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1 Introduction

The purpose of this paper is to derive general results for certain classes of or-

dinal games. It is motivated by the increasingly important role that ordinal

properties have played in game-theoretic analysis in recent years. First of

all, the introduction of supermodular games by Topkis (1979) and the subse-

quent analysis by Bulow, Geanakoplos and Klemperer (1985), Vives (1990),

and Milgrom and Roberts (1990) gave rise to an important new strand of

literature in economics and game theory. But strategic complementarity,

the key ingredient of supermodularity, is essentially an ordinal concept and

much of the theory of supermodular games can be reformulated in ordinal

terms. Second, since the seminal paper by Monderer and Shapley (1996), a

sizeable strand of literature on potential games has emerged. Monderer and

Shapley already distinguish between exact, weighted, and ordinal potentials

for cardinal games. Kukushkin (1999) and Norde and Patrone (2001) have

introduced the concept of ordinal potential for ordinal games.

Ordinality in strategic games stands for two different, not mutually exclu-

sive concepts. On the one hand, within the confines of traditional game the-

ory, an ordinal perspective abstracts from particular utility representations

(payoff functions). It considers invariant properties with respect to utility

representations. It identifies games having the same game form and iden-

tical ordinal preferences or identical best response correspondences. More

generally, it investigates isomorphisms and equivalence classes of games. For

the ordinal perspective of games, see the contributions of Thompson (1952),

Mertens (1987, 2003), Vermeulen and Jansen (2000), and Morris and Ui

(2004). On the other hand, the concept of ordinal games transcends tra-
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ditional game theory and allows for players’ preferences which do not ad-

mit utility representations. Many contributions to demand theory and gen-

eral equilibrium theory consider incomplete or intransitive preferences. Son-

nenschein (1971), Shafer (1974), Kim and Richter (1986) made pioneering

contributions to demand theory with incomplete or intransitive preferences.

Schmeidler (1969), Shafer and Sonnenschein (1975), Bergstrom (1976), Bor-

glin and Keiding (1976), Shafer (1976) belong to the early contributors to

general equilibrium theory with incomplete or intransitive preferences. To

the extent that the work of these and subsequent authors deals with abstract

economies (generalized games, pseudo-games), it applies to ordinal games as

well.

Incomplete or intransitive preferences constitute an important, but not

the only class of preferences without utility representations. Specifically, the

present paper deals with ordinal games where players’ preference relations are

weak orders: Players’ preferences are complete and transitive, yet need not

admit utility representations. An example is the following public project

proposal game:

Consider the problem of locating a finite number of identical public

projects, say libraries, on a street represented by the unit interval. An

outcome of this problem is a list of locations. Ehlers (2002, 2003) sug-

gests that a library patron will visit his second choice library if a book

he wants to borrow is unavailable at the first choice library. Thus, the

patron’s preference for locations induces a “lexicographic” preference

relation for outcomes (lists of locations). Further consider two patrons,

each with single-peaked preferences for locations, both evaluating lists

of locations by means of the respective induced “lexicographic exten-
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sion” à la Ehlers. Each patron proposes an outcome (list of locations).

The average of the two proposed outcomes gets implemented. The pro-

cedure gives rise to an ordinal game where players’ preference relations

are weak orders without utility representations. The game proves to

be a best-response potential game in the sense of subsection 3.1. For a

formal description and elaborate analysis of the public project proposal

game, see section 6.

As mentioned above, both potential games and supermodular games lend

themselves to ordinal analysis. Notice that in contrast to arbitrary finite

games, both finite potential games and finite supermodular games always

possess a Nash equilibrium in pure strategies. In both cases, a purely ordinal

approach can be taken. The arguments differ from the standard equilibrium

existence proofs by means of the Brouwer, Kakutani, or Fan-Glicksberg fixed

point theorem, which require a topological vector space structure and conti-

nuity in that topology.

To begin with, we introduce the concept of ordinal Nash equilibrium for

ordinal games. In the case of potential games, no fixed point theorem is

needed. We extend Voorneveld’s (2000) concept of best-response potential

from cardinal games to ordinal games in our sense and derive the analogue

of his characterization result: An ordinal game is a best-response potential

game if and only if it does not have a best-response cycle. In the case of

supermodular games, one can resort to the lattice-theoretic, non-topological

fixed point theorem of Zhou (1994). Next Milgrom and Shannon’s (1994)

concept of quasi-supermodularity is extended from cardinal games to ordinal

games in our sense. We find that under certain compactness and semiconti-

nuity assumptions, the ordinal Nash equilibria of a quasi-supermodular game
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form a nonempty complete lattice. As an immediate corollary, one obtains

that the ordinal Nash equilibria of a finite quasi-supermodular game form a

nonempty complete lattice.

Finally, we extend several set-valued solution concepts from cardinal to

ordinal games in our sense. The definition of rationalizability follows Pearce

(1984), with attention confined to pointwise beliefs, but not restricted to sub-

sets of Euclidean spaces. We prove the existence of a nonempty and compact

subset of rationalizable joint strategies in ordinal games where each individ-

ual strategy set is a compact Hausdorff space and all preference relations are

continuous. The definition of a closed set under a behavior relation is an

adaptation of Ritzberger and Weibull’s (1995) concept of a closed set under

a behavior correspondence, again without the restriction to subsets of Eu-

clidean spaces. We demonstrate the existence of a minimal closed set under

a behavior correspondence for the class of ordinal games where each strategy

set is a compact Hausdorff space. We show a similar result for minimal prep

sets, a concept adapted from Voorneveld (2004, 2005).

In sum, the contribution of this paper is two-fold: As a methodological

advance, all concepts, assertions, and derivations are formulated in purely

ordinal terms. Moreover, we generalize several previous results by relaxing

the restrictions imposed in the literature: In addition to weaker assumptions

regarding strategy spaces and preferences in some instances, finiteness of the

player set is not assumed in Theorems 1, 3–5.

The next section contains the basic definitions regarding weak orders

and ordinal games. We also elaborate on the fact that our assumptions on
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strategy sets and preferences are more general than the stated assumptions

for cardinal games. Section 3 is devoted to potential games. Section 4 is

about quasi-supermodular games. Section 5 is about set-valued concepts.

Section 6 provides a formal description and elaborate analysis of the public

project proposal game. Section 7 offers final remarks.

2 Preliminaries

We first collect some definitions and properties pertaining to preference re-

lations, in particular weak orders. We then define ordinal games and related

concepts, in particular ordinal Nash equilibria. For two nonempty sets S and

Y , ψ : S →→ Y denotes a relation from S to Y , that is a mapping ψ : S → 2Y

that assigns to each s ∈ S a subset ψ(s) of Y . The relation ψ is called a

correspondence if ψ(s) 6= ∅ for all s ∈ S.

2.1 Weak Orders

Let X be a nonempty set. A binary relation º on X is called a weak order

if it is transitive and strongly complete. The latter means that x º y or

y º x for all x, y ∈ X. For a weak order º on X, its asymmetric part Â,

defined by

x Â z :⇐⇒ [x º z &¬(z º x)]

for all x, z ∈ X, is irreflexive and transitive, and its symmetric part ∼,

defined by

x ∼ z :⇐⇒ [x º z & z º x]

for all x, z ∈ X, is an equivalence relation, that is reflexive, symmetric and

transitive. A weak order º is called a total order if it is antisymmet-

ric: x ∼ z =⇒ x = z for all x, z ∈ X. The weak order º has or admits
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a utility representation if there exists a function u : X → IR such that

x º y ⇐⇒ u(x) ≥ u(y) for x, y ∈ X. Then u is called a utility or payoff

function representing º or a utility representation of º.

In case X is endowed with a topology τ , we say that º is upper semi-

continuous if the sets {x ∈ X|x ≺ z}, z ∈ X, are open and º is lower

semicontinuous if the sets {x ∈ X|x Â z}, z ∈ X, are open. º is continu-

ous if it is both upper and lower semicontinuous. The order topology on X

induced by º has the sets {x ∈ X|x Â z}, z ∈ X, and {x ∈ X|x ≺ z}, z ∈ X,

as a subbase of open sets. By definition, º is continuous in its order topology.

An element z ∈ X is called a maximal element of the binary relation

º on X if {x ∈ X|x Â z} = ∅. It is called a greatest element if z º x

for all x ∈ X. In the case of a weak order, maximal and greatest elements

coincide. For convenient reference, we state the following well known fact.

Lemma 1 Let (X, τ) be a compact topological space and º be an upper

semicontinuous weak order on X. Then the set of maximal elements of º is

nonempty and compact.

generality of assumptions. It is important to note that the lemma

applies in instances where º does not admit a utility representation, like in

the following example.

Example 1. Let X = [0, 1]×{0, 1} be endowed with the following total order

º which is the restriction of the lexicographic order on IR2 to [0, 1]× {0, 1}:
For x, y ∈ [0, 1], with x > y, (x, 1) Â (x, 0) Â (y, 1) Â (y, 0).
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Let τ be the order topology induced by º . Then the following hold:

(i) (X, τ) is a compact Hausdorff space.

(ii) º is continuous with respect to τ .

(iii) º does not have a utility representation.

proof. (i) For (x, a), (y, b) ∈ X with x > y, {χ ∈ X|χ Â ((x+y)/2, 0)} and

{χ ∈ X|χ ≺ ((x + y)/2, 0)} are disjoint open sets with (x, a) ∈ {χ ∈ X|χ Â
((x+y)/2, 0)} and (y, b) ∈ {χ ∈ X|χ ≺ ((x+y)/2, 0)}. For (x, 1), (x, 0) ∈ X,

{χ ∈ X|χ Â (x, 0)} and {χ ∈ X|χ ≺ (x, 1)} are disjoint open sets with

(x, 1) ∈ {χ ∈ X|χ Â (x, 0)} and (x, 0) ∈ {χ ∈ X|χ ≺ (x, 1)}. This shows

that (X, τ) is Hausdorff.

