{X} \hat{w}+\lambda_{L X} \theta_{E X} \sigma_{X} \hat{p}_{E}-\lambda_{L X} \theta_{L X} \hat{w}-\lambda_{L X} \theta_{E X} \hat{p}_{E}-\lambda_{L K} \theta_{E K} \sigma_{K} \hat{w} \\
& +\lambda_{L K} \theta_{E K} \sigma_{K} \hat{p}_{E}-\lambda_{L K} \theta_{E K} \tilde{\rho} \hat{p}_{E}-\lambda_{L K} \theta_{L K} \tilde{\rho} \hat{w}
\end{aligned}
$$

and:

$$
\begin{aligned}
\hat{E} & =\left[\lambda_{E X} \theta_{L X} \sigma_{X}-\lambda_{E X} \theta_{L X}+\lambda_{E K} \theta_{L K} \sigma_{K}-\lambda_{E K} \theta_{L K} \tilde{\rho}\right] \hat{w} \\
& -\left[\lambda_{E X} \theta_{L X} \sigma_{X}+\lambda_{E X} \theta_{E X}+\lambda_{E K} \theta_{L K} \sigma_{K}+\lambda_{E K} \theta_{E K} \tilde{\rho}\right] \hat{p}_{E} \\
0 & =\left[-\lambda_{L X} \theta_{E X} \sigma_{X}-\lambda_{L X} \theta_{L X}-\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{L K} \tilde{\rho}\right] \hat{w} \\
& +\left[\lambda_{L X} \theta_{E X} \sigma_{X}-\lambda_{L X} \theta_{E X}+\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{E K} \tilde{\rho}\right] \hat{p}_{E}
\end{aligned}
$$

Written in matrix form we have:

$$
\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \cdot\left[\begin{array}{c}
\hat{w} \\
\hat{p}_{E}
\end{array}\right]=\left[\begin{array}{c}
\hat{E} \\
0
\end{array}\right]
$$

where

$$
\begin{aligned}
& c_{11}=\sum_{q} \lambda_{E q} \theta_{L q} \sigma_{q}-\lambda_{E X} \theta_{L X}-\lambda_{E K} \theta_{L K} \tilde{\rho} \\
& c_{12}=-\sum_{q} \lambda_{E q} \theta_{L q} \sigma_{q}-\lambda_{E X} \theta_{E X}-\lambda_{E K} \theta_{E K} \tilde{\rho} \\
& c_{21}=-\sum_{q} \lambda_{L q} \theta_{E q} \sigma_{q}-\lambda_{L X} \theta_{L X}-\lambda_{L K} \theta_{L K} \tilde{\rho} \\
& c_{22}=\sum_{q} \lambda_{L q} \theta_{E q} \sigma_{q}-\lambda_{L X} \theta_{E X}-\lambda_{L K} \theta_{E K} \tilde{\rho}
\end{aligned}
$$

By construction of the cs the determinant Δ of the system is maximum if σ_{q} $=0$, which yields:

$$
\begin{aligned}
\Delta & =\left(\lambda_{E X} \theta_{L X}+\lambda_{E K} \theta_{L K} \tilde{\rho}\right)\left(\lambda_{L X} \theta_{E X}+\lambda_{L K} \theta_{E K} \tilde{\rho}\right) \\
& -\left(\lambda_{E X} \theta_{E X}+\lambda_{E K} \theta_{E K} \tilde{\rho}\right)\left(\lambda_{L X} \theta_{L X}+\lambda_{L K} \theta_{L K} \tilde{\rho}\right) \\
& =\lambda_{E X} \theta_{L X} \lambda_{L X} \theta_{E X}+\lambda_{E X} \theta_{L X} \lambda_{L K} \theta_{E K} \tilde{\rho}+\lambda_{E K} \theta_{L K} \lambda_{L X} \theta_{E X}+\lambda_{E K} \theta_{L K} \lambda_{L K} \theta_{E K} \tilde{\rho} \\
& -\lambda_{E X} \theta_{E X} \lambda_{L X} \theta_{L X}-\lambda_{E X} \theta_{E X} \lambda_{L K} \theta_{L K} \tilde{\rho}-\lambda_{E K} \theta_{E K} \lambda_{L X} \theta_{L X}-\lambda_{E K} \theta_{E K} \lambda_{L K} \theta_{L K} \tilde{\rho} \\
& =\lambda_{E X} \lambda_{L X}\left(\theta_{L X} \theta_{E X}-\theta_{E X} \theta_{L X}\right)+\lambda_{E X} \lambda_{L K} \tilde{\rho}\left(\theta_{L X} \theta_{E K}-\theta_{E X} \theta_{L K}\right) \\
& +\lambda_{E K} \lambda_{L X}\left(\theta_{L K} \theta_{E X}-\theta_{E K} \theta_{L X}\right)+\lambda_{E K} \lambda_{L K} \tilde{\rho}\left(\theta_{E K} \theta_{L K}-\theta_{E K} \theta_{L K}\right) \\
& =\lambda_{E X} \lambda_{L K} \tilde{\rho}\left(\theta_{L X} \theta_{E K}-\theta_{E X} \theta_{L K}\right)+\lambda_{E K} \lambda_{L X}\left(\theta_{L K} \theta_{E X}-\theta_{E K} \theta_{L X}\right) \\
& =\lambda_{E X} \lambda_{L K} \tilde{\rho}\left(\theta_{L X} \theta_{E K}-\theta_{E X} \theta_{L K}\right)-\lambda_{E K} \lambda_{L X}\left(\theta_{E K} \theta_{L X}-\theta_{L K} \theta_{E X}\right) \\
& =\left(\lambda_{E X} \lambda_{L K} \tilde{\rho}-\lambda_{E K} \lambda_{L X}\right)\left(\theta_{L X} \theta_{E K}-\theta_{E X} \theta_{L K}\right)
\end{aligned}
$$

