CER-ETH - Center of Economic Research at ETH Zurich # **Economics Working Paper Series** Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich # Banking with Contingent Contracts, Macroeconomic Risks, and Banking Crises* Hans Gersbach CER-ETH Center of Economic Research at ETH Zurich Zürichbergstrasse 18 8092 Zurich, Switzerland hgersbach@ethz.ch First version: April 2001 This version: June 2008 #### Abstract We examine banking competition when deposit or loan contracts contingent on macroeconomic shocks become feasible. We show that the risk allocation is efficient, provided that banks are not bailed out. In this case, banks may shift part of the risk to depositors. The private sector insures the banking sector and banking crises are avoided. In contrast, when banks are bailed out, depositors receive non-contingent contracts with high interest rates, while entrepreneurs obtain loan contracts that demand high repayment in good times and low repayment in bad times. As a result, the present generation overinvests, and banks create large macroeconomic risks for future generations, even if the underlying risk is small or zero. Keywords: Financial intermediation, macroeconomic risks, state contingent contracts, banking regulation. JEL Classification: D41, E4, G2 ^{*}A previous version was entitled "Financial Intermediation and the Creation of Macroeconomic Risks" and has been published as CESifo Working Paper Series No. 695 (2002). Another working paper version of the paper has appeared as CEPR Discussion paper No. 4735 (2004). I would like to thank Franklin Allen, Thomas Gehrig, Volker Hahn, Martin Hellwig, Eva Terberger-Stoy, Achim Schniewind, Jan Wenzelburger and seminar participants in Bielefeld, Heidelberg and conference participants at the annual meeting of the German Economic Association in Rostock, and at the meeting of the European Economic Association (EEA) in Santiago de Compostela for their helpful comments. ## 1 Introduction The literature provides ample evidence that the costs of banking crises, in terms of GDP losses, may become very large. These banking crises are often caused by negative macroeconomic shocks. Gorton (1988) conducts a seminal empirical study to differentiate between the sunspot view and the business-cycle view of banking crises. He finds that bank panics are systematically linked to business cycles. Subsequent work by Kaminsky and Reinhart (1999) and Demirgüç-Kunt and Detragiache (1998) provide further evidence for factors that may cause financial fragilities and that could ultimately lead to banking crises. These results suggest that banking crises tend to erupt when the macroeconomic environment is weak. It is a widely held view that traditional contractual arrangements in banking expose the banks to the risks associated with systematic or macroeconomic¹ shocks, and that this may be inefficient (see e.g. Hellwig 1998). Ways in which deposit and loan contracts might be designed to reduce macroeconomic risks on the balance sheets of banks appear to be one of the most important research issues related to banking crises. A promising way to solve the problem might be to induce banks to make deposit and loan contracts contingent on macroeconomic events, such as GDP growth, or other contractible macroeconomic indicators that are highly correlated with the financial health of the banking sector. In this paper, we examine the consequences when conditioning of loan and deposit contracts on real shocks becomes feasible for banks.² Our analysis is both a normative and positive exercise. On the positive side, we examine the consequences if contingent deposit and loan contracts become feasible and are introduced. On the normative side, we explore how different regulatory approaches toward insolvent banks affect these consequences and whether the outcomes are socially desirable. We consider a simple model in which banks alleviate agency problems in financial ¹We use the terms systematic and macroeconomic shocks as synonyms. ²How contracts can be made dependent on macroeconomic risk by defining and maintaining standardized macro indices has been examined and discussed extensively by Shiller (e.g. Shiller (2003)). We will comment on the range of the possible macroeconomic indicators in our model in the concluding section. contracting. Banks compete for funds and offer credit contracts to potential borrowers. We allow for macroeconomic shocks affecting the average productivity of investment projects. We distinguish between bailout and failure, depending on whether insolvent banks are bailed out or have to go bankrupt. The main conclusions are as follows: Suppose that the regulator commits to bankruptcy for insolvent banks. Thus, financial intermediation with contingent contracts yields an efficient risk allocation. If macroeconomic shocks are small, depositors and entrepreneurs are offered non-contingent deposit and loan contracts. All macroeconomic risk is borne by entrepreneurs. The inside funds of entrepreneurs act as a buffer for macroeconomic risks. If macroeconomic shocks are larger, banks write state-contingent contracts for depositors and debtors. Part of the macroeconomic risk is shifted to consumers, since entrepreneurs cannot bear the entire risk. Consumers and entrepreneurs together insure the banking sector, and banking crises are avoided. The risk allocation changes completely if bank deposits are guaranteed and hence, future generations provide funds to pay back banks' obligations to the previous generation in order to prevent them from becoming insolvent. With bailout, competing banks try to generate a profitable (positive intermediation margin) and a non-profitable (negative intermediation margin) state of the world. In the good state with high productivity of investment projects, they request high loan interest rates from entrepreneurs. In order to motivate entrepreneurs to invest rather than to save, banks request very low repayments in the bad state with low productivity of investment projects. Deposit rates are non-contingent, since deposits are insured by the next generation. Competition among banks for the creation of a profitable state pushes deposit rates up to the high repayment of entrepreneurs in that state. As a result, banks create a state of the world with high repayment obligations to depositors, but with very low pay-back requirements for entrepreneurs. This creates large risks for future generations, even if the underlying risk is small or zero. This is called the risk-generation effect. As a consequence of the risk-generation effect, the present generation receives higher interest rates on savings than in a situation with bank failures. This induces overinvestment among the current generation at the expense of future generations. Allowing for the issuing of equity does not alleviate the incentive for banks to create profitable and non-profitable states under the bailout regime. In competition, banks are unable to raise equity. Shareholders demand at least the same expected returns on equity as the ones depositors receive. This is, however, infeasible, as future generations repay deposits but not equity. Capital-adequacy rules are necessary to induce sufficient bank capital. Our paper is related to the recent discussions on regulatory issues regarding financial intermediaries. Firstly, our model may explain that competition of financial intermediaries with contingent deposit and loan contracts under a bailout system increases the underlying aggregate risk, since banks compete to create profitable states of the world. The usual regulatory discussion has focused on the behavior of single institutions (see e.g. Dewatripont and Tirole 1994), or on the incidence of aggregate risk on the banking system without contingent contracts (Blum and Hellwig 1995 and also Gehrig 1997). The former literature has pointed out and tested (e.g. Keeley 1990) that a low charter value increases a bank's incentive to take on risk. Our model shows that this risk-taking incentive for bank managers is complemented by the risk-generating effect we introduce in this paper. Even if the underlying productivity risk is small or zero, competition among banks with contingent contracts under a bailout approach yields large macroeconomic risks for future