If (X,º) is order-complete, i.e. if every non-empty subset of X with an

upper bound has a supremum, then every closed and bounded subset of X

is compact in the order topology. See Problem 5.C in Kelley (1955). Now

every subset of X is bounded. Thus, if we can show that every non-empty

subset of X has a supremum, then compactness of (X, τ) is demonstrated.

For a non-empty subset A of X, let A1 = {x ∈ [0, 1] : (x, 0) ∈ A or (x, 1) ∈
A}. In case (sup A1, 1) ∈ A, (sup A1, 1) is the supremum of A. In case

(sup A1, 1) 6∈ A, (sup A1, 0) is the supremum of A. In any case, A has a

supremum. This shows that (X,º) is order-complete and, consequently,

(X, τ) is compact.

(ii) By definition, º is continuous in its order topology.

(iii) º has a continuum of “gaps” of the form ((x, 0), (x, 1)), x ∈ [0, 1].

Therefore, it does not have any (continuous or discontinuous) utility repre-

sentation.
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Amoz Kats has suggested the following interpretation of the example. A

voter has preferences over pairs (x, c) where x ∈ [0, 1] is the platform chosen

by a political candidate and c ∈ {0, 1} is one of the two candidates. If the

voter has the choice between two different platforms, the identity of the can-

didates does not matter. If both candidates offer the same platform, then

the voter has a preference for candidate 1.

The relation º in Example 1 is the restriction of the lexicographic order

on IR2 to X. The restriction of the lexicographic order to the unit square

[0, 1]2 creates a similar example. A further example with properties (a)-(c)

can be generated by means of the well ordering principle.

Example 2. Namely, let º be a well order on IR, i.e. º is a total order

such that every nonempty subset of IR has a minimum. For each r ∈ IR, let

Ir = {x ∈ IR : r Â x}. Let R = {r ∈ IR : Ir is uncountable}. If R = ∅,
set Ω = IR. If R 6= ∅, set Ω = Imin R. Then º induces a well order on Ω

which does not have a utility representation. Choose an element ω∗ 6∈ Ω, set

X = Ω ∪ {ω∗} and extend the well order to X by postulating ω∗ Â ω for all

ω ∈ Ω. A well order º renders (X,º) order-complete so that one can follow

the pattern of proof of Example 1.

The literature has been mostly concerned with the existence of continu-

ous or upper semi-continuous utility representations for continuous or upper

semi-continuous weak orders. The key results of the seminal contributions

of Eilenberg (1941), Debreu (1954), Rader (1963) can be summarized as fol-

lows: Let X be a topological space which is second countable (has a countable

base of open sets) or is separable and connected. If º is a continuous weak
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order on X then º has a continuous utility representation.1 Beardon et al.

(2002) provide a classification of total orders which do not admit a utility

representation. The lexicographic order is a prominent example of the so-

called “planar type”. Example 2 is of the so-called “long type”. Estévez

Toranzo and Hervés Beloso (1995) show that if X 6= ∅ is a non-separable

metric space, then there exists a continuous weak order on X which cannot

be represented by a utility function. However, this result becomes obsolete

under the compactness assumption of Lemma 1: If X is a compact metric

space then it is separable and second countable.

2.2 Ordinal Games

Let G = (N, (Xi)i∈N , (ºi)i∈N) denote an ordinal non-cooperative game

with the following interpretation and properties:

• N 6= ∅ denotes the set of players.

• Every player i ∈ N has a nonempty set Xi of strategies. The prod-

uct set X =
∏

i∈N Xi represents the set of joint strategies or strategy

profiles.

• Every player i ∈ N has a binary relation ºi over the joint strategy

set X, which reflects his preferences over the outcomes of the game G.

Each of the binary relations ºi is assumed to be a weak order.

We denote X−i =
∏

j∈N\{i} Xj. For a player i ∈ N and a joint strategy

x = (xj)j∈N ∈ X, we write x−i = (xj)j 6=i ∈ X−i and, with slight abuse of

notation, x = (xi, x−i) ∈ X. For every player i ∈ N and every joint strategy

1For generalizations and variations, see Rader (1963), Monteiro (1987), Candeal,
Hervés, and Induráin (1998), Bosi and Mehta (2002).
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of his opponents x−i ∈ X−i,

Mi(x−i) = {xi ∈ Xi | 6 ∃zi ∈ Xi : (zi, x−i) Âi (xi, x−i)}

is the set of best responses, that is the set of i’s maximal strategies against

x−i under ºi. Recall that every maximal element is a greatest element be-

cause ºi is a weak order. For every player i ∈ N and every joint strategy

x = (xi, x−i) ∈ Xi ×X−i, we denote by

Bi(x) = {zi ∈ Xi | (zi, x−i) ºi (xi, x−i)}

the set of better responses or upper contour set.

Let B : X →→ X, x 7→ ∏
i∈N Bi(x) be the joint better-response relation.

Let M : X →→ X, x 7→ ∏
i∈N Mi(x−i) be the joint best-response relation

which maps each joint strategy to its joint best-responses. The set of ordinal

Nash equilibria of G is defined by

N (G) = {x ∈ X |x ∈ M(x)}.

When appropriate, we shall consider each strategy set Xi endowed with a

topology. For the remainder of this paragraph, suppose each individual strat-

egy space Xi is endowed with a topology τi and X =
∏

i Xi is endowed with

the corresponding product topology. We say that ºi is upper semicontin-

uous on Xi for every x−i ∈ X−i if the set of better responses Bi(xi, x−i) is a

closed subset of Xi for every x = (xi, x−i) ∈ X. Clearly, if a preference ºi is

continuous on X then it is upper semicontinuous on X and upper semicon-

tinuous on Xi for every x−i ∈ X−i.
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3 Ordinal Potential Games

Monderer and Shapley (1996) develop the concept of potential for cardinal

games Γ = (N, (Xi)i∈N , (ui)i∈N) in both cardinal and ordinal versions. Mon-

derer and Shapley (1996), Voorneveld and Norde (1997) and Ui (2000) char-

acterize several classes of potential games. However, their approach is biased

towards the cardinal side since it requires the potential to be a real-valued

function, while from a strictly ordinal viewpoint, the potential provides an

order. Consequently, Kukushkin (1999) and Norde and Patrone (2001) have

introduced the concept of ordinal potential for ordinal games. An ordinal

game has a potential if there exists a quasi-order on X, that is a reflexive

and transitive binary relation º, containing the preferences of all players:

(xi, x−i) ºi (zi, x−i) ⇐⇒ (xi, x−i) º (zi, x−i) for all i ∈ N , xi, zi ∈ Xi,

x−i ∈ X−i.

Voorneveld (2000) introduces and studies best-response potential games,

a new class of potential games. A game Γ = (N, (Xi)i∈N , (ui)i∈N), is a best-

response potential game if there exists a real-valued function P : X → IR

such that for every i ∈ N , x−i ∈ X−i, we have

arg max
xi∈Xi

ui(xi, x−i) = arg max
xi∈Xi

P (xi, x−i).

Here, we adapt his definition for ordinal games. An ordinal game G =

(N, (Xi)i∈N , (ºi)i∈N) is a best-response potential game if there exists a

quasi-order D on X, such that for every i ∈ N , x−i ∈ X−i, we have

Mi(x−i) = MD(x−i)

where MD(x−i) denotes the set of greatest elements of D over Xi given

x−i ∈ X−i. Obviously, the definitions imply that if an ordinal game is a

potential game, then it is a best-response potential game. It is clear from
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the definition of a best-response potential that (i) each greatest element of

D is an ordinal Nash equilibrium of G; (ii) the set of ordinal Nash equilibria

of G coincides with the set of ordinal Nash equilibria of the ordinal game

(N, (Xi)i∈N , (D)i∈N) provided D is a weak order on X.

3.1 Characterization of best-response potentials

Voorneveld (2000) provides a characterization of best-response potential games.

We implement in the ordinal setting the ideas introduced in Voorneveld

(2000) and Norde and Patrone (2001). First we need the following definition.

Let G = (N, (Xi)i∈N , (ºi)i∈N) be an ordinal game. A path in the set of

joint strategies X is a sequence (x1, x2, . . .) of elements xk ∈ X such that for

all k = 1, 2, . . . , the joint strategies xk and xk+1 differ in exactly one, say the

i(k)th, component. A path is best-response compatible if the deviating

player moves to a best response, that is

∀k = 1, 2, . . . : xk+1
i(k) ∈ Mi(k)(x

k
−i(k)).

By definition the trivial path (x1) consisting of a single joint strategy x1 ∈ X

is best-response compatible. A finite path (x1, x2, . . . , xm) is called a best-

response cycle if it is best-response compatible, x1 = xm, and xk+1 =

(xk+1
i(k) , x

k
−i(k)) Âi(k) xk for some k ∈ {1, . . . , m− 1}.

Theorem 1 An ordinal game G = (N, (Xi)i∈N , (ºi)i∈N) is a best-response

potential game if and only if there is no best-response cycle.

proof. (⇒) Assume that G is an ordinal game with best-response potential
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D. Suppose that (x1, x2, . . . , xm) is a best-response cycle. Define by B the

asymmetric part of D on X, that is for all x, z ∈ X,

x B z :⇐⇒ [x D z &¬(z D x)] .

