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long run, the economy exhibits purely resource-augmenting technical
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1 Introduction1

Endogenous growth theories represent one of the most important advances
in economic analysis in the last two decades. Early contributions by Romer
(1990), Grossman and Helpman (1991), and Aghion and Howitt (1992) for-
malized the determinants of productivity growth in economies where tech-
nological progress results from R&D activity. In this framework, horizontal
(vertical) innovations improve the quantity (quality) of intermediate goods,
and sustained growth is obtained through endogenous technical change (ETC
hereafter). More recently, three important contributions by Acemoglu (1998,
2001, 2003) developed models with directed technical change (DTC) where
�nal output is obtained by means of two inputs, e.g. capital and labor, and
technical progress may in principle be either labor- or capital-augmenting,
or both. The respective rates of technical progress are determined by the
relative pro�tability of developing factor-speci�c innovations, so that the di-
rection of technical change is determined endogenously. Hence, DTC models
can be considered an up-to-date formalization of the Hicksian notion of in-
duced innovations - innovations directed at economizing the use of those
factors that become expensive due to changes in their relative prices.2

In the �eld of resource economics, new growth theories have been ex-
ploited to provide new answers to an old question: the problem of sustaining
growth in the presence of natural resource scarcity. A huge body of recent
literature extends endogenous growth models to include natural resources as
an essential input. A central aim of this literature is to determine whether
technical progress is e¤ective in ensuring sustained consumption. This is-
sue has been addressed in the ETC framework by Barbier (1999), Sholz
and Ziemes (1999), Groth and Schou (2002), Grimaud and Rougé (2003),
amongst others. These contributions present models where

(i) the direction of technical change is exogenous, and

(ii) technical progress is, explicitly or implicitly, resource-augmenting.3

It should be stressed that assumption (ii) is crucial with respect to the
sustainability problem: in the vast majority of growth models with ex-
haustible resources, ever-increasing consumption requires that the resource-

1We thank Daron Acemoglu, Lucas Bretschger, Karen Pittel, and Sjak Smulders for
insightful comments and suggestions.

2Cf. Hicks (1932: p.124). Early formulations of the Hicksian notion of induced inno-
vations include Kennedy (1964) and Drandakis and Phelps (1965).

3In section 2 we give a precise de�nition of implicit and explicit rates of resource-
augmenting progress.
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augmenting progress strictly exceed the utility discount rate. The same rea-
soning underlies neoclassical models of optimal growth, where the rate of
resource-saving progress is exogenous. Hence, most contributions in this
�eld share the view that innovations increase, directly or indirectly, the pro-
ductivity of natural resources. However, to our knowledge, the existence of
purely resource-augmenting technical progress has not been micro-founded
so far. Hence, one may object that the above models are conceptually biased
in favor of sustainability: since technological progress may in principle be
capital- rather than resource-augmenting, speci�cations (i)-(ii) might re�ect
a convenient, but strong assumption.
This paper studies whether and under what circumstances technical change

is endogenously directed towards resource-augmenting innovations. We tackle
the issue in a multi-sector DTC framework, where exhaustible resources and
accumulable man-made capital are both essential for production. This al-
lows us to represent in more general terms the so-called Capital-Resource
Economy - the central paradigm in resource economics since the pioneering
contributions of Dasgupta and Heal (1974) and Stiglitz (1974). Elaborating
on Acemoglu (2003), we assume an R&D sector where capital- and resource-
augmenting innovations increase the number of varieties of factor-speci�c
intermediates. Our main result is that purely resource-augmenting technical
change takes place along the balanced growth path: although the rate of
capital-augmenting progress may be positive in the short run, it falls to zero
as the economy approaches balanced growth.
The scope of this result is twofold. On the one hand, we provide a

micro-foundation for Capital-Resource models featuring resource-augmenting
progress, in both the Solow-Ramsey and ETC frameworks: in this perspec-
tive, our results contradict the view that such models are too optimistic with
respect to sustainability. On the other hand, we show that the Hotelling rule
- which characterizes an e¢ cient depletion path for an exhaustible stock of
resources - fully supports the balanced growth equilibrium: the possibility of
developing resource-augmenting innovations allows the price of raw natural
resources to grow inde�nitely, without con�icting with stationary prices of
intermediate goods in the long run.
The plan of the paper is as follows. Section 2 provides a classi�cation

of capital-resource economies in terms of technology speci�cations, and de-
�nes implicit and explicit rates of resource-augmenting technical progress. In
section 3, we characterize the balanced growth path of the Capital-Resource
economy under directed technical change, and derive the main results. Sec-
tion 4 concludes.
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2 Growth theory and resource economics

The much celebrated Symposium on the Economics of Exhaustible Resources
is often recalled as the �rst close encounter between growth theory and re-
source economics. The Capital-Resource model of Dasgupta and Heal (1974),
Solow (1974), and Stiglitz (1974) - i.e. an extended neoclassical growth model
including exhaustible resources as a production factor - has since been con-
sidered a central paradigm in resource economics. More recently, several
authors exploited new growth theories to analyze capital-resource economies
with endogenous technical change: see e.g. Barbier (1999), Sholz and Ziemes
(1999), Groth and Schou (2002), Grimaud and Rougé (2003), Bretschger and
Smulders (2004).
A central aim of this literature is to determine whether, and under what

circumstances, technical progress is e¤ective in ensuring sustained consump-
tion (Bretschger, 2005). In this regard, the common denominator of both
early and recent models is that a strictly positive rate of resource-augmenting
progress is necessary to obtain non-declining consumption in the long run.
We used italics in order to stress that the type of technological progress
is a crucial element in Capital-Resource economies: from the perspective
of sustainability, the �direction�of technical change (whether it is resource-
augmenting or capital-augmenting) is even more important than its �nature�
(i.e., whether it is exogenous or endogenous). To clarify this point, consider
the following technologies:

Y (t) = z (K (t) ;M (t)R (t)) ; (1)

Y (t) = A (t)K (t)�1 R (t)�2 ; (2)

where Y is output, K is man-made capital, R is an exhaustible resource ex-
tracted from a �nite stock, z is concave and homogeneous of degree one, and
�1+�2 � 1. Technology (1) features an explicit rate of resource-augmenting
progress equal to _M=M : the underlying assumption is that the economy
develops resource-saving techniques that directly increase the productivity
of R. Speci�cation (2) combines the Cobb-Douglas form with disembodied
technical progress: the Hicks neutral rate is equal to _A=A.
Firstly, consider the neoclassical framework: in this case, technology (1)

exhibits M (t) = e�t, with � > 0 exogenous and constant. Then, if co-
sumption obeys the standard Keynes-Ramsey rule, a necessary condition for
sustained consumption in the long run is � � �, where � is the utility dis-
count rate (Valente, 2005).4 This is a generalization of a well-known result
by Stiglitz (1974), who instead assumed technology (2) setting A (t) = e!t