generations. Secondly, it has been pointed out by Hellwig (1995, 1998) that it is unclear why the terms of the deposit contracts cannot be made contingent on aggregate events, such as productivity shocks or fluctuations in the gross domestic product. Hellwig [1998] offers three explanations for this phenomenon: lack of awareness among contractors, moral hazard in banking, transaction costs and the market-making role of financial intermediaries. Our model indicates that bailouts of banking crises or explicit deposit insurance will not lead to contingent deposit contracts, even if they become feasible, but to contingent loan contracts with very large differences in state-dependent repayments. State-dependent deposit contracts only occur for large productivity shocks and a regulatory scheme that induces bankruptcy of insolvent banks. Our analysis indicates that making deposit and loan contracts contingent on variations in aggregate income under a bailout approach is inefficient and should even be prevented by regulatory action. Thirdly, there are empirical parallels to our results. Inflation-indexed or Forex-related loan and deposit contracts in Latin America and South-east Asia appeared to have contributed to macroeconomic instability and hollowed out the banking system through defaults.³ This suggests that contracts contingent on macroeconomic factors may trigger, or contribute to, banking crises. Our argument is that financial intermediation with deposit and loan contracts contingent on macroeconomic shocks can imply banking instability when such schemes are offered competitively under bailout schemes. Fourth, at a more general level, our investigation indicates that new contractual opportunities, i.e. the possibility to make deposit and loan contracts contingent on macroe-conomic shocks, may increase both aggregate credit and financial instabilities. Our exercise is complementary to the important insights in Shin (2008), that securitization enables credit expansion through higher leverage of the financial system as a whole, while the impact on financial stability is ambiguous. The paper is organized as follows. The next section describes the model. In the third section, we derive the equilibrium in the intermediation market without the presence of macroeconomic shocks. In section four, we introduce temporary productivity shocks, state-contingent deposit and loan contracts, and regulatory schemes. In sections five and six, we examine small and large productivity shocks under different regulatory schemes. Section seven presents our conclusions. # 2 Model We consider a generation of agents living for two periods. For most of our analyses, it will be sufficient to look at the generation born in a particular period t. However, regulatory policies such as bailouts will require the existence of more than one generation to guarantee credible deposit insurance by taxing future generations. Further ³I am grateful to a referee for this argument. generations are introduced as needed. The generation under consideration consists of a continuum of agents, indexed by [0,1]. There are two classes of agents in each generation. A fraction η of individuals are potential entrepreneurs. The rest, $1-\eta$, of the population are consumers. Potential entrepreneurs and consumers differ in that only the former have access to investment technologies. There is one physical perishable good that can be used for consumption or investment. Each individual in each generation receives an endowment e of the good when young and none when old. Each entrepreneur has access to a production project that converts time t goods into time t+1 goods. The required funds for an investment project are F:=e+I. Hence, an entrepreneur must borrow I units of the goods in order to undertake the investment project. The class of entrepreneurs is not homogeneous. We assume that entrepreneurs are indexed by a quality parameter q uniformly distributed on $[\overline{q_t}-1,\overline{q_t}], \overline{q_t}>1$, in the population of entrepreneurs. If an entrepreneur of type q obtains additional resources I and decides to invest, he realizes investment returns in the next period of: $$q(I+e). (1)$$ \overline{q}_t is the aggregate indicator of the productivity of investment projects in period t. If \overline{q}_t is uncertain in period t-1, generation t-1 faces macroeconomic risk. For simplicity, we assume that potential entrepreneurs are risk neutral and are only concerned with consumption in their old age, i.e., they do not consume when young. Consumers consume in both periods. They have utility functions $u(c_t^1, c_t^2)$ defined over consumption in the two periods. The variables c_t^1, c_t^2 are the consumption of the consumer born in period t when young and old respectively. Consumers are risk-averse. If a household can transfer wealth between the two periods at a riskless real interest rate, denoted by r_t , the solution of the household's intertemporal consumption problem generates the saving function, denoted by $s\{r_t\}$. We follow the standard assumptions in the OG literature that the substitution effect (weakly) dominates the income effect, i.e., savings are a weakly increasing function of the interest rate. We drop the time index whenever convenient. The rationale for the underlying banking model we are using and the nature of contracts that arise are developed in Gersbach and Uhlig (2006), who abstract from macroeconomic shocks. In Appendix B, we summarize this rationale. For the purpose of this paper, we concentrate on the consequences when banks compete with deposit and loan contracts contingent on macroeconomic shocks. For all our arguments, it will be sufficient that two banks exist and compete.⁴ Hence, we assume that there are two banks, indexed by j, which finance entrepreneurs. We assume that banks are owned by entrepreneurs. First, we discuss the nature of contracts offered by banks indexed by j=1,2. Bank j can sign deposit contracts $D(r_j^d)$ where $1+r_j^d$ is the repayment offered for one unit of resources. Loan contracts of bank j are denoted by $C(r_j^c)$ where $1+r_j^c$ is the repayment required from entrepreneurs for one unit of funds.⁵ If macroeconomic risk is present, we allow for contracts to be conditioned on the realization of \bar{q}_t or on the resulting GDP in period t-1. In such cases, state contingent deposit or loan contracts can be written. Note that the availability of production technologies from period t to t+1 allows depositors and entrepreneurs of each generation to trade amongst themselves.⁶ Generations are connected by financial intermediaries which represent the sole long-living institution. A new generation is affected by the preceding generation when banks have accumulated either profits or losses. In the former case, a generation may buy the shares of the banks. Our focus is on Bertrand competition, therefore the price of bank shares is zero. Thus, this case is trivial and shall be disregarded. In the latter case, a generation may be forced by regulation or may wish to rescue banks by fulfilling the obligations to the preceding depositors. This will be the focus of our analysis. Losses of banks will only occur if aggregate risk is present and, hence, there is uncertainty about \overline{q}_t . Finally, we have to specify the objectives of banks that are owned by risk-neutral entrepreneurs. We assume that banks maximize expected profits and hence internalize ⁴As we focus on Bertrand competition, an extension to more than two banks is straightforward. ⁵In the optimal contract entrepreneurs must invest their endowments if they apply for loans. Otherwise, shirking would become attractive and would deter banks from lending. ⁶In this model, intergenerational trade does not improve autarky for all generations. In particular, insuring depositors against the macroeconomic risk by taxing future generations will make the future generations worse off. losses that accrue to depositors, in case their claims cannot be fully served. We shall focus on expected profits and not on return on equity. We do this for two reasons. First, the case of return on equity maximization is equal to the case of bailout as shareholders have zero returns in the event of losses. Hence, our results will