By definition, xk+1
i(k) ∈ Mi(k)(x

k
−i(k)) for all k ∈ {1, . . . , m − 1} and xk+1 =

(xk+1
i(k) , x

k
−i(k)) Âi(k) xk for at least one such k. So xk+1 D xk for all k ∈

{1, . . . , m− 1} and xm D x1 by transitivity. But since there is at least one k

such that xk+1 Âi(k) xk we necessarily have xk+1 B xk for this k by definition

of a best-response potential. It follows that xm D xk+1 B xk D x1 which in

turn implies that xm B x1, contradicting the fact that x1 = xm.

(⇐) Suppose that G has no best-response cycle. Define the binary rela-

tion (X, D) as follows:

(∀x, z ∈ X) : z D x :⇐⇒ [∃ a best-response compatible path from x to z]

First note that the binary relation D on X is reflexive and transitive; i.e., it

is a quasi-order. We have to show that Mi(x−i) = MD(x−i) for every i ∈ N

and x−i ∈ X−i. Let i ∈ N, x−i ∈ X−i.

(a) Pick zi ∈ Mi(x−i). Since ºi is strongly complete, for all xi ∈ Xi we

have that (zi, x−i) ºi (xi, x−i), hence the path ((xi, x−i), (zi, x−i)) is best-

response compatible and (zi, x−i) D (xi, x−i). Therefore, zi ∈ MD(x−i). This

observation implies that Mi(x−i) ⊆ MD(x−i).

(b) Pick zi ∈ MD(x−i). Suppose zi 6∈ Mi(x−i). Then there exists xi ∈ Xi

such that (xi, x−i) Âi (zi, x−i). By the absence of a best-response cycle,

it cannot be the case that (zi, x−i) D (xi, x−i), contradicting zi ∈ MD(x−i).

We conclude that zi ∈ Mi(x−i). From this observation we get Mi(x−i) ⊇
MD(x−i).
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The assertion that (X, D) is a best-response potential for G follows from

(a) and (b).

Voorneveld (2000, Theorem 3.1) proves in a cardinal setting that a best-

response potential exists if and only if: (i) X contains no best-response cycles

and (ii) the quotient of (X, D) can be represented by a real-valued function.

Theorem 1 states that from a purely ordinal perspective, condition (ii) has

nothing to do with best-response potential games. A similar remark has been

made by Norde and Patrone (2001) for the class of ordinal potential games.

Finally note that if (x1, x2, . . . , xm) is a best-response cycle, then it is

a weak improvement cycle in the sense of Norde and Patrone (2001), that

is xk+1 = (xk+1
i(k) , x

k
−i(k)) ºi(k) xk for all k ∈ {1, . . . , m − 1}, x1 = xm, and

xk+1 = (xk+1
i(k) , x

k
−i(k)) Âi(k) xk for some k ∈ {1, . . . , m− 1}. A weak improve-

ment path is thus a path such that at each iteration one player is drawn from

the population to play a better response against the current joint strategy

of his opponents. Theorem 2.2 in Norde and Patrone (2001) states that an

ordinal game G is a potential game if and only if G contains no weak im-

provement cycle.

3.2 Existence of Ordinal Nash Equilibria

If a finite ordinal game has a best-response potential, then it has an ordinal

Nash equilibrium. If we consider best-response potential games in which all

but one player have a finite set of strategies, and if we equip the only infinite

strategy set with a topology we obtain the following result.
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Theorem 2 Let G = (N, (Xj)j∈N , (ºj)j∈N) be a best-response potential

game with N finite. If for some i ∈ N , Xj is a finite set for every j 6= i, Xi is

a compact topological space and ºi is upper semicontinuous on Xi for each

x−i ∈ X−i, then N (G) is nonempty.

proof. Suppose that N (G) is empty. Let i satisfy the hypothesis. Be-

cause of the compactness and upper semicontinuity conditions, Mi(x−i) is

nonempty and compact for every x−i ∈ X−i, by Lemma 1. For every

j 6= i, Mj(x−j) is nonempty for each x−j ∈ X−j by the finiteness of Xj.

Pick any selection mi(·) from Mi(·) and any x−i in X−i. Construct a best-

response compatible path (x1, x2, . . .) as follows: x1 = (mi(x−i), x−i) and

for k = 2, 3, . . . , if xk
i 6∈ Mi(x

k
−i), then xk+1 = (mi(x

k
−i), x

k
−i); otherwise

xk+1 = (zk+1
j(k) , x

k
−j(k)) for some player j(k) 6= i such that zk+1

j(k) ∈ Mj(k)(x
k
−j(k))

and (zk+1
j(k) , x

k
−j(k)) Âj(k) xk. Note that such a player j(k) exists by the pre-

sumed emptiness of N (G). Since X−i is a finite set and player i uses only

the finite set of strategies mi(X−i), there exist k, l ∈ N such that xk = xk+l.

Hence (xk, xk+1, . . . , xk+l) is a best-response cycle which by Theorem 1 con-

tradicts the premise that G is a best-response potential game. We conclude

that G possesses at least one Nash equilibrium.

This existence result extends earlier results by Voorneveld (1997) and

Norde and Tijs (1998) which were obtained in a cardinal setting for exact

potential games and generalized ordinal potential games, respectively.
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4 Quasi-Supermodular Ordinal Games
(Games with Strategic Complementarities)

Let X be a partially ordered set, with the reflexive, antisymmetric and tran-

sitive binary relation ≥. Given elements x and z in X, denote by x ∨ z the

least upper bound or join of x and z in X, provided it exists, and x ∧ z the

greatest lower bound or meet of x and z in X, provided it exists. A partially

ordered set X that contains the join and the meet of each pair of its elements

is called a lattice. A lattice in which each nonempty subset has a supremum

and an infimum is complete. In particular, a finite lattice is complete. If Y

is a subset of a lattice X and Y contains the join and the meet with respect

to X of each pair of elements of Y , then is Y is a sublattice of X. A sub-

lattice Y of a lattice X in which each nonempty subset has a supremum and

an infimum with respect to X that are contained in Y is a subcomplete

sublattice of X. Any finite sublattice of a lattice is subcomplete.

We now define an order on the subsets of a lattice. We use the strong set

order ≥s introduced by Milgrom and Shannon (1994). Let X be a lattice

and let Y and Z be two subsets of X. We say that Y ≥s Z if for every y ∈ Y

and every z ∈ Z, y∨z ∈ Y and y∧z ∈ Z. We say that a relation ρ : X →→ Y

from a lattice X to a lattice Y is increasing in x on X if for every x ∈ X,

ρ(x) is a sublattice of Y and if for x ≥ z, ρ(x) ≥s ρ(z).

If X is a lattice partially ordered by the relation ≥, then subsets of the

form [a, b] = {x ∈ X : b ≥ x ≥ a}, [a,∞) = {x ∈ X : x ≥ a}, or

(−∞, b] = {x ∈ X : b ≥ x} are sublattices of X for all a, b ∈ X. These sets

and X are the closed intervals in X. We say that a lattice X is equipped
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with the interval topology when each closed set can be represented as the

intersection of sets that are finite unions of closed intervals in X, including

the empty set as the empty union of sets. In other words, the closed intervals

constitute a subbase of closed sets of the interval topology.

Next consider an ordinal game. Suppose that each individual strategy set

Xi is a lattice partially ordered by the relation ≥i. Then the product sets X

and X−i, i ∈ N , are also lattices with respect to the canonical partial orders

≥ and ≥−i, i ∈ N , respectively. For instance, x ≥ y ⇔ ∀i : xi ≥i yi for

x, y ∈ X. We say that the preference ºi is quasi-supermodular on Xi for

each x−i ∈ X−i if for every xi, zi ∈ Xi, xi 6= zi, x−i ∈ X−i,

(i) (xi, x−i) ºi (xi ∧ zi, x−i) =⇒ (xi ∨ zi, x−i) ºi (zi, x−i);

(ii) (xi, x−i) Âi (xi ∧ zi, x−i) =⇒ (xi ∨ zi, x−i) Âi (zi, x−i).

We say that a preference ºi satisfies the strategic complement property

in (xi, x−i) on Xi × X−i if for every xi, zi ∈ Xi and x−i, z−i ∈ X−i with

xi ≥i zi, xi 6= zi and x−i ≥−i z−i, x−i 6= z−i,

(iii) (xi, z−i) ºi (zi, z−i) =⇒ (xi, x−i) ºi (zi, x−i);

(iv) (xi, z−i) Âi (zi, z−i) =⇒ (xi, x−i) Âi (zi, x−i).

An ordinal game G = (N, (Xi)i∈N , (ºi)i∈N) is quasi-supermodular

if for each i ∈ N , Xi is a lattice, ºi is quasi-supermodular on Xi for each

x−i ∈ X−i, and ºi satisfies the strategic complement property on Xi ×X−i.

Quasi-supermodular games in a cardinal setting were introduced by Mi-

grom and Shannon (1994). Note that a (quasi-supermodular) game Γ =
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(N, (Xi)i∈N , (ui)i∈N) with payoff functions ui : X → IR, i ∈ N , uniquely

determines a (quasi-supermodular) ordinal game G. But not every ordinal

quasi-supermodular game has a cardinal representation. For instance, take

the pair (X,º) from Example 1 as the strategy space and the preference

relation of the player in a one-person game. Moreover, let X = [0, 1]×{0, 1}
be partially ordered according to the canonical partial order on IR2. Then

the one-player game is quasi-supermodular and does not have a cardinal

representation.

Lemma 2 Let G = (N, (Xi)i∈N , (ºi)i∈N) be a quasi-supermodular game.

Then for each i ∈ N , Mi(x−i) is increasing in x−i on X−i.

proof. Pick x−i ≥−i z−i and xi ∈ Mi(x−i), zi ∈ Mi(z−i). The elements

xi ∧ zi and xi ∨ zi are in Xi since Xi is a lattice. We have (zi, z−i) ºi

(xi ∧ zi, z−i). Then (zi ∨ xi, z−i) ºi (xi, z−i) by quasi-supermodularity and,

consequently, (xi∨zi, x−i) ºi (xi, x−i) by the strategic complement property.