4The same technology is assumed in Gaitan and Roe (2005).
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with ! > 0 exogenous and constant. In this case, the necessary condition for
non-declining consumption becomes � � !=�2. Hence, from the perspective
of sustainability conditions, what is crucial is not the total e¤ect of technical
change on output levels (!) but rather its resource-saving e¤ect.5 Indeed,
technology (2) can be rewritten as Y = K�1

�
e(!=�2)tR

��2, where (!=�2) is
the implicit rate of resource-augmenting progress. This implies that assum-
ing disembodied progress in association with a Cobb-Douglas form is not
innocuous for the problem at hand: under speci�cation (2), technical change
is indirectly resource-augmenting.
The same reasoning applies with respect to ETC models, where _M=M

or _A=A are determined endogenously by R&D activity. On the one hand,
sustained consumption still requires that the resource-augmenting rate be at
least equal to the discount rate (Amigues et al. 2004). On the other hand,
also in this framework, most technology speci�cations fall in either category
(1) or (2). For example, technical progress is explicitly resource-augmenting
in Amigues et al. (2004), whereas Aghion and Howitt (1998: Ch.5), Barbier
(1999), Sholz and Ziemes (1999), and Grimaud and Rougé (2003) assume
variants of the Cobb-Douglas form (2).6

Hence, the common denominator of capital-resource models is that tech-
nological progress is, explicitly or implicitly, resource-augmenting by assump-
tion. But is this assumption plausible? In principle, one might object, techni-
cal progress can be purely capital-augmenting instead. For example, suppose
that Y = �(NK;R), whereN represents purely capital-augmenting progress
and � exhibits an elasticity of substitution below unity. In this case, the pro-
duction function does not allow for implicit resource-augmenting progress,
and prospects for sustainability change dramatically. It follows from these
considerations that a crucial issue is to determine whether (1)-(2) exhibit
sound microeconomic foundations: if not, all mentioned contributions are
conceptually biased in favor of sustainability because technologies (1) and
(2) re�ect a convenient, but strong assumption.
Tackling this issue requires assuming that the direction of technical change

is endogenous. In the context of multi-sector economies, the DTC frame-
work has been developed by Acemoglu (1998, 2001, 2003), who assumes

5Actually, Stiglitz (1974) considers Y = K (t)
�1 R (t)

�2 L (t)
�3 e!t, where L is labor

supplied inelastically. Results do not change under speci�cation (2), which is chosen for
expositional clarity.

6Bretschger and Smulders (2004) assume a peculiar CES technology where innovations
are not directly resource-augmenting, but spillovers from capital-augmenting innovations
directly a¤ect resource productivity. In this case, resource-augmenting spillovers become
necessary to sustain the economy, and the underlying logic is consistent with the above
discussion.
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that the rates of capital- and labor-augmenting technical change are respec-
tively determined by the relative pro�tability of factor-speci�c innovations.
In particular, Acemoglu (2003) shows that a typical Capital-Labor economy
exhibits purely labor-augmenting progress under directed technical change.
In the �eld of environmental economics, models with DTC are analysed by
Andre and Smulders (2005), Di Maria and Smulders (2004) and Di Maria
and van der Werf (2005): Di Maria and Smulders (2004) study the role of
endogenous technology in explaining cross-country di¤erences in pollution
and the pollution haven e¤ect of international trade; Di Maria and van der
Werf (2005) analyze carbon leakage e¤ects under directed technical change
considering clean versus dirty inputs; Andre and Smulders (2005) consider
a Labor-Resource economy and compare equilibrium dynamics with recent
international trends in energy supply and consumption. To our knowledge,
however, the existence of purely resource-augmenting technical progress in a
Capital-Resource Economy has not been micro-founded so far.
In order to address this point, this paper studies whether R&D activity

is endogenously directed towards resource-augmenting innovations, given the
alternative of developing capital-augmenting innovations. At the formal level,
we assume a CES technology of the form Y = F (NK;MR) with an elasticity
of substitution below unity, and investigate the endogenous dynamics of N
andM along the balanced growth path. The main di¤erence with respect to
Acemoglu (2003) is that, since we substitute �xed labor with a resource �ow
extracted from an exhaustible stock, input units and factor rewards (that
is, R and resource rents) are necessarily time-varying: the extracting sector
exploits the natural stock over an in�nite time-horizon, and resource prices
therefore obey the Hotelling rule (Hotelling, 1931). This implies that we
cannot translate a priori the result of �purely labor-augmenting progress�of
Acemoglu (2003) into �purely resource-augmenting progress� in our model,
until we prove that the Hotelling rule fully supports the time-paths of inter-
mediate goods prices compatibly with balanced growth. We will show that
this is actually the case in our model.

3 The model

The supply-side of the economy consists of �ve sectors: (i) the �nal sector
assembles capital-intensive and resource-intensive goods ( ~K and ~R). These
goods are produced by (ii) competitive �rms, using n varieties of capital-
speci�c intermediates (yK(j) with j 2 (0; n]), and m varieties of resource-
speci�c intermediate goods (yR(j) with j 2 (0;m]), respectively. Factor-speci�c
intermediates are supplied by (iii) monopolists producing yK(j) by means of
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available man-made capital (K), and producing yR(j) by means of extracted
resource (R); the resource is supplied by (iv) an extracting sector that ex-
ploits a �nite stock (H) of exhaustible natural capital. Finally, (v) the R&D
sector consists of �rms that develop capital-augmenting innovations (blue-
prints that increase n) and �rms that develop resource-augmenting innova-
tions (blueprints that increase m). The productivity of R&D �rms depends
on the amounts of �scientists�employed in the two subsectors (SK and SR,
respectively).
Our speci�cations follow the analysis in Acemoglu (2003): aggregate out-

put Y equals

Y = F
�
~K; ~R

�
=
h

 ~K

"�1
" + (1� 
) ~R "�1

"

i "
"�1
; (3)

where 
 2 (0; 1) is a weighting parameter, and " is the (constant) elasticity of
substitution between ~K and ~R. From the point of view of resource economics
and sustainability theory, the interesting case is that featuring " < 1: when
resource-intensive goods are essential, natural resource scarcity binds the
economy over the entire time-horizon considered, t 2 [0;1).
Competitive �rms produce ~K and ~R by means of factor-speci�c interme-

diates, yK(j) and y
R
(j). In each instant t, there are n (t) varieties of y

K
(j) and

m (t) varieties of yR(j), and factor-intensive goods are produced according to
technologies

