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Abstract

We analyze the consequences of habit formation for income levels and long-term growth
in an overlapping generations model with dynastic altruism and resource dependence. If the
strength of habits is below a critical level, the competitive economy displays an altruistic
(Ramsey-like) equilibrium where consumption sustainability obeys the Stiglitz condition, and
habits yield permanent e¤ects on output levels due to transitional e¤ects on growth rates,
capital pro�tability and speed of resource depletion. If the strength of habits is above the
critical threshold, the economy achieves a sel�sh (Diamond-like) equilibrium in which habits
increase growth rates and resource depletion even in the long run, sustainability conditions are
less restrictive, consumption and output grow faster than in Ramsey equilibria, but welfare
is much lower. Results hinge on resource dependence, as di¤erent depletion rates modify
the intergenerational distribution of wealth and thereby the growth rate attained in either
equilibrium.

Keywords Dynastic Altruism, Overlapping Generations, Capital-Resource Model, Habit Forma-
tion.

JEL Codes Q30, D91, E21.

1 Introduction

A growing body of empirical evidence shows that preferences are status-dependent. Economic
agents form habits, and tend to assess present satisfaction on the basis of deviations from the
standards of living enjoyed in the past (Osborn, 1988; Fuhrer and Klein, 1998; Fuhrer, 2000). At
the theoretical level, the pioneering work of Ryder and Heal (1973) has been extended in various
directions by the recent literature on comparison utility (Carrol et al. 1997). Habit formation
generates relevant reallocation e¤ects that in�uence capital accumulation through saving decisions,
and may a¤ect growth and income levels in di¤erent ways depending on the assumed technology
(Alvarez-Cuadrado et al. 2008).
This paper studies the interactions between capital accumulation and desired living standards

in dynastic economies where exhaustible resources are essential inputs in production. Agents have
�nite lifetimes, exhibit habit formation and, due to a positive degree of intergenerational altruism,
may decide to leave bequests to successors. The general aim is to describe the implications of
status-dependent preferences for welfare, income levels, and long-term growth when production
possibilities are constrained by resource scarcity. In this regard, the analysis �lls a gap as the
e¤ects of habit formation in capital-resource economies has not been analyzed so far. More speci�c
questions include the characteristics of the accumulation regimes arising in competitive equilibria,
and the operativeness of bequest motives. The relevance of these issues can be drawn from the
results of two independent strands of literature.
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I. An established result of the overlapping-generations (OLG) literature is that dynastic models
may exhibit two types of accumulation regimes and long-run equilibria (Abel, 1987). If desired be-
quests are strictly positive, the equilibrium path of capital-labor economies is observationally equiv-
alent to that of in�nite-horizon models à la Ramsey-Cass-Koopmans. If altruism is not operative,
the economy is observationally equivalent to the Diamond�s (1965) OLG model with sel�sh agents,
and the long-run equilibrium may display under-investment or over-accumulation (e.g. Thibault,
2000). Two recent contributions show that habit formation is relevant for the determination of
bequests. Alonso-Carrera et al. (2007) demonstrate that excessive strength of habits may induce
non-operative bequests and thereby sel�sh equilibria. Schäfer and Valente (2009) study endogenous
population dynamics, and conclude that lower bequests induced by stronger habits decrease the
growth rate through reductions in fertility.
II. The literature on capital-resource models, pioneered by Dasgupta and Heal (1974), Solow

(1974) and Stiglitz (1974), shows that when both man-made capital and exhaustible resources - e.g.
oil - are an essential input in production, preference parameters determine the long-run growth rate
even if there are complete markets and constant returns to scale. This endogeneity result1 is relevant
in both Ramsey-type and OLG frameworks. With in�nitely-lived agents, the long-run growth rate
is proportional to the di¤erence between the rate of resource-augmenting technical progress and the
social discount rate (Stiglitz, 1974). In OLG economies with sel�sh agents, the long-run growth
rate depends on private preferences and the other parameters determining the intergenerational
distribution of wealth (Mourmouras, 1991).
This paper shows that the interactions between dynastic altruism, habit formation and resource

dependence generate a peculiar mechanism that extends the results of previous literature in non-
trivial ways. On the one hand, the analysis con�rms the negative relation between habits and desired
bequests: there exists a critical level of status desire below which altruism is operative in the long
run, and above which bequests are zero. On the other hand, the endogeneity result mentioned
above implies that altruistic and sel�sh equilibria exhibit substantial di¤erences in terms of growth
rates and intergenerational welfare. The underlying mechanism is induced by the coexistence of
habit formation and resource dependence, and thus does not arise in capital-labor economies.
The main results can be summarized as follows. If the strength of habits is below a critical level,

the dynastic economy converges towards an altruistic regime in which habits yield permanent e¤ects
on output levels and transitional e¤ects on growth rates and capital pro�tability. In these Ramsey-
type equilibria, consumption levels are non-declining if the Stiglitz (1974) sustainability condition
is satis�ed - i.e. the rate of altruism does not exceed the rate of resource-augmenting technical
progress. If the strength of habits is above the critical threshold, instead, the economy achieves a
sel�sh equilibrium in which habits increase growth rates, reduce capital pro�tability, and raise the
speed of resource depletion even in the long run. Notably, in these Diamond-type equilibria, the
growth rate is higher than in the altruistic regimes because of habit formation. On the one hand,
this implies that the sustainability condition is less restrictive. On the other hand, the result that
stronger habits imply faster growth must be interpreted with great care. Infact, the sel�sh economy
does not satisfy PV-optimality - i.e. the condition that the present-value stream of discounted
utilities is maximized (Pezzey and Withagen, 1998). In Diamond-type equilibria, desired bequests
are actually negative - i.e. agents would like to receive transfers from the successors - and the
non-enforceability of reversed transfers implies a corner solution with zero bequests. Consumption
and output dynamics are observationally �more favorable�, but welfare may be substantially lower
than in Ramsey-type equilibria because of the asymmetry between desired and observed bequests.
A numerical simulation shows that, despite faster growth and higher income levels in the long run,
welfare levels in a permanent Diamond equilibrium induced by excessive habit formation may be

1We use this terminology because the presence of preference parameters in the reduced-form expression of the
growth rate signals the endogenous determination of the growth rate (Solow, 2000: p.119). In this respect, the capital-
resource model with utility-maximizing agents of Dasgupta and Heal (1974) and Stiglitz (1974) di¤ers from standard
growth models with capital and labor. On the one hand, it di¤ers from the Ramsey-Cass-Koopmans model because
the long-run growth rate depends on preference parameters. On the other hand, it di¤ers from endogenous-growth
models with increasing returns because the aggregate technology satis�es constant returns to scale.
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46% lower with respect to Ramsey-type equilibria.
The plan of the paper is as follows. Section 2 describes the aggregate economy, and de�nes the

centralized allocation as the solution to a command-optimum problem. This analysis provides the
benchmark for studying the issue of observational equivalence, and for describing the e¤ects of habit
formation in isolation from private decisions concerning bequests. Section 3 describes a dynastic
competitive economy in which the lifetime welfare of each agent is linked to that of successors
through a positive degree of intergenerational altruism. Section 4 describes the two accumulation
regimes that may arise in the competitive economy, and derives the main results concerning the
properties of altruistic regimes, sel�sh equilibria and the operativeness of bequests. Since the
various results are represented by di¤erent Lemmas, section 5 collects the main conclusions in three
Propositions, and summarizes the di¤erences with respect to the previous literature. Section 6
o¤ers some concluding remarks.

2 The Aggregate Economy

The general structure is represented by a two-period OLG model, extended to include habit for-
mation in consumption according to the speci�cations used in Alonso-Carrera et al. (2007) and
Schäfer and Valente (2009). The aggregate technology is borrowed from the capital-resource model
with resource-augmenting technical progress pioneered by Stiglitz (1974).2 This section charac-
terizes the centralized allocation that a social planner would implement in order to maximize the
present-value stream of utilities enjoyed by di¤erent generations, using a pre-determined social
discount rate. This analysis is useful because it abstracts from competitive equilibria, dynastic
altruism and bequests: centralized allocations allow us to study the �six e¤ects of habit formation�
in capital-resource economies, in isolation from the constraints set by private decisions concerning
bequests.

2.1 General Assumptions

Demographic structure. Time is discrete and indexed by t = 0; :::;1. The economy features
overlapping generations of households with each agent living two periods (t; t+ 1). In each period t
total population equals Nt � Ny

t +N
a
t , where N

a
t and N

y
t represent the number of adult and young

agents, respectively. Each young agent generates n � 1 children at the end of the �rst period of
life, implying the gross growth rates Nt+1=Nt = Ny

t+1=N
y
t = Na

t+1=N
a
t = n.

Technology. Our assumptions regarding production possibilities re�ect two basic features of
capital-resource models. First, the economy is resource-dependent, in the sense that both man-made
capital and extracted resources (e.g. oil) are essential inputs for production. Second, there exists a
positive rate of resource-augmenting technical progress, i.e. a process of technological improvement
by which the productivity of the extracted resource increases over time (Stiglitz, 1974). Moreover,
the two-period demographic structure requires an active role for labor provided by young agents.
These characteristics are formalized by means of the aggregate production function

Yt � F (Kt;mtXt; N
y
t ) = K�1

t (mtXt)
�2 (Ny

t )
�3 ; (1)

where Yt is �nal output, Kt is man-made capital, Xt is the �ow of extracted resource, mt is an
index of resource e¢ ciency in production, Ny

t is aggregate labor (i.e. each young agent supplies
inelastically one unit of labor), and parameters satisfy �1+�2+�3 = 1 with �i 2 (0; 1). Technology
(1) implies that man-made capital and the extracted resource are both essential in the sense of

2Capital-resource models have been extensively used in more recent literature in addressing several issues re-
garding sustainability (Pezzey and Withagen, 1998), adjusted measures of aggregate income (Asheim, 1994), the
characterization of constant consumption paths (Withagen and Asheim, 1998). The Stiglitz (1974) variant with
resource-augmenting progress has been extended to include endogenous technical progress (e.g. Barbier, 1999) and
directed technical change (Di Maria and Valente, 2008).
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Dasgupta and Heal (1974) - that is, F (:;mtXt; :) = F (:;mt � 0; :) = 0. Input mtXt will be called
�augmented resource�, since the productivity index mt grows over time according to

mt+1 = mt (1 + 
) ; 
 � 0; (2)

where 
 is the exogenous net rate of resource-augmenting technical progress.3

Productive stocks. Man-made capital Kt is homogeneous with the consumption good, and is
fully depreciated after one period. The aggregate constraint of the economy thus reads

Kt+1 = Yt �Ny
t ct �Na

t et = F (Kt;mtXt; N
y
t )�N

y
t

�
ct +

et
n

�
: (3)

where consumption of young and adult agents is respectively denoted as ct and et in per capita
terms. The resource input Xt is extracted from a �nite, non-renewable stock, and can thus be
interpreted as an exhaustible natural resource like oil, minerals or fossil fuels. Denoting by Qt the
resource stock at the beginning of period t, the physical transition law of the resource is

Qt+1 = Qt �Xt: (4)

Direct Utility. For the moment, we abstract from dynastic altruism: as this section focuses on
centralized allocations, we can limit our speci�cation of preferences to the component of individual
welfare that is directly related to personal consumption. For any agent born in period t, the direct
utility index U (ct; et+1) represents the private bene�ts from the consumption levels enjoyed over
the lifecycle. We allow for the presence of habit formation by specifying a two-period additive index
of the form

U (ct; et+1) �
c1��t � 1
1� � + �

(et+1 � �ct)1�� � 1
1� � ; � > 0; (5)

where � 2 (0; 1) is the private discount factor between the two periods of life, and � � 0 is the
crucial parameter representing the strength of habits. Setting � > 0, the bene�ts perceived in the
second period are weighted on the basis of the previous consumption level ct, and the higher is "
the stronger is the e¤ect of historical consumption status. Higher values of � thus generate stronger
willingness to overcome previous standards of living. Setting � = 0 habits are inactive, as the
second-period term of consumption utility only depends on et+1.4

Given this general structure, it is possible to study various allocation mechanisms. Below, we
solve a centralized command-optimum problem. Laissez-faire regimes with dynastic altruism will
be analyzed later in sections 3-4, by means of a decentralized version of the same model economy.

2.2 Centralized Allocation

In this section, we characterize the solution of a centralized problem in which a hypothetical social
planner endowed with perfect foresight aims at maximizing the social welfare function

SW �
1X
t=0

Ny
t U (ct; et+1)�

t; � 2 (0; 1) ; (6)

where U (ct; et+1) is given by (5), and � is the social discount factor. For future reference, we also
de�ne the social discount rate as � � ��1 � 1. The term in square brackets in (6) is the sum of

3We assume that 
 is exogenously given because studying the role of endogenous technical change is beyond the
aim of the present analysis. Nonetheless, the non-negativity of 
 and the fact that the rate of technical progress
tends to be resource-augmenting rather than capital-augmenting exhibits sound microeconomic foundations provided
by the theory of directed technical change: see Di Maria and Valente (2008).

4Letting � ! 1, the utility index (5) reduces to U (ct; et+1) � log ct + � log (et+1 � �ct), which is the same
speci�cation adopted e.g. in Schäfer and Valente (2009). The more general case � R 1 complies with the general
properties of subtractive habits employed in e.g. Alonso-Carrera et al. (2007).
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direct utilities of each agent born at the beginning of period t = 0; :::;1. The centralized allocation
is de�ned as a sequence fc�t ; e�t ; X�

t ;K
�
t ; Q

�
t g
1
t=0 that solves the dynamic problem

max
fct;et;Xtg1t=0

SW subject to (3), (4) and (7)

Ny
t+1=N

y
t = n; mt+1 = mt (1 + 
) ;

Xt � 0; Qt � 0; Kt � 0; (K0; Q0) given.

Problem (7) can be solved using standard optimal control theory. As shown in the Appendix, the
interior solution can by characterized as follows.

Lemma 1 (Centralized Allocation) An interior solution of problem (7) is characterized by the in-
tertemporal conditions

c�t+1=c
�
t =

�
�F �Kt+2

�
F �Kt+1

+ �
��

F �Kt+2
+ �
��1�1=�

; (8)

e�t+1=e
�
t =

�+ �1=�
�
F �Kt+1

+ �
�1=�

�+ �1=�
�
F �Kt

+ �
�1=�

 
�F �Kt+1

F �Kt
+ �

F �Kt+1
+ �

!1=�
; (9)

F �Xt+1
=F �Xt

= F �Kt+1
; (10)

e�t+1=c
�
t = �+ �1=�

�
F �Kt+1

+ �
�1=�

; (11)

where we have de�ned the partial derivative FKt � @F=@Kt and the chain derivative FXt � dF=dXt.