Since xi ∈ Mi(x−i), it cannot be the case that (xi ∨ zi, x−i) Âi (xi, x−i).

Therefore, (xi ∨ zi, x−i) ∼i (xi, x−i), which implies zi ∨ xi ∈ Mi(x−i). Now

suppose (zi, z−i) Âi (xi ∧ zi, z−i). Then (zi ∨ xi, z−i) Âi (xi, z−i) by quasi-

supermodularity and hence (xi ∨ zi, x−i) Âi (xi, x−i) by the strategic com-

plement property. But this contradicts (xi ∨ zi, x−i) ∼i (xi, x−i) (and xi ∈
Mi(x−i)). Therefore, (zi, z−i) ∼i (xi∧zi, z−i), which implies xi∧zi ∈ Mi(z−i).

We have shown Mi(x−i) ≥s Mi(z−i). Finally, setting x−i = z−i yields

xi ∨ zi ∈ Mi(x−i) and xi ∧ zi ∈ Mi(x−i) for xi, zi ∈ Mi(x−i) — which means

that Mi(x−i) is a sublattice of Xi. This completes the proof.

Theorem 3 Let the game G = (N, (Xi)i∈N , (ºi)i∈N) be quasi-supermodular

and each individual strategy set Xi be equipped with the interval topology.
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If for all i ∈ N , the set Xi is compact and the preference ºi is upper semi-

continuous on Xi for every x−i ∈ X−i, then the set of ordinal Nash equilibria

of G, N (G), is a nonempty complete lattice.

proof. Birkhoff’s theorem (1967, Theorem X.20) states that a lattice is

compact in its interval topology if and only if it is complete.2 Hence each

Xi is a complete lattice and, therefore, has a lower bound `i and an upper

bound oi; consequently, the closed intervals of the form [ai, bi] constitute a

subbase of closed sets for the interval topology. The product X =
∏

i∈N Xi

is compact in the product topology as the product of compact spaces. X has

lower bound ` = (`i)i∈N and upper bound o = (oi)i∈N and the cylinder sets

of the form [ai, bi]×
∏

j 6=i Xj, i ∈ N , with Xj = [`j, oj] for j ∈ N , constitute

a subbase B of closed sets for the product topology. The closed intervals of

the form [a, b] =
∏

i∈N [ai, bi] constitute a subbase B′ of closed sets for the

interval topology on X. On the one hand, B ⊆ B′. On the other hand, each

[a, b] ∈ B′ is a closed set in the product topology, for

[a, b] =
∏
i∈N

[ai, bi] =
⋂
i∈N

(
[ai, bi]×

∏

j 6=i

Xj

)
.

This shows that B′ is a subbase of closed sets for both the product topology

and the interval topology on X. Hence the assertion of Frink (1942, Theorem

4) holds: The product and the interval topology on X coincide. Thus, X

is compact in its interval topology. By Birkhoff’s theorem, X is a complete

lattice.

Now let i ∈ N . The best-response relation Mi : X−i →→ Xi is nonempty-

and compact-valued by Lemma 1 and is increasing with respect to the strong

2We adopt Frink’s (1942) and Topkis’ (1998) definition of the interval topology, which
in contrast to Birkhoff’s does not presume existence of a priori universal lower and upper
bounds. Birkhoff’s proof still applies.
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set order by Lemma 2. Therefore, the joint best-response relation M from

X to itself, with M(x) =
∏

i∈N Mi(x−i), is a compact-valued correspondence

as the product of compact-valued correspondences and is increasing as the

product of increasing correspondences.

Next pick any x ∈ X. Since M(x) is compact in X, it is also compact

as a subspace of X when X is endowed with the product topology. Hence

M(x) is also compact as a subspace of X when X is endowed with the inter-

val topology because the product and the interval topology on X coincide.

Consider any nonempty subset A of M(x). Since X is a complete lattice,

supX A, the supremum of A in X exists. We claim supX A ∈ M(x). As ob-

served above, the closed intervals of the form [a, b] form a subbase of closed

sets for both topologies on X. Therefore, the sets M(x) ∩ [a, b], a, b ∈ X,

form a subbase of closed sets for the topological subspace M(x) of X. Now

consider the family of sets M(x) ∩ [a, supX A], a ∈ A. Let F be a finite

nonempty subset of A. Since M(x) is a sublattice of X, supX F ∈ M(x)

and a ≤ supX F ≤ supX A for a ∈ F . Hence supX F belongs to the in-

tersection of the sets M(x) ∩ [a, supX A], a ∈ F . Since the family of closed

sets M(x) ∩ [a, supX A], a ∈ A, has nonempty finite intersections and M(x)

is compact, the entire family has a nonempty intersection. Let b belong to

this intersection. Then b ∈ M(x) and a ≤ b ≤ supX A for all a ∈ A. Hence

b ∈ M(x) and b = supX A, which shows our claim that supX A ∈ M(x).

In an analogous way, one proves infX A ∈ M(x). Since A was an arbitrary

nonempty subset, M(x) is a subcomplete sublattice of X.3

To summarize, the joint best-response relation M is an increasing corre-

3Topkis (1998, p. 31), referring to Topkis (1977), states that when X is a lattice with
the interval topology and X ′ is a sublattice of X, then X ′ is subcomplete if and only if
X ′ is compact in the relative topology. We have demonstrated the “if” part in case X is
a complete lattice.
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spondence from the complete lattice X to itself and M(x) is a nonempty and

subcomplete sublattice for each x ∈ X. The assertion of the theorem follows

from Zhou’s fixed-point theorem (1994, Theorem 1, p. 297).

Corollary 1 Let G = (N, (Xi)i∈N , (ºi)i∈N) be a finite quasi-supermodular

game. Then the set of ordinal Nash equilibria of G, N (G), is a nonempty

complete lattice.

5 Set-Valued Concepts

Set-valued concepts have proved to have many desirable properties in large

classes of cardinal games G = (N, (Xi)i∈N , (ui)i∈N). Here we consider two

set-valued concepts: the set of rationalizable joint strategies introduced inde-

pendently by Bernheim (1984) and Pearce (1984) and the concept of minimal

closed set under some behavior correspondence introduced by Ritzberger and

Weibull (1995). We are going to extend the field of applications of these set-

valued concepts from cardinal games to ordinal games. However, in contrast

to most of the literature, our definitions involve only pure strategies. The

reason is that there is no straightforward and commonly agreed upon ex-

tension of ordinal preferences from pure to mixed strategies. The modified

concepts have similar properties as the original ones and may be of interest

on their own. In fact, Basu (1992) and Pruzhansky (2003) work with point-

wise beliefs or conjectures like us.

A strategy for a player is rationalizable if it survives iterated removal of

strategies that are never a best response. Rationalizability is a concept that

generalizes that of Nash equilibrium. Minimal closed set under some behavior
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correspondence is a concept that generalizes that of strict Nash equilibrium.

More precisely, Basu and Weibull (1991) introduce first the concept of closed

set under rational behavior (curb), a set-valued extension of the strict Nash

equilibrium concept for cardinal games G = (N, (Xi)i∈N , (ui)i∈N). A product

set of pure strategies is closed under rational behavior if it is non-empty and

compact and contains the image under the best-response correspondence of

every mixed joint strategy with support in this set. A curb set is minimal if

it does not contain any proper subset which is curb. As noted by Basu and

Weibull (1991), the set of rationalizable joint strategies is the largest tight

curb set. Thus, a minimal curb set and the set of rationalizable joint strate-

gies can be viewed as the two ends of a spectrum. Ritzberger and Weibull

(1995) generalize the concept of curb set to a very large class of behavior

correspondences. A product set of pure strategies is closed under some be-

havior correspondence if it is non-empty and compact and contains the image

under the particular correspondence of every mixed joint strategy with sup-

port in this set. The class of behavior correspondences considered by the

authors includes the better-response correspondence and the best-response

correspondence. All these set-valued concepts have proved to be very useful

to characterize stable sets of dynamic strategy adjustments (Ritzberger and

Weibull, 1995; Young, 1998; Matros and Josephson, 2004).

Pearce (1984) considers only finite games. Bernheim (1984) considers

games where each strategy space Xi is a compact subset of some Euclidean

space and every ui : X → IR is continuous. Similarly, Basu and Weibull

(1991) prove the existence of minimal curb sets for the mixed extension of

games G = (N, (Xi)i∈N , (ui)i∈N) where each Xi is a compact set in some Eu-

clidean space and every payoff function ui : X → IR is continuous. Ritzberger
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and Weibull (1995) focus on finite games. We consider a more general set-

ting: In Theorem 4 on the existence of rationalizable joint strategies, each

strategy set is endowed with a compact Hausdorff topology and each player’s

preference ºi is continuous on X. In Theorem 5 on the existence of minimal

closed sets under a behavior relation, each individual strategy space is com-

pact and Hausdorff. Theorem 5 (iv) states an analogous result for minimal

prep sets à la Voorneveld (2004, 2005). Notice that our specification cannot

be reduced to the class of games G = (N, (Xi)i∈N , (ui)i∈N) considered by

Bernheim (1984) and Basu and Weibull (1991). The reason is that the clas-

sical utility representation theorems of Eilenberg (1941) and Debreu (1954,

1964) apply only to separable topological spaces that is topological spaces

which include a countable dense subset.4

In the following subsections, we prove (i) the existence of a nonempty

and compact subset of rationalizable joint strategies in ordinal games where

each Xi is a compact Hausdorff space and each preference ºi is continuous

on X; (ii) the existence of at least one minimal closed set under a behavior

relation for the class of ordinal games where each Xi is a compact Hausdorff

space.