~K =

�Z n

0

�
yK(j)
��
dj

� 1
�

and ~R =
�Z m

0

�
yR(j)
��
dj

� 1
�

; (4)

where � 2 (0; 1). Intermediates yK(j) and yR(j) are supplied by monopolists who
hold the relevant patent, and exploit linear technologies

yK(j) = K
(j) and yR(j) = R

(j); (5)

whereK(j) indicates units of man-made capital used to produce yK(j), and R
(j)

indicates units of resource used to produce yR(j).
7 The value of patents held by

monopolists equals the present-value stream of instantaneous pro�ts implied

7It is worth noting, at this point, the role of symmetric technologies for factor-intensive
goods and intermediates. In this paper, we are interested in the direction of technical
change as driven by the �general nature�of primary inputs, i.e. reproducibility (of man-
made capital) versus exhaustibility (of the natural resource). Symmetric technologies in
(4) and (5) are essential to this aim: assuming factor-speci�c elasticities - setting e.g.
�K 6= �R in (4) - or di¤erent marginal costs for monopolists in (5) would create trivial
distortions in the relative pro�tability of factor-speci�c innovations, without addressing
the main issue.
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by capital- and resource-augmenting innovations (�K and �R, respectively),
discounted by the interest rate r and the assumed obsolescence (depreciation)
rate �:

V i (t) =

Z 1

t

�i (v) e�
R v
t (r(!)+�)d!dv; with i = K;R: (6)

For future reference, on the basis of (6) we can de�ne an index of relative
pro�tability of the two types of innovations as

�(t) �
Z 1

t

n (v)�K (v)

m (v)�R (v)
dv: (7)

Denoting aggregate capital by K (t), and the total amount of extracted re-
source by R (t), market-clearing requiresZ n(t)

0

K(j) (t) dj = K (t) and
Z m(t)

0

R(j) (t) dj = R (t) : (8)

The amount of resource R is supplied by the extracting sector. Denoting
the interest rate by r and the resource price by q, the present-discounted
value of future pro�ts for the extracting sector isZ 1

0

q (t)R (t) e�
R t
0 r(v)dvdt; (9)

where we have ruled out extraction costs for simplicity. Assuming that
the natural resource is exhaustible, extraction plans face the following con-
straints:

_H (t) = �R (t) and
Z 1

0

R (t) dt � H (0) ; (10)

where H indicates the resource stock.
In this model, the source of endogenous growth is given by increases in

the number of varieties: _n (t) > 0 corresponds to capital-augmenting tech-
nical change, and _m (t) > 0 corresponds to resource-augmenting technical
change. Increases in varieties are obtained through R&D activity. In the
R&D sector, free-entry conditions ensure that �rms make zero extra pro�ts.
Firms developing capital- and resource-augmenting innovations employ SK

and SR scientists, respectively. An important assumption is that scientists
are fully mobile between the two types of �rms: in each instant, scientists can
be reallocated between capital- and resource-augmenting activity, according
to the relative pro�tability of the two types of innovations. The technologies
for invention are represented by

_n=n = bKSK�
�
SK
�
� �; (11)

_m=m = bRSR�
�
SR
�
� �; (12)
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where � > 0 is the obsolescence rate of both innovations, and bK and bR are
constant productivity indices. The number of scientists a¤ects the produc-
tivity of R&D �rms through SK�

�
SK
�
and SR�

�
SR
�
. The function � (:) is

assumed to be continuously di¤erentiable and strictly decreasing, such that
@ (Si� (Si)) =@Si > 0. On the one hand, assuming �0 (:) < 0 captures crowd-
ing e¤ects among scientists (when more scientists are employed in one sector,
the productivity of each declines); on the other hand, the net e¤ect of a mar-
ginal increase in employed scientists on the rate of innovation is positive:
_SK > 0 increases _n=n. Crowding e¤ects are not internalized by R&D �rms,
so that bR�

�
SR
�
and bK�

�
SK
�
are taken as given when �rms compete for

hiring scientists. We further assume that the number of existing scientists
(S) su¢ ces to have a stationary mass of varieties ( _m = _n = 0):

S > �SK + �SR (13)

where �SK and �SR satisfy bK �SK�
�
�SK
�
= � and bR �SR�

�
�SR
�
= � by de�nition.

To close the model, we consider a representative agent with logarithmic
instantaneous preferences, and a constant utility discount rate � > 0. As-
suming unit mass population, and denoting aggregate consumption by C, an
optimal consumption path is a plan fC (t)g1t=0 that maximizesZ 1

0

logC (t) e��tdt; (14)

subject to the aggregate wealth constraint

_K = rK + qR + wS � C; (15)

where rK is capital income (r is the marginal reward of capital), qR repre-
sents resource rents, and w is the wage rate for scientists, so that wS is total
labor income. Our results do not change if we substitute logarithmic prefer-
ences with a CRRA instantaneous utility function: in (14), the intertemporal
elasticity of substitution is set equal to one to simplify the exposition.

3.1 Equilibrium

Denote by pK and pR the prices of capital- and resource-intensive goods ( ~K,
~R), and the prices of factor-speci�c intermediates (yK(j), y

R
(j)) by �

K
(j) and �

R
(j),

respectively. An equilibrium of the economy is de�ned by a vector of price
time-paths n

pK ; pR; �K(j)
��n
j=0
; �R(j)

��m
j=0
; r; q; w

o1
t=0

and a sequence of allocations
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n
~K; ~R; yK(j)

��n
j=0
; yR(j)

��m
j=0
; K;R; SK ; SR; C

o1
t=0
;

such that, for given prices in the respective sectors: consumption and in-
vestment plans maximize (14) subject to (15); allocations of capital- and
resource-intensive goods maximize �nal sector pro�ts; allocations of capital-
and resource-speci�c intermediates maximize pro�ts

pK ~K �
Z n

0

�K(j)y
K
(j)dj and pR ~R�

Z m

0

�R(j)y
R
(j)dj (16)

subject to (4); allocations of capital and resource inputs maximize monopo-
listic instantaneous pro�ts