Provided that intermediates production is relatively more intensive in energy use than capital accumulation, i.e. we have $\theta_{L X}<\theta_{L K}, \theta_{E K}<\theta_{E X}$ and $\lambda_{L X} / \lambda_{L K}<\lambda_{E X} / \lambda_{E K}$ so that $\lambda_{E X} \lambda_{L K} \tilde{\rho}-\lambda_{E K} \lambda_{L X}>0$ and $\theta_{L X} \theta_{E K}-\theta_{E X} \theta_{L K}<0$, we get $\Delta<0$. When intermediates production is relatively less energy-intensive than capital accumulation, i.e. we have $\theta_{L X}>\theta_{L K}$ and $\theta_{E K}>\theta_{E X}$ as well as $\lambda_{L X} / \lambda_{L K}>\lambda_{E X} / \lambda_{E K}$. In this case we have $\theta_{L X} \theta_{E K}-\theta_{E X} \theta_{L K}>0$. When $\lambda_{E X} \lambda_{L K} \tilde{\rho}-\lambda_{E K} \lambda_{L X}<0$ we get again $\Delta<0$. For $\lambda_{E X} \lambda_{L K} \tilde{\rho}-\lambda_{E K} \lambda_{L X}>0$ although $\lambda_{L X} / \lambda_{L K}>\lambda_{E X} / \lambda_{E K}$ we would, by the definition of $\tilde{\rho}$ and plausible values for the parameters, obtain the result that $\rho>g_{K}$. This, however, is not feasible in a growing economy and can be discarded. We infer that the determinant is negative, i.e. $\Delta<0$. For the input prices we obtain:

$$
\hat{w}=\frac{c_{22}}{\Delta} \hat{E}=\frac{1}{\Delta}\left[\lambda_{L X} \theta_{E X}\left(\sigma_{X}-1\right)+\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)\right] \cdot \hat{E}
$$

$$
\hat{p}_{E}=-\frac{c_{21}}{\Delta} \hat{E}=\frac{1}{\Delta}\left[\lambda_{L X}\left(\theta_{E X} \sigma_{X}+\theta_{L X}\right)+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)\right] \cdot \hat{E}
$$

which means that:

$$
\begin{aligned}
\hat{w}-\hat{p}_{E} & =\left\{\left[\lambda_{L X} \theta_{E X}\left(\sigma_{X}-1\right)+\lambda_{L K} \theta_{E K}\left(\sigma_{K}-\tilde{\rho}\right)\right]\right. \\
& \left.-\left[\lambda_{L X}\left(\theta_{E X} \sigma_{X}+\theta_{L X}\right)+\lambda_{L K}\left(\theta_{E K} \sigma_{K}+\theta_{L K} \tilde{\rho}\right)\right]\right\} \cdot \frac{\hat{E}}{\Delta} \\
& =\left(\lambda_{L X} \theta_{E X} \sigma_{X}-\lambda_{L X} \theta_{E X}+\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{E K} \tilde{\rho}\right. \\
& \left.-\lambda_{L X} \theta_{E X} \sigma_{X}-\lambda_{L X} \theta_{L X}-\lambda_{L K} \theta_{E K} \sigma_{K}-\lambda_{L K} \theta_{L K} \tilde{\rho}\right) \cdot \frac{\hat{E}}{\Delta} \\
& =\left(-\lambda_{L X} \theta_{E X}-\lambda_{L K} \theta_{E K} \tilde{\rho}-\lambda_{L X} \theta_{L X}-\lambda_{L K} \theta_{L K} \tilde{\rho}\right) \cdot \frac{\hat{E}}{\Delta} \\
& =\left[-\lambda_{L X}\left(\theta_{E X}+\theta_{L X}\right)-\lambda_{L K} \tilde{\rho}\left(\theta_{E K}+\theta_{L K}\right)\right] \cdot \frac{\hat{E}}{\Delta}=\frac{\nu}{\Delta} \hat{E}
\end{aligned}
$$

As we have $\Delta, \nu<0$, it follows that a decrease in E causes an unambiguous decrease of the wage/energy price ratio. Inserting for the different capital types yields:

$$
\begin{aligned}
& \hat{s}_{P}=\left[\theta_{N K}\left(1-\sigma_{\tilde{K}}\right)\left(\theta_{E N}-\theta_{E P}\right)+\left(\theta_{E P}-\theta_{E X}\right)\right] \frac{\nu}{\Delta} \cdot \hat{E}-\gamma \\
& \hat{s}_{H}=\left[\theta_{B N}\left(1-\sigma_{N}\right)\left(\theta_{E B}-\theta_{E H}\right)+\left(\theta_{E H}-\theta_{E X}\right)\right] \frac{\nu}{\Delta} \cdot \hat{E}-\gamma \\
& \hat{s}_{B}=\left[\theta_{H N}\left(1-\sigma_{N}\right)\left(\theta_{E H}-\theta_{E B}\right)+\left(\theta_{E B}-\theta_{E X}\right)\right] \frac{\nu}{\Delta} \cdot \hat{E}-\gamma
\end{aligned}
$$