automatically cover the case of equity return maximization. Second, expected profit maximization is a realistic scenario since bankers may suffer a utility loss in the event of default. Such utility losses may occur because there are non-pecuniary penalties associated with default. The non-pecuniary utility loss may occur because career opportunities decline and/or the reputation is destroyed. Utility losses in the event of default could also occur if bankers are financed through wages and bonuses that vary with profits. Our assumption is that utility losses of managers lead to internalization of depositors' losses. # 3 Equilibrium without Macroeconomic Shocks We begin with a discussion of the case where macroeconomic shocks are exempted, as this will prove useful in understanding the results presented later in this paper. Obviously deposit and loan contracts will have a length of one period, as no transformation of maturities needs to take place. We examine the following four-stage intermediation game for the generation under consideration. #### Period t - 1. Banks offer deposit contracts to consumers and entrepreneurs. - 2. Banks offer credit contracts to entrepreneurs. - 3. Consumers and entrepreneurs decide which contracts to accept. Resources are exchanged. Entrepreneurs start producing subject to macroeconomic risk. ⁷This may be actively promoted by bank regulators, when they investigate and punish failures by bank managers. ⁸Strictly speaking, we assume that utility losses of bank managers are at the level that leads to complete internalization of potential losses experienced by depositors. #### Period t+1 4. Production ends. Entrepreneurs pay back. Banks pay back depositors. The game is a multi-stage game with observed actions. That is, actions at each stage are chosen simultaneously, and players know the actions in all previous stages when they enter the next stage. In the following we discuss the main assumptions of the intermediation game. We assume that banks cannot ration deposit contracts in stage 3.9 If a bank does not have enough deposits to lend to all candidate borrowers, loans are rationed. In such a case, we assume that the loan applicants at the said bank are rationed with the same probability, such that loan volume and deposits are balanced. We next consider the loan application decision of an entrepreneur with quality q, given that he observes r_j^d , r_j^c of banks. If he obtains a loan, he also has an incentive to invest, since banks can completely alleviate agency problems in contracting. If he applies for a loan at the bank offering the lowest loan rate, his terminal wealth or consumption W(q) will amount to $$W(q) = q(e+I) - I(1 + \min\{r_i^c\})$$ (2) If he does not apply, he obtains $e(1 + \max\{r_j^d\})$ by saving his endowments. Thus, there exists a critical quality parameter, denoted by q^* , and given by $$q^*(\min\{r_j^c\}, \max\{r_j^d\}) = 1 + \frac{I\min\{r_j^c\} + e\max\{r_j^d\}}{e + I}$$ (3) which motivates entrepreneurs with $q \ge q^*$ to apply for loans and entrepreneurs with $q < q^*$ to save. We assume that entrepreneurs are contract takers and thus make loan application decisions with the assumption that they will not be rationed at banks that offer the highest deposit rate. Using this scheme, all entrepreneurs apply to banks with the lowest loan rate, within the set of banks that offer the highest deposit rate.¹⁰ If entrepreneurs seeking loans were rejected, they choose to save at the banks that offer ⁹This assumption coincides with current regulations in most countries. ¹⁰As only those banks will obtain deposits, it is intuitive that entrepreneurs seeking loans only apply at those banks. We could relax the assumption by modelling entrepreneurs as contract takers at any bank, which, however, complicates the analysis considerably. the highest deposit rate. In all equilibria studied in this paper, the entrepreneurs applying for loans are not rationed and thus their expectations are correct.¹¹ Note that we have assumed that banks can ensure investment and can verify output conditional on investment. Thus, they are not concerned about low-quality entrepreneurs applying, since such entrepreneurs would have less consumption than with saving endowments. Banks are assumed to maximize expected profits. The assumption has been justified in detail in section 2. Hence, conditional on granting a credit to an entrepreneur and receiving funds from savers, profits per credit of a bank j amount to: $$G_j = I(1 + r_j^c) - I(1 + r_j^d) = I(r_j^c - r_j^d) = I\Delta_j$$ (4) Δ_j is the intermediation margin of bank j. In order to derive the intermediation equilibrium, we assume that savings are never sufficient to fund all entrepreneurs. Since the deposit rate r_j^d cannot exceed $\bar{q}-1$ without causing losses for banks, and we have assumed that the savings of consumers are weakly increasing in the deposit rate, a sufficient condition is: $$(1 - \eta) s \{\bar{q} - 1\} < \eta I \tag{5}$$ We also assume that investments exceed savings at zero deposit and loan interest rates. In this case $q^* = 1$ and entrepreneurs with $q \ge 1$ apply for loans, while entrepreneurs with q < 1 save their endowments. Therefore, we assume $$(1-\eta)s[0] + \eta e(1-(\overline{q}-1)) < \eta(\overline{q}-1)I.$$ (6) Together, the boundary conditions ensure that savings and investment can be balanced at positive interest rates. Finally, we assume that banks that are unable to pay back go bankrupt. A subgame perfect Nash equilibrium among banks with myopic beliefs of entrepreneurs is a tuple ¹¹Other rationing schemes might be considered where rejected entrepreneurs go to another bank in order to apply for loans. In an extended version we show that the result in Proposition 1 is robust for different rationing schemes. The main argument is that more sophisticated rationing schemes tend to lower the profits of banks that deviate from an equilibrium. Details are available upon request. As this argument can also be applied for this paper, the results in this paper tend to be quite robust for different rationing schemes. $$\left\{ \left\{ r_{j}^{d*} \right\}_{j=1,2}, \left\{ r_{j}^{c*} \right\}_{j=1,2} \right\}$$ so that - entrepreneurs take optimal credit application and saving decisions as contract takers, - no bank has an incentive to offer different deposit or loan interest rates. Therefore, the strategy spaces of banks are deposit and loan contracts.¹² In the appendix it is shown: #### Proposition 1 Suppose $\overline{q} \leq 2$. Then there exists a unique equilibrium of the intermediation game with (i) $$r^* = r_i^{c*} = r_i^{d*} \qquad \forall_j$$ (ii) r^* is determined by $$(1-\eta) s \{r^*\} + \eta e \Big(1+r^*-(\bar{q}-1)\Big) = \eta (\bar{q}-(1+r^*)) I$$ (iii) $$q^* = 1+r^*$$ Hence, the intermediation game yields the competitive outcome in which savings and investments are balanced and in which there is a common interest rate for loans and deposits. For the purpose of this paper, the most important conclusion from proposition 1 is that intermediation margins are zero in equilibrium and savings and investments are balanced. Note that in our model, the incentive of banks to corner one side of the market, in order to obtain monopoly rents on the other side, does not destroy the perfect competition ¹²Interest rates on deposits and loans are usually constrained in such a way that repayments of debtors in stage 4 are non-negative. outcome.