�K(j) =
�
�K(j) � r

�
yK(j) and �R(j) =

�
�R(j) � q

�
yR(j) (17)

subject to demand schedules for yK(j) and y
R
(j); extracted resource �ows max-

imize (9) subject to (10); scientist allocations SK and SR imply zero pro�ts
for all R&D �rms; and all markets clear.
Setting aggregate output as the numeraire good, the equilibrium is char-

acterized by the following relations. First order conditions for the �nal sector
read

pK = 

�
Y= ~K

� 1
"

and pR = (1� 
)
�
Y= ~R

� 1
"
; (18)

with price-index normalization implyingh

"
�
pK
�1�"

+ (1� 
)"
�
pR
�1�"i 1

"�1
= 1: (19)

Next, maximization of (16) subject to (4) implies demand schedules for in-
termediates

yK(j) =
�
�K(j)=p

K
� 1
��1 ~K and yR(j) =

�
�R(j)=p

R
� 1
��1 ~R: (20)

Monopolists producing factor-speci�c intermediates maximize (17) taking
schedules (20) as given, obtaining �rst order conditions

�K(j) = r�
�1 and �R(j) = q�

�1: (21)

Expressions (21) imply that equilibrium instantaneous pro�ts �K(j) and �
R
(j)

are invariant across varieties: from the market clearing condition (8), we have

yK(j) = K
(j) = K=n and yR(j) = R

(j) = R=m; (22)
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so that equilibrium pro�ts read

�K = r (1� �) (n�)�1K and �R = q (1� �) (m�)�1R: (23)

From (23), we can substitute instantaneous pro�ts and obtain equilibrium
present-value streams as

V K (t) =
1� �
�

Z 1

t

K (v)

n (v)
r (v) e�

R v
t (r(!)+�)d!dv; (24)

V R (t) =
1� �
�

Z 1

t

R (v)

m (v)
q (v) e�

R v
t (r(!)+�)d!dv; (25)

As regards resource extraction, maximising (9) subject to (10) yields the
standard Hotelling rule

_q=q = r; (26)

which implicitly de�nes an optimal depletion path where the initial amount
of extracted resource is R (0) = � (H0; K0) for a given q (0).
In the R&D sector, the value of the marginal innovation in the two types of

�rms is respectively given by bK�
�
SK
�
nV K and bR�

�
SR
�
mV R. In general,

the equilibrium wage rate of scientists is given by

w = max
�
bK�

�
SK
�
nV K ; bR�

�
SR
�
mV R

	
; (27)

which takes into account possible corner solutions. When equilibrium levels
of SK and SR are both positive, we have bK�

�
SK
�
nV K = bR�

�
SR
�
mV R

and SK + SK = S, so that

nV K

mV R
=
bR�

�
S � SK

�
bK� (SK)

(28)

at any instant in which both types of innovations are developed. Finally,
consumption dynamics follow the standard Keynes-Ramsey rule

_C=C = r � �: (29)

Integrating (4) using (22) we obtain

~K = n
1��
� K and ~R = m

1��
� R: (30)

Substituting (30) in (20), and using conditions (21) we obtain

r = �pKn
1��
� and q = �pRm

1��
� : (31)
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In order to characterize dynamics, it is useful to de�ne elasticity-adjusted
indices of intermediates varieties as N � n

1��
� and M � m

1��
� . From (30)

we can thus rewrite aggregate output Y = F ( ~K; ~R) in equilibrium as

Y = F (MK;MR) =
h

 (NK)

"�1
" + (1� 
) (MR)

"�1
"

i "
"�1
: (32)

Expression (32) clari�es the role of innovations in determining the rates of
technical progress through expansions of intermediates varieties. For this rea-
son we will refer to _N=N and _M=M as the (net) rates of capital-augmenting
and resource-augmenting technical progress. Being F homogeneous of degree
one, we can de�ne the augmented capital-resource ratio as

x � NK=MR; (33)

and express the augmented output-resource ratio Y=MR in terms of the
intensive production function f (x), which exhibits the following properties:

Y=MR = f (x) =
h
1� 


�
1� x "�1

"

�i "
"�1
; (34)

pK = f 0x (x) = 
 (f (x) =x)
1
" ; (35)

pR = f (x)� f 0x (x)x = (1� 
) (f (x))
1
" : (36)

From (35) and (36), we can also de�ne the relative capital share as

� � rK

qR
=




1� 
x
"�1
" ) @�=@x < 0: (37)

Also note that prices pK and pR can be expressed as8

pK (x) =
h

" + x

1�"
" (1� 
) 
"�1

i1=("�1)
) @pK=@x < 0; (38)

pR (x) =
h
x
"�1
" 
" (1� 
)"�1 + (1� 
)"

i1=("�1)
) @pR=@x > 0; (39)

where the sign of both derivatives follows from " < 1. That is, when capital-
and resource intensive goods are complements, an increase in the augmented
capital-resource ratio (x) corresponds to: a decrease in the relative capital
share (�), a decrease in the price of capital-intensive goods (pK), and an
increase in the price of resource-intensive goods (pK). On the basis of the
above relations, the dynamics of x can be expressed in terms of the two
indices of intermediates varieties (N and M):

8Expressions (38)-(39) can be derived from price-index normalization. Multiplying

both sides of (19) by pR gives pR =
h

"
�
pK=pR

�"�1
+ (1� 
)"

i1=("�1)
. Substituting from

(18) the price ratio pK=pR = 
 (1� 
)�1 x�(1=") yields (39). Symmetric steps yield (38).
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Lemma 1 In equilibrium, the dynamics of the augmented capital-resource
ratio are described by

_x = "
f (x)

f 0x (x)

 
f 0x (x) �N �

_M

M

!
: (40)

Proof. Di¤erentiate (36) to get

_pR=pR = _xf 0x (x) = ("f (x)) : (41)

From (31) and (35), the interest rate equals

r = f 0x (x) �N: (42)

Di¤erentiating the expression for q in (31) we obtain _q=q =( _pR=pR)+( _M=M).
Substituting _pR=pR from (41), _q=q = r from (26), and the interest rate from
(42), we obtain the dynamic law (40).

Equation (40) shows that the augmented capital-resource ratio increases
(decreases) when the interest rate exceeds (falls short of) the net rate of
resource-augmenting technical change, _M=M . Neoclassical and ETC models
with purely resource-augmenting progress can be seen as particular cases of
this general rule: the basic di¤erence here is that N and _M=M are both en-
dogenous. If we normalize N = 1 and assume _M=M = � > 0 (exogenous con-
stant) in equation (40) we have the dynamic rule for the capital-resource ratio
in the Ramsey model with exogenous progress (see Valente, 2005: eq.16). Al-
ternatively, normalising N = 1 and keeping _M=M endogenously determined
by R&D activity, we have purely resource-augmenting progress à la Amigues
et al. (2004).

