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Abstract

In this paper we investigate directed technical change in the energy sector. We

develop a dynamic model in which energy demand is satisfied with production

derived from renewable and fossil-fuel energy. This framework allows us to estab-

lish a long-run relationship between relative energy prices and relative innovation

in the two sectors, which is estimated using a panel of 23 OECD countries and

28 years (1978-2006). We find that a raise in the relative price of fossil-fuel energy

leads to an increase in the relative amount of innovation in renewable technologies.
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1 Introduction

Endogenous technical change has been recognized to be one of the most important en-

gines of economic growth. In early contributions technological progress as a result of

R&D was a determinant of productivity growth (see Romer [40], Grossman and Help-

man [19], and Aghion and Howitt [3]). More recently, a very important contribution

by Acemoglu [1] was to develop models of directed technical change, where the fi-

nal output is obtained by intermediate