5.1 Rationalizable strategies

We shall define rationalizability via the method used by Pearce (1984). In

addition, attention is confined to pointwise beliefs. For each i ∈ N , construct

4A more recent result due to Monteiro (1987) requires that the underlying topological
space is arc-connected and the preferences ºi are continuous and countably bounded.
Recall that the weak order ºi on X is countably bounded if there is a countable subset Z
of X such that for every x ∈ X, there exist z1, z2 ∈ Z such that z1 ºi x ºi z2.
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a sequence Hk
i , k ∈ N, of subsets of Xi as follows: Let H1

i = Xi and define

Hk
i inductively for k = 2, 3, . . . by

Hk
i =



xi ∈ Hk−1

i

∣∣∣∣∣∣
∃x−i ∈

∏

j∈N\{i}
Hk−1

j : xi ∈ Mi(x−i)



 .

The set of rationalizable strategies of player i ∈ N is defined as

Ri =
⋂

k∈N
Hk

i

and a joint strategy x ∈ X is rationalizable if x ∈ R :=
∏

i∈N Ri.

Theorem 4 Let G = (N, (Xi)i∈N , (ºi)i∈N) be an ordinal game. Suppose

that for each i ∈ N , the set of strategies Xi is equipped with a compact

Hausdorff topology and the preference ºi is continuous on X. Then the set

of joint rationalizable strategies R ⊆ X is nonempty and compact.

proof. We shall show by induction on k that Hk
i , k ∈ N, is a nested

sequence of nonempty and closed subsets of the compact space Xi for all

i ∈ N . Therefore, the intersection Ri is nonempty and closed. Consequently,

Ri is compact as a closed subset of a compact space.

the induction argument: For each i ∈ N , H1
i = Xi is closed by

definition. Consider any k ∈ N and suppose that
∏

i∈N Hk
i is the Cartesian

product of nonempty and closed sets. Then each Hk
i is a nonempty and

compact subset of the compact space Xi and
∏

i∈N Hk
i is a nonempty and

compact subspace of X. We have to show that each Hk+1
i is also nonempty

and closed. Since for i ∈ N , the preference ºi is continuous on X, its

restriction to
∏

j∈N Hk
j is continuous as well. For every x−i ∈ Hk

−i =
∏

j 6=i H
k
j ,

the restriction of ºi to Hk
i × {x−i} is also continuous. Hence by Lemma 1,
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the set Mi(x−i|Hk
i ) = {xi ∈ Hk

i |(xi, x−i) ºi (zi, x−i) for all zi ∈ Hk
i } is

nonempty and compact. Hence Hk+1
i is nonempty as the union of the sets

Mi(x−i|Hk
i ), x−i ∈ Hk

−i.

It remains to show that Hk+1
i is closed. To this end, it suffices to show

that for any net in Hk+1
i converging to a point x∗i in Xi, it follows that x∗i

belongs to Hk+1
i . Suppose that (D,À) is a directed set, that xδ

i , δ ∈ D,

is a net in Hk+1
i and that the net xδ

i , δ ∈ D, converges to x∗i ∈ Xi. For

each δ ∈ D, let us select an xδ
−i ∈ Hk

−i such that xδ
i ∈ Mi(x

δ
−i|Hk

i ). Then

(xδ
i , x

δ
−i), δ ∈ D, is a net in

∏
j∈N Hk

j . Since
∏

j∈N Hk
j is compact, there exists

a subnet of (xδ
i , x

δ
−i), δ ∈ D, convergent to some (x′i, x

′
−i) ∈ X. Without

restriction, we may assume that (xδ
i , x

δ
−i), δ ∈ D, is such a subnet. Then

the net xδ
i , δ ∈ D, converges to both x′i and x∗i . Since Xi is Hausdorff,

x′i = x∗i . Because of continuity of the restriction of ºi to
∏

j∈N Hk
j , the

set Hk
i = {(z′, z′′) ∈ ∏

j∈N Hk
j ×

∏
j∈N Hk

j | z′ ºi z′′} is a closed subset of
∏

j∈N Hk
j ×

∏
j∈N Hk

j ; see Bridges and Mehta (1995, Proposition 1.6.2). Now

let zi ∈ Hk
i . For each δ ∈ D, we have

(xδ
i , x

δ
−i) ºi (zi, x

δ
−i),

that is ((xδ
i , x

δ
−i), (zi, x

δ
−i)) ∈ Hk

i . Therefore, ((x′i, x
′
−i), (zi, x

′
−i)) ∈ Hk

i . Con-

sequently, x′−i ∈ Hk
−i and (x′i, x

′
−i) ºi (zi, x

′
−i). Since the latter holds for

arbitrary zi ∈ Hk
i , we obtain x′−i ∈ Hk

−i and x′i ∈ Mi(x
′
−i|Hk

i ). This implies

x∗i = x′i ∈ Hk+1
i as desired.

5.2 Closed sets under a behavior relation

Assume that each set of strategies Xi, i ∈ N , is a compact Hausdorff space.

For the sake of convenience, we shall take X as the space of beliefs of each
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player i ∈ N , so that the beliefs for player i include his own strategy. In

particular we shall denote the best response relation by Mi(x) — though

it is functionally independent of the component xi ∈ Xi. Let Φ be the

class of behavior relations: φ ∈ Φ if φ =
∏

i∈N φi : X →→ X such that

M(x) ⊆ φ(x) for every x ∈ X. More precisely, for each i ∈ N , the individual

behavior relation φi : X →→ Xi maps each joint strategy x ∈ X to the

superset φi(x) of player i’s best responses Mi(x).5 For any behavior relation

φ : X →→ X and any nonempty product set Z ⊆ X, φ(Z) denotes the union

of all images φ(z), z ∈ Z, i.e.

φ(Z) =
⋃
z∈Z

φ(z).

Given any behavior relation φ ∈ Φ, a closed set under φ is a product set

Z =
∏

i∈N Zi ⊆ X such that

(i) for each i ∈ N , Zi ⊆ Xi is a nonempty compact set of strategies;

(ii) for each i ∈ N , and each belief z ∈ Z of player i, the set Zi contains

all best responses of player i against his belief: φi(Z) ⊆ Zi.

A prep set under φ is a product set of strategies Z =
∏

i∈N Zi ⊆ X that

satisfies (i) and

(iii) for each i ∈ N , and each belief z ∈ Z of player i such that φi(z) 6= ∅,
the set Zi contains at least one best response of player i against his

belief: ∀i ∈ N , ∀z ∈ Z such that φi(z) 6= ∅, it holds that φi(z)∩Zi 6=
∅.

5In the context of Basu and Weibull (1991) and Ritzberger and Weibull (1995), behavior
relations are correspondences.
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A closed set Z ⊆ X under φ ∈ Φ is called minimal if Z does not contain a

proper subset which is closed under φ. A prep set Z ⊆ X under φ is called

minimal if no prep set is a proper subset of Z.

Remark 1 (i) Basu and Weibull (1991) call a compact product set Z ⊆ X

closed under rational behavior (curb) if Z is closed under the combined best-

response relation M ∈ Φ. The concept of a minimal curb set generalizes the

notion of strict Nash equilibrium. Indeed, consider any x ∈ X. The singleton

set {x} is a strict Nash equilibrium if and only if it is closed under M , i.e. if

M({x}) = {x}.
(ii) A product set is a prep set in the sense of Voorneveld (2004, 2005) if

it contains at least one best response (but not necessarily all best responses)

to any consistent belief that a player may have about the strategic behavior

of his opponents. The concept of a minimal prep set under M generalizes

the notion of Nash equilibrium. Indeed, consider any x ∈ X. The singleton

set {x} is a Nash equilibrium if and only if it is a prep set under M . While

the minimal prep sets and the minimal curb sets of a game can differ, they

coincide in generic finite games.

(iii) Ritzberger and Weibull (1995) call a compact product set Z ⊆ X

closed under better responses (cubr) if Z is closed under the combined better-

response relation B ∈ Φ. Because of the finiteness of X, the compactness

requirement on Z is not restrictive.

Theorem 5 Let G = (N, (Xi)i∈N , (ºi)i∈N) be an ordinal game. Suppose

that for each i ∈ N , the set of strategies Xi is equipped with a compact

Hausdorff topology. Then:

(i) for every φ ∈ Φ, there exists a minimal closed set;
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(ii) for every φ ∈ Φ, minimal closed sets are pairwise disjoint;

(iii) if Z ⊆ X is a minimal closed set under φ ∈ Φ and φ(Z) is a compact

and nonempty subset of X, then φ(Z) = Z.

(iv) for every φ ∈ Φ with closed-valued components φi, i ∈ N , there

exists a minimal prep set.

proof. Part (i). Let φ ∈ Φ and let Qφ be the collection of all sets which are

closed under φ in G. Obviously, X ∈ Qφ. Hence Qφ is nonempty. Consider

the partially ordered set (Qφ,⊆). By Hausdorff’s maximum principle, Qφ

contains a maximal totally ordered subset, say (Q∗
φ,⊆). Set

Z̃ =
⋂

Z∈Q∗φ

Z and Z̃i =
⋂

Z∈Q∗φ

Zi

for i ∈ N . Observe that each Z ∈ Q∗
φ is a closed subset of the compact Haus-

dorff space X. By construction, the collection of closed sets Q∗
φ is totally

ordered by the relation ⊆. Therefore, every nonempty finite subcollection of

Q∗
φ has a nonempty intersection. Since X is compact, the finite intersection

property holds and thus Z̃ is nonempty. As the intersection of closed sets,

Z̃ is closed. As a closed subset of the compact set X, Z̃ is compact. More-

over, it is a product set, Z̃ =
∏

i∈N Z̃i. By definition, φ(Z̃) ⊆ φ(Z) ⊆ Z for

each Z ∈ Q∗
φ and, consequently, φ(Z̃) ⊆ Z̃. This shows that Z̃ is a closed

set under φ. Z̃ is necessarily minimal. For otherwise, (Q∗
φ,⊆) would not be

maximal.