3.2 Balanced Growth Path

We begin our characterization of long-run equilibria by considering possible
Balanced Growth Paths (BGPs). We will denote by y1 the limit limt!1 y (t),
and by y� the value of y along the balanced growth path, for any variable y.
Following the standard de�nition, a BGP equilibrium features ( _C=C)1 =

g� with g� �nite and constant. We now show that ( _C=C)1 = g� implies a
constant augmented capital-resource ratio in the long run. Starting from
(40), we have three possible cases regarding the asymptotic value of x: in
general, the augmented capital-resource ratio may approach zero (x1 = 0),
diverge to in�nity (x1 = 1), or converge to a positive steady-state value,
x = �x with �x > 0 a �nite constant. The next Proposition establishes that
only the third case (x = �x) is compatible with BGP.
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Proposition 2 If ( _C=C)1 = g� �nite and constant, then x1 = �x > 0 �nite
and constant.

Proof. The proof builds on the fact that x1 = 0 and x1 = 1 have the
following implications:

x1 = 0) SK1 = S ) ( _n=n)1 = b
KS� (S)� � ) ( _m=m)1 = ��; (43)

x1 = 1) SK1 = 0) ( _n=n)1 = �� ) ( _m=m)1 = b
RS� (S)� �;(44)

Expressions (43) and (44) are proved in the Appendix, using the index of
relative pro�tability de�ned in (7). From (43), if the augmented capital-
resource ratio approaches zero, all scientists are employed in developing
capital-augmenting innovations, and the number of resource-speci�c interme-
diates m will approach zero due to depreciation. From (44), in the opposite
case, x diverges to in�nity, all scientists are employed in resource-augmenting
innovations, and the number of capital-speci�c intermediates will approach
zero in the long run. But neither (43) nor (44) are compatible with BGP,
and we prove this by contradiction: recalling the Keynes-Ramsey rule (29),
having ( _C=C)1 = g� requires a constant interest rate. From (31), _r1 = 0 in
turn requires

lim
t!1

_pK (t)

pK (t)
= � lim

t!1

_N (t)

N (t)
; (45)

which implies that _pK1 and _N1 are either both zero or of opposite sign. First,
suppose that _pK1 > 0 and _N1 < 0: from (38), _pK1 > 0 ) _x1 < 0 ) x1 =
0; but then, expression (43) would imply _N1 > 0, which contradicts the
supposition. Second, suppose that _pK1 < 0 and _N1 > 0: from (38), _pK1 <
0 ) _x1 > 0 ) x1 = 1; but then, expression (44) would imply _N1 < 0,
which contradicts the supposition. Hence, in order to have a constant interest
rate we need _pK1 = _N1 = 0, which implies _x1 = 0 from (38). Consequently,
if the economy converges to BGP, x1 = �x > 0 with �x �nite and constant.

Proposition 2 shows that balanced growth requires _x1 = 0 and _N1 =
_n1 = 0, so that if the economy approaches a BGP equilibrium we have
x1 = x� and N1 = N�. A constant level of N means that the net growth
rate of capital-speci�c intermediates is zero. Note that, due to obsolescence
(� > 0), _n1 = 0 does not imply zero R&D activity in capital-augmenting
innovations: a positive number of scientists (SK1 > 0) must work in the
capital-augmenting sector in order to keep n, the number of capital-speci�c
intermediates, constant over time. More important,
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Proposition 3 Convergence to BGP implies purely resource-augmenting tech-
nical change, with the net rate _M=M converging to the equilibrium interest
rate:

lim
t!1

_N (t)

N (t)
= 0 and lim

t!1

_M (t)

M (t)
= r� = f

0
x (x

�) �N�: (46)

Proof. From Proposition 2, balanced growth requires _pK1 = _N1 = _x1 = 0.
Substituting (42) in (40) and setting _x1 = 0 completes the proof.

This is the main result of the paper. The intuition for (46) is that balanced
growth requires constant prices of both capital- and resource-intensive goods
( _pK1 = _x1 = 0 implies, from (36), that _pR1 = 0 as well). On the one hand,
since the price of resource-intensive goods is proportional to q=M - from (31)
- balanced growth is possible only if the net rate of resource-saving progress
exactly o¤sets the growth in the resource price. On the other hand, e¢ cient
exploitation of the exhaustible resource requires the resource price to grow at
a rate equal to r by virtue of the Hotelling rule (26), implying ( _M=M)1 = r�.9

Hence, the BGP equilibrium of the economy is characterized by the following
dynamics:

�
~K�= ~K� =

�
~R�= ~R� = _Y�=Y� = _C�=C� = r� � �; (47)

_R�=R� = ��; (48)

_m�=m� = � (1� �)�1 r�; (49)

_n�=n� = 0; (50)

_�K� =�
K
� = r� � �; (51)

_�R� =�
R
� =

1� 2�
1� � r� � �; (52)

Substituting (51)-(52) in (24)-(25) we obtain the BGP values of patents: if
the economy converges to balanced growth, we have

V K (t) =
(1� �) r�
� (� + �)n�

�K (t) ; (53)

V R (t) =
1� �

�
�

�
1�� r� + � + �

� � q (t)R (t)
m (t)

; (54)

9Formally, this reasoning provides an equivalent proof of Proposition 3: di¤erentiating
q from (31) and substituting the Hotelling rule _q=q = r, we obtain r =( _pR=pR)+( _M=M).
Taking the limit and substituting _pR1 = 0 we obtain (46).
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for any su¢ ciently large t. Equations (53)-(54) imply that both nV K and
mV R will grow at the balanced rate r���. Finally, equilibrium in the �labor
market for scientists�requires

bK�
�
SK�
�
n�V

K (t) = bR�
�
SR�
�
m (t)V R (t) ; (55)

where SK� = �SK and SR� = S � �SK .
Since f 0x (:) is homogeneous of degree zero and @