¹³ Suppose a bank offers a deposit rate slightly above r^* in order to attract all depositors. If this bank raises r^c in order to exploit its monopoly power among entrepreneurs, a portion of entrepreneurs will switch market sides. This, however, causes large excess resources for the deviating bank, inducing a loss greater than the excess returns from the remaining entrepreneurs. The market side switching and the resulting excess resources are only one of several arguments why Walrasian outcomes can arise. For our purpose, it is important that competitive outcomes occur. In equilibrium, all entrepreneurs with projects whose returns are equal to or above r will obtain funds and invest. Aggregate income, denoted by Y_t , is given by: $$Y_t = e + \eta(I + e) \cdot \left\{ \frac{(\overline{q})^2 - (1 + r^*)^2}{2} \right\}$$ (7) The first term represents the aggregate endowment in period t. The second term captures the output generated by investments in the last period. Note that banks do not need to put up equity to perform their intermediary function, as they can fully diversify their lending activities. # 4 Temporary Productivity Shocks, Contracts, and Regulation Schemes In this section, we consider the possibility of aggregate productivity shocks. We assume that $\bar{q}_{\tau} = \bar{q}$ in all periods τ , except period t. In period t, \bar{q}_{t} is assumed to be \bar{q}^{h} with probability p (good state) or \bar{q}^{l} with probability 1-p (bad state). The distribution of the entrepreneurs' qualities varies accordingly. We assume $\bar{q}^{l} < \bar{q}^{h}$. $z = \bar{q}^{h} - \bar{q}^{l}$ denotes the size of the shock. $\bar{q}^{e} = p \cdot \bar{q}^{h} + (1-p)\bar{q}^{l}$ is the average productivity of the best possible qualities. We maintain the assumptions that savings and investment can potentially be balanced at positive interest rates for any of the following constellations. In particular, we ¹³See Stahl (1988) and Yanelle (1989 and 1997) for seminal contributions on the theory of two-sided intermediation and Gehrig (1997) for a recent extension to differentiated bank services. assume that the boundary conditions (5) and (6) in the last section hold for both shock scenarios \overline{q}^l and \overline{q}^h . Equilibria of the intermediation game in period t-1 will now crucially depend on the regulator's approach to banking crises. A banking crisis occurs in our model when one or both banks, and thus the whole banking system, is unable to repay depositors. We distinguish between two polar cases when banking crises occur: bailout and failure. If the regulator commits to failure, banks that are unable to satisfy depositors go bankrupt. If the regulator commits to bailout, he will tax future generations in order to save banks.¹⁴ With bailout, we assume that banks expect losses to be precisely recovered so that they will have zero profits in the future. If banks incur no losses in period t, they will anticipate zero profits due to Bertrand competition. The assumption ensures that we can define an equilibrium of the financial intermediation game for a particular period. The focus of our paper is to compare two regulatory schemes for banking crises when banks compete with contingent deposit and loan contracts.¹⁵ With stochastic aggregate productivity shocks, banks can offer state-contingent contracts in period t-1. We use $C(r_j^{ch}, r_j^{cl})$ to denote the credit contract offered by bank j. r_j^{ch} and r_j^{cl} denote the interest rate demanded from borrowers in the good state and in the bad state respectively. Similarly, $D(r_j^{dh}, r_j^{dl})$ denotes deposit contracts with deposit rates r_j^{dh} and r_j^{dl} , depending on the realization of macroeconomic shocks. We maintain the assumption that banks are risk-neutral.¹⁶ Since consumers are risk-averse, they prefer a riskless interest rate over a lottery $\{r_j^{dh}, r_j^{dl}\}$ with the same expected interest rate. We assume that the consumers' intertemporal preferences and their attitudes towards risk generate the saving function, ¹⁴While we focus on polar cases of regulatory approaches toward banking crisis, there are intermediate scenarios where the regulator taxes the current generation to bail out banks. This case is discussed in the Conclusion. ¹⁵The regulatory schemes could be endogenized in the following way. Suppose that the current generation can determine the regulatory approach toward banking crises. If the costs in establishing a new banking system after the failure of the existing one are negligible, the current generation will always choose failure when faced with the case of a banking crisis. If the costs are prohibitively high and the current and future generations are taxed in the same way to pay for the set-up costs of new banks, existing banks would be saved. ¹⁶Since entrepreneurs as owners of banks are risk-neutral, the assumption follows naturally. now denoted by $s\{r_i^{dh}, r_i^{dl}\}$. The expected deposit rate is denoted by $r_j^{de} = pr_j^{dh} + (1-p)r_j^{dl}$. Similarly, the expected interest rate on loans is given by $r_j^{ce} = pr_j^{ch} + (1-p)r_j^{cl}$. To simplify notation we use the following convention. An entrepreneur is characterized by his quality in the good state, $q \in [\overline{q}^l - 1, \overline{q}^l]$, or by his quality in the bad state, $q - z \in [\overline{q}^h - 1, \overline{q}^h]$ or by his average quality, denoted by q^e , and given by $$q^{e} = p \cdot q + (1 - p)(q - z). \tag{8}$$ The critical entrepreneur is denoted by $q^{e*}(r_j^{ch}, r_j^{cl}, r_j^{dh}, r_j^{dl})$. An entrepreneur with an expected quality q^e and associated quality q in the good state faces the following choices. Applying for a credit yields expected wealth: $$E(W(q)) = p \left\{ \max \left\{ q(I+e) - I(1+r_j^{ch}), 0 \right\} \right\}$$ $$+ (1-p) \left\{ \max \left\{ (q-z)(I+e) - I(1+r_j^{cl}), 0 \right\} \right\}$$ (9) Note that, in the bad state, the project returns may be insufficient to pay back the loan. Saving funds yields expected wealth $$e(p(1+r_j^{dh})+(1-p)(1+r_j^{dl}))=e(1+r_j^{de})$$ Potential entrepreneurs are risk-neutral. Thus, the comparison of the expected wealth between investing and saving determines the critical quality level above which entrepreneurs choose to invest. In the following section, we examine the intermediation game in period t-1, depending on the size of the shock. ## 5 Bank Failure We first investigate the equilibria when insolvent banks go bankrupt. #### 5.1 Small Productivity Shocks We first consider the case where shocks are so small that funded and investing entrepreneurs are always able to pay back. The upper limit for small shocks will be given in the next proposition. In this case, the critical entrepreneur in terms of expected quality would be given by: $$q^{e*} = 1 + \frac{I\min\{r_j^{ce}\} + e\max\{r_j^{de}\}}{e+I}$$ (10) such that entrepreneurs with $q^e \geq q^{e*}$ apply for loans while entrepreneurs with $q^e < q^{e*}$ save their endowments.¹⁷ Note that q^{e*} implies a critical value in the good state, denoted by q^* and defined by: $$q^{e*} = p q^* + (1 - p)(q^* - z)$$ We first derive the equilibrium when the regulator commits to failure. In the case of failure, depositors know that banks can never pay back a promised deposit rate if the lending rate is lower in the same state of the world. Hence, we restrict our analysis to $r_j^{dh} \leq r_j^{ch}$ and $r_j^{dl} \leq r_j^{cl}$. For instance, if $r_j^{dh} > r_j^{ch}$ were offered, depositors would simply count on $r_j^{dh} = r_j^{ch}$. Provided funds are received and credit is granted to the entrepreneur, expected profits per credit of bank j when there is no bailout amount to $$E(G_j) = p \cdot I(r_j^{ch} - r_j^{dh}) + (1 - p)I(r_j^{cl} - r_j^{dl})$$ $$= I(r_j^{ce} - r_j^{de})$$ (11) The critical entrepreneur in equilibrium is denoted by q_f^{e*} . We obtain: ¹⁷Note that min $\{r_j^{ce}\}$ is restricted to the set of banks that offer the highest deposit rate, as entrepreneurs seeking loans will only apply at those banks. #### Proposition 2 Suppose that the regulator commits to failure. Then there exists a unique equilibrium of the intermediation game if $$z \le \frac{e(1+r^f)}{p(e+I)}$$ where r^f is determined by: $$(1 - \eta) s \{r^f, r^f\} + \eta e \left(1 + r^f - (\bar{q}^e - 1)\right) = \eta \left(\bar{q}^e - (1 + r^f)\right) \cdot I$$ The equilibrium is given by (i) $$r^f = r^{ch}_j = r^{cl}_j = r^{dh}_j = r^{dl}_j, \qquad \forall j$$ (ii) $$q_f^{e*} = 1 + r^f$$ The proof is given in the appendix. Note that the equilibrium interest rates, the critical entrepreneur, and the upper bound of the shock are fully determined by the exogenous variables. The proposition implies that financial intermediation with a commitment to bankruptcy of insolvent banks by the regulator yields an efficient intragenerational allocation of risks for the generation under consideration. Risk-neutral entrepreneurs can bear the entire macroeconomic risk, since they can repay the same interest rate in both states. The productivity shock is fully absorbed by the fluctuation of the entrepreneurs' income, which insures the banking system. Banks never default in equilibrium. # 5.2 Large Productivity Shocks We complete our analysis with the examination of the case in which the shock is large. If the shock is sufficiently large, this makes complete insurance of depositors in the failure regime impossible. The essential condition is that the wealth of entrepreneurs is insufficient to insure depositors, i.e., $z \ge \frac{e(1+r^f)}{p(e+I)}$, where r^f is determined by proposition 2. We obtain: #### Proposition 3 Suppose that the regulator commits to failure and that $z > \frac{e(1+r^f)}{p(e+I)}$. Then there exists an equilibrium of the intermediation game with: (i) $$r^h = r_j^{ch} = r_j^{dh}, \qquad \forall_j$$ (ii) $$r^l = r^{cl}_j = r^{dl}_j, \qquad \forall_j$$ (iii) $$r^{h} = \frac{I(1+r^{l}) + (e+I) \left\{ zp - 1 - (1-p)r^{l} \right\}}{p(e+I)}$$ (iv) r^l is determined by $$(1 - \eta) \cdot s \left\{ r^h(r^l), \ r^l \right\} + \eta e \left(q^* - (\bar{q}^e - 1) \right) = \eta(\bar{q}^e - q^*) \cdot I \text{ with}$$ (v) $$q_f^{e*} = 1 + pr^h + (1-p)r^l = \frac{I(1+r^l)}{e+I} + zp$$ The proof is given in the appendix.