Lemma 1 is proved without exploiting the Cobb-Douglas form (1), so that the above intertem-
poral conditions hold for any well-behaved technology F (Kt;mtXt; N

y
t ). Expressions (8) and (9)

govern the dynamics of consumption levels across generations, and are obtained from the Euler
condition for the allocation of consumption across each agent�s lifecycle. Both conditions show
that, as long as the marginal product F �Kt

is time-varying, habits modify the growth rates of both
types of consumption. Condition (10) is an intertemporal no-arbitrage condition over the use of
productive stocks, and is a general-equilibrium variant of the so-called Hotelling rule - according to
which the growth rate of resource prices must be equal to the prevailing interest rate on alternative
investment. In the present context, this rule asserts that the marginal contribution of the raw
resource to production, FX , must grow at a rate equal to the marginal contribution of capital, FK .
Condition (11) determines the allocation of consumption across each agent�s lifecycle, and reduces

to the standard Euler condition et+1=ct =
�
�FKt+1

�1=�
when habits are inactive.

The last expression in Lemma 1 deserves some further comments. In fact, condition (11) shows
that habit formation induces a bias in favor of second period consumption: for any given level of
the marginal product of capital, we have

@

@�

�
e�t+1=c

�
t

�
< 0: (12)

Result (12) is the consumption-bias e¤ect of habit formation (Schäfer and Valente, 2009). The
intuition behind (12) is simple: stronger habits, i.e. higher values of �, represent a stronger desire
to overcome previous standards of living, and imply that second-period consumption must exceed
�rst-period consumption to a greater extent in order to maximize the private utility index. Clearly,
the consumption-bias e¤ect has an impact on the rates of capital accumulation and of resource
extraction. Since � a¤ects the allocation of consumption between youth and adulthood, the strength
of habits modi�es the time paths of capital, resource use, and output. This mechanism can be
labelled as an �intertemporal reallocation induced by habits�, and will be studied in detail in section
2.4.
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The conditions derived in Lemma 1 allow us to derive some important properties of the long-
behavior of the economy. Following a standard procedure, we characterize the asymptotic values
of the crucial variables by imposing that the marginal product of capital converges to a �nite
steady-state value.

Lemma 2 (Steady-state centralized allocation) Provided that the marginal product of capital F �Kt

converges to a �nite steady-state limt!1 F �Kt
= F �Kss

, the centralized allocation implies

lim
t!1

c�t+1=c
�
t = lim

t!1
e�t+1=e

�
t =

�
�F �Kss

�1=�
; (13)

lim
t!1

c�t =e
�
t =

�
�F �Kss

�1=� h
�+ �1=�

�
F �Kss

+ �
�1=�i�1

; (14)

lim
t!1

Y �t+1=Y
�
t = lim

t!1
K�
t+1=K

�
t = n

�
�F �Kss

�1=�
; (15)

lim
t!1

X�
t+1=X

�
t = n�1=�

�
F �Kss

� 1��
� : (16)

This steady-state is unique, and represented by

F �Kss
= (1 + 
)

�2�
�3+�2� ��

�3
�3+�2� : (17)

Lemma 2 incorporates three relevant results. The �rst is that, in the centralized allocation,
the sign of consumption variations is determined by the Stiglitz (1974) condition for sustainability:
individual consumption levels are sustained (i.e. non-declining) in the long run if and only if the
social discount rate does not exceed the net rate of resource-augmenting technical progress. Indeed,
substituting (17) in (13), the asymptotic growth rate of individual consumption levels is

lim
t!1

c�t+1=c
�
t = [� (1 + 
)]

�2
�3+�2� =

�
1 + 


1 + �

� �2
�3+�2�

; (18)

from which it follows that a necessary and su¢ cient condition for limt!1 c�t+1=c
�
t � 1 is 
 � �.

The second implication of Lemma 2 is that the long-run growth rates of consumption and
output are independent of the strength of habit formation. From (13) and (15), growth rates are
determined by the discount factor and the long-run value of the marginal product of capital, which
is independent of �. As discussed in section 5, this result is in line with the in�nite-horizon Ramsey
model, where habits do not modify the long-run growth rate as long as capital displays decreasing
marginal returns (Ryder and Heal, 1973).
The third result contained in Lemma 2 is that variations in the degree of habit formation modify

the distribution of aggregate consumption between young and adult agents. Expression (14) shows
that stronger habits raise the share of adults in aggregate consumption (at least) in the long run:

@

@�
lim
t!1

(c�t =e
�
t ) < 0: (19)

The intuition behind result (19) is the consumption-bias e¤ect (12) described above. Since habit
formation induces a bias in favor of second-period consumption for each agent, the steady-state
centralized allocation features a higher (lower) consumption share for the adult generation in asso-
ciation with stronger (weaker) habits.

2.3 Dynamic Stability

The intertemporal conditions (8)-(11) can be reduced to a two-by-two dynamic system (see Appen-
dix)

��t+1 = (��t )
�1 (1� '�t )

��3 ���11 (1 + 
)
��2

n�3 ; (20)

'�t+1 = �
�
'�t ; �

�
t ; �

�
t+1; �

�
t+2

�
; (21)
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where �t � Yt=Kt is the output-capital ratio, 't � Ny
t

�
ct + etn

�1� =Yt is the aggregate consumption-
output ratio, and �

�
'�t ; �

�
t ; �

�
t+1; �

�
t+2

�
is a non-linear function. Since F �Kt

= �1�t, the achievement
of a stationary marginal product of capital, limt!1 F �Kt

= F �Kss
, is associated with the convergence

of system (20)-(21) towards the �xed point (��ss; '
�
ss). The simultaneous steady-state of (20)-(21)

is unique, and characterized by5

��ss = ��11 (1 + 
)
�2�

�3+�2� ��
�3

�3+�2� ; (22)

'�ss = 1� n�1�
�2+�3
�2�+�3 (1 + 
)

�2(1��)
�2�+�3 ; (23)

Since �
�
'�t ; �

�
t ; �

�
t+1; �

�
t+2

�
is highly non-linear, the presence of ��t+1 and �

�
t+2 in (21) implies that

the stability properties of (��ss; '
�
ss) must be studied by means of numerical simulations. It is

nonetheless fair to argue that the usual stability result holds under several combinations of para-
meter values. This conjecture is corroborated by the fact that dynamic stability can be established
analytically for various special cases of the model, e.g. when labor is excluded from the set of
production factors:

Lemma 3 Letting �3 ! 0, system (20)-(21) implies limt!1 (�
�
t ; '

�
t ) = (��ss; '

�
ss), and therefore

limt!1 F �Kt
= FKss .

In the more general case (�3 > 0), the characteristics of system (20)-(21) can be assessed by
deriving the transitional dynamics of (�t; 't) numerically. An example is reported in the next
section, where we use backward iteration in order to describe the intertemporal reallocation e¤ects
induced by habit formation.

2.4 Intertemporal Reallocation: The Six E¤ects of Habits

The numerical analysis of system (20)-(21) is relevant because it clari�es the intertemporal reallo-
cation e¤ect induced by habit formation. Although � does not modify the long-run growth rates of
endogenous variables (see Lemma 2), the strength of habit formation a¤ects their levels along the
entire the time paths. The reason, as mentioned before, is that the consumption-bias e¤ect (12)
in�uences the rates of capital accumulation and of resource extraction in the short-medium run,
and thereby output and consumption levels through the whole time-horizon. We now address this
point more precisely by simulating the transitional dynamics by means of (20)-(21), and compare
the resulting time paths of output, capital, consumption and resource use, for two economies, la-
belled as I and II, with identical parameters and initial endowments, but di¤erent degrees of habit
formation. In particular, economy I is the benchmark case with inactive habits, �I = 0, whereas
economy II exhibits a positive degree of status desire, �II = 0:375. Both economies approach the
asymptotic values6

lim
t!1

Y �t+1=Y
�
t = 1:80, lim

t!1
c�t+1=c

�
t = 1:33, '

�
ss = 0:67, FKss = 1:84. (24)

Values (24) can be obtained by setting n = 1:35, � = 0:725, 
 = 1:45, �1 = �2 = �3 = 1=3, and
� = 1. Notice that the assumption of unit elasticity in preferences is particularly useful, as it allows

5Combining F �K = �1��ss with (17) yields (22). Imposing �
�
t+1 = ��t = ��ss and '

�
t = '�ss in (20), solving the

resulting expression for '�ss, and substituting �
�
ss with (22), we obtain - after some tedious but straightforward

algebra - equation (23).
6Values (24) are chosen by standard reasoning: as the interval (t; t+ 1) is generally meant to represent 30 years,

the �rst two assumptions correspond to an average per-annum growth rate of 2% in aggregate output, and 1% in
output and consumption per capita. The aggregate consumption-output ratio '�ss = 0:67 corresponds to the average
consumption share observed in the last �fty years in most industrialized economies. Given the equilibrium relations
stated in Lemma 2, a consistent value of the marginal product of capital is FKss = 1:84, which can be associated to
an average annual interest rate, net of depreciation, equal to 2%.
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us to study the transitional e¤ects of � on consumption propensities in isolation from additional
transitional phenomena generated by � 6= 1.7
Solving system (20)-(21) by backward iteration (see Appendix for details), the results of the

simulation are as follows. There exists a unique path (��t ; '
�
t ) such that the convergence hypothesis

limt!1 (�
�
t ; '

�
t ) = (�

�
ss; '

�
ss) is satis�ed with a feasible consumption ratio, i.e. '

�
t 2 (0; 1) in each

t. Both economies are in a neighborhood of (��ss; '
�
ss) within 10 periods, and experience balanced

growth thereafter. Given equal initial stocks K0 = 1 and Q0 = 27, the associated dynamics in
consumption, capital, output and resource use, are described in Figure 1. The main results are
summarized in the six e¤ects of habit formation listed below.

i. (Consumption-bias e¤ect) Economy II converges towards a lower consumption share for young
agents (cIss=e

I
ss > cIIss=e

II
ss) - see diagram (a) - and displays higher second-period consumption

levels in the long run - see diagram (b).

ii. (Accumulation e¤ect) The need to obtain higher second-period consumption is ful�lled by reallo-
cating resources in disfavor of �rst-period consumption, and in favor of capital accumulation.
Since economy II exhibits faster accumulation of capital in the short run, KII

t exceeds KI
t by

nearly 1% in the long run - see diagram (c).

iii. (Input-substitution e¤ect) More intense capital accumulation allows to substitute resource in-
puts in production, so that economy II displays a higher capital-resource ratio in the short
run - see diagram (d).

iv. (Transitional growth e¤ects) Faster accumulation and higher capital-resource ratio imply that
economy II displays a lower marginal product of capital, a higher growth rate of output,
and a higher growth rate of resource use in the short run. These �growth e¤ects�are purely
transitional, as they disappear in the long run - see diagrams (e), (f), and (g), respectively.

v. (Output level e¤ect) Faster short-run growth in economy II is obtained at the expense of lower
output levels in the short run, but gaining higher output levels in the long run. The positive
output gap for economy II lasts forever, as the growth rates of both economies approach the
same asymptotic level - see diagram (h). Output levels are nearly 1% higher in economy II in
the long run.

vi. (Resource-use e¤ect) The combination of the previous e¤ects - in particular, faster accumulation
and input substitution - imply that economy II extracts lower amounts of the resource in the
short run, and higher amounts in the long run - see diagram (j).

The above results can be brie�y commented as follows. The consumption bias e¤ect has been
already described in section 2.2. The consumption bias induces higher investment in capital and
thereby faster accumulation in the short run. This in turn yields higher growth rates in the short
run and higher output levels in the long run. The resource-use e¤ect is a consequence of input
substitution: the fact that the time paths of resource use, XI

t and X
II
t , must cross during the

transition is due to the constraint

Q0 =
1X
t=0

Xt; (25)

which has to be satis�ed by both economies, given the same initial stock Q0 (see Appendix). The
concluding remark of this section is that, although � does not matter for the long run growth
rate of the centralized economy, habit formation generates permanent e¤ects on the intertemporal

7From condition (79), it is easily shown that, when � = 1, inactive habits (� = 0) imply c�t =e
�
t = �=�, whereas

� > 0 implies transitional dynamics in the distribution of consumption between cohorts. When � 6= 1, instead, c�t =e�t
exhibits transitional dynamics with or without habit formation. This general result implies that setting � = 1 is
particularly useful to stress the role of habits: all the di¤erences arising in the transitional dynamics observed in
economies I and II are exclusively due to di¤erent values of �, the e¤ects of which are not distorted by peculiar values
assumed by �.
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allocation, and therefore modi�es the long-run levels of output, capital and consumption. The
discussion of competitive equilibria in dynastic economies will show that the rise of sel�sh equilibria
modi�es the above results because the transitional growth e¤ects of habit formation (iv) become
permanent.

Figure 1: Transitional dynamics in the centralized allocation: simulation results. Parameter values
are listed in section 2.4.

3 The Dynastic Competitive Economy

In this section, we study the behavior of competitive dynastic economies where private agents own
the productive stocks, exhibit intergenerational altruism, and make consumption-saving choices in
order to maximize private lifetime utility subject to individual budget constraints. The presence of
altruism implies that agents may be willing to make transfers to successors. At the aggregate level,
the economy satis�es the same basic relations (1)-(4) assumed in section 2.1.
A well-known result of the previous literature is that dynastic OLG models with one-way trans-

fers - i.e. bequests de�ned as transfers in the father-to-son direction - exhibit two types of equilibria.
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If transfers are strictly positive, the accumulation process is observationally equivalent to the op-
timal path of in�nite-horizon models, with the altruism factor playing the same role as the social
discount rate (Abel, 1985). If the bequest motive is not operative, the economy behaves as in
the OLG model with sel�sh agents à la Diamond (1965): in capital-labor economies, the long-run
equilibrium generally di¤ers from the modi�ed golden rule, and it may display dynamic ine¢ ciency
(Thibault, 2000; de la Croix and Michel, 2004).
A similar dichotomy applies to the present model. In the literature on capital-resource economies,

the concepts of Ramsey-type and Diamond-type equilibria �nd their homologue in Stiglitz (1974)
and Mourmouras (1991), respectively.8 In the model of Stiglitz (1974), the resource-dependent
economy is populated by in�nitely-lived agents, and the optimal accumulation rule implies that
the marginal product of capital converges asymptotically to the rate of resource-augmenting tech-
nical progress. In the model of Mourmouras (1991), the resource-dependent economy is populated
by overlapping generations of sel�sh agents, and the laissez-faire equilibrium may exhibit over-
exploitation of the resource stock. We refer to these results in de�ning the accumulation regimes
that may arise in the dynastic economy:

De�nition 4 (Accumulation Regimes) If desired bequests are non-positive in each t = t0; :::; t1,
the dynastic economy is said to exhibit a Diamond-Mourmouras temporary equilibrium in each
t = t0; :::; t1. If desired bequests are strictly positive in each t = t0; :::; t1, the dynastic economy is
said to exhibit a Ramsey-Stiglitz temporary equilibrium in each t = t0; :::; t1.