�
SK�

�
SK
��
=@SK > 0,

a unique couple of values (x�; SK� = �SK) satis�es r� = f 0x (x
�) �N� with

N� determined by SK� , and the BGP equilibrium is therefore unique. As
regards other possible long-run equilibria, the BGP described above is the
only possible long-run equilibrium provided that the economy exhibits non-
cyclical paths: in this case, ( _C=C)1 = 1 cannot be an equilibrium. The
proof is identical to that in Acemoglu (2003), and is reported in the Appendix.
As regards the dynamic stability of the BGP equilibrium, we are able to

reduce the set of equilibrium conditions to a linearized three-by-three system
of di¤erential equations which includes the dynamics of x, N , and SK . As
shown in the Appendix, in the neighborhood of the steady-state equilibrium�
x�; N�; S

K
�
�
we have0@ _x=x

_N=N
_SK=SK

1A '

0@ axx axN axS
0 0 aNS
aSx 0 aSS

1A�
0@ x

N
SK

1A ; (56)

where axx < 0, axN > 0, axS > 0 in the �rst line; aNS > 0 in the second line;
and aSX > 0, aSS > 0 in the third line. Recalling that R (0) = � (H0; K0)
implies x (0) = K0 (� (H0; K0))

�1, local stability requires one positive and two
negative roots. Being the determinant of the Jacobian matrix axNaNSaSX >
0, we have either three positive roots, or one positive and two negative (or
complex with negative real part) roots. The three roots (�i) are also zeros of

P (�) = ��3 + �2 (axx + aSS) + � (aSxaxS � axxaSS) + aSxaNSaxN = 0;

where (aSxaxS � axxaSS) > 0 and aSxaNSaxN > 0. Hence, regardless of the
sign of (axx + aSS), the polynomial always shows one variation of signs (either
-,+,+,+ or -,-,+,+). This implies the existence of one and only one positive
root, and thus establishes local stability.

3.3 Remarks

We have formalized directed technical change in a Capital-Resource economy
by extending the benchmark DTC model of Acemoglu (2003) to include nat-
ural capital. Acemoglu (2003) assumes that �nal output is a combination of
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capital-intensive and labor-intensive goods, and shows that, when both goods
are essential, there exists a unique balanced growth path with purely labor-
augmenting technical change. In this paper, raw labor inputs are replaced by
resource �ows extracted from an exhaustible natural stock. We have shown
that the equilibrium time-path of resource prices, which obeys the standard
Hotelling rule, fully supports the time-path of intermediate goods prices that
is compatible with the BGP equilibrium. In particular, the asymmetric role
of the two types of innovation follows immediately from equilibrium condi-
tions (31). Balanced growth typically requires a constant interest rate (the
rental price of capital): given that q (the price of natural resource) must
grow forever, ful�lling (31) for given prices pK and pR requires di¤erentiated
innovation rates _m=m 6= _n=n. As a consequence, in our Capital-Resource
economy we were able to �nd a BGP equilibrium which is locally stable, and
features purely resource-augmenting technical change.
From Proposition 3, the asymptotic rate of resource-augmenting progress

exactly equals the interest rate. A similar result can be obtained in the
neoclassical framework, but following an inverse logic: for a given exogenous
rate of resource-augmenting technical progress �, the marginal product of
capital converges to �, determining constant factor shares in the long run
(Stiglitz, 1974). In the present context, instead, the rate of technical change is
endogenous and its behavior complies with the Hicksian principle of induced
innovations: technical change tends to be directed towards those factors that
become expensive, in order to compensate relative scarcity with increased
real productivity. As a consequence, balanced growth requires that _M=M
converges to the growth rate of resource price, which is in turn equal to the
interest rate.
Two �nal remarks are as follows. Firstly, the uniqueness and the local

stability of the BGP equilibrium hinge on the assumption of poor substitu-
tion possibilities: setting " > 1 leaves room for multiple long-run equilibria,
and in particular, the possibility that the economy shifts towards alternative
paths along which the net rate of capital-augmenting technical progress is
positive (for details, see Acemoglu, 2003). However, in the present context,
our assumption " < 1 relies on a precise economic reasoning: natural resource
scarcity matters for sustainability to the extent that exhaustible resources are
essential for production. Secondly, the necessary condition for non-declining
consumption in the long run can be expressed as�

1� �
�

�
bR
�
SR�
�
�
�
SR�
�
� �+ �; (57)

which is obtained by imposing ( _C=C)1 = ( _M=M)1 � � � 0 in the BGP
equilibrium. From (57), lower monopoly pro�ts for intermediate �rms, as well
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as higher depreciation rates for innovations, reduce prospects for sustained
consumption in the long run.

4 Conclusion

The vast majority of capital-resource models assumes that technological
progress is, explicitly or implicitly, resource-augmenting. This assumption
is necessary to obtain sustained consumption in the long run, but it has not
been micro-founded so far. At least in principle, R&D activity can also be
directed towards capital-augmenting innovations, leaving room for the pos-
sibility that technical change does not exhibit resource-saving properties: in
this case, most capital-resource models would be too optimistic with respect
to the problem of sustainability, and specifying resource-augmenting progress
would be a convenient, but strong assumption. Elaborating on Acemoglu
(2003), we addressed the problem in the context of a multi-sector economy
with directed technical change, where the respective rates of capital- and
resource-augmenting progress are determined endogenously by the relative
pro�tability of factor-speci�c innovations. We characterized the balanced
growth path, showing that the rate of capital-augmenting technical progress
tends to zero in the long run, and the economy exhibits purely resource-
augmenting progress. This result provides sound microfoundations for the
broad class of capital-resource models in both the Solow-Ramsey and the
ETC framework, and contradicts the view that such models are conceptually
biased in favor sustainability.
We have shown that the net rate of resource-saving progress must equal

the interest rate along the balanced growth path. While this con�rms a
standard feature of the neoclassical model, the presence of directed technical
change provides a di¤erent, and very intuitive explanation for this result. On
the one hand, since the natural resource stock is exhaustible, the growth rate
of the resource price is exactly equal to the interest rate (Hotelling, 1931).
On the other hand, balanced growth requires that the rate of resource-saving
progress exactly o¤set the growth in the resource price: this is in compliance
with the view that factor-speci�c innovations are induced by the need of
enhancing the real productivity of scarce resources, in order to compensate
for their increased expensiveness (Hicks, 1932). Actually, we do not know
whether Hicks and Hotelling had been close friends. But making them meet
seventy-�ve years later was a great pleasure for us.
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Appendix

Proof of expressions (43) and (44)

Results (43) and (44) hold true in a Capital-Labor economy as well, so that
the proof is identical to that of Lemma 1 in the Appendix of Acemoglu (2003:
p.28-29). We make use of the index of relative pro�tability �(t) de�ned in
(7), and follow a simple logic: when x1 = 0, the relative pro�tability of
capital-augmenting innovations grows unboundedly (�1 = 1) shifting all
scientists into that R&D subsector; symmetrically, x1 =1 implies �1 = 0,
and all scientists will be employed in developing resource-augmenting inno-
vations.
Using (24),(25),(7), (37) and equilibrium conditions of instantaneous prof-

its we have

�(t) =



1� 


Z 1

t

x (v)
"�1
" dv: (58)

Being " < 1, if x1 = 0 then �1 = 1. From (7) and (27), this will imply
SK1 = S and S

R
1 = 0, from which ( _n=n)1 = b

KS� (S)�� and ( _m=m)1 = ��
as in expression (43). Conversely, if x1 = 1 then �1 = 0. From (27)
it follows SK1 = 0 and SR1 = S, and hence ( _n=n)1 = �� and ( _m=m)1 =
bRS� (S)� � in expression (44).