¹⁸ Hence, with large productivity shocks, banks offer state-contingent deposit and loan contracts. Part of the macroeconomic risk is shifted to depositors. This prevents the aggregate risk from being shifted to future generations. Note that there is room for further improvements in risk allocation by repackaging deposit contracts into two securities. Risk-neutral entrepreneurs who save could hold very risky contracts, and could bear the entire macroeconomic risk. Risk-adverse consumers could be offered less risky or even riskless contracts. This contract arrangement would further improve intra-generational risk allocation. ¹⁸Establishing uniqueness is extremely cumbersome. Details on how to prove that other equilibria do not exist are available upon request. ## 6 Bailouts We suppose in this section that the regulator commits to bailouts. In this case, banks might be tempted to request particularly high interests rates on loans in the good state and a low interest rate in the bad state. It is instructive to first show that for this reason the efficient risk allocation as expressed in proposition 2 can no longer be an equilibrium. #### Proposition 4 Suppose that the regulator commits to bailouts. Then, efficient risk allocation cannot be an equilibrium. The proof is given in the appendix. In the next proposition we establish the equilibrium of the game. The critical entrepreneur who is indifferent between saving and applying for a loan in the case of bailouts is denoted by q_w^{e*} . #### Proposition 5 Suppose $(\overline{q}^e - 1 - p)e + (\overline{q}^e - 2p)I \leq 0$. Suppose that the regulator commits to bailouts. Then, there exists a unique equilibrium with: $$r^w = r_j^{ch} = r_j^{dh} = r_j^{dl}$$ (ii) $$r_j^{cl} = -1$$ (iii) r^w is determined by $$(1-\eta) \cdot s\{r^w, r^w\} + \eta e \cdot \left(q_w^{e*} - (\bar{q}^e - 1)\right) = \eta(\bar{q}^e - q_w^{e*})I$$ with $$q_w^{e*} = 1 + \frac{I\{pr^w - (1-p)\} + er^w}{e+I}$$ The proof is given in the appendix. The intuition for this result is as follows. Under bailout, banks wish to create a profitable state, i.e., a state of the world where $r_j^{ch} - r_j^{dh}$ is large, while being unconcerned about losses in the other state. In the good state, competition drives profits to zero and we have $r_j^{ch} = r_j^{dh}$. In order to demand high interest rates from entrepreneurs in one state of the world, banks do not require any repayment in the bad state. This motivates entrepreneurs to apply for loans. The condition in proposition 5 is fulfilled as long as the expected upper level of the productivity is not too high and the probability of the good state is not too low.¹⁹ Obviously propositions 5 and 6 are extreme, since banks are able to write contracts with entrepreneurs demanding negative interest rates in one state of the world. If we restrict the set of contracts to non-negative interest rates, our results are qualitatively the same, but the potential losses for future generations decrease. In the bad state banks will demand $r_i^{cl} = 0$. An important implication of proposition 5 is that bailing out banks in the bad state is accompanied by bailing out firms as well. Entrepreneurs pay no interest on their loan (if $r_j^{cl} = 0$) or do not have to pay anything (if $r_j^{cl} = -1$) and hence can still make profits in the bad state. There are various cases where bailout guarantees for banks and hidden subsidies to entrepreneurs have contributed to the emergence of banking crises (see e.g. Krugman 1999 for the Asian crisis). Our analysis suggest that this will naturally arise when banks compete with contingent contracts under a bailout regime even if moral hazard of entrepreneurs has been eliminated since banks offer large spreads in contingent loan interest rates. Proposition 5 holds independently of the size of the shock, provided \bar{q}^e fulfills the aforementioned condition. Thus, even if the macroeconomic risk is small, future generations face large aggregate risks. Proposition 5 holds even if there is no macroeconomic risk whatsoever, i.e., $\bar{q}^l = \bar{q}^h$. This case occurs if there are sunspot random variables with the probability distribution (p, 1-p), upon which banks write contingent deposit and loan contracts. Proposition $^{^{19} \}mathrm{If}$ the condition in proposition 5 is not fulfilled, the results remain qualitatively the same. Banks will still demand less repayment from entrepreneurs in the bad state . However, $r_j^{cl}=-1$ is no longer feasible in equilibrium, since the average loan interest rate would induce too much investment. 5 shows that banks generate risk for future generations. Hence, we use the term risk-generation effect rather than the well-known risk-shifting effect to describe the equilibrium outcome in proposition 5, as risk is generated even if there is no underlying real risk. An immediate consequence is: #### Proposition 6 Suppose $(\overline{q^e} - 1 - p)e + (\overline{q^e} - 2p)I \leq 0$. Suppose that the regulator commits to bailouts. In the bad state, future generations face losses equal to the savings of the last generation. # 7 Comparison In the next proposition, we compare the interest rates and investment levels for both regulatory schemes. #### Proposition 7 The comparison between bailout and failure in the case of small productivity shocks yields: (i) $$r^w > r^f$$ $$(ii) \quad q_w^{e*} < q_f^{e*}$$ The proof is given in the appendix. As proposition 7 implies, under the bailout regime the current generation invests more, compared to the bank failure regime, and depositors receive more attractive interest rates. Since entrepreneurs do not need to pay back in one state of the world under bailout, a larger percentage of entrepreneurs choose to invest rather than save, in comparison to the failure regime. Proposition 7 can be interpreted as a lending boom under bailout, as aggregate credit expands. The result complements recent important theories of lending booms (Dell'Ariccia and Marquez (2008)). They show that lending standards may endogenously decline, which, in turn, may increase aggregate surplus, but also the risk of financial instability. The disadvantage of the bailout regime in our model is that it lowers intertemporal aggregate output. Specifically, aggregate output over two generations is higher under bank failure than under bailout when the second generation has to bailout the first generation.²⁰ This is obvious in the simplest case when the interest elasticity of savings is zero. Then we have $q_w^{e*} = q_f^{e*}$ and, hence, expected aggregate output in the first generation is the same in both regimes. In the next period, however, savings and investment are lower in the bailout regime than in the failure regime, when the bad state has occurred in the generation before. In the good state, output in both regimes is identical. Hence, expected aggregate output over two generations is smaller in the bailout regime than in the failure regime.