The above de�nitions refer to de�nite intervals of time because, over an in�nite time-horizon,
the competitive economy may exhibit switchovers in accumulation regimes. In principle, the non-
negativity constraint on bequests may be irrelevant up to a certain period, and become binding
from that point onwards, or viceversa. In order to distinguish the situations in which there are no
switchovers in the accumulation regime, we will exploit di¤erent de�nitions, that refer to permanent
regimes:

De�nition 5 (Permanent Regimes) If desired bequests are non-positive in each t = 0; :::;1, the
dynastic economy follows a Permanent Diamond-Mourmouras (PDM) equilibrium path. If desired
bequests are strictly positive in each t = 0; :::;1, the dynastic economy follows a Permanent Ramsey-
Stiglitz (PRS) equilibrium path.

The remainder of this section lists the basic assumptions of the dynastic competitive economy,
and derives the conditions that characterize dynastic competitive equilibria. Section 4 studies the
characteristics of di¤erent accumulation regimes and the operativeness of bequests.

3.1 Assumptions

Private Preferences. In section 2.2, the analysis focused on centralized allocations with a social
objective function represented by the discounted sum of direct utilities. In the competitive economy,
a consistent speci�cation of the private objective function is provided by altruistic preferences.9

Formally, we de�ne the lifetime private utility of each agent born in period t, denoted as Wt, as the
sum of an individual term, represented by direct utility from consumption, and an altruistic term,
related to the lifetime utility of the successors:

Wt = U (ct; et+1) + 	nWt+1; 0 < 	n < 1; (26)
8The capital-resource model was pioneered by Solow (1974), Dasgupta and Heal (1974), and Stiglitz (1974) in the

well-known Symposium. Actually, the �homologue of the Ramsey model�with resource dependence and optimizing
agents may well be considered the work of Dasgupta and Heal (1974), which provides a detailed characterization of the
equilibrium path in the presence of exhaustible resources. In this paper, however, we refer our notion of equilibrium
to the work of Stiglitz (1974) because it includes a positive rate of resource-augmenting technical progress (which is
necessary to obtain sustained consumption in the long run).

9By �consistent speci�cation�we mean a private utility function that turns out to be structurally comparable with
(5). Our claim that (26) is a consistent speci�cation is intuitive. This point is clari�ed more rigorously in Lemma
8, which shows that, under some precise circumstances, the competitive equilibrium is observationally equivalent to
the centralized solution studied in section 2.2.
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where U (ct; et+1) is given by (5), and 	 is the altruism factor, i.e. the weight that each agent puts
on the lifetime utility of each successor. For future reference, we also de�ne the altruism rate as
 � 	�1 � 1.
Final producers. Given the assumption of constant returns to scale, the �nal sector can be

represented as a unique competitive �rm that exploits technology (1).The marginal rewards for
capital use, resource use, and labor of young agents are respectively denoted as Rt, pxt , and wt, and
pro�t-maximizing conditions imply

Rt = FKt = �1 (yt=kt) ; pxt = FXt = �2 (yt=xt) ; wt = FNy
t
= �3 (yt=n) ; (27)

where FXt is the chain derivative dF=dXt = mt � @F=@ (mtXt) as before.
Productive stocks. In the competitive economy, the productive stocks are privately owned by

households. The mechanism by which the resource stock is allocated through di¤erent generations
is purely market-based: at the beginning of period t, the whole stock of resources Qt is held by
adults. The extracted �ow Xt is used for (and destroyed in) production, while the remaining stock
constitutes resource assets, At, that are sold to the currently young. We thus have Qt = At +Xt

and Qt+1 = At = Qt � Xt, where the last expression follows from the natural transition law (4).
De�ning per-adult variables qt � Qt=N

a
t , xt � Xt=N

a
t , and at � At=N

a
t , the dynamic resource

constraint can be re-expressed in individual terms as

qt = at + xt and qt+1 = at=n = (qt � xt) =n: (28)

Adults sell resource assets to the young at unit price pat , and receive a marginal rent p
x
t for each

unit of Xt supplied to �rms. As regards capital, the whole stock Kt used for current production in
t is owned by adult agents, so the whole stock Kt+1 results from savings of young agents in period
t.
Budget constraints. Following de la Croix and Michel (2004) and Thibault (2000), intergenera-

tional transfers take the form of inter-vivos gifts, denoted by bt � 0 and de�ned in the father-to-son
direction. If bequest motives are operative, each young agent in period t receives bt units of output
and, in turn, will transfer bt+1 units of output to each of his n successors. Apart from bequests,
young agents receive labor income wt, and consume ct units of the �nal good. The remaining income
is either saved in the form of capital or used to purchase resource assets from the currently adult.
In the second period of life, agents receive the rewards for capital and extracted resources sold to
�nal producers, plus revenues from resource-assets sales to the young. De�ning per-adult variables
kt � Kt=N

a
t , xt � Xt=N

a
t , and at � At=N

a
t , the budget constraints read

ct = wt + bt � pat (at=n)� kt+1; (29)

et+1 = Rt+1kt+1 + p
x
t+1xt+1 + p

a
t+1at+1 � nbt+1: (30)

Given the above assumptions, the problem of an agent born in period t consists of maximizing
(26) - which contains the direct utilities of all the successors born after period t - subject to (28),
(29), (30), and to the sequence of the same individual constraints that refer to all successors born
after period t. This optimization structure is usually labelled as a dynastic problem, and can be
solved in a recursive fashion, as shown below.

3.2 The Dynastic Problem

The dynastic problem can be reduced to a recursive consumer problem in which each agent born in
period t � 0 chooses own consumption levels (ct; et+1), the amount of resource assets to buy from
the currently adult (at=n), the amount of capital to exploit in the subsequent period (kt+1), the
�ow of extracted resource to sell to �nal producers (xt+1), and the amount of bequests to transfer
to each successor (bt+1) under the assumption of perfect foresight. Given preferences (26), the
utility-maximizing vector

�
c`t; e

`
t+1; a

`
t; k

`
t+1; x

`
t+1; b

`
t+1

�
for each agent born in t � 0 is infact the

vector that satis�es the Bellman equation

W `
t (wt + bt) = max

fct;et+1;at;kt+1;xt+1;bt+1g

�
U (ct; et+1) + 	nW

`
t+1 (wt+1 + bt+1)

�
(31)
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where W `
t (wt + bt) is the value function of the individual problem - i.e. the maximum value of

lifetime utility Wt for a given amount of income earned (wt) and bequests received (bt) - and the
maximum is subject to the constraints (28), (29), (30), and to

bt+1 � 0: (32)

In related literature, the non-negativity constraint (32) is usually interpreted as �non-enforceability�.
If adult agents desire negative bequests - i.e. they wish to receive transfers from the successors -
they cannot oblige future generations to provide them with additional second-period income.10

Lemma 6 (Dynastic Problem) The solution to the recursive dynastic problem (31) is characterized
by the intertemporal conditions

e`t+1=c
`
t = �+ �1=� (Rt+1 + �)

1=�
; (33)

pxt+1 = pat+1; (34)

pxt+1=p
x
t = pat+1=p

a
t = Rt+1; (35)

k`t+1n = y`t � nc`t � e`t; (36)

and

c`t+1=c
`
t = c`1t+1=c

`1
t =

�
	Rt+2

�
Rt+1 + �

Rt+2 + �

��1=�
if b`t+1 > 0; (37)

where output per adult is de�ned as yt = Yt=N
a
t , and superscript �̀ 1� refers to the regime with

strictly positive bequests.

Lemma 6 lists the intertemporal rules that characterize the temporary equilibria of the dynastic
economy. Conditions (33)-(36) hold in the market economy under laissez-faire, independently of
the operativeness of bequests. Equation (33) determines the allocation of consumption across each
agent�s lifecycle, and incorporates a consumption-bias e¤ect that is analogous to the one described
in section 2.2 - see (11) and (12); expression (34) is a no-arbitrage condition asserting that the
market value of a resource unit must be the same in both uses; condition (35) is the usual Hotelling
rule; and (36) is the aggregate constraint of the economy.
Expression (37) shows how the operativeness of bequests a¤ects the time-pro�le of consumption

across generations. When bequests are operative, the consumption levels of adjacent generations
are linked by the Euler-type condition (37), which depends on future interest rates and the altruism
factor 	. It must be stressed that rule (37) is not followed when bequests are not operative: if
b`t+1 = 0, adult agents consume all their incomes, while young agents choose their �rst-period
consumption levels consistently with their own budget constraints. In order to distinguish between
the two accumulation regimes, we implement the following notation: the utility-maximizing vector
is denoted as

�
c`1t ; e

`1
t+1; :::

�
if b`t+1 > 0, or as

�
c`2t ; e

`2
t+1; :::

�
if b`t+1 = 0. Superscript �̀1�thus refers

to Ramsey-Stiglitz temporary equilibria, whereas superscript �̀2�refers to Diamond-Mourmouras
temporary equilibria.

4 Accumulation Regimes

On the basis of Lemma 6, it is possible to analyze the dynamics of the laissez-faire economy under
the various accumulation regimes that may arise. In order to keep the analysis clear, we will focus
on permanent regimes - that is, equlibrium paths where bequests are either permanently zero or
permanently positive. The operativeness of bequests will be studied later in section 4.3.

10Alternatively, inequality (32) may interpreted as a self-constraint, i.e. a moral obligation that fathers have
towards their children, which consists in �not asking� transfers to successors. Choosing either interpretation may
introduce di¤erences in the description of the individual incentives that underly competitive equilibria. However,
both reasonings induce to the same formal representation, that is (32).
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4.1 Permanent Ramsey-Stiglitz Equilibrium

Suppose that, given the solution to the recursive problem (31), the bequest motive is operative in
each t = 0; :::;1. In this case, the dynamics of the competitive economy are represented by an
inde�nite succession of Ramsey-Stiglitz temporary equilibria. The resulting time path of economic
variables can be thus labelled as a PRS equilibrium path (Permanent Ramsey-Stiglitz). The main
characteristic of the PRS equilibrium path is its observational equivalence with the centralized
allocation studied in section 2.2. This result can be established as follows. From the solution to the
dynastic problem, we obtain the intertemporal conditions that hold in the PRS equilibrium:

Lemma 7 (PRS Equilibrium) If b`t > 0 in each t = 0; :::;1, the dynastic competitive economy
follows a PRS equilibrium path characterized by

c`1t+1=c
`1
t =

�
	F `1Kt+2

�
F `1Kt+1

+ �
��

F `1Kt+2
+ �
��1�1=�

; (38)

e`1t+1=e
`1
t =

�+ �1=�
�
F `1Kt+1

+ �
�1=�

�+ �1=�
�
F `1Kt

+ �
�1=�

 
	F `1Kt+1

F `1Kt
+ �

F `1Kt+1
+ �

!1=�
; (39)

F `1Xt+1
=F `1Xt

= F `1Kt+1
; (40)

e`1t+1=c
`1
t = �+ �1=�

�
F `1Kt+1

+ �
�1=�

; (41)

together with the aggregate constraint (36). The dynamics of bequests are governed by

b`1t+1
y`1t+1

= (�1=n)
y`1t
k`1t+1

8><>:(�3=n) + b`1t
y`1t

� c`1t
y`1t

2641 + �+ �1=�
�
F `1Kt+1

+ �
�1=�

F `1Kt+1

375
9>=>; : (42)

In Lemma 7, the only result that is peculiar to the dynastic framework is equation (42), which
describes the dynamics of the ratio between bequest (per young) and output (per adult). The
remaining equations can be easily interpreted along the lines of section 2.2. Infact, comparing
Lemma and Lemma 7, it is easy to show that

Lemma 8 (Observational Equivalence) The PRS equilibrium path is observationally equivalent to
the centralized allocation: given identical initial endowments (K0; Q0), and setting a social discount
factor � = 	, the two allocations coincide: fc�t ; e�t ; X�

t ;K
�
t g
1
t=0 =

�
c`1t ; e

`1
t ; X

`1
t ;K

`1
t

	1
t=0
.

Lemma 8 is in line with the results of related literature: if b`t > 0 in each t = 0; :::;1, the
dynastic economy is observationally equivalent to a centralized economy where the stream of direct
utilities is maximized using a social discount rate that coincides with the degree of intergenerational
altruism in private preferences (Abel, 1987; see de la Croix and Michel, 2004). Indeed, the utility
of the �rst agent born at t = 0 can be written as the discounted sum of direct utilities of all
descendants: imposing the limiting condition limj!1�

j�tWj = 0, iteration of (26) gives

W0 =

1X
t=0

(	n)
t
U (ct; et+1) : (43)

This indeed the same objective function as in section 2.2 - provided that we normalize Ny
0 = 1,

substitute Ny
t = nt, and set � = 	 in (6).

Lemma 8 implies that, under the assumption that bequests are always strictly positive, the
analysis of sections 2.2-2.4 can be entirely applied to PRS equilibrium paths, including all the
asymptotic results listed in Lemma 2. For the aims of this section, it is su¢ cient to recall those
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related to growth. Provided that the marginal product of capital F `1Kt
converges to a �nite steady-

state limt!1 F `1Kt
= F `1Kss

, the economy achieves balanced growth in the long run, and equations
(13) and (17) imply

F `1Kss
= (1 + 
)

�2�
�3+�2� 	�

�3
�3+�2� and lim

t!1
c`1t+1=c

`1
t =

�
	F `1Kss

�1=�
: (44)

By analogy with (45), the long-run growth rate is

lim
t!1

c`1t+1=c
`1
t = [	 (1 + 
)]

�2
�3+�2� =

�
1 + 


1 +  

� �2
�3+�2�

; (45)

from which it follows that individual consumption levels are non-declining in the long run if and
only if the net rate of technical progress is at least equal to the altruism rate, i.e. 
 �  .
The PRS equilibrium path is an example of PV-optimal path. In this regard, we refer to the

concept of PV-optimality used in Pezzey andWithagen (1998) - i.e. an allocation that maximizes the
present-value of the stream of utilities enjoyed at di¤erent points in time using a pre-determined
discount rate. The speci�c characteristic of the present model is that, along a PRS equilibrium
path, individuals maximize the dynastic utility function (43) without being constrained by the
non-negativity of bequests: parameters and initial conditions are such that (32) is never binding,
and no asymmetries arise between desired and observed intergenerational transfers. This notion of
PV-optimality will be useful in assessing the welfare properties of competitive equilibria in section
4.4.
The transitional dynamics of the PRS equilibrium path are obviously equivalent to those an-

alyzed in section 2.4. The six e¤ects of habit formation arise, and the only relevant extension
concerns the dynamics of bequests. In this regard, the time path of bt can be obtained from (42).
In particular, equation (42) implies that b`1t =y

`1
t is constant in the long run, and converges towards

the steady-state value

� `1ss � lim
t!1

b`1t
y`1t

=
F `1Kss

F `1Kss
� n

�
	F `1Kss

�1=� f� (�)� (�3=n)g ; (46)

where � (�) > 0 is a combination of constant parameters containing �, and F `1Kss
> n

�
	F `1Kss

�1=�
(see Appendix). Figure 2 reports the time paths of bequests and the bequest-output ratio for
di¤erent values of �, all other parameters being equal. Diagrams (a) and (b) show that stronger
habits induce lower bequest levels, as well as lower asymptotic values of the bequest-output ratio.