Ruling out explosive paths

On the basis of (46), we can exclude the possibility of non-balanced growth
paths. Unbounded consumption growth can be ruled out as follows: suppose
that ( _C=C)1 =1, which in turn requires ( _Y =Y )1 =1. Then, rewrite (34)
as

Y (t) =M (t)R (t)
h

x (t)

"�1
" + (1� 
)

i "
"�1
: (59)

Expression (59) has the following implications. If x1 =1 then (x
"�1
" )1 = 0,

which implies ( _Y =Y )1 =( _M=M)1+( _R=R)1 < 1. Also if x1 = �x; where
�x is a �nite constant, then ( _Y =Y )1 =( _M=M)1+( _R=R)1 < 1. Finally,
if x1 = 0 we have ( _Y =Y )1 <( _M=M)1+( _R=R)1 < 1. Consequently,
( _Y =Y )1 =1 cannot be an equilibrium, implying that ( _C=C)1 =1 cannot
be an equilibrium as well.

19



Local stability of the BGP equilibrium

The linearized system (56) is obtained as follows. As regards the �rst equa-
tion, substitute (12) for _M=M = (1� �) ��1( _m=m) in (40) to obtain

_x

x
= "

f (x)

f 0x (x)x

�
f 0x (x) �N �

1� �
�

�
bR
�
S � SK

�
�
�
S � SK

�
� �
��
: (60)

Di¤erentiating the right hand side of (60) with respect to x we have

"

�
f 0x (x) �N �

�
1� f

00
xx (x)

f 0x (x)

��
_M=M

��
: (61)

Evaluating (61) at the steady-state equilibrium (where f 0x (x) �N = _M=M
from (40)) we obtain

axx = "
1� �
�

�
bR
�
S � SK�

�
�
�
S � SK�

�
� �
�
f (x�) f

00
xx (x�) ; (62)

where f 00xx < 0 implies axx < 0. Di¤erentiating (60) with respect to N we
have

axN = "�f (x�) > 0; (63)

and with respect to S we have

axN = �"
f (x�)

f 0x (x�)
�
h
@
�
_M=M

�
=@
�
SK
�i
SK=SK�

> 0; (64)

where the sign comes from @
�
_M=M

�
S � SK

��
=@SK < 0.

The second equation in system (56) follows from (11):

_N

N
= � (1� �)�1

�
bKSK�

�
SK
�
� �
�
; (65)

which implies aNx = aNN = 0 and, by di¤erentiation with respect to SK ,

aNS =
@SK�

�
SK
�

@SK

�����
SK=SK�

> 0: (66)

The third equation is obtained as in Acemoglu (2003: p.32). Since SK� > 0
and SR� > 0, the equilibrium condition (28) holds in an open set around the
BGP equilibrium where both types of innovations are developed. Di¤erenti-
ating (28) and substituting (11)-(12) we have

_SK

SK
= � 1

B1 (SK)

�
B2
�
SK
�
+B3

�
SK
�
�B4 (x)

�
; (67)
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where

B1
�
SK
�
= SK

 
�0
�
SK
�

� (SK)
+
�0
�
S � SK

�
� (S � SK)

!
; (68)

B2
�
SK
�
= �

�
SK
�
SK � �

�
S � SK

� �
S � SK

�
; (69)

B3
�
SK
�
=

(1� �)�
�
SK
�

�� (S � SK)
�
�+ � + � (r� � �) (1� �)�1

� ; (70)

B4 (x) = � (x�)� � (x) ; (71)

where the capital share � (x) is de�ned in (37) and exhibits @�=@x < 0.
Di¤erentiating (67) with respect to SK and x we have

_SK

SK
' aSx (x� x�) + aSS

�
SK � SK�

�
(72)

where little algebra shows that aSx > 0 and aSS > 0.

References

Acemoglu, D. (1998). Why Do New Technologies Complement Skills? Di-
rected Technical Change and Wage Inequality. Quarterly Journal of
Economics, 113: 1055-1089.

Acemoglu, D. (2001). Directed Technical Change. Review of Economic
Studies, 69: 781-810.

Acemoglu, D. (2003). Labor- and Capital-Augmenting Technical Change.
Journal of the European Economic Association, 1: 1-37.

Aghion, P., Howitt, P. (1992). A Model of Growth Through Creative
Distruction. Econometrica, 60 (2): 323-351.

Aghion, P., Howitt, P. (1998). Endogenous Growth Theory. MIT Press :
Cambridge (MA).

Amigues, J.P., Grimaud, A., Moreaux, M. (2004). Optimal endogenous
sustainability with an exhaustible resource through dedicated R&D.
LEERNA Working Paper 04.17.154.

Andre, F., Smulders, S. (2005). Energy Use, Endogenous Technical Change
and Economic Growth. Mimeo, CentER-Tilburg University.

21



Barbier, E.B. (1999). Endogenous Growth and Natural Resource Scarcity.
Environmental and Resource Economics, 14: 51-74.

Bretschger, L., Smulders, S. (2004). Sustainability and substitution of ex-
haustible natural resources. How prices a¤ect long-termR&D-investments.
Economics Working Paper Series 03/26, June, ETH Zurich.

Bretschger (2005). Economics of technological change and the natural
environment: How e¤ective are innovations as a remedy for resource
scarcity?. Ecological Economics, 54: 148-163.

Dasgupta, P., Heal, G. (1974). The Optimal Depletion of Exhaustible
Resources. Review of Economic Studies, Symposium on the Economics
of Exhaustible Resources: 3�28.