²¹ ## 8 Conclusions We have examined the incidence of macroeconomic shocks in a model of financial intermediation under different bailout schemes. Our analysis indicates that the combination of allowing banks to fail, along with contingent deposit and loan contracts, tends to yield an efficient intra-generational risk allocation. Together with a large number of further issues to be considered in banking regulation (see Dewatripont and Tirole (1994), Hellwig (1998), and Allen and Santomero (1998)), our results may help to design an overall second-best banking regulation scheme. The current framework should allow for a number of useful extensions. For instance, it may be useful to consider a wider range of macroeconomic shocks. In particular, one could condition contracts on other contractible macroeconomic events that are highly correlated with the financial health of the banking sector. For instance, one might try to use an index that measures the average default rate of entrepreneurs, or the level of aggregate bank capital that would occur if the good state is assumed. In our model, all these variants of macroeconomic indicators would give the same results. $^{^{20}}$ To prevent the decline in aggregate output, the regulator could fix deposit rates at the level r^f from the outset. Such an ex ante deposit rate ceiling would not, however, eliminate the risk generation incentive of banks, since banks would still like to create a profitable and an unprofitable state of the world on the loan side. ²¹The general proof is tedious. Two effects occur. First, entrepreneurs with low quality (i.e. entrepreneurs with $q_w^{e*} < q^{e*} \le q_f^{e*}$) invest in the first generation under the bailout regime, but not under the failure regime. Second, bailout reduces investment of entrepreneurs with higher quality levels than q_f^{e*} in the second generation. Accordingly, aggregate output over two generations is higher under the failure regime than under the bailout regime. Details are available upon request It is also useful to consider contingent bailout schemes. For example, one may conjecture that with small shocks, the regulator is expected to stay out, while with large macroeconomic shocks, the regulator is expected to step in. Such contingent government bailout schemes would preserve the incentives of banks to generate profitable states of the world, while large losses occur in the state where the government steps in. Hence, contingent bailout would, at best, alleviate the risk-generation effect. Another useful extension is to consider bail-outs within a generation when entrepreneurs (and consumers) may be taxed to bail out depositors. This implies that the current generation has to provide rescue funds in case of bank default. This could force banks to require a lower loan rate for the good state and may lessen the moral hazard problem, but will not eliminate it. As long as lump-sum taxation is used, the qualitative nature of our results as to the risk-generation effect does not change. If bail-out schemes are anticipated by agents, however, their decision problems have to be adapted before a welfare analysis can be conducted. This subject is left for future research. Moreover, the decision of whether or not to rescue insolvent banks may depend on the majority voting in a particular period. It is obvious that there are conflicting interests concerning the appropriate regulatory scheme. A generation supports the bailout of banks when its individuals are old depositors. A young generation will be harmed by taxation if they have to resolve banking crises and pay the depositors back. Hence, regulatory schemes depend on the relative size of generations and on the potential costs of establishing new banks. The political economy of regulatory schemes promises useful insights into the timing of bank failures and bailouts. # 9 Appendix A: #### Proof of proposition 1: We first show the existence of the equilibrium. Note that r^* is uniquely determined. The boundary conditions ensure that at least one solution exists. For sufficiently high interest rates, investments become zero, and hence the left side of the equation for r^* is greater than the right. For $r^* = 0$, the boundary condition ensures that the right side is greater than the left side. The mean value theorem establishes that at least one solution exists, since both sides are continuous in r. Moreover, the left side of the implicit equation for r^* in proposition 1 is monotonically increasing in r^* . In contrast, the right side is decreasing in r^* . Hence, the solution is unique. Loan application decisions of entrepreneurs are optimal, given $r^d = r^c = r^*$. Profits of banks per credit contract are zero (see Equ. (4)). Changing one interest rate, while leaving the other at r^* , is never profitable for a bank. Consider a change of r_j^d . Profits are either negative provided $r_j^d > r^*$, or a deviating bank obtains no resources if $r_j^d < r^*$. Consider a change of r_j^c . Profits are negative since the interest rate margin is negative, or the deviating bank does not obtain loan applicants due to our rationing assumption. Suppose, however, that bank j offers slightly better conditions for depositors $(r_j^d = r^* + \epsilon)$ and tries to exploit its monopolistic power on the lending side, i.e., the bank changes both interest rates. Since bank j would obtain all deposits, entrepreneurs can only receive loans at this bank. Hence, profits of the deviating bank, denoted by π_i amount to: $$\pi_{j} = \eta(\bar{q} - q^{*}) \cdot I(1 + r_{j}^{c}) - \eta e \left(q^{*} - (\bar{q} - 1)\right) (1 + r^{*} + \epsilon)$$ $$- (1 - \eta) s \left\{r^{*} + \epsilon\right\} (1 + r^{*} + \epsilon)$$ (12) where $$q^* = 1 + \frac{I \cdot r_j^c + e(r^* + \epsilon)}{e + I}$$ and $$r_i^c > r^* + \epsilon$$ Note that bank j has excess resources of $$(1-\eta)s\{r^*+\epsilon\} + \eta e(q^*-(\bar{q}-1)) - \eta(\bar{q}-q^*)\cdot I$$ which, however, can neither be invested nor used in the next period since the good is perishable. We obtain $$\begin{split} \frac{\partial \pi_{j}}{\partial r_{j}^{c}} &= \eta \left\{ (\bar{q} - q^{*}) \cdot I - \frac{I}{e + I} \cdot I(1 + r_{j}^{c}) \right\} - \eta e \frac{I}{e + I} \cdot (1 + r^{*} + \epsilon) \\ &= \frac{\eta I}{e + I} \left\{ (\bar{q} - 1)(e + I) - 2Ir_{j}^{c} - I - e(1 + 2r^{*} + 2\epsilon) \right\} \\ &< \frac{\eta I}{e + I} \left\{ (\bar{q} - 2)(e + I) \right\} \end{split}$$ Therefore, $\frac{\partial \pi_j}{\partial r_j^c}$ is negative if $\overline{q} \leq 2$. Hence, profits are decreasing for $r_j^c \ge r^* + \epsilon$ with the loan interest rate. Thus, bank j cannot make profits by offering $r_j^d = r^* + \epsilon$ and a lending rate $r_j^c \ge r^* + \epsilon$. Finally, it is obvious that setting $r_j^d = r^* + \varepsilon$ and $r_j^c < r^* + \varepsilon$ is not profitable because profits are negative. Uniqueness follows through similar observations. Any interest rate constellation which would yield excess resources can be improved by a deviating bank. No interest rate constellation with $r^d < r^c$ and no excess resources can be an equilibrium. A bank can profitably deviate by setting $r^d + \varepsilon$, $(\varepsilon > 0)$ and $r^c - \delta$, $(\delta > 0)$, where δ must be selected so that no excess resources occur. #### Proof of proposition 2: We observe that, given r_j^{ce} and r_j^{de} , and hence a given critical entrepreneur q^{e*} and a given profit per credit, banks can offer risk-averse depositors the highest utility by setting $r_j^{dh} = r_j^{dl}$. Hence, Bertrand competition will lead to $r_j^{dh} = r_j^{dl} = r_j^{de}$. Moreover, banks are forced to offer $r_j^{ce} = r_j^{de}$. Raising r_j^{de} slightly and increasing r_j^{ce} to obtain monopoly profits from entrepreneurs is not profitable for the same reasons as outlined in proposition 1. $r_j^{dh} = r_j^{dl} = r_j^{de} = r_j^{ce}$ and the repayment conditions $r_j^{dh} \leq r_j^{ch}$ and $r_j^{dl} \leq r_j^{cl}$ imply $r_j^{ch} = r_j^{cl} = r_j^{dh} = r_j^{dl}$. This equilibrium interest rate is denoted by r^f and determined by the saving and investment balance. Finally, we need to verify that banks are able to pay back in both states of the world, since otherwise their deposit rates would not be credible. In the bad state the repayment condition is given by $$(q^* - z)(e + I) = (q^{e*} - zp)(e + I) \ge I(1 + r^f)$$ Using $q^{e*} = 1 + r^f$ this implies $$z \le \frac{e(1+r^f)}{p(e+I)}$$ #### Proof of proposition 3: a) We construct the