Figure 2: The time path of bequests and direct utility in the PRS equilibrium. Parameter values
are n = 1:1, 	 = 0:65, 
 = 1:45, �1 = 0:3; �2 = 0:1; �3 = 0:6, and � = 1.
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The negative relationship between � and the bequest-output ratio in the long run is a result
that can be established analytically. As shown in the Appendix, the derivative @� (�) =@� is strictly
negative, which implies the following

Lemma 9 (The bequest-habit relation) In a PRS equilibrium path, stronger habits imply a lower
bequest-output ratio in the long run: @� `1ss=@� < 0.

Lemma 9 is in line with Alonso-Carrera et al. (2007) and Schäfer and Valente (2009): in a
dynastic framework, stronger habits reduce the propensity to leave bequests to successors. The
economic intuition is provided by the consumption-bias e¤ect already described. Habit formation
prompts agents to seek higher second-period consumption, and this goes to the detriment of other
out�ows in the budget constraint. The desire to overcome previous living standards contrasts
parental altruism, so that the propensity to leave bequests is lower the higher the strength of
habits. As may be construed, this result will be useful in analyzing the operativeness of bequests
(section 4.3).
Another remark relates to the welfare implications of habit formation. Welfare e¤ects can be

assessed in two ways. First, consider the direct components of private utility, U (ct; et+1), the three
simulations described in Figure 2 yield a negative relationship between utility levels and strength
of habits: the time paths of direct utility associated with the three cases � = 0, � = 0:15 and � = 0:5
are reported in diagram (c). Second, in the case of logarithmic preferences � = 1, it is possible to
calculate explicitly the lifetime utility Wt of the agent born at t = 0 as (see Appendix)

W0 =
T�1X
t=0

(	n)
t
U (ct; et+1) + (	n)

T U (cT ; eT+1)

1�	n + (	n)
T+1 (1 + �) ln (gY1=n)

1�	n ; (47)

where T > 0 is a su¢ ciently large time-index. Using (47), the three simulations yield W0 =
(�6:8;�7:19;�7:93) for � = (0; 0:15; 0:5). This means that, with respect to the habit-free case
� = 0, raising the habit coe¢ cient to � = 0:5 generates a welfare reduction of 15.7%. The welfare
reduction can be interpreted as the counterpart of the gains induced by habit formation in terms of
consumption, capital and output levels in the long run: these three key variables are permanently
increased by stronger habits (cf. section 2.4), and the �price�of this improvement is a lower level of
welfare in present-value terms.
All the results of this section hinge on the implicit assumption that desired bequests are always

strictly positive, but the question of whether, and under what circumstances, the economy actually
follows a Ramsey-Stiglitz equilibrium path has not been addressed. Before dealing with this issue,
we analyze the characteristics of the competitive equilibrium in the opposite case, when bequests
are permanently zero.

4.2 Permanent Diamond-Mourmouras Equilibrium

Suppose that, given the solution to the recursive problem (31), the bequest motive is not operative in
each t = 0; :::;1. In this case, the dynamics of the competitive economy are represented by an indef-
inite succession of Diamond-Mourmouras temporary equilibria. The resulting time path of economic
variables can be thus labelled as a PDM equilibrium path (Permanent Diamond-Mourmouras). The
main characteristics of the PDM equilibrium path can be summarized as follows. First, individual
consumption levels are not determined by (37), but by the constraints (29)-(30) with bt = 0 in each
period. Second, the dynamics of resource use and capital accumulation change, and are a¤ected
by the degree of habit formation also in the long-run. This point can be addressed formally by
de�ning the index zt as the ratio between resource assets and resource units used in production,
zt � at=xt. This index is positively related to the degree of resource preservation observed in the
economy: Na

t at is indeed the share of the resource stock that is sold to young generations in each
period. As shown in the Appendix, the dynamics of the competitive in the PDM equilibrium path
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are described by the system

�`2t+1 =
�
�`2t
��1 �

1� '`2t
���3 �

��11 (1 + 
)
��2

n�3 ; (48)

1� '`2t = �3�
�
�`2t+1; �

�
� �2z`2t ; (49)

�1z
`2
t = �3�

�
�`2t+1; �

�
�
�
1 + z`2t+1

�
� �2z`2t

�
1 + z`2t+1

�
; (50)

where �
�
�`2t+1; �

�
is a function of the output-capital ratio at period t+1, and of the degree of habit

formation. As for the system studied in section 2.3, the dynamic stability of system (48)-(50) must
be studied numerically, although convergence towards a symultaneous steady state

�
�`2ss; '

`2
ss; z

`2
ss

�
may be established analytically for various special cases of parameter values. The basic di¤erences
with respect to centralized allocations and PRS equilibrium paths are that (i) there is no general
explicit solution for �`2ss, and most importantly, that (ii) the long-run equilibrium interest factor
F `2Kss

does depend on the strength of habit formation.

Figure 3: Determination of the long-run equilibrium of the PDM equilibrium path for di¤erent
values of �. In all cases, higher values of � imply downward shifts in fb (��; �), and therefore lower
equilibrium values of ��.

In order to simplify the notation, we will use (��; �'; �z) to denote the steady-state variables�
�`2ss; '

`2
ss; z

`2
ss

�
of the system (48)-(50). Imposing the simultaneous steady state

�
�`2t ; '

`2
t ; z

`2
t

�
=

(��; �'; �z) for any t in system (48)-(50), we obtain

�� = (��)
�1 (1� �')��3

�
��11 (1 + 
)

��2
n�3 ; (51)

1� �' = �3�(��; �)� �2�z; (52)

�1�z = �3�(��; �) � (1 + �z)� �2�z (1 + �z) : (53)

As shown in the Appendix, the simultaneous steady state is determined by an equilibrium condition
of the type

fa (��) = f b (��; �) ; (54)

where fa (��) is an increasing and strictly concave function satisfying lim��!0 f
a (��) = 0 and

lim��!1 fa (��) =1, whereas the behavior of f b (��; �) depends on the value assumed by the elastic-
ity parameter �. Although f b (��; �) assumes di¤erent shapes in the three cases � < 1, � = 1, � > 1,
a general property is that this function is bounded, with

lim
��!0

f b (��; �) = f bmin > 0 and lim
��!1

f b (��; �) = f bmax <1; (55)

and exhibits the necessary regularities to ensure the uniqueness of the steady state (see Appendix).
Given existence and uniqueness, the most important result is that function f b (��; �) is negatively

related to the strength of habit formation: independently of the value of �, it is shown that

df b (��; �)

d�
< 0 for any � > 0: (56)
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In graphical terms, result (56) implies that f b (��; �) shifts downwards as � increases, as shown in
the parametric plots reported in Figure 3. Since fa (��) is increasing and independent of habits, it
follows from this result that the steady-state value �� is negatively a¤ected by the strength of habit
formation. The main implications are that we can de�ne steady-state values as function of �, with
the following properties:

Lemma 10 (Steady-state PDM equilibrium) Provided that F `2Kt
converges to the steady-state value

limt!1 F `2Kt
� F `2Kss

= �1��, the PDM equilibrium path exhibits

lim
t!1

F `2Kt
= F `2Kss

� �1�� (�) with dF `2Kss
=d� < 0; (57)

lim
t!1

'`2t = '`2ss � �' (�) with d'`2ss=d� < 0; (58)

lim
t!1

z`2
t

= z`2
ss
� �z (�) with dz`2

ss
=d� > 0: (59)

In the long run, stronger habits imply higher rates of resource use and a higher growth rate of output:

lim
t!1

g`2Xt
= g`2X1 (�) with dg

`2
X1=d� > 0; (60)

lim
t!1

g`2Yt = g`2Y1 (�) with dg
`2
Y1=d� > 0: (61)

Lemma 10 shows that the PDM equilibrium path displays relevant di¤erences with respect to
centralized allocations and PRS equilibria. The coe¢ cient of habit formation modi�es asymptotic
values and, in particular, stronger habits imply higher growth rates, a higher saving rate ('`2ss is
reduced), and a lower interest rate in the long run. Result (61) implies a �atter pro�le of extracted
resource �ows: as � increases, g`2X1

becomes closer to unity from below. Given the resource constraint
(25), this means that stronger habits imply lower resource use in the short run and higher resource
in the long run.11 This result is similar to the �resource use e¤ect�already encountered in section
2.4: the di¤erence is that, in the PDM equilibrium, the long-run rate of resource depletion is
modi�ed by habits, whereas limt!1 gXt

is only determined by discounting and technical progress
in altruistic/centralized allocations - see (16). Figure 4 reports a numerical examples describing the
results of Lemma 10.
With respect to Lemma 10, two remarks are in order. First, the long-run e¤ects of habits in PDM

equilibria are closely related to the transitional growth e¤ects of habits studied in section 2.4 - result
(iv). Recalling the previous analysis, stronger habits in centralized allocations - and also in PRS
equilibria, given the observational equivalence - induce lower interest rates, faster accumulation,
and higher growth rates in the short run. In the PDM equilibrium, these e¤ects become permanent.
This last result has a precise explanation which, for the sake of clarity, will be discussed later in
section 5. In particular, it will be clari�ed (cf. Proposition 14) that the rise of permanent e¤ects is
peculiar to the present model, and hinges on the assumption of resource-dependence since it does
not arise in capital-labor economies.
The second remark is that an important characteristic of the PDM equilibrium lies in its welfare

properties. The PDM equilibrium path arises when parameters and initial conditions are such
that desired bequests are negative, i.e. when agents would like to receive positive transfers from
future generations, rather than supplying bequests to successors. Recalling our previous de�nition
in section 4.1, this means that PDM equilibria do not satisfy PV-optimality. Since constraint
(32) is binding, individuals act as if they maximize only direct utility U (ct; et+1). The dynastic
function (43) is not maximized due to the asymmetries between desired bequests and observed
intergenerational transfers. Section 4.4 will show that the welfare implications of this asymmetry
may be quite relevant.
11 If we compare two sel�sh economies with di¤erent habit parameters - e.g. �A and �B with �A < �B - and

all other conditions being equal, result (59) implies that the resource use factor z`2
ss
will be higher in economy B.

However, this does not mean that extracted resources will always be higher: since both economies have the same
initial endowment Q0, they both must ful�ll the resource constraint (25). This implies that the economy B exhibits
more intense resource extraction in the medium long-run, but this must be compensated by extracting less resource
units in the short run.

17



Figure 4: Asymptotic variables as functions of �. Graph (a) reports limt!1 g`2Yt = g`2Y1 (�). Graph
(b) reports limt!1 F `2Kt

= F `2Kss
(�). Graph (c) reports limt!1 '`2t = '`2ss (�). Graph (d) reports

limt!1 g`2Xt
= g`2X1

(�). Parameter values are n = 1:2, 	 = 0:5, 
 = 1:45, �1 = 0:3; �2 = 0:1; �3 =
0:6, and � = 1. Under this combinations of parameter values, bequests are not operative for any
� 2 (0; 1), and the steady-state values of ��; �'; �z associated with each value of � in this range con�rm
the results of Lemma 10.

4.3 The Operativeness of Bequests

The permanent accumulation regimes studied in sections 4.1-4.2 arise only if parameters are such
that the level of desired bequests is either strictly positive or non-positive in each instant. In
general, there is no analytical way to test operativeness in each period, since the sign of b`t at a
generic t depends on the whole combination of values that the endogenous variables assume - see
equation (42). The possibility of switchovers in the accumulation regime during the transition is
concrete, but can only be studied numerically. What can be established analytically is which of the
two accumulation regimes will be implemented in the long run.
The operativeness of bequests in the long run requires that equation (46) yield a positive value

for the asymptotic bequest-output ratio � `1ss, i.e. a strictly positive term inside the curly brackets.
Recalling Lemma 9, function � (�) is strictly decreasing in �. A deeper analysis reveals that � (�) can
assume values that are su¢ ciently low to yield a negative right-hand side in (46). The consequence
is that there exists a critical value of the strength of habits above which the economy does not
display Ramsey-Stiglitz equilibria in the long run. More precisely,

Lemma 11 (Operativeness of bequest motives) Provided that

lim
�!0

� (�) < �3=n < lim
�!1

� (�) ; (62)

there exists a critical value �� > 0 of the strength of habits such that � > �� implies that bequests are
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necessarily zero from some period t = t0 onwards (b`t = 0 in each t = t0; :::;1 with 0 � t0 < 1).
As a consequence, (i) a necessary condition for a PRS equilibrium path to arise is � < ��; (ii) if
� > ��, the economy exhibits zero bequests in the long run (with either zero bequests in each period,
or positive bequests for a limited number of periods during the transition).

The intuition for Lemma 11 is similar to that behind Lemma 9. Habit formation prompts
agents to seek higher second-period consumption, and this contrasts parental altruism. Lemma 11
establishes that, if habits are su¢ ciently strong, the desire to leave bequests it totally outweighed
by the private willingness to overcome previous living standards, and this implies non-operative
altruism towards the successors.
Numerical substitutions show that the pre-condition (62) can be easily met for several combi-

nations of parameters. Given (62), the value of � `1ss is a decreasing function of � and falls short of
zero in correspondence of the critical threshold � = �� - see Figure 5, diagram (a). Hence, similarly
to Alonso-Carrera et al. (2007), the economy will exhibit a Ramsey-Stiglitz accumulation regime
in the long run only for low degrees of habit formation (� < ��), whereas it will exhibit a Diamond-
Mourmouras accumulation regime in the long run if the strength of habit is relatively high (� > ��).
Di¤erently from Alonso-Carrera et al. (2007), however, the present model exhibits permanent
growth e¤ects of habit formation in sel�sh equilibria, and this implies that capital pro�tability, out-
put growth and the speed of resource depletion change depending on whether the strength of habits
is above or below the critical threshold. The main consequences in this regard are summarized in
the following

Lemma 12 (The growth-habit relationship) The long-run growth rate of the dynastic economy is

lim
t!1

g`Yt =

8<: g`1Y1 = n [	 (1 + 
)]
�2

�3+�2� if � < ��

g`2Y1 = g`2Y1 (�) if � > ��

9=; ; (63)

where g`2Y1 (�) is de�ned in Lemma 10. The growth rates coincide if � = ��, whereas g
`2
Y1
(�) > g`1Y1

for any � > ��.