Di Maria, C., Smulders, S. (2004). Trade Pessimists vs Technology Opti-
mists: Induced Technical Change and Pollution Havens. Advances in
Economic Analysis & Policy, 4 (2), Article 7.

Di Maria, C., van der Werf, E. (2005). Carbon Leakage Revisited: Uni-
lateral Climate Policy under Directed Technical Change. CentER Dis-
cussion Paper Series No. 2005-68, May, Tilburg University.

Drandakis, E., Phelps, E. (1965). A Model of Induced Invention, Growth
and Distribution. Economic Journal, CXXVI: 823-840.

Gaitan, B., Roe, T. (2005). Natural Resource Abundance and Economic
Growth in a Two-Country World. Economic Development Center, Bul-
letin Number 05-1, University of Minnesota.

Grimaud, A., Rougé, L. (2003). Non-renewable resources and growth
with vertical innovations: optimum, equilibrium and economic policies.
Journal of Environmental Economics and Management, 45: 433-453.

Grossman, G., Helpman, E. (1991). Innovation and Growth in the Global
Economy, MIT Press: Cambridge (MA).

Groth, C., Schou, P. (2002). Can Non-renewable Resources Alleviate the
Knife-edge Character of Endogenous Growth? Oxford Economic Pa-
pers 54, 386-411.

Hicks, J.R. (1932). The Theory of Wages. London: Macmillan.

Hotelling, H. (1931). The Economics of Exhaustible Resources. Journal of
Political Economy, 39 (2): 137-175.

22



Kennedy, C. (1964). Induced Bias in Innovation and the Theory of Distri-
bution. Economic Journal, LXXIV : 541-547.

Romer, P. (1990). Endogenous Technological Change. Journal of Political
Economy, IIC: S71-S102.

Sholz, C., Ziemes, G. (1999). Exhaustible Resources, Monopolistic Com-
petition, and Endogenous Growht. Environmental and Resource Eco-
nomics, 13: 169-185.

Solow, R. (1974). Intergenerational Equity and Exhaustible Resources. Re-
view of Economic Studies, Symposium on the Economics of Exhaustible
Resources: 29�46.

Stiglitz, J. (1974). Growth with Exhaustible Natural Resources: E¢ cient
and Optimal Growth Paths. Review of Economic Studies, Symposium
on the Economics of Exhaustible Resources: 123�137.

Valente, S. (2005). Sustainable Development, Renewable Resources and
Technological Progress. Environmental and Resource Economics, 30
(1): 115-125.

23



Working Papers of the Institute of Economic Research 
 
(PDF-files of the Working Papers can be downloaded at www.wif.ethz.ch/research.) 

 
 
06/49  C.N. Brunnschweiler 

Financing the alternative: renewable energy in developing and transition 
countries 

06/48  S. Valente 
Notes on Habit Formation and Socially Optimal Growth 

06/47  L. Bretschger 
Energy Prices, Growth,and the Channels in Between: Theory and Evidence 

06/46  M. Schularick and T.M. Steger 
Does Financial Integration Spur Economic Growth? New Evidence from the First 
Era of Financial Globalization 

05/45  U. von Arx 
Principle guided investing: The use of negative screens and its implications for 
green investors 

05/44  Ch. Bjørnskov, A. Dreher and J.A.V. Fischer 
The bigger the better? Evidence of the effect of government size on life 
satisfaction around the world 

05/43  L. Bretschger 
Taxes, Mobile Capital, and Economic Dynamics in a Globalising World 

05/42  S. Smulders, L. Bretschger and H. Egli 
Economic Growth and the Diffusion of Clean Technologies: Explaining Environmental 
Kuznets Curves 

05/41  S. Valente 
Tax Policy and Human Capital Formation with Public Investment in Education 

05/40  T. M. Steger and L. Bretschger 
Globalization, the Volatility of Intermediate Goods Prices and Economic Growth 

05/39  H. Egli 
A New Approach to Pollution Modelling in Models of the Environmental Kuznets Curve 

05/38  S. Valente 
Genuine Dissaving and Optimal Growth 

05/37  K. Pittel, J.-P. Amigues and T. Kuhn 
Endogenous Growth and Recycling: A Material Balance Approach 

05/36  L. Bretschger and K. Pittel 
Innovative investments, natural resources, and intergenerational fairness: Are 
pension funds good for sustainable development? 

04/35  T. Trimborn, K.-J. Koch and T.M. Steger 
Multi-Dimensional Transitional Dynamics: A Simple Numerical Procedure 

04/34  K. Pittel and D.T.G. Rübbelke 
Private Provision of Public Goods: Incentives for Donations  

04/33  H. Egli and T.M. Steger 
A Simple Dynamic Model of the Environmental Kuznets Curve  

04/32  L. Bretschger and T.M. Steger 
The Dynamics of Economic Integration: Theory and Policy  

04/31  H. Fehr-Duda, M. de Gennaro, R. Schubert, 
Gender, Financial Risk, and Probability Weights  



03/30  T.M. Steger 
Economic Growth and Sectoral Change under Resource Reallocation Costs  

03/29  L. Bretschger 
Natural resource scarcity and long-run development: central mechanisms when 
conditions are seemingly unfavourable  

03/28  H. Egli 
The Environmental Kuznets Curve – Evidence from Time Series Data for Germany  

03/27   L. Bretschger 
Economics of technological change and the natural environment: how effective are 
innovations as a remedy for resource scarcity?  

03/26   L. Bretschger, S. Smulders 
Sustainability and substitution of exhaustible natural resources. How resource prices 
affect long-term R&D-investments  

03/25   T.M. Steger 
On the Mechanics of Economic Convergence  

03/24   L. Bretschger 
Growth in a Globalised Economy: The Effects of Capital Taxes and Tax Competition  

02/23   M. Gysler, J.Kruse and R. Schubert 
Ambiguity and Gender Differences in Financial Decision Making: An Experimental 
Examination of Competence and Confidence Effects  

01/22   S. Rutz 
Minimum Participation Rules and the Effectiveness of Multilateral Environmental 
Agremments 

01/21   M. Gysler, M. Powell, R. Schubert 
How to Predict Gender-Differences in Choice Under Risk: A Case for the Use of 
Formalized Models 

00/20   S.Rutz, T. Borek 
International Environmental Negotiation: Does Coalition Size Matter?  

00/19   S. Dietz 
Does an environmental Kuznets curve exist for biodiversity?  

 


	No and Date: Working Paper 06/50

March 2006

	Authors: Corrado Di Maria 
Simone Valente
	Text9: The Direction of Technical Change
in Capital-Resource Economies