equilibrium in the following way. In the bad state the interest rate r^l in (iii) is determined by the requirement that the critical entrepreneur can simply pay back what he owes. We must have $$(q^* - z)(e + I) = I(1 + r^l)$$ (13) Using $$q^e = pq + (1 - p)(q - z)$$ which implies for the critical quality levels $q^{e*} = p q^* + (1 - p)(q^* - z)$ $$q^* - z = q^{e*} - zp$$ we obtain $$(q^{e*} - zp)(e+I) = I(1+r^l)$$ (14) Inserting $q^{e*} = 1 + pr^h + (1 - p)r^l$, which follows from equation (10), yields $$r^{h} = \frac{I\left(1+r^{l}\right)+\left(e+I\right)\left\{zp-1-\left(1-p\right)r^{l}\right\}}{p\left(e+I\right)}$$ which corresponds to (iii). (v) follows by solving equation (14) for q^{e*} . b) For sufficiently large productivity shocks we always have $r^h > r^l$. Using (iii), $r^h > r^l$ implies $$p(e+I)r^{l} < p(e+I) r^{h} = I(1+r^{l}) + (e+I) \{zp - 1 - (1-p) r^{l}\}$$ $$er^{l} < I + (e+I)(zp - 1)$$ (15) For a given r^l , q^{e*} is increasing in z. In order to fulfill the savings/investment balance in (iv), an increase in z leads to a decline in r^l . Hence, for sufficiently high z, equation (15) is fulfilled. c) Expected profits of banks are zero. Suppose bank j offers deposit interest rates r^h and $r^l + \epsilon$. Since bank j obtains all deposits, it could change the individually optimal interest rates on loans. In order to avoid an excess resource problem, bank j needs to ensure that enough entrepreneurs want to apply for credits. Therefore, q^e should not rise above $q^{e*} = 1 + pr^h + (1 - p)r^l$. If the deviating bank wishes to achieve $q^e = q^{e*}$ $$q^{e*} = 1 + \frac{I r^{ce} + e \cdot \left(pr^h + (1 - p)(r^l + \epsilon) \right)}{e + I} = 1 + pr^h + (1 - p)r^l$$ we obtain $$r^{ce} \le pr^h + (1-p) \cdot r^l \le r^{de} = pr^h + (1-p)(r^l + \varepsilon)$$ Accordingly, expected profits per credit amount to $$E(G_j) = p(r_j^{ch} - r_j^{dh}) \cdot I + (1 - p)(r_j^{cl} - r_j^{dl}) \cdot I$$ $$= I(r^{ce} - r^{de})$$ $$< 0$$ Hence, the deviation does not benefit bank j. Similar reasoning for any other potential deviation establishes that $\{r^h, r^l\}$ is an equilibrium. #### Proof of proposition 4: Consider the risk allocation of proposition 2. A bank j can consider the following deviation by offering the interest rates: $$r_j^{dh} = r_j^{dl} = r^f + \epsilon$$ $$r_j^{ch} = r^f + \delta$$ $$r_j^{cl} = r^f - \frac{p\delta}{1 - p}$$ where δ is larger than ϵ . Bank j would obtain all deposits since $r_j^{de} > r^f$. The critical entrepreneur amounts to $$q^{e*} = 1 + \frac{Ir^f + e(r^f + \epsilon)}{e + I} = 1 + r^f + \frac{e\epsilon}{e + I}$$ Hence, for sufficiently small ϵ , savings and investments are almost balanced. Since $r_j^{dh} < r_j^{ch}, r_j^{dl} > r_j^{cl}$, bank j will not be able to pay back depositors in the second state. However, when banks are bailed out, expected bank profits per credit amount to $$E(G_i) = p \cdot I(\delta - \epsilon) \tag{16}$$ For a sufficiently small amount of ϵ , excess resources from depositors are negligible. However, by choosing $\delta > \epsilon$ and making δ sufficiently large, expected profits will be large. Hence, the profitable deviation of bank j eliminates the existence of the efficient intra-generational risk allocation equilibrium. #### Proof of proposition 5: We first observe that r^w is uniquely determined. The left side of the implicit equation for r^w in proposition 5 is increasing in r^w , since $s\{r^w, r^w\}$ and q_w^{e*} are monotonically increasing in r^w . In contrast, the right side is decreasing in r^w . The corresponding boundary conditions ensure that a unique solution exists. The most promising deviation of bank j would be²² $$r_j^{dh} = r_j^{dl} = r^w + \epsilon \tag{17}$$ ²²It is straightforward, but tedious to check that any other potential deviation is not profitable. $$r_i^{cl} = -1 \tag{18}$$ The bank would obtain all resources and would try to maximize expected profits by choosing the monopoly interest rate r_j^{ch} , as entrepreneurs expect to obtain loans at the deviating bank j only. Expected profits are given by $$E(\pi_{j}) = p \cdot \left\{ \eta(\bar{q}^{e} - q^{*}) \cdot I\left(1 + r_{j}^{ch}\right) - \eta e\left(q^{*} - (\bar{q}^{e} - 1)\right)(1 + r^{w} + \epsilon) - (1 - \eta) \cdot s\{r^{w} + \epsilon, \ r^{w} + \epsilon\}(1 + r^{w} + \epsilon) \right\}$$ with: $$q^{*} = 1 + \frac{I\left(pr_{j}^{ch} - (1 - p)\right) + e(r^{w} + \epsilon)}{e + I}$$ (19) We obtain: $$\frac{\partial E(\pi_{j})}{\partial r_{j}^{ch}} = \frac{p \eta I}{e+I} \cdot \left\{ (\bar{q}^{e} - 1)(e+I) - I \left\{ pr_{j}^{ch} - (1-p) \right\} - e(r^{w} + \epsilon) - pI(1+r_{j}^{ch}) - ep(1+r^{w} + \epsilon) \right\} = \frac{p \eta I}{e+I} \cdot \left\{ (\bar{q}^{e} - 1)(e+I) - I(2pr_{j}^{ch} + 2p - 1) - e(p+r^{w}(1+p) + \epsilon(1+p)) \right\} \leq \frac{p \eta I}{e+I} \cdot \left\{ (\bar{q}^{e} - 1-p)(e+I) + I(1-p) \right\} \leq 0, \text{ if } (\bar{q}^{e} - 1-p)e + (\bar{q}^{e} - 2p)I \leq 0$$ (20) Note that we have used $r_j^{ch} = r^w = 0$ and $\varepsilon = 0$ to obtain the inequality. Hence, the deviation is not profitable if the assumption of the proposition holds. #### Proof of proposition 7: We compare the savings and investment balance in both cases. Suppose that $r^w < r^f$. This implies that $$q_w^{e*} < 1 + \frac{I\,r^f + e\,r^f}{e + I} = 1 + r^f = q_f^{e*}$$ Hence, using proposition 2, we obtain: $$(1 - \eta) s \left\{r^f, r^f\right\} + \eta e \left(q_w^{e*} - (\overline{q}^e - 1)\right) < \eta (\overline{q}^e - q_w^{e*}) I.$$ The strict inequality is reinforced when r^f is lowered to r^w in $s\{r^w, r^w\}$ because savings will (weakly) decline. This is, however, a contradiction to the savings and investment balance in the bailout case. Hence we obtain $r^w > r^f$. Moreover, $r^w > r^f$ implies that $q_w^{e*} < q_f^{e*}$ in order to balance savings and investments. # 10 Appendix B: Financial Intermediation and Contracts (solely for the Referee) Here we briefly state the underlying agency conflicts that provide the rationale for the occurrence of financial intermediation in our paper. The depositors face the following informational asymmetries. The quality q is known to entrepreneurs but not to depositors. Moreover, depositors cannot verify whether an entrepreneur invests. To alleviate such agency problems in financial contracting, financial intermediation can act as delegated monitoring (see Diamond (1984)). Bank activities are characterized by two features: First, banks can verify output conditional on investment at low or zero costs. The assumption is justified by the possibilities that banks have of securing the repayments if entrepreneurs invest. Monitoring in order to secure repayments takes many forms: inspection of firms' cash flow when customers pay, and efforts to collateralize assets if they have been created in the process of investing and selling products to customers. If the final products of an entrepreneur's project are physical goods, such as houses or machines, standard banks can secure repayment conditional on investment at very low costs. Second, entrepreneurs can have large private benefits if they do not invest, but banks are able to reduce these benefits by monitoring. The monitoring can take many forms. For instance, standard banks can collateralize parts of the credit, or may release the funds sequentially to the entrepreneur, depending on his investment behavior. Such efforts can reduce the private benefits of entrepreneurs who do not invest. The simplest monitoring function is given as follows: If a bank j offers a loan I to an entrepreneur and monitors by paying a resource cost $m, m \geq 0$, it can secure a repayment of γI with $0 < \gamma \leq 1$. If γ is sufficiently high such that $q(e+I) - (1+r^c)I \geq e + (1-\gamma)I$, where r^c is interest on loans, an entrepreneur with quality q will invest if he obtains a loan. We assume that monitoring technologies are efficient enough in reducing the private benefits of entrepreneurs such that entrepreneurs applying for loans will always invest. For simplicity, we also assume that monitoring outlays for a bank per credit contract are negligible. Our analysis, however, is also applicable to the case where banks can completely alleviate agency problems in contracting by investing a fixed amount per credit contract in monitoring. In this case, the interest rate spread will be positive and in equilibrium will cover the costs of monitoring.