Lemma 12 describes the interactions between long-run growth rates and habit formation. This
result is described graphically in Figure 5, diagram (b), which is obtained by combining the asymp-
totic values of gYt obtained in Ramsey-Stiglitz equilibria and Diamond-Mourmouras regimes as �
ranges between zero and unity. For low degrees of habit formation, the economy converges towards
altruistic long-run equilibria, where the asymptotic growth rate is independent of habits. For high
degrees of habit formation, the long-run equilibrium is a sel�sh regime, in which the growth rate in-
creases with �. On the one hand, this conclusion implies that the conditions for obtaining sustained
consumption and output levels in the long run are less restrictive in Diamond-Mourmouras regimes:
when excessive habits (� > ��) induce a sel�sh regime in the long-run, growth rates are higher with
respect to Ramsey-Stiglitz equilibria. On the other hand, this result should be interpreted with
great care, as the welfare properties of the two accumulation regimes are fundamentally di¤erent.
The PRS equilibrium path described in section 4.1 is PV-optimal, whereas the PDM equilibrium
path described in section 4.2 is not. As shown below, the welfare attained in a PDM regime induced
by excessive habit formation may be much lower than that obtained in a PRS regime characterized
by weaker habits.

4.4 Welfare Comparisons

This section performs a numeric welfare comparison between PRS and PDM equilibrium paths. The
aim is to describe the welfare properties of the two regimes when the only di¤erence is represented
by the coe¢ cient of habit formation. Setting the parameters values �1 = 0:3, �2 = 0:1, �3 = 0:6,
� = 1, n = 1:1, 
 = 1:45, 	 = 0:55, and � = 0:9, the critical value of the habit coe¢ cient equals
�� = 0:36. A �rst economy - denoted by superscript �I� - exhibits a habit coe¢ cient �I = 0:25,
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Figure 5: Diagram (a) reports the function � (�) compared to the threshold level �3=n. From (46),
the intersection determines the critical value �� below (above) which long-run desired bequests are
positive (negative). Diagram (b) describes the growth-habit relationship established in Lemma 12.
Parameter values are n = 1:2, 	 = 0:5, 
 = 1:45, �1 = 0:3; �2 = 0:1; �3 = 0:6, and � = 1.

which - for given initial conditions K0 = 1 and Q0 = 8:85 - implies a permanent Ramsey-Stiglitz
equilibrium path. The asymptotic values for output growth, interest factor, and resource use are

gIY1 = 1:148; F IKss
= 1:897; gIX1 = 0:605:

A second economy - denoted by superscript �II�- exhibits a habit coe¢ cient �II = 0:6, which - given
the same initial endowments - implies a permanent Diamond-Mourmouras equilibrium path, with
asymptotic values

gIIY1 = 1:155; F IIKss
= 1:825; gIIX1 = 0:633:

The di¤erences between the asymptotic values of the two economies con�rm the results of Lemma
10. The transitional dynamics of the key variables are reported in Figure 6. Due to the consumption-
bias e¤ect, economy II exhibits lower �rst-period consumption in the short/medium run - diagram
(a) - and a permanently higher second-period consumption - diagram (b). The reallocation e¤ect
generates faster capital accumulation, as reported in diagram (c). The bequest-output ratio in
economy I converges to limt!1 bt=yt = 1:52%, whereas transfers are zero in economy II - diagram
(d). Faster accumulation and higher growth rates generate a positive output gap for economy II
already in period t = 1, which then exceeds 6% after ten periods - see diagram (e).
The welfare gap, however, is in favor of economy I. Considering only the direct components

of private utility, U
�
cIt ; e

I
t+1

�
exceeds U

�
cIIt ; e

II
t+1

�
by an almost steady value of 46%, as reported

in Figure 6, diagram (f). The lifetime utility of the �rst newborn generation, W0, can also be
calculated on the basis of (47) for each time path i = I; II. The previous result is con�rmed, as we
obtain W I

0 = �5:4 and W II
0 = �10:1. This implies a 46.4% gap in present-value welfare in favor of

the Ramsey-Stiglitz economy.
Recalling the previous analysis of PRS equilibria, this welfare gap appears huge. In section

4.1, using identical values of endowments and parameters - except for a slightly di¤erent altruism
factor12 - we have seen that the e¤ect of an increase of 0:5 in the habit coe¢ cient within the same
12The only di¤erence in parameters between the simulations described in Figure 2 and the comparison reported in

Figure 6 is that 	 = 0:65 in the former case, whereas 	 = 0:55 in the present case. This slight di¤erence is however
necessary because the two simulations hinge on di¤erent hypotheses. In Figure 2 we compare two PRS regimes, and
the value 	 = 0:65 guarantees that bequests are operative for all the values of � considered there. In Figure 6, we
are comparing a PRS with a PDM regime, and the value 	 = 0:55 guarantees that � = 0:25 is associated with a PRS
equilibrium and that � = 0:6 is associated with a PDM equilibrium.
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(altruistic) regime could be quanti�ed as a 15.7% welfare reduction. In the present simulation, an
even smaller increase (from �I = 2:5 to �II = 0:6) yields a nearly �fty-percent reduction. This
suggests that a major component of the welfare gap obtained here is determined by the regime
shift: although part of W I

0 �W II
0 may be due to rise in � independently of the regime shift, the

fundamental di¤erence between economies I and II is that the PRS equilibrium is PV-optimal,
whereas the PDM equilibrium is not. Before verifying this conjecture in a precise manner, we
provide the economic intuition for this result.
In general, the presence of habit formation implies that personal satisfaction is not a simple

function of consumption levels, but rather a preference index that induces a particular allocation of
private incomes across the lifecyle. The welfare gap comes from the fact that, in PDM equilibria,
there are asymmetries between desired and observed transfers. Agents are potentially altruistic as
they wish to maximize lifetime welfare including the altruistic component, but they cannot achieve
the combination of �rst-period income, �rst-period consumption, and second-period consumption
that would ful�ll this desire. The desired combination is achieved in PRS equilibria, instead, as
con�rmed by the fact that permanent altruistic regimes satisfy PV-optimality. The huge welfare
gap observed in Figure 6 is a direct consequence of these circumstances.

Figure 6: Simulation Results. Economy I exhibits � < �� and experiences a PRS equilibrium path.
Economy II exhibits � > �� and experiences a PDM equilibrium path.

A concrete way to verify the above conclusion is to compare the PDM equilibrium path with a
hypothetical unconstrained path that satis�es PV-optimality, while exhibiting identical parameters
in every respect. The �unconstrained path� is essentially the centralized allocation with � = 	:
under the parameters of economy II, this allocation is not achieved as a competitive equilibrium
because the constraint bt+1 � 0 is binding. An equivalent interpretation is that the �unconstrained
path� is the competitive equilibrium that would arise in the competitive economy if agents were
allowed to withdraw the desired amount of transfers from future generations. This path is charac-
terized by the same intertemporal conditions holding in the PRS equilibrium, but in which negative
bequests are allowed. Hence, the desired path can be evaluated in practice by running the simula-
tion procedure of the PRS path, with the di¤erence that the constraint bt+1 � 0 is relaxed in each
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period.

� gY1 � ss W0 Welfare Gap
Economy I (PRS path) 0:25 1:148 +1:52% �5:45 +46:4%
Economy II (PDM path) 0:60 1:155 0 �10:16 �
Economy III (unconstrained) 0:60 1:148 �2:74% �5:92 +41:7%

Table 1. Welfare comparison between PRS, PDM and unconstrained paths.

The results of this procedure are reported in Table 1, where the unconstrained path is denoted as
�Economy III�. The third column reports the welfare gap with respect to economy II, calculated as�
W II
0 �W i

0

� ��W II
0

���1 for i = I; III. The asymptotic growth rate gY1 is obviously identical between
economies I and III, as they are both PV-optimal. However, the strength of habit formation
in economy III is above the critical threshold, implying that desired bequests are negative: the
asymptotic bequest-output ratio � ss � limt!1 bt=yt is �2:74% . Welfare levels con�rm our previous
conclusion: the gap between the PDM equilibrium and the hypothetical unconstrained path is 41.7%
in favor of the latter. Hence, the welfare gap of 46.4% arising between economies I and II comes
to a minor extent (4.7%) from the direct e¤ect of stronger habits, and to a major extent (41.7%)
from the fact that stronger habits induce a shift to an accumulation regime that does not satisfy
PV-optimality.

5 Main Propositions and Related Literature

This section summarizes the main results, and brie�y discusses their connections with the previous
literature.13 The �rst conclusion that can be drawn from the previous analysis is

Proposition 13 (Altruistic Regimes) If the strength of habits is below the critical level ��, the dy-
nastic economy exhibits an inde�nite sequence of Ramsey-Stiglitz equilibria in each t = t0; :::;1,
where t0 � 0 is �nite. Habit formation yields (i) permanent e¤ects on output levels and resource
use, and (ii) transitional e¤ects on growth rates, capital pro�tability and speed of resource depletion.
Moreover, (iii) the sustainability of consumption levels is determined by the Stiglitz (1974) condition
with an intergenerational discount rate equal to the private degree of altruism.

This Proposition summarizes the results of sections 2.2-2.4 and 4.1, and incorporates the main
result regarding the operativeness of bequests in the long run (Lemma 11). The fact that habits
do not a¤ect long-run growth is a consequence of PV-optimality. The dynastic utility function
(43) is maximized, and the intergenerational distribution of bene�ts is �dictated�by the altruism
factor 	 - which determines the long-run growth rate of the economy together with the rate of
resource-augmenting technical progress. The fact that consumption sustainability is determined by
the Stiglitz (1974) condition is due to the observational equivalence between PRS equilibrium paths
and centralized allocations (Lemma 8).
With respect to previous literature, the absence of permanent growth e¤ects of habit formation

in PV-optimal regimes is in line with the results of Ryder and Heal (1973) - who �rst implemented
habits in the Ramsey model with in�nite lives, showing that reallocation e¤ects modify capital ac-
cumulation in the transition, but do not a¤ect long-run growth. The same result applies to the OLG
variant of Alonso-Carrera et al. (2007). The di¤erence is that, in our model, the long-run growth
rate is a¤ected by preference parameters - the altruism factor 	 and the intertemporal elasticity
of substitution 1=� - in contrast to capital-labor economies where it is exogenously determined by

13For the sake of clarity, we will not draw explicit comparisons between the present analysis and the nonetheless
important results obtained in the literature on habit formation in the presence of increasing returns and in�nite
lives. This literature, initiated by Carrol et al. (1997), shows that habits modify the long-run growth rate when the
intertemporal elasticity of utility di¤ers from unity. As our model is structurally di¤erent - in particular, it features
resource dependence and does not exhibit increasing returns nor in�nite lives - we avoid lengthening the discussion
by adding the endogenous growth literature to the following considerations.
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labor-e¢ ciency. Nonetheless, the main di¤erences with respect to the previous literature arise from
our second main result, which is summarized below.

Proposition 14 (Sel�sh Regimes/1) If the strength of habits is above the critical level ��, the dynas-
tic economy exhibits an inde�nite sequence of Diamond-Mourmouras equilibria in each t = t0; :::;1,
where t0 � 0 is �nite. A higher degree of habit formation yields (i) faster output growth, (ii) lower
capital pro�tability, and (iii) higher rates of resource use in the long run.

This Proposition summarizes the results of section 4.2. The fact that the economy exhibits
di¤erent growth rates in di¤erent regimes is due to the presence of exhaustible resources, and hinges
on the endogeneity result mentioned in the Introduction. In sel�sh regimes, agents accumulate
capital and resource assets without relying on parental transfers. As the altruism factor 	 does
not play any role, the intergenerational distribution of wealth is entirely determined by the market
conditions governing the pro�tability of (a) accumulating capital and (b) selling resource assets to
the next generation. Since the intergenerational distribution of wealth in�uences the growth rate
in capital-resource economies (cf. the endogeneity result), we obtain a di¤erent growth rate with
respect to Ramsey-Stiglitz equilibria.
The fact that stronger habits imply faster growth is intimately linked to the above reasoning.

The amount of resource assets that agents sell to the next generation is a¤ected by their willingness
to overcome previous living standards, and this modi�es the intergenerational distribution. This
results into higher growth rates because of the same reasons underlying the transitional growth
e¤ects studied in section 2.4 - that is, consumption-bias, accumulation and input-substitution e¤ects.
The di¤erence with respect to Ramsey-Stiglitz equilibria is that the growth e¤ects of habits become
permanent, because the intergenerational distribution is not dictated by the altruism factor 	
anymore.
It follows from the above remarks that the our main results in Proposition 14 hinge on the

assumption of resource dependence. This is a new element with respect to the previous literatures
on habit formation and on dynastic economies, and results are indeed quite di¤erent. The closest
contributions make reference to standard capital-labor economies, in which there is either no per-
manent growth e¤ect of habit formation (Alonso-Carrera et al. 2007), or a negative growth e¤ect
induced by the decrease of fertility rates generated by habits (Schäfer and Valente, 2009).

Proposition 15 (Sel�sh Regimes/2) With respect to Ramsey-Stiglitz steady-state equilibria, the
equilibrium path attained when � > �� exhibits (i) a higher long-run growth rate, (ii) a less restric-
tive condition for sustained long-run consumption, but (iii) possibly huge welfare losses due to the
violation of unconstrained PV-optimality.

Proposition 15 summarizes the growth-habit relationship derived in Lemma 12 and the results
of the welfare analysis in section 4.4. The fact that growth rates di¤er between altruistic and sel�sh
regimes is new with respect to the previous literature. In capital-labor dynastic economies, there
are no asymmetries in growth rates: since capital is only endogenously accumulated factor, the
capital-labor ratio converges asymptotically to a steady state in both regimes. As a consequence,
altruistic and sel�sh regimes in capital-labor economies may di¤er in long-run income levels, but
exhibit the same long-run growth rate. This result holds with or without habit formation in capital-
labor economies- see Alonso-Carrera et al. (2007) and Thibault (2000), respectively - but it does
not hold in our model.
The present analysis yields furthermore di¤erent results as it shows that the sel�sh equilibrium

implies faster growth than sel�sh regimes for any degree of habit formation above the critical
threshold. This e¤ect does not arise in Alonso-Carrera et al. (2007), and hinges on the fact that
long-run growth in capital-resource economies is determined by the intergenerational distribution
of resources, as explained before.
Statements (i)-(ii) in Proposition 15 are also new with respect to the sustainability literature.

In capital-resource models, the role of habit formation has been neglected so far, and our results
show that he interactions between habits and resources may be quite relevant for income levels and
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growth rates. At the same time, statement (iii) calls for interpreting growth-related issues in a
precise manner. Habits raise the growth rate, but they do so in sel�sh equilibria that do not satisfy
PV-optimality. Given the asymmetry between desired and observed intergenerational transfers, the
welfare levels attained in a PDM regime induced by excessive habit formation may be much lower
than in PRS regimes characterized by weaker habits.