Part (ii). Suppose that Z, Y ⊆ X are two arbitrary distinct minimal

closed sets under some φ ∈ Φ, but Z ∩Y 6= ∅. Let C = Z ∩Y . By definition,

φ(C) ⊆ C which contradicts that both Y and Z are minimal.
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Part (iii). φ(Z) ⊆ Z implies φ(φ(Z)) ⊆ φ(Z). Compactness and nonempti-

ness of φ(Z) then implies that φ(Z) is closed with respect to φ. Hence

φ(Z) $ Z contradicts the minimal closedness of Z with respect to φ.

Part (iv). Modify the proof of part (i) and let Qφ rather be the collection

of all prep sets under φ in G. Construct as before a nonempty and compact

product set Z̃ =
∏

i∈N Z̃i, starting from a maximal totally ordered subset

(Q∗
φ,⊆) of Qφ. Pick any i ∈ N , z ∈ Z̃ such that φi(z) 6= ∅. To show:

φi(z) ∩ Z̃i 6= ∅. Note that

Z̃i ∩ φi(z) =

( ⋂

Z∈Q∗φ

Zi

)
∩ φi(z) =

⋂

Z∈Q∗φ

(
Zi ∩ φi(z)

)
.

For each Z ∈ Q∗
φ, the set Zi ∩ φi(z) is nonempty since z ∈ Z̃ ⊆ Z, φi(z) 6= ∅

and Z is a prep set. Moreover, it is closed as the intersection of Zi, a closed

subset of Xi, and φi(z) a closed set by assumption. Finally, the collection of

closed sets {Zi ∩ φi(z)} is nested, since Q∗
φ is totally ordered. Because Xi is

compact, the finite intersection property holds and we obtain

⋂

Z∈Q∗φ

(
Zi ∩ φi(z)

)
6= ∅.

So Z̃ is a prep set under φ. It is necessarily minimal. For otherwise, (Q∗
φ,⊆)

would not be maximal.

Remark 2 (i) A closed set under φ is also a prep set under φ. Hence, if

each φi is closed-valued, part (iv) of the foregoing proof can be reiterated to

show that every closed set under φ contains a minimal prep set under φ.

(ii) Notice that if the relation φ is compact-valued and upper hemicon-

tinuous, then for any compact subset Z of X, φ(Z) is compact.6 In par-

6See Hildenbrand (1974, B.III, Proposition 3). The argument holds for relations as
well.
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ticular, finiteness of N , continuity of each ºi on X plus nonemptiness and

compactness of each Xi imply that M ∈ Φ is compact-valued and upper

hemicontinuous.

(iii) Also notice that in the case of a compact Hausdorff space X, a

subset of X is compact if and only if it is topologically closed. Therefore,

“compact” can be replaced by “topologically closed” in the definition of a

closed set under φ and the assertions of the theorem.

(iv) Further observe that one can define closedness of a product set Z ⊆ X

under an arbitrary relation φ :X→→X. Then the analogue of Theorem 5 still

holds true.

Finally, we obtain the analogue of an observation by Basu and Weibull

(1991): The rationalizable strategies form the largest “tight” curb set. If φ

is a behavior relation and Z ⊆ X is a nonempty compact product set with

φ(Z) = Z, then Z is called a tight set closed under φ.

Corollary 2 Under the hypothesis of Theorem 4,

(i) the set of joint rationalizable strategies R ⊆ X is a tight set closed

under the best response correspondence M ;

(ii) if Z ⊆ X is a tight set closed under M then Z ⊆ R.

proof. (i) By construction, R is a product set. By Theorem 4, R

is nonempty and compact. By construction, R =
⋂

k Mk(X) where k =

0, 1, 2, . . . and M0(S) = S for S ⊆ X. Hence M(R) =
⋂

k Mk+1(X) =
⋂

k Mk(X) = R, since M0(X) = X. This shows that R is a tight set closed

under M .
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(ii) Suppose Z ⊆ X is a tight set closed under M . Then Z is a compact

product set with M(Z) = Z. Therefore, Z =
⋂

k Mk(Z) ⊆ ⋂
k Mk(X) = R.

In general, R is not a minimal set closed under M . For instance, if the

game G has two strict ordinal Nash equilibria x and x′, then {x} and {x′}
are two disjoint minimal tight sets closed under M .

6 Public Project Proposal Game

In this section, we provide a formal description and elaborate analysis of the

public project proposal game highlighted in the introduction.

Consider the problem of locating a finite number p ≥ 2 of identical public

projects, say libraries, on a street represented by the unit interval [0, 1]. An

outcome of this problem is a list of p locations, y = (y1, . . . , yp) ∈ [0, 1]p.

For p = 2 and a single-peaked preference relation R on the unit interval,

Ehlers (2002, 2003) introduces the “lexicographic extension” of R, a prefer-

ence relation P on [0, 1]p. The rationale is that a library patron will visit

his second choice library if a book he wants to borrow is unavailable at the

first choice library. Therefore, the patron’s preference for locations induces a

“lexicographic” preference relation for outcomes (lists of locations). Ehlers’

“lexicographic extension” can be constructed for any p ≥ 2:

A preference relation (weak order) Ri on [0, 1] induces a “lexico-

graphic” preference relation Pi on [0, 1]p as follows. Given two

alternatives a = (a1, . . . , ap), b = (b1, . . . , bp) ∈ [0, 1]p such that

(possibly after rearranging the order in each sequence)
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a1Ria2Ri . . . Riap and b1Rib2Ri . . . Ribp . An agent i — with pref-

erence relations Ri and Pi — prefers a to b if [i prefers a1 to b1]

OR [i is indifferent between a1 and b1 and prefers a2 to b2] OR

[i is indifferent between a1 and b1, is indifferent between a2 and

b2 and prefers a3 to b3], etc. Agent i is indifferent between a and

b if i is indifferent between a1 and b1, a2 and b2, . . . , ap and bp .

Next consider two patrons, i = 1, 2, each with a single-peaked preference

relation Ri for locations in [0, 1], with a peak at x̂i. Let Pi denote the

“lexicographic extension” of Ri. Each patron proposes an outcome xi ∈
[0, 1]p. The pair of proposals determines the outcome y = F (x1, x2) = (x1 +

x2)/2. The public project proposal game, a particular ordinal game

G = (N, (Xi)i∈N , (ºi)i∈N) where players’ preference relations are weak orders

without utility representations is given by:

• The player set N = {1, 2};

• strategy sets X1 = X2 = [0, 1]p;

• preference relations º1,º2 on X1 ×X2, defined by

(x1, x2) ºi (z1, z2) :⇐⇒ F (x1, x2)PiF (z1, z2)

for (x1, x2), (z1, z2) ∈ X1 ×X2.

One obtains:

Proposition 1 Suppose the players’ peaks satisfy 0 < x̂1 < x̂2 < 1. Then:

(I) The game G is a best-response potential game.

(II) The game G has a unique Nash equilibrium.
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(III) Each best-response compatible path of G converges to the Nash equi-

librium in finitely many steps.

Note that property (I) holds for arbitrary x̂1 and x̂2. Also note that in

case 0 < x̂1 = x̂2 < 1, there exists a continuum of Nash equilibria, all

resulting in the outcome y = x̂1 = x̂2. Further observe that for a finite

game G, (I) would have as immediate consequences (II’) existence of a Nash

equilibrium and (III’) convergence of any best-response compatible path to

a Nash equilibrium in finitely many steps. It follows from the proof of (III)

that a best-response compatible path reaches the Nash equilibrium in at most

6 + d1/(x̂2 − x̂1)e steps, where for a real number r, the symbol dre means

“the smallest integer not smaller than r”.

proof:

part i. By Theorem 1, it suffices to show that G has no best-response cycle.

Note that in this context, a patrons’s optimal proposal against his oppo-

nent’s proposal with respect toºi is quite simple. It suffices to observe that F

is symmetric and each Fl(x1, x2) only depends on the l-th element of each pro-

posal. Thus, a best response Mi(x−i) for player i ∈ N against x−i can be de-

composed into p independent best responses Mi,l(x−i,l), l ∈ A = {1, . . . , p},
as follows:

Mi,l(x−i,l) =





0 if x−i,l > 2x̂i

2x̂i − x−i,l if 2x̂i − 1 ≤ x−i,l ≤ 2x̂i

1 if x−i,l < 2x̂i − 1
(1)

For the sake of contradiction assume that G has a best-response cycle (x1, . . . , xm).

Define the function W : X −→ Rp which assigns to each pair of proposals

(x1, x2) the vector of real numbers W (x) = (Wl(x))l∈A where for each l ∈ A,

Wl(x) = x1,l+1−x2,l. Pick any l ∈ A and k ∈ {1, . . . , m−1}. We distinguish

between different cases according to the positions of xk
i,l and x̂i, i ∈ N .
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(a) Suppose that xk
1,l ≥ x̂1 and xk

1,l + xk
2,l > 2x̂1. By definition of a best-

response cycle, xk
i(k−1),l = Mi(k−1),l(x

k−1
−i(k−1),l). Observe that the deviating

player i(k−1) cannot be player 1. Because the best-response correspondence

is single-valued, it is the turn of player 1 to play his best response at step k.