²³ For simplicity of presentation, we assume in this paper that such fixed monitoring costs are zero. We next justify the use of debt contracts in financing entrepreneuers, either unconditional or conditional on macroeconomic shocks. A theoretical justification is given in Gersbach and Uhlig (2006). They abstract from monitoring as we do in this paper. They show banks enter into a Bertrand-like competition for the different types of investing borrowers in such games. This makes it impossible for a lender to cross-subsidize among them. In any pure strategy equilibrium, only debt contracts will be offered. As the argument can easily be extended to banks with monitoring technologies²⁴, we assume directly that banks compete with debt contracts. ²³A further extension could allow banks to compete on monitoring intensity, which may increase risk generation when banks choose a low intensity of monitoring (see e.g. Gehrig and Stenbacka (2004)). ²⁴The monitoring technology simply allows banks to reduce the cost of shirking and increases the share of investing entrepreneurs. ## References - [1] Blum, J. and M.F. Hellwig (1995), "The Macroeconomic Implications of Capital Adequacy Requirements", *European Economic Review*, Vol. 39, 733-749. - [2] Dell'Ariccia, G. and R. Marquez (2008), "Lending Booms and Lending Standards", Journal of Finance, forthcoming. - [3] Demirgüç-Kunt, A. and E. Detragiache (1998): "The Determinants of Banking Crises in Developing and Developed Countries", *IMF Staff Papers*, 45(1), 81-109. - [4] Dewatripont, M. and J. Tirole (1994), "The Prudential Regulation of Banks", MIT Press. - [5] Diamond, D. (1984), "Financial Intermediation and Delegated Monitoring", *Review of Economic Studies*, Vol. 51, 393-414. - [6] Gehrig, T., (1997), "Excessive Risks and Banking Regulation", in: Banking Competition and Risk Management, edited by Gabriella Chiesa, Rome, 241-269. - [7] Gersbach, H. and H. Uhlig (2006), "Debt Contracts and Collapse as Competition Phenomena", *Journal of Financial Intermediation*, 5(4), 556-574. - [8] Gorton, G. (1988): "Banking Panics and Business Cycles", Oxford Economic Papers, 40, 751-778. - [9] Hellwig, M.F. (1995), "Systemic Aspects of Risk Management in Banking and Finance", Schweizerische Zeitschrift für Volkswirtschaft und Statistik, Vol. 131, 723-737. - [10] Hellwig, M.F. (1998), "Banks, Markets, and the Allocation of Risks in an Economy", Journal of Institutional and Theoretical Economics, Vol. 154/1, 328-345. - [11] Kaminsky, G. L. and C. M Reinhart (1999): "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems", American Economic Review, 89(3), 473-500. - [12] Krugman, P. (1999): "Balance Sheets, the Transfer Problem, and Financial Crises", *International Tax and Public Finance*, 6(4), 459-472. - [13] Shiller, R.J. (2003), "Social Security and Individual Accounts as Elements of Overall Risk-Sharing", *American Economic Review*, Vol 93, 343-347. - [14] Shin, H.S. (2008), "Securitisation and Financial Stability", *Economic Journal*, forthcoming. - [15] Yanelle, M.-O. (1989), "The Strategic Analysis of Intermediation", European Economic Review, 33, 294-301. - [16] Yanelle, M.-O. (1997), "Banking Competition and Market Efficiency", Review of Economic Studies, 64, 215-239. #### Working Papers of the Center of Economic Research at ETH Zurich (PDF-files of the Working Papers can be downloaded at www.cer.ethz.ch/research). - 08/93 H. Gersbach Banking with Contingent Contracts, Macroeconomic Risks, and Banking Crises - 08/92 J. Daubanes Optimal taxation of a monopolistic extractor: Are subsidies necessary? - 08/91 R. Winkler Optimal control of pollutants with delayed stock accumulation - 08/90 S. Rausch and T. F. Rutherford Computation of Equilibria in OLG Models with Many Heterogeneous Households - 08/89 E. J. Balistreri, R. H. Hillberry and T. F. Rutherford Structural Estimation and Solution of International TradeModels with Heterogeneous Firms - 08/88 E. Mayer and O. Grimm Countercyclical Taxation and Price Dispersion - 08/87 L. Bretschger Population growth and natural resource scarcity: long-run development under seemingly unfavourable conditions - 08/86 M. J. Baker, C. N. Brunnschweiler, and E. H. Bulte Did History Breed Inequality? Colonial Factor Endowments and Modern Income Distribution - 08/85 U. von Arx and A. Ziegler The Effect of CSR on Stock Performance: New Evidence for the USA and Europe - 08/84 H. Gersbach and V. Hahn Forward Guidance for Monetary Policy: Is It Desirable? - 08/83 I. A. MacKenzie On the Sequential Choice of Tradable Permit Allocations - 08/82 I. A. MacKenzie, N. Hanley and T. Kornienko A Permit Allocation Contest for a Tradable Pollution Permit Market - 08/81 D. Schiess and R. Wehrli The Calm Before the Storm? - Anticipating the Arrival of General Purpose Technologies - 08/80 D. S. Damianov and J. G. Becker Auctions with Variable Supply: Uniform Price versus Discriminatory - 08/79 H. Gersbach, M. T. Schneider and O. Schneller On the Design of Basic-Research Policy 08/78 C. N. Brunnschweiler and E. H. Bulte Natural Resources and Violent Conflict: Resource Abundance, Dependence and the Onset of Civil Wars 07/77 A. Schäfer, S. Valente Habit Formation, Dynastic Altruism, and Population Dynamics 07/76 R. Winkler Why do ICDPs fail? The relationship between subsistence farming, poaching and ecotourism in wildlife and habitat conservation 07/75 S. Valente International Status Seeking, Trade, and Growth Leadership 07/74 J. Durieu, H. Haller, N. Querou and P. Solal Ordinal Games 07/73 V. Hahn Information Acquisition by Price-Setters and Monetary Policy 07/72 H. Gersbach and H. Haller Hierarchical Trade and Endogenous Price Distortions 07/71 C. Heinzel and R. Winkler The Role of Environmental and Technology Policies in the Transition to a Lowcarbon Energy Industry 07/70 T. Fahrenberger and H. Gersbach Minority Voting and Long-term Decisions 07/69 H. Gersbach and R. Winkler On the Design of Global Refunding and Climate Change 07/68 S. Valente Human Capital, Resource Constraints and Intergenerational Fairness 07/67 O. Grimm and S. Ried Macroeconomic Policy in a Heterogeneous Monetary Union 07/66 O. Grimm Fiscal Discipline and Stability under Currency Board Systems 07/65 M. T. Schneider Knowledge Codification and Endogenous Growth 07/64 T. Fahrenberger and H. Gersbach Legislative Process with Open Rules 07/63 U. von Arx and A. Schäfer The Influence of Pension Funds on Corporate Governance 07/62 H. Gersbach The Global Refunding System and Climate Change - 06/61 C. N. Brunnschweiler and E. H. Bulte The Resource Curse Revisited and Revised: A Tale of Paradoxes and Red Herrings - 06/60 R. Winkler Now or Never: Environmental Protection under Hyperbolic Discounting - 06/59 U. Brandt-Pollmann, R. Winkler, S. Sager, U. Moslener and J.P. Schlöder Numerical Solution of Optimal Control Problems with Constant Control Delays - 06/58 F. Mühe Vote Buying and the Education of a Society - 06/57 C. Bell and H. Gersbach Growth and Enduring Epidemic Diseases - 06/56 H. Gersbach and M. Müller Elections, Contracts and Markets - 06/55 S. Valente Intergenerational Transfers, Lifetime Welfare and Resource Preservation - 06/54 H. Fehr-Duda, M. Schürer and R. Schubert What Determines the Shape of the Probability Weighting Function? - 06/53 S. Valente Trade, Envy and Growth: International Status Seeking in a Two-Country World - 06/52 K. Pittel A Kuznets Curve for Recycling - 06/51 C. N. Brunnschweiler Cursing the blessings? Natural resource abundance, institutions, and economic growth - 06/50 C. Di Maria and S. Valente The Direction of Technical Change in Capital-Resource Economics - 06/49 C. N. Brunnschweiler Financing the alternative: renewable energy in developing and transition countries - $06/48\,$ S. Valente Notes on Habit Formation and Socially Optimal Growth - 06/47 L. Bretschger Energy Prices, Growth, and the Channels in Between: Theory and Evidence - 06/46 M. Schularick and T.M. Steger Does Financial Integration Spur Economic Growth? New Evidence from the First Era of Financial Globalization - $05/45\,$ U. von Arx Principle guided investing: The use of negative screens and its implications for green investors