6 Conclusions

This paper analyzed the implications of habit formation for welfare, income levels, and long-term
growth when production possibilities are constrained by resource scarcity and �nitely-lived agents
exhibit one-sided altruism. If bequests are operative along the entire path, an increase in the
strength of habits induces a bias in favor of second-period consumption that generates relevant
reallocation e¤ects. Faster capital accumulation in the short run and input-substitution between
man-made capital and exhaustible resources yield permanent positive e¤ects on output, capital,
consumption levels and resource use. Habits also yield positive transitional e¤ects on growth rates
and capital pro�tability. However, this altruistic equilibrium may arise only if the coe¢ cient of
habit formation falls short of a critical level. If the degree of status desire exceeds the threshold, the
economy achieves sel�sh equilibria in which habits increase growth rates, reduce capital pro�tability,
and raise the speed of resource depletion in the long run. Long-run growth is higher than in
the altruistic regime because of habit formation, and the condition for obtaining non-declining
consumption is less restrictive. However, the sel�sh equilibrium is not optimal in the standard
sense: although consumption and output dynamics are observationally more favorable, there are
asymmetries between desired and e¤ective intergenerational transfers. The consequence is that,
despite substantial improvements in growth rates and income levels in the medium-long run, the
welfare attained in sel�sh equilibria induced by excessive habit formation may be much lower than
that obtained in altruistic regimes characterized by weaker habits.
It has been shown that these results di¤er from related �ndings in capital-labor economies

because of the assumption of resource dependence: di¤erent rates of resource exploitation modify the
intergenerational distribution of wealth, and thereby the growth rate attained in either equilibrium.

Appendix

Some useful relations. In the following derivations, we will exploit some basic relations
implied by the assumptions of the model. First, assumption (5), implies

Uct = c��t � �� (et+1 � �ct)�� and Uet+1 = � (et+1 � �ct)�� : (64)

Second, denoting by gpt � pt+1=pt the gross growth rate of the generic variable pt, technology (1)
implies that the output growth is given by

gYt = g�1Kt
g�2Xt

(1 + 
)
�2 n�3 : (65)

Third, de�ning the output-capital ratio as �t � Yt=Kt and the aggregate consumption-output ratio
as 't � (N

y
t =Yt)

�
ct + etn

�1�, the accumulation constraint (3) can be written as gKt
= �t (1� 't),

which
gKt

= �t (1� 't) : (66)

Fourth, de�ning per-adult variables as yt � Yt=N
a
t and kt � Kt=N

a
t , the accumulation constraint

(3) can be written as
kt+1n = yt � nct � et: (67)

Fifth, by the previous de�nition of 't, we have 't = (nct + et) =yt, so that the ratio between �rst-
period individual consumption ct and output per adult yt, can be de�ned as �t � ct=yt, and written
as

�t = ct=yt = n�1 ['t � (et=yt)] : (68)
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Proof of Lemma 1. The centralized problem can be solved by means of the Lagrangean

L =
1X
t=0

n
Ny
t U (ct; et+1)�

t + �kt

h
F (Kt;mtXt; N

y
t )�N

y
t

�
ct +

et
n

�
�Kt+1

i
+ �qt (Qt �Xt �Qt+1)

o
;

where �kt and �
q
t are the dynamic multipliers associated with the transition laws of Kt and Qt,

respectively. The �rst-order conditions read

Lct = 0 ! Uct�
t = �kt ; (69)

Let+1 = 0 ! Uet+1�
t = �kt+1; (70)

LXt
= 0 ! �ktFXt

= �qt ; (71)

LKt+1
= 0 ! �kt+1FKt+1

= �kt ; (72)

LQt+1
= 0 ! �qt+1 = �qt ; (73)

where FKt and FXt follow the de�nitions given in the main text. In addition, the centralized
allocation must satisfy the transversality conditions

lim
t!1

�qtQt = 0 and lim
t!1

�ktKt = 0: (74)

Equations (69), (70) and (72) imply

U�ct = U�et+1F
�
Kt+1

; (75)

U�ct� = U�et : (76)

Substituting U�ct and U
�
et+1 by means of (64), conditions (75)-(76) respectively imply

e�t+1 = c�t

�
�+

�
F �Kt+1

� + ��
�1=��

; (77)

(c�t )
�� � ��

�
e�t+1 � �c�t

���
= (�=�)

�
e�t � �c�t�1

���
: (78)

From (77), we can substitute e�+1 � �c� =
�
FK�+1� + ��

�1=�
in (78) to obtain

�
c�t =c

�
t�1
���

= �F �Kt+1

�
F �Kt

+ �
� �
F �Kt+1

+ �
��1

:

Setting this expression one period forward and solving for c�t+1=c
�
t yields (8). Using (77) to eliminate

ct from (8), and setting the resulting expression one period backward, we obtain

c�t
e�t
=

�
F �Kt

+ �
�1=�

�+ �1=�
�
F �Kt

+ �
�1=�

 
�

F �Kt+1

F �Kt+1
+ �

!1=�
: (79)

Plugging (77) in (79) to eliminate c�t , we obtain condition (9) in the text. Since (73) implies that
�qt be constant, conditions (71)-(72) yield (10). Rearranging terms in (77) we obtain (11). �

Proof of Lemma 2. Setting FKt
= FKt+1

= FKt+2
= F �Kss

in (8)-(9), we obtain (13). The
same procedure yields (14) from (79). From (1), the derivatives FKt

� @F=@Kt and FXt
� dF=dXt

equal
FKt = �1 (Yt=Kt) and FXt = �2 (Yt=Xt) : (80)

From the �rst expression, limt!1 FKt
= F �Kss

implies

lim
t!1

(Y �t =K
�
t ) = F �Kss

=�1: (81)
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Denote by gpt � pt+1=pt the gross growth rate of the generic variable pt, and by gp1 � limt!1 (pt+1=pt)
the asymptotic growth rate. Given (81), the accumulation constraint implies

gK1 � lim
t!1

K�
t+1

K�
t

=
F �Kss

�1
� lim
t!1

Ny
t

�
c�t + e

�
tn

�1�
K�
t

; (82)

where, from (14) and Ny
t+1=N

y
t = n , the numerator of the last term grows at the constant rate

n
�
�F �Kss

�1=�
. By a standard argument, the cases in which the asymptotic growth rate of K�

t di¤ers
from that of aggregate consumption can be excluded because the economy would either violate the
non-negativity constraint on capital or the transversality conditions (74).14 As a consequence, we

have gK1 = n
�
�F �Kss

�1=�
. This in turn implies, from (81), equal growth rates between capital and

output, gK1 = gY1 = n
�
�F �Kss

�1=�
, which proves result (15). Using (80) to eliminate FXt

and
FXt+1

from (10), the Hotelling condition can be written as

X�
t+1=X

�
t =

�
Y �t+1=Y

�
t

� �
F �Kt+1

��1
: (83)

Setting F �Kt+1
= F �Kss

in (83) and using (15), we obtain (16). The unique steady-state value of FKt

that satis�es the balanced-growth conditions derived above can be obtained as follows. Taking the
limit as t ! 1 in (65), and substituting gK1 = gY1 and gX1 = gY1=F

�
Kss

from (15) and (83),
respectively, equation (65) implies

g�Y1 =
�
(1 + 
) =F �Kss

��2=�3
n: (84)

Substituting g�Y1 = n
�
�F �Kss

�1=�
from (15), and solving the resulting expression for F �Kss

gives
(17) in the text. For future reference, notice that the transversality condition limt!1 �ktKt = 0 is
satis�ed i¤ parameters satisfy

F �Kss
> n

�
�F �Kss

�1=�
; (85)

since this is necessary to have limt!1

�
�kt+1=�

k
t

�
gK1 < 1. �

Derivation of (20)-(21). Equation (20) is derived as follows. De�ne the output-capital
ratio as �t � Yt=Kt . Since FKt

= �1�t and FXt
= �2 (Yt=Xt), the Hotelling rule (10) can be

written as g�Xt
= g�Yt

�
�1�

�
t+1

��1
. Substituting this result in (65), we obtain

g�Yt =
�
g�Kt

� �1
1��2

�
�1�

�
t+1

�� �2
1��2 (1 + 
)

�2
1��2 n

�3
1��2 ; (86)

where and superscript �*�is associated with the centralized allocation. Dividing both sides of (86)
by g�Kt

, and recalling that gYt=gKt = �t+1=�t, we have

��t+1=�
�
t =

�
g�Kt

�� �3
1��2

�
�1�

�
t+1

�� �2
1��2 (1 + 
)

�2
1��2 n

�3
1��2 :

Substituting g�Kt
by means of (66), we obtain

��t+1 = (�
�
t )

�1
1��2 (1� '�t )

� �3
1��2

�
�1�

�
t+1

�� �2
1��2 (1 + 
)

�2
1��2 n

�3
1��2 ;

where 't � (Ny
t =Yt)

�
ct + etn

�1� is the aggregate consumption-output ratio. Solving the above
expression for ��t+1 and re-arranging terms,we obtain equation (20) in the text.
Equation (21) is derived as follows. Since FKt

= �1�t, the right-hand side of (79) can be de�ned
as a function of ��t and �

�
t+1,

c�t
e�t
= �a

�
��t ; �

�
t+1

�
�

�
F �Kt

+ �
�1=�

�+ �1=�
�
F �Kt

+ �
�1=�

 
�

F �Kt+1

F �Kt+1
+ �

!1=�
: (87)

14Proof.....
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Using (87), the aggregate consumption-output ratio equals

'�t �
Ny
t (nc

�
t + e

�
t )

nY �t
=
Ny
t e

�
t

nY �t

�
1 + n � �a

�
��t ; �

�
t+1

��
;

and its growth rate reads

'�t+1
'�t

= n
g�et
g�Yt

"
1 + n � �a

�
��t ; �

�
t+1

�
1 + n � �a

�
��t+1; �

�
t+2

�# : (88)

From the right-hand side of (9), the growth rate of second-period consumption per adult, g�et , is a
function of ��t and �

�
t+1,

g�et = �b
�
��t ; �

�
t+1

�
�
�+ �1=�

�
F �Kt+1

+ �
�1=�

�+ �1=�
�
F �Kt

+ �
�1=�

 
�F �Kt+1

F �Kt
+ �

F �Kt+1
+ �

!1=�
: (89)

From (20) and (86), the growth rate of aggregate output is a function of
�
��t ; '

�
t ; �

�
t+1

�
,

g�Yt = �c
�
��t ; '

�
t ; �

�
t+1

�
: (90)

Combining (89)-(90) with (88), it follows that the dynamic equation of '�t can be written as

'�t+1 = '�t � n
�b
�
��t ; �

�
t+1

�
�c
�
��t ; '

�
t ; �

�
t+1

� " 1 + n � �a
�
��t ; �

�
t+1

�
1 + n � �a

�
��t+1; �

�
t+2

�# : (91)

De�ning the right-hand side of (91) as �
�
'�t ; �

�
t ; �

�
t+1; �

�
t+2

�
, we obtain expression (21) in the text.

�

Proof of Lemma 3. Suppose that �3 ! 0. In this case, labor is not used as an input, and the
output-capital ratio displays autonomous dynamics: equation (20) reduces to

��t+1 = (�
�
t )
�1
�
��11 (1 + 
)

�1��1
; (92)

which exhibits a globally stable steady-state ��ss = ��11 (1 + 
). This result ensures that limt!1 �t =
��ss, and that the marginal product of capital converges to the steady-state limt!1 F �Kt

= 1+ 
 =
FKss

.15 From Lemma 2, the economy approaches balanced growth in the long run, which implies
limt!1 't = '�ss. �

Details on backward iteration.
....

Derivation of (25). From (73), �qt is constant. As a consequence, satisfying the �rst
transversality condition in (74) requires limt!1Qt = 0, i.e. exhausting the resource stock asymp-
totically. Iterating the dynamic resource constraint (4), we have

Qt = Q0 �
tX

j=0

Xj :

Taking the limit of this expression as T !1, and substituting the e¢ ciency condition limt!1Qt =
0, we obtain (25). Notice that, in order to verify (25) in practice, we can use the following approx-
imation. De�ning

zt =
Qt �Xt

Xt
;

15Letting �3 ! 0 in (17), the steady-state value F �K indeed reduces to 1 + 
.
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it can be shown that the expression
Xt+1

Xt
=

zt
1 + zt+1

(93)

is valid at each point in time. From (16), we know that approaches a constant value zss in the long
run: in the centralized allocation, in particular, this is equal to

z�ss =
n�1=�

�
F �Kss

� 1��
�

1� n�1=�
�
F �Kss

� 1��
�

: (94)

In any case, since zt ! zss, we can choose a su¢ ciently large T such that

XT+j ' XT

�
zss

1 + zss

�j
for any j � 0. (95)

From (95), we can re-write the in�nite sum of extracted resources as

1X
t=0

Xt =
TX
t=0

Xt +XT +XT+1 + ::: =
TX
t=0

Xt +XT +XT

�
zss

1 + zss

�
+XT

�
zss

1 + zss

�2
+ :::

=

TX
t=0

Xt +XT

1X
j=T

�
zss

1 + zss

�j�T
;

where the fact that the term in round brackets is less than unity implies
1X
j=T

�
zss

1 + zss

�j�T
= 1 + zss;

so that
1X
t=0

Xt =

TX
t=0

Xt +XT (1 + zss) : (96)

Provided that z is approximately equal to zss from time T onwards, expression (96) equals the
initial stock. �

Proof of Lemma 6. From (29) and (31), the lifetime budget constraint of an agent born
in t � 0 reads

ct + et+1R
�1
t+1 = wt + bt � pat (at=n) +R�1t+1

�
pxt+1xt+1 + p

a
t+1at+1 � nbt+1

�
: (97)

Having eliminated kt+1, we can solve the reduced problem

max
fct;et+1;at;xt+1;bt+1g

U (ct; et+1) + 	nW
`
t+1 (wt+1 + bt+1)

subject to (97) and to bt+1 � 0. The Lagrangean at time t for this problem is

Lr = U (ct; et+1) + 	nW
`
t+1 (wt+1 + bt+1) +

+�t
�
wt + bt � pat (at=n) +R�1t+1

�
pxt+1xt+1 + p

a
t+1at+1 � nbt+1

�
� ct � et+1R�1t+1

	
;

where �t is the Lagrange multiplier associated with (97). The �rst order conditions yield

Lrct = 0 ! U `ct = �t; (98)

Lret+1 = 0 ! U `et+1 = �tR
�1
t+1; (99)

Lrxt+1 = 0 ! pxt+1 = pat+1; (100)

Lrat = 0 ! pat+1 = patRt+1; (101)

Lrxt+1 � 0 ! 	
@W `

t+1

@bt+1
� �tR�1t+1 � 0

�
= 0 if b`t+1 � 0

�
: (102)
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Conditions (98)-(99) imply U `ct = Rt+1U
`
et+1 , where we can substitute U

`
ct and U

`
et+1 by means of

(64) to obtain �
c`t
��� � �� �e`t+1 � �c`t��� = Rt+1�

�
e`t+1 � �c`t

���
: (103)

Rearranging terms and raising both sides to 1=� yields condition (33) in the text. The no-arbitrage
conditions (34)-(35) directly follow from (100)-(101). The equation of motion of capital per-adult
(36) coincides with (67), and can be re-derived by aggregating the consumption of both cohorts alive
in t from the individual constraints (29) and (31).16 Finally, we derive the condition for optimal
bequests (37). Suppose that b`t+1 � 0. Then, the strict equality in (102) together with (98) imply