Obviously, he makes a proposal such that xk+1
1,l < xk

1,l in order to obtain

x̂1 ≤
xk+1

1,l + xk+1
2,l

2
<

xk
1,l + xk

2,l

2
.

It follows that Wl(x
k) > Wl(x

k+1).

(b) Suppose that xk
1,l ≥ x̂1 and xk

1,l +xk
2,l = 2x̂1. Player i(k−1) cannot be

player 2: because x̂1 < x̂2 < 1 and xk
1,l + xk

2,l = 2x̂1, player 2’s best response

is such that xk
2,l = 1, which implies xk

1,l + 1 > 2x̂1. Consequently, it is the

turn of player 2 to play his best response at step k and he makes a proposal

such that xk+1
2,l > xk

2,l in order to obtain

xk
1,l + xk

2,l

2
<

xk+1
1,l + xk+1

2,l

2
≤ x̂2.

It follows that Wl(x
k) > Wl(x

k+1).

(c) Suppose that xk
1,l ≥ x̂1 and xk

1,l + xk
2,l < 2x̂1. As in (b), player i(k− 1)

can not be player 2. Thus, player i(k − 1) is player 1 and xk
1,l = 1. But

1 + xk
2,l < 2x̂1 and x̂1 < x̂2 imply that xk

2,l cannot be part of player 2’s

best response whatever the choice of location by player 1. Thus, since xk be-

longs to a best-response cycle, xk cannot satisfy xk
1,l ≥ x̂1 and xk

1,l+xk
2,l < 2x̂1.

(d) xk
1,l < x̂1 and xk

1,l + xk
2,l < 2x̂1. This case is similar to (c). Player

i(k − 1) cannot be player 1. It follows that player i(k − 1) is player 2 and

xk
2,l = 1. But xk

1,l + 1 < 2x̂1 implies that xk
1,l cannot be part of player 1’s
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best response against any choice of location by player 2. Thus, since xk be-

longs to a best-response cycle, xk cannot satisfy xk
1,l < x̂1 and xk

1,l+xk
2,l < 2x̂1.

(e) xk
1,l < x̂1 and xk

1,l + xk
2,l = 2x̂1. Note that player i(k− 1) can be either

player 1 or player 2. We distinguish between two cases. Firstly, assume

that player i(k) is player 1. Then, he chooses xk+1
1,l = xk

1,l. It follows that

Wl(x
k) = Wl(x

k+1). Secondly, assume that player i(k) is player 2. Then, he

makes a proposal such that xk+1
2,l ≥ xk

2,l (equality appears when xk
2,l = 1) in

order to obtain
xk

1,l + xk
2,l

2
≤ xk+1

1,l + xk+1
2,l

2
≤ x̂2.

It follows that Wl(x
k) ≥ Wl(x

k+1).

(f) xk
1,l < x̂1 and 2x̂1 < xk

1,l + xk
2,l < 2x̂2. Note that player i(k− 1) can be

either player 1 or player 2. We distinguish between these two cases. Firstly,

assume that player i(k−1) is player 1. Then, it is the turn of player 2 to play

his best response at step k and he makes a proposal such that xk+1
2,l ≥ xk

2,l in

order to obtain
xk

1,l + xk
2,l

2
≤ xk+1

1,l + xk+1
2,l

2
≤ x̂2.

It follows that Wl(x
k) ≥ Wl(x

k+1). Secondly, assume that player i(k − 1) is

player 2. Then, it is the turn of player 1 to play his best response at step k

and he makes a proposal such that xk+1
1,l ≤ xk

1,l in order to obtain

x̂1 ≤
xk+1

1,l + xk+1
2,l

2
≤ xk

1,l + xk
2,l

2
.

It follows that Wl(x
k) ≥ Wl(x

k+1).

(g) xk
1,l < x̂1 and xk

1,l + xk
2,l = 2x̂2. This case is similar to (e). Note that

player i(k − 1) can be either player 1 or player 2. We distinguish between
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two cases. Firstly, assume that player i(k) is player 2. Then, he makes a

proposal such that xk+1
2,l = xk

2,l. It follows that Wl(x
k) = Wl(x

k+1). Secondly,

assume that player i(k) is player 1. Then, he makes a proposal xk+1
1,l ≤ xk

1,l

in order to obtain
xk+1

1,l + xk+1
2,l

2
≤ xk

1,l + xk
2,l

2
≤ x̂2.

It follows that Wl(x
k) ≥ Wl(x

k+1).

(h) xk
1,l < x̂1 and 2x̂2 < xk

1,l + xk
2,l. This case is similar to (c). Player

i(k − 1) cannot be player 2. Then, player i(k − 1) is player 1 and xk
1,l = 0.

But, 0+xk
2,l > 2x̂2 implies that xk

2,l cannot be part of player 2’s best response

against any choice of location by player 1. Thus, since xk belongs to a best-

response cycle, xk cannot satisfy xk
1,l < x̂1 and xk

1,l + xk
2,l > 2x̂2.

Notice that in cases (e), (f) and (g), Wl(x
k) = Wl(x

k+1) obtains only if

xk+1
i(k),l = xk

i(k),l. Moreover, by the definition of a best-response cycle, x1 = xm,

and xk+1 = (xk+1
i(k) , x

k
−i(k)) Âi(k) xk for some k ∈ {1, . . . , m − 1}. Hence for

some l ∈ A, Wl(x
1) > Wl(x

m) = Wl(x
1), a contradiction. Hence contrary to

the above assumption, G does not have a best-response cycle.

part ii. We distinguish between three cases.

(a) The preference profile R = (R1, R2) is such that x̂1 < x̂2 ≤ 1/2. In

such a case, consider the strategy profile x∗ = (x∗1, x
∗
2) such that, for any

l ∈ A, x∗1,l = 0 and x∗2,l = 2x̂2. We claim that x∗ is the only Nash equilibrium

of G.

Note that x∗2,l = 2x̂2, l ∈ A, is the best response for player 2 against

x∗1,l = 0, l ∈ A, since x∗2,l = 2x̂2−x∗1,l and 2x̂2−1 ≤ x∗1,l ≤ 2x̂2. And, x∗1,l = 0,

l ∈ A, is the best response for player 1 against x∗2,l = 2x̂2, l ∈ A, since
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x∗2,l > 2x̂1 — which shows that x∗ is a Nash equilibrium of G.

It remains to check that x∗ is the unique Nash equilibrium of the game.

We proceed by demonstrating that a strategy profile z = (z1, z2), where for

some l ∈ A, z1,l 6= 0 or z2,l 6= 2x̂2, cannot be a Nash equilibrium of G. First

observe that if z1,l = z2,l for some l ∈ A, then z cannot be a Nash equilibrium.

Because x̂1 < x̂2, there exists at least one player i ∈ {1, 2} such that zi,l 6= x̂i.

This means that player i does not play a best response against z−i. Secondly,

suppose that z1,l, z2,l ∈]0, 1[ and z1,l 6= z2,l for some l ∈ A. Then, there exists

at least one player i ∈ {1, 2} such that z1,l + z2,l 6= 2x̂i. If z1,l + z2,l < 2x̂i,

then Mi,l(z−i,l) > zi,l. And if z1,l+z2,l > 2x̂i, then Mi,l(z−i,l) < zi,l. Therefore,

the profile z cannot be a Nash equilibrium. Thirdly, suppose that z1,l = 1

and z2,l = 0 for some l ∈ A. It follows that z1,l + z2,l > 2x̂1, M1,l(z2,l) < z1,l,

and so z is not a Nash equilibrium. Fourthly, suppose that z2,l = 1 and

z1,l ∈ [0, 1[ for some l ∈ A. If z1,l = 0 and x̂2 = 1/2, then z = x∗. Otherwise,

M2,l(0) < 1 means that (z1,l, z2,l) = (0, 1) cannot be part of a Nash equilib-

rium. But if z1,l ∈]0, 1[, then player 1 does not play a best response against

the strategy played by player 2 since M1,l(1) = 0. This means that z is not

a Nash equilibrium. We conclude that x∗ is the only Nash equilibrium of G.

(b) The preference profile R = (R1, R2) is such that 1/2 ≤ x̂1 < x̂2. In

such a case, consider the strategy profile x∗ = (x∗1, x
∗
2) such that, for any

l ∈ A, x∗1,l = 2x̂1−1 and x∗2,l = 1. Then x∗ is a Nash equilibrium of G. To see

this, note that x∗1,l = 2x̂1− 1, l ∈ A, is the best response for player 1 against

x∗2,l = 1, l ∈ A, since x∗1,l = 2x̂1 − x∗2,l and 2x̂1 − 1 ≤ x∗2,l ≤ 2x̂1. And x∗2,l = 1

is the best response for player 2 against x∗1,l = 2x̂1 − 1 since x∗1,l < 2x̂2 − 1.

We can prove uniqueness of the Nash equilibrium as in (a).
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(c) The preference profile R = (R1, R2) is such that x̂1 < 1/2 < x̂2. In

such a case, consider the strategy profile x∗ = (x∗1, x
∗
2) such that, for any

l ∈ A, x∗1,l = 0 and x∗2,l = 1. Then x∗ is a Nash equilibrium of G. To see this,

note that x∗1,l = 0, l ∈ A, is the best response for player 1 against x∗2,l = 1,

l ∈ A, since x∗2,l > 2x̂1. And x∗2,l = 1 is the best response for player 2 against

x∗1,l = 0, l ∈ A, since x∗1,l < 2x̂2 − 1. Uniqueness of the Nash equilibrium can

be proven as in (a).

part iii. We prove that each best-response compatible path x1, x2, x3, . . .

converges in finite time to the Nash equilibrium x∗ of G. Without loss of gen-

erality, we may assume p = 1, since best responses can be determined com-

ponentwise. We provide the complete argument for the case x̂1 < x̂2 ≤ 1/2,

x∗ = (0, 2x̂2). Suppose the last adjustment was made by player 2 resulting

in (xk
1, x

k
2).