@W `
t+1

@bt+1
=

U `ct
	Rt+1

: (104)

By de�nition, the value function at time t+1 is given by the maximum lifetime utility for the agent
born at t+ 1 for given personal resources wt+1 + bt+1, that is

W `
t+1 = U

�
c`t+1; e

`
t+2

�
+

1X
i=t+2

(	n)
i�t

U
�
c`i ; e

`
i+1

�
:

Since with c`t+1 = wt+1+bt+1�pat+1 (at+1=n)�kt+2, it follows that @W `
t+1=@bt+1 = U `ct+1 . Substitut-

ing this result into (104), and using superscript �̀1�to represent the Ramsey-Stiglitz accumulation
regime, we obtain

U `1ct+1	Rt+1 = U `1ct : (105)

Substituting U `1ct and U
`1
ct+1 by means of (64), we obtainh�

c`1t+1
��� � �� �e`1t+2 � �c`1t+1���i	Rt+1 = h�c`1t ��� � �� �e`1t+1 � �c`1t ���i : (106)

From (33), we can substitute e`1�+1=c
`1
� = � + �1=� (R�+1 + �)

1=� in both sides to eliminate second-
period consumption levels, and obtain�

c`1t+1
��� h

1� �� [� (Rt+2 + �)]�1
i
	Rt+1 =

�
c`1t
��� h

1� �� [� (Rt+1 + �)]�1
i
:

Rearranging terms and raising both sides to �, we obtain (37), which completes the proof. For
future reference, notice that the lifetime budget constraint (97), the resource constraint (28), and
the no-arbitrage conditions (100)-(101) imply

c`t + e
`
t+1R

�1
t+1 = wt + b

`
t �R�1t+1nb`t+1; (107)

which is an equilibrium condition that holds in the dynastic competitive economy irrespective of
the accumulation regime (`1 or `2). �

Proof of Lemma 7. From (27), we can substitute F `Kt
= Rt in equations (33) and (37),

respectively obtaining (41) and (38). Combining these two equations and solving for e`1t+1=c
`1
t+1

yields

e`1t+1=c
`1
t+1 =

�
�+ �1=�

�
F `1Kt+1

+ �
�1=��"

	F `1Kt+2

 
F `1Kt+1

+ �

F `1Kt+2
+ �

!#�1=�
: (108)

16From (29) and (31), aggregation of consumption of both cohorts alibe in period t yields

Ny
t ct +N

a
t et = wtN

y
t � kt+1N

y
t +RtktN

a
t + p

x
t xtN

a
t ;

where we can substitute the pro�t-maximizing conditions (27) to obtain (3). Dividing both sides by Na
t , and de�ning

output per adult as yt � Yt=Na
t , we obtain (36).
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Setting (108) on period backward and re-arranging terms, we obtain

c`1t = e`1t

"
	F `1Kt+1

 
F `1Kt

+ �

F `1Kt+1
+ �

!#1=� h
�+ �1=�

�
F `1Kt

+ �
�1=�i�1

; (109)

which can be substituted back in (41) to obtain (39). From (27), we can substitute F `Kt
= Rt and

FXt
= pxt in (35) to obtain the Hotelling rule (40). Equation (42) is obtained as follows. Solving

(107) for b`t+1 and substituting condition (33), the dynamics of bequests along a PRS equilibrium
path obey

b`1t+1 =
Rt+1
n

n
wt + b

`1
t � c`1t

h
1 +R�1t+1

�
�+ �1=� (Rt+1 + �)

1=�
�io

: (110)

Dividing both sides by output per adult yt = Yt=N
a
t , and substituting wt = �3 (yt=n) and Rt+1 =

�1 (yt+1=kt+1) from (27), we obtain (42). �

Proof of Lemma 8. Setting 	 = � in (38)-(39), the intertemporal conditions for the
centralized allocation (11), (8), and (9) respectively imply e`1t+1=c

`1
t = e�t+1=c

�
t , c

`1
t+1=c

`1
t = c�t+1=c

�
t ,

and e`1t+1=e
`1
t = e�t+1=e

�
t . Since the Hotelling rule (40) coincides with (10)., and the aggregate

constraint (36) is equivalent to (3) - see (67) above - it follows that, given identical initial endowments
(K0; Q0), and setting a social discount factor � = 	, the PRS equilibrium path coincides with the
centralized allocation. �

Derivation of (46). Given the observational equivalence established in Lemma 8, results
(13)-(17) in Lemma 2 imply

lim
t!1

F `1Kt
= F `1Kss

= (1 + 
)
�2�

�3+�2� 	�
�3

�3+�2� ;

lim
t!1

c`1t+1=c
`1
t = lim

t!1
e`1t+1=e

`1
t =

�
	F `1Kss

�1=�
;

lim
t!1

c`1t =e
`1
t =

1

�+ �1=�
�
F `1Kss

+ �
�1=� �	F `1Kss

�1=�
; (111)

lim
t!1

Y `1t+1=Y
`1
t = lim

t!1
K`1
t+1=K

`1
t = n

�
	F `1Kss

�1=�
;

lim
t!1

X`1
t+1=X

`1
t = n	1=�

�
F `1Kss

� 1��
� :

Equation (46) is obtained as follows. Rewriting yt=kt+1 as (yt=kt) (kt=kt+1) = �t=gkt , and de�ning
the convenient variables � t � bt=yt and �t � ct=yt, expression (42) can be-rewritten as

� `t+1 = (�1=n)
�
�`1t =g

`1
kt

�n
(�3=n) + �

`
t � �`t

h
1 +

�
F `1Kt

��1 �
�+ �1=�

�
F `1Kt

+ �
�1=��io

; (112)

where � t is the bequest-output ratio. As the marginal product of capital F `Kt
converges to the �nite

steady-state F `Kss
, all the time-varying terms in (112) - that is, �t, gkt , �t and F

`
Kt+1

- achieve the
stationary values17

�`1ss = lim
t!1

�`1t = ��11 F `1Kss
;

g`1k1 = lim
t!1

g`1kt =
�
	F `1Kss

�1=�
;

�`1ss = lim
t!1

�`1t = lim
t!1

n�1
�
'`1t �

�
e`1t =y

`1
t

��
;

F `1Kss
= lim

t!1
F `Kt+1

= (1 + 
)
�2�

�3+�2� 	�
�3

�3+�2� ;

17Justify the stationary values...
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and the associated steady-state value of � t implied by (112) is

� `1ss =
F `1Kss

F `1Kss
� n

�
	F `1Kss

�1=� n�`1ss h1 + �F `1Kss

��1 �
�+ �1=�

�
F `1Kss

+ �
�1=��i� (�3=n)o ; (113)

where � `1ss = limt!1 b`1t =y
`1
t . Since �

`1
ss and the term in square brackets in (113) depend on � (see

the full derivation in eq.(120) below), we can de�ne

� (�) � �`1ss

h
1 +

�
F `1Kss

��1 �
�+ �1=�

�
F `1Kss

+ �
�1=��i

; (114)

and re-write (113) as (46). The fact that

F `1Kss
> n

�
	F `1Kss

�1=�
(115)

follows by analogy with (85), which is necessary to satisfy the transversality condition on aggregate
capital. �

Proof of Lemma 9. From de�nition (114), the term � (�) can be explicitly determined
as follows. From (68), the ratio �`1t = c`1t =y

`1
t equals �`1t = n�1

�
'`1t �

�
e`1t =y

`1
t

��
. Substituting

et=yt = (et=ct) (ct=yt) = (et=ct) �t, we have

�`1t =
'`1t

n+
�
e`1t =c

`1
t

� ; (116)

From (111), and by analogy with (23), we respectively obtain

lim
t!1

e`1t
c`1t

=
h
�+ �1=�

�
F `1Kss

+ �
�1=�i �

	F `1Kss

��1=�
; (117)

lim
t!1

'`1t = '`1ss = 1� n�1	
�2+�3
�2�+�3 (1 + 
)

�2(1��)
�2�+�3 ; (118)

so that the limit of (116) as t!1 reads

�`1ss = lim
t!1

�`1t =
'`1ss

�
	F `1Kss

�1=�
n
�
	F `1Kss

�1=�
+
h
�+ �1=�

�
F `1Kss

+ �
�1=�i : (119)

Given (119) and (114), we can re-write � (�) as

� (�) = n�1'`1ss

n
�
	F `1Kss

�1=� h
1 +

�
F `1Kss

��1 �
�+ �1=�

�
F `1Kss

+ �
�1=��i

n
�
	F `1Kss

�1=�
+
h
�+ �1=�

�
F `1Kss

+ �
�1=�i ; (120)

where, from (111) and (118), neither '`1ss nor F
`1
Kss

depend on �. De�ning h0 � n
�
	F `1Kss

�1=�
> 0,

h00 � F `1Kss
> 0, and � (�) � �+ �1=�

�
F `1Kss

+ �
�1=�

> 0, expression (120) reduces to

� (�) = n�1'`1ss
h0 + (h0=h00)� (�)

h0 + � (�)
: (121)

From (121), the derivative �0 (�) � @� (�) =@� can be written as

�0 (�) =
n�1'`1ss�

0 (�)h0

(h0 + � (�))
2
h00
� (h0 � h00) : (122)
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Since �0 (�) = 1 + (1=�)�1=�
�
F `1Kss

+ �
�1=��1

> 0 and h0 � h00 = n
�
	F `1Kss

�1=� � F `1Kss
< 0 (from

(115) above), it follows from (122) that � (�) is strictly declining in �. From (46), the derivative
@� `1ss=@� has the same sign as @� (�) =@� < 0, which completes the proof. �

Derivation of system (48)-(49)-(50). Notice that, from Lemma 6, conditions (33)-(36)
hold in the PDM equilibrium. In particular, given the pro�t-maximizing conditions pxt = FXt

and
Rt = FKt

= �1�t, the Hotelling rule (40), and the aggregate relations (65) and (66), we can follow
the same steps as in the derivation of (20), to obtain the equivalent expression for the competitive
economy,

�`t+1 =
�
�`t
��1 �

1� '`t
���3 �

��11 (1 + 
)
��2

n�3 ; (123)

which holds independently of the accumulation regime (and hence in the PDM equilibrium as well).
Setting superscripts ` = `2 yields (48). The peculiarities of the PDM equilibrium are given by
(i) the dynamics of the consumption-output ratio '`2t , and (ii) the speed of resource depletion. In
the �rst regard, equation (49) can be obtained as follows. Setting bt = 0 in each t = 0; :::;1, the
individual budget constraints (29)-(30) read

c`2t = w`2t � pat
�
a`2t =n

�
� k`2t+1 and e`2t+1 = Rt+1k

`2
t+1 + p

a
t+1q

`2
t+1; (124)

where we used the no-arbitrage condition (34) and the resource constraint (28). Using the Hotelling
rule (35) and substituting qt+1 = at=n from (28), expressions (124) imply the standard present-
value lifetime constraint c`2t + R�1t+1e

`2
t+1 = wt. Substituting condition (33) to eliminate et+1, we

obtain
c`2t =

wt

1 +R�1t+1

h
�+ �1=� (Rt+1 + �)

1=�
i : (125)

From (27), the second expression in (124) implies e`2t+1 = �1y
`2
t+1 + �2

�
q`2t+1=x

`2
t+1

�
y`2t+1. Re-writing

this expression at period t and substituting qt = xt + at, we have

e`2t =yt = �1 + �2 + �2
�
a`2t =x

`2
t

�
: (126)

Using wt = �3yt=n from (27), we can combine equations (125)-(126) to obtain

'`2t =
nc`2t + e

`2
t

y`2t
=

�3

1 +R�1t+1

h
�+ �1=� (Rt+1 + �)

1=�
i + �1 + �2 + �2 �a`2t =x`2t � : (127)

De�ning the convenient variable

�t �
R�1t+1

h
�+ �1=� (Rt+1 + �)

1=�
i

1 +R�1t+1

h
�+ �1=� (Rt+1 + �)

1=�
i < 1; (128)

and the depletion index zt � at=xt, equation (127) yields - after some rearrangements and using
�3 = 1 � �1 � �2 - equation (49) in the text. Recalling that Rt+1 = FKt+1 = �1�t+1, it is self-
evident from (128) that �t can be treated as a function of � and �t+1, so that we use the notation
�t = �

�
�t+1; �

�
in the main text. The dynamics of the depletion index z`2t = a`2t =x

`2
t are obtained

as follows. From (125) and the �rst-period constraint in (124), individual savings in the PDM
equilibrium can be written as

pat
�
a`2t =n

�
+ k`2t+1 = �twt; (129)

where we have exploited de�nition (128). Using (27) to eliminate pat = pxt and wt from (129), we
obtain

n
k`2t+1
y`2t

= �t�3 � �2z`2t : (130)

32



From (27), we can rewrite the Hotelling rule (35) as

k`t+1
y`t

= �1
x`t+1
x`t

; (131)

and substitute it in (130) to obtain a dynamic equation for extracted resource per adult,

x`2t+1
x`2t

= �t
�3
n�1

� �2
n�1

z`2t : (132)

From the resource constraint (28), it follows that18

xt+1
xt

=
zt

n (1 + zt+1)
: (133)

Combining (132)-(133), we have

�1
z`2t

1 + z`2t+1
= �3�t � �2z`2t ;

which can be re-arranged to obtain (50). �

Derivation of (54)-(55) and existence conditions. From de�nition (128), recall that

�(��; �) �
(�1��)

�1
h
�+ �1=� (�1��+ �)

1=�
i

1 + (�1��)
�1
h
�+ �1=� (�1��+ �)

1=�
i : (134)

In the steady-state system, equation (53) reduces to the second-order polynomial

�2�z
2 + [1� �3 (1 + � (��; �))] �z � �3�(��; �) = 0; (135)

where the only positive root is

�z =

q
[1� �3 (1 + � (��; �))]2 + 4�2�3�(��; �)� [1� �3 (1 + � (��; �))]

2�2
> 0: (136)

Denote solution (136) as �z (� (��; �)). From (52)-(53), we have 1� �' = �1�z (1 + �z)
�1. We can thus

de�ne the implicit function

1� �' = � (�z (� (��; �))) � �1
�z (� (��; �))

1 + �z (� (��; �))
; (137)

and substitute it in (51) to obtain

��1��1�
��11 (1 + 
)

��2
n�3

=

�
1

� (�z (� (��; �)))

��3
: (138)

de�ning the left-hand side of (138) as a function fa (��), and the right-hand side as an implicit
function

f b (��; �) � f b (� (�z (� (��; �)))) ; (139)

18From (28), we have at+1 + xt+1 = at=n. Dividing both terms by xt+1 and rearranging terms, we obtain

1 + zt+1 = n
�1 (at=xt+1) :

Substituting at=xt+1 = (at=xt) (xt=xt+1) = zt (xt=xt+1) and rearranging terms yields (133).
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the steady-state condition can be written as fa (��) = f b (��; �), which proves (54). The existence
and uniqueness of the steady-state can be established as follows. From (138), it is easy to show
that fa (��) exhibits the following properties:

@fa (��)

@��
> 0,

@2fa (��)

@��2
< 0, lim

��!0
fa (��) = 0, lim

��!1
fa (��) =1: (140)

As regards f b (��; �), we exploit the following

Claim 16 Function �(��; �) has the following properties:

(i) If � = 1; � = 0 : lim
��!0

�(��; �) = 1, lim
��!1

�(��; �) =
�

1 + �
< 1, @�=@�� = 0;

(ii) If � = 1; � > 0 : lim
��!0

�(��; �) = 1, lim
��!1

�(��; �) =
�

1 + �
< 1, @�=@�� < 0;

(iii) If � > 1; � � 0 : lim
��!0

�(��; �) = 1, lim
��!1

�(��; �) = 0, @�=@�� < 0;

(iv) If � < 1; � = 0 : lim
��!0

�(��; �) = 0, lim
��!1

�(��; �) = 1, @�=@�� > 0;

(v) If � < 1; � > 0 : lim
��!0

�(��; �) = 1, lim
��!1

�(��; �) = 1, 0 < �(��; �) < 1 for 8�� 2 (0;1)

where, in case (v), we have @�=@�� < 0 for low values of ��, @�=@�� = 0 in an intermediate level of
��, and @�=@�� > 0 for high values of ��. It follows from (i)-(v) that �(��; �) is bounded between 0
and unity for any �� 2 (0;1) and any � � 0. Moreover, it follows from (ii)-(iii) that � � 1 implies
�(��; �) be monotonically declining in �� for any � > 0.

From (136), function �z (�) is monotonically increasing in �,

d�z (�)

d�
= ::: =

�3 [(1=2) + 2�z]q
[1� �3 (1 + �)]2 + 4�2�3�

> 0: (141)

Given that 0 < �(��; �) < 1 for 8�� 2 (0;1), it follows from (136) and (141) that �z (� (��; �)) is
bounded between �nite and positive limits (respectively denoted as z0 and z00) over the range of ��,

0 < z0 � �z (� (��; �)) � z00 <1 for any �� 2 (0;1) and any � � 0: (142)

Next consider the implicit function � (�z (� (��; �))) de�ned in (137), which is monotonically increasing
in �z,

d� (�z) =d�z = �1 (1 + �z)
�2

> 0; (143)

and is bounded by the boundedness of �z in (142): there exists a couple (�0; �00) such that

0 < �0 � � (�z) � �00 < 1 for any �z 2 [z0; z00] : (144)

The last implicit function f b (�) de�ned in (139) is monotonically decreasing in �,

df b (�) =d� = ��3���3�1 < 0; (145)

and is bounded by the boundedness of � in (143): there exists a couple
�
f bmin; f

b
max

�
such that

0 < f bmin � f b (�) � f bmax <1 for any �z 2 [z0; z00] : (146)

Taking the total derivative with respect to �� of the implicit function f b (��; �) de�ned in (139), we
obtain

df b (��; �)

d��
=
df b (�)

d�| {z }
negative

� d� (�z)
d�z| {z }

positive

� d�z (�)
d�| {z }

positive

� @�

@��|{z}
depends on �

; (147)

where the signs reported in (147) respectively follow from (145), (143) and (141). On the basis of
the above results, it is possible to establish that
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Lemma 17 (Existence of PDM steady-state equilibrium) For any � > 0, there always exists a
value ��� that satis�es the steady-state condition fa (���) = f b (���; �). In this solution, f b (���; �)
cuts fa (���) from above, i.e.

@f b (��; �)

@��

����
��=���

<
@fa (��)

@��

����
��=���

: (148)

Proof. Result (146) implies that

lim
��!0

f b (��; �) = f b (0; �) > 0 with f b (0; �) �nite. (149)

Since lim��!0 f
a (��) = 0, results (140) and (149) imply that, if there exists an intersection between

fa (��) and f b (��; �), then it must be an intersection where f b (��; �) cuts fa (��) from above. The
existence and uniqueness of this intersection is proved as follows.

Case � = 1, � = 0. From Claim 16, � = 1 with � = 0 implies that @�=@�� = 0. From (147), this
in turn implies that f b (��; �) does not depend on ��, so that f b (��; �) is a straight horizontal
line with respect to ��. Since fa (��) is strictly increasing, there necessarily exists a unique
intersection fa (���) = f b (���; �).

Case � � 1 with � > 0: From Claim 16, � � 1 implies that �(��; �) is strictly declining in �� for
any � > 0. From (147), this in turn implies that f b (��; �) is monotonically increasing in ��.
However, f b (��; �) is bounded from above by a �nite f bmax. Combining these properties, it
must be that f b (��; �) is strictly increasing, strictly concave, and converges asymptotically to
a �nite limit f b (1; �) < 1. The boundedness and monotonicity of f b (��; �) guarantee the
existence of at least one intersection fa (���) = f b (���; �) in which f b (��; �) cuts fa (��) from
above. The strict concavity of f b (��; �) guarantees that this intersection must be unique.

Case � < 1: From Claim 16, � < 1 implies that �(��; �) is always below a straight line, determined
by the coinciding limits lim��!0 f

b (��; �) = lim��!1 f b (��; �) = f b (0; �) > 0 with f b (0; �)
�nite. As a consequence, there always exists a unique ��� such that fa (���) = f b (���; �), and
it satis�es property (148).

The above results complete the proof of Lemma 17. �

Derivation of (56). From de�nition (134), we have

@�(��; �)

@�
=
�+ (1=�)�1=� (�1��+ �)

1��
�

�1�� f1 + :::g2
> 0: (150)

Taking the total derivative with respect to �� of the implicit function f b (��; �) de�ned in (139), we
thus obtain

df b (��; �)

d��
=
df b (�)

d�| {z }
negative

� d� (�z)
d�z| {z }

positive

� d�z (�)
d�| {z }

positive

� @�

@�|{z}
positive

< 0; (151)

where the signs reported in (147) respectively follow from (145), (143), (141) and (150). This means
that f b (��; �) shifts downwards as � increases. Since fa (��) is increasing and independent of habits,
it follows from property (148) that the unique steady-state value �� is negatively a¤ected by the
strength of habit formation:

d��=d� < 0: (152)

Proof of Lemma 10. By (27) and de�nition �t � Yt=Kt, the interest factor is given by
F `2Kt

= �1�t. Result (152) implies dF
`2
Kss

=d� < 0, which proves (57). From (51), the steady-state
condition

�� =
�
��11 (1 + 
)

� �2
1��1 n

�3
1��1 (1� �')�

�3
1��1 (153)
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implies that
d��

d�
� 1
��
= � �3

1� �1
� 1

1� �' �
d (1� �')

d�
: (154)

Since d��=d� < 0, result (154) implies that d (1� �') =d� > 0, and therefore

d�'=d� = �d (1� �') =d� < 0; (155)

which proves (58). From (52)-(53), the steady-state condition 1��' = �1�z (1 + �z)
�1 implies that the

sign of d�z=d� is opposite to that of d�'=d�, which proves d�z=d� > 0 in (59). Since gX1 = �z (1 + �z)
�1,

the sign of dg`2X1
=d� is the same as that of d�z=d�, which proves dg`2X1

=d� > 0 in (60). In the steady-
state, the growth rate of output coincides with that of capital, i.e. g`2Y1 = �� �(1� �'). Di¤erentiating
this expression with respect to �, and substituting (154), it is easily shown that dg`2Y1=d� > 0, which
proves (61). �

Derivation of (47). Assumption (26) implies that all generations are linked through dy-
nastic altruism, as the utility of the �rst agent born at t = 0 can be written as the discounted sum
of direct utilities of all descendants: imposing the limiting condition limj!1�

j�tWj = 0, iteration
of (26) gives (47). In the simulation performed in section 4.2, we have assumed � = 1, in which
case the direct utility index (5) reduces to

U (ct; et+1) = ln ct + � ln (et+1 � "ct) : (156)

In the long run, consumption levels grow at the same balanced growth rate of output per capita,
gY1=n. As a consequence, we can use cT+1 = cT gY1=n and eT+2 = eT+1gY1=n to write

U (cT+1; eT+2) = U (cT ; eT+1) + (1 + �) ln (gY1=n) : (157)

Choose a period T where T is large enough so that the economy is on the balanced growth path.
From (47), we can write W0 as

W0 =
T�1X
t=0

(	n)
t
U (ct; et+1) +

1X
t=T

(	n)
t
U (ct; et+1) : (158)

Using (157) to factorize the last term of (158), simple algebra shows that

1X
t=T

(	n)
t
U (ct; et+1) = U (cT ; eT+1)

1X
t=T

(	n)
t
+ (1 + �) ln (gY1=n)

1X
t=T+1

(	n)
t
:

Substituting this expression in (158), and recalling that
P1

t=T (	n)
t
= (	n)

T
(1�	n)�1 andP1

t=T+1 (	n)
t
= (	n)

T+1
(1�	n)�1, we obtain (47), which allows us to calculate the values of

W I
0 and W

II
0 mentioned in section 4.2. �

Proof of Lemma 11. The proof builds on the fact that �� is the threshold value implying
zero bequests in the long run by equation (46). Since F `1Kss

> n
�
	F `1Kss

�1=�
from (115), the sign of

� `1ss is the same as that of the term in curly brackets in the right hand side of (46). From (121), we
have

lim
�!0

� (�) = n�1'`1ss
h0 + (h0=h00)

�
�F `1Kss

�1=�
h0 +

�
�F `1Kss

�1=� > 0; (159)

lim
�!1

� (�) = n�1'`1ss (h
0=h00) > 0; (160)
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where (160) follows from L�Hospital rule. Since � (�) is strictly decreasing in �, it follows from
(159)-(160) that condition (62) guarantees the existence of a critical value �� > 0 such that

� (��) = �3=n and � (�) ? �3=n if � 7 ��: (161)

Notice that condition (62) can be satis�ed for a wide range of parameters because (160) can be
written as19

lim
�!1

� (�) =

�
1� n�1	

�2+�3
�2�+�3 (1 + 
)

�2(1��)
�2�+�3

�
	1=�

�
F `1Kss

� 1��
� > 0: (162)

From (113)-(46), result (161) implies that

� `1ss =

�
� 0 if � � ��
< 0 if � > ��

; (163)

where � `ss is asymptotic value towards which the ratio bt=yt would converge if the economy exhibited
an inde�nite sequence of Ramsey-Stiglitz temporary equilibria. Result (163) implies that, when
� > ��, a succession of Ramsey-Stiglitz temporary equilibria would drive the economy towards a
steady-state equilibrium in which limt!1 bt < 0, which is inconsistent with a PRS equilibrium
path (i.e. a path characterized by strictly positive bequests in each period). As a consequence,
a necessary condition for a PRS equilibrium path to arise is � < ��. When � > ��, we may have
three cases. In the �rst case (A), parameters and initial endowments are such that desired bequests
are non-positive in each t = 0; :::;1, and the economy follows a permanent Diamond-Mourmouras
equilibrium path. In the second case (B), parameters are such desired bequests are non-positive
for an initial interval t = 0; :::; tB , and bequests become operative at some �nite tB . After tB , the
economy may exhibit a succession of Ramsey-Stiglitz temporary equilibria, but this leads towards a
steady-state equilibrium in which limt!1 � `t = � `ss < 0, so that there must be a �nite time t0 > tB
in which bequests become zero again. Even if further switchovers in accumulation regimes arise,
the fact that � `ss < 0 implies that there must be a �nite time t

0 <1 after which bequests are zero.
In the third case (C), parameters are such that b`t > 0 for a �nite number of periods, t = 0; :::; t0.
In this case, the economy exhibits a succession of Ramsey-Stiglitz temporary equilibria in the short
run, but this leads towards a steady-state equilibrium in which limt!1 � `t = � `ss < 0. Following
the same reasoning as in the previous case (B), there must be a �nite time t0 < 1 after which
bequests are zero. In all the three cases (A), (B), (C), there exists a period t0 such that b`t = 0 in
each t = t0; :::;1, with 0 � t0 <1. �

Proof of Lemma 12. The proof hinges on the fact that � = �� implies equal long-run
growth rates between the altruistic and the sel�sh regime. This can be proved as follows. From the
solution of the dynastic problem (31), the condition for optimal bequests (105) in the steady-state
of a Ramsey-Stiglitz equilibrium is

U `1ct+1=U
`1
ct

���
FK=F `1

Kss

=
�
	F `1Kss

��1
: (164)

Equation (164) is valid whenever desired bequests are equal or greater then zero in the steady-state.
Now suppose that � = ��. By construction, �� is the value of � implying that desired bequests are
exactly zero in the steady-state of a Ramsey-Stiglitz equilibrium. As a consequence, condition (164)
holds. At the same time, zero desired bequests in the steady-state imply that agents consume all
their lifetime incomes in this steady-state, and this implies that the asymptotic growth rates of
consumption and output are equivalently obtained from the steady-state conditions (51)-(53) of the

19From the de�nitions used in (121), we have h0=h00 � n
�
	F `1Kss

�1=�
=F `1Kss

, whereas from (23) with � = 	, we

have '`1ss = 1� n�1	
�2+�3
�2�+�3 (1 + 
)

�2(1��)
�2�+�3 . Plugging these results into (160), we obtain (162).
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dynamic system (48)-(50), which is obtained from setting zero bequests in the individual budget
constraints. This implies that

� = �� =) U `1ct+1=U
`1
ct

���
FK=F `1

Kss

= U `2ct+1=U
`2
ct

���
FK=F `2

Kss

;

and, since both regimes exhibit balanced growth in the respective steady-states,

� = �� =) Y `1t+1=Y
`1
t

��
FK=F `1

Kss

= Y `2t+1=Y
`2
t

��
FK=F `2

Kss

: (165)

Since growth rate of altruistic and sel�sh regimes coincide in the steady-state for � = ��, the relation-
ship between long-run growth and habit formation is as follows. For � < ��, the long-run equilibrium
is characterized by strictly positive bequests, and therefore by the same asymptotic growth rate of
PRS equilibria. From (44)-(45), we have

� < �� =) lim
t!1

Yt+1=Yt = Y `1t+1=Y
`1
t

��
FK=F `1

Kss

= n [	 (1 + 
)]
�2

�3+�2� : (166)

For � > ��, the long-run equilibrium is characterized by zero bequests, and therefore by the same
asymptotic growth rate of PDM equilibria. From Lemma 10, we have limt!1 Y `2t+1=Y

`2
t = g`2Y1 (�),

which completes the proof of expression (63). The fact that g`2Y1 (�) > g`1Y1 for any � > �� follows
from the fact that (i) the two growth rates coincide for � = ��, and (ii) the growth rate g`2Y1 (�) is a
strictly increasing function of � as proved in Lemma 10. �
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