(A) xk
2 > 2x̂1: Then xk+1

1 = xk+2
1 = 0 and xk+2 = x∗.

(B) xk
2 ≤ 2x̂1 (and 2x̂1 − 1 < 0 < xk

2): Then xk+1
1 = 2x̂1 − xk

2 < 2x̂2.

(B.1) xk+1
1 < 2x̂2 − 1: Then xk+2

2 = 1, xk+3
1 = 0, xk+4 = x∗.

(B.2) xk+1
1 ≥ 2x̂2 − 1: Then

xk+2
2 = 2x̂2 − xk+1

1 = 2x̂2 − (2x̂1 − xk
2) = xk

2 + 2(x̂2 − x̂1).

In case (B.2), we repeat the loop, starting with xk+2
2 instead of xk

2. If we

end up in (A) or (B.1), x∗ is reached in at most four steps. Whenever we end

up in (B.2), xk+2`+2
2 = xk+2`

2 + 2(x̂2 − x̂1) for ` ≥ 1 which can only happen

finitely many times.

By symmetry, a similar argument can be made in the case 1/2 ≤ x̂1 < x̂2.

In the case x̂1 < 1/2 < x̂2, a best response by player 1 is always less than
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1 and a best response by player 2 always exceeds 0. If the best-response

compatible path x1, x2, x3, . . . did not converge to x∗ in finitely many steps,

then xk
1, x

k
2 ∈ (0, 1) for all k and, therefore, xk+2`+2

2 = xk+2`
2 + 2(x̂2 − x̂1) and

xk+2`+2
1 = xk+2`

1 − 2(x̂2 − x̂1) for all k ≥ 1, ` ≥ 1, a contradiction. Hence, to

the contrary, the path converges to x∗ in finitely many steps.

7 Final Remarks

The focus of this paper lies on games with players’ preferences which are

weak orders. Within this broad category of games, we analyze games with

ordinal best-response potentials and quasi-supermodular games. We further

provide sufficient conditions for the existence of a nonempty set of rational-

izable joint strategies and of a closed set under a behavior relation.

In the context of cardinal games, it is frequently assumed that the mixed

extension of a game exists, that is each cardinal utility representation can be

extended to an expected utility functional on the set of joint mixed strategies.

Consequently, the notion of a Nash equilibrium in mixed strategies can be

adopted. Furthermore, the definitions of rationalizable joint strategies and

of closed sets under a behavior correspondence may include best responses

against mixed strategies. There is no straightforward and commonly agreed

upon extension of ordinal preferences from pure to mixed strategies. There-

fore our analysis and definitions are confined to pure strategies. In lieu of

expected utility comparisons, Fishburn (1978) and Perea et al. (2006) apply

first-order stochastic dominance (induced by the ordinal preferences) to joint

mixed strategies. This defines a partial order on joint mixed strategies.
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As mentioned in the introduction, there exists a sizeable literature on gen-

eralized games with incomplete or intransitive preferences. Extensions of our

analysis to generalized games and/or games with incomplete or intransitive

preferences are left to future research.

References

[1] Basu K. (1992) A Characterization of the Class of Rationalizable Equi-

libria for Oligopoly Games. Economics Letters, 40, 187-191.

[2] Basu K., Weibull J. (1991) Strategy Subsets Closed under Rational Be-

havior. Economics Letters, 36, 141-146.

[3] Beardon A.F., Candeal J.C., Herden G., Induráin E., Mehta, G.B.
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CORE DP 8728, Université Catholique de Louvain, Belgium.

[26] Mertens J.F. (2003) Ordinality in Non Cooperative Games. International

Journal of Game Theory, 32, 387-430.

[27] Milgrom P., Roberts J. (1990) Rationalizability, Learning, and Equilib-

rium in Games with Strategic Complements. Econometrica, 58, 1255-

1277.

43



[28] Milgrom P., Shannon C. (1994) Monotone Comparative Statics. Econo-

metrica, 62, 157-180.

[29] Monderer D., Shapley L. (1996) Potential Games. Games and Economic

Behavior, 14, 124-143.

[30] Monteiro P.K. (1987) Some Results on the Existence of Utility Functions

on Path Connected Spaces. Journal of Mathematical Economics, 16,

147-156.

[31] Morris S., Ui T. (2004) Best Response Equivalence. Games and Eco-

nomic Behavior, 49, 260-287.

[32] Norde H., Patrone F. (2001) A Potential Approach for Ordinal Games.

TOP, 9, 69-75.

[33] Norde H., Tijs S. (1998) Determinateness of Strategic Games with a

Potential. Mathematical Methods of Operations Research, 48, 377-385.

[34] Pearce D. (1984) Rationalizable Strategic Behavior and the Problem of

Perfection. Econometrica, 52, 1029-1050.

[35] Perea A., Peters H., Schulteis T., Vermeulen D. (2006) Stochastic Dom-

inance Equilibria in Two-Person Noncooperative Games. International

Journal of Game Theory, 34, 457-473.

[36] Pruzhansky V. (2003) On Finding Curb Sets in Extensive Games. In-

ternational Journal of Game Theory, 32, 205-210.

[37] Rader T. (1963) The Existence of a Utility Function to Represent Pref-

erences. Review of Economic Studies, 30, 229-232.

44



[38] Ritzberger K., Weibull J. (1995) Evolutionary Selection in Normal Form

Games. Econometrica, 63, 1371-1399.

[39] Schmeidler D. (1969) Competitive Equilibria in Markets with a Contin-

uum of Traders and Incomplete Preferences. Econometrica, 37, 578-585.

[40] Shafer W.J. (1974) The Nontransitive Consumer. Econometrica, 42, 913-

919.

[41] Shafer W.J. (1976) Equilibrium in Economies without Ordered Prefer-

ences or Free Disposal. Journal of Mathematical Economics, 3, 135-137.

[42] Shafer W.J., Sonnenschein H. (1975) Some Theorems on the Existence

of Competitive Equilibrium. Journal of Economic Theory, 11, 83-93.

[43] Sonnenschein H. (1971) Demand Theory without Transitive Preferences,

with Applications to the Theory of Competitive Equilibrium, in Chip-

man J.S., Hurwicz L., Richter M.K., Sonnenschein H. (eds) Preferences,

Utility, and Demand. A Minnesota Symposium. New York, Harcourt

Brace Jovanovich, 215-223.

[44] Thompson F.B. (1952) Equivalence of Games in Extensive Form. Re-

search Memorandum RM-759, U.S. Air Force Project Rand, Rand,

Santa Monica, CA. Reprinted in Kuhn H.W. (ed.) (1977) Classics in

Game Theory. Princeton University Press, Princeton, NJ.

[45] Topkis D. (1977) Topology and Subcomplete Sublattices. Mimeo.

[46] Topkis D. (1979) Equilibrium Points in Nonzero-Sum n-Person Submod-

ular Games. SIAM Journal on Control and Optimization, 17, 773-787.

45



[47] Topkis D. (1998) Supermodularity and Complementarity. Princeton

University Press, New Jersey.

[48] Ui T. (2000) A Shapley Value Representation of Potential Games.

Games and Economic Behavior, 31, 121-135.

[49] Vermeulen A.J., Jansen M.J.M. (2000) Ordinality of Solutions of Non-

cooperative Games. Journal of Mathematical Economics, 33, 13-34.

[50] Vives X. (1990) Nash Equilibrium with Strategic Complementarities.

Journal of Mathematical Economics, 19, 305-321.

[51] Voorneveld M. (1997) Equilibria and Approximate Equilibria in Infinite

Potential Games. Economics Letters, 56, 163-169.

[52] Voorneveld M. (2000) Best-Response Potential Games. Economics Let-

ters, 66, 289-295.

[53] Voorneveld M. (2004) Preparation. Games and Economic Behavior, 48,

403-414.

[54] Voorneveld M. (2005) Persistent Retracts and Preparation. Games and

Economic Behavior, 51, 228-232.

[55] Voorneveld M., Norde H. (1997) A Characterization of Ordinal Potential

Games. Games and Economic Behavior, 13, 111-124.

[56] Young P. (1998) Individual Strategy and Social Structure. Princeton NJ,

Princeton University Press.

[57] Zhou L. (1994) The Set of Nash Equilibria of a Supermodular Game is

a Complete Lattice. Games and Economic Behavior, 7, 295-300.

46



Working Papers of the Center of Economic Research at ETH Zurich

(PDF-files of the Working Papers can be downloaded at www.cer.ethz.ch/research).

07/74 J. Durieu, H. Haller, N. Querou and P. Solal
Ordinal Games

07/73 V. Hahn
Information Acquisition by Price-Setters and Monetary Policy

07/72 H. Gersbach and H. Haller
Hierarchical Trade and Endogenous Price Distortions

07/71 C. Heinzel and R. Winkler
The Role of Environmental and Technology Policies in the Transition to a Low-
carbon Energy Industry

07/70 T. Fahrenberger and H. Gersbach
Minority Voting and Long-term Decisions

07/69 H. Gersbach and R. Winkler
On the Design of Global Refunding and Climate Change

07/68 S. Valente
Human Capital, Resource Constraints and Intergenerational Fairness

07/67 O. Grimm and S. Ried
Macroeconomic Policy in a Heterogeneous Monetary Union

07/66 O. Grimm
Fiscal Discipline and Stability under Currency Board Systems

07/65 M. T. Schneider
Knowledge Codification and Endogenous Growth

07/64 T. Fahrenberger and H. Gersbach
Legislative Process with Open Rules

07/63 U. von Arx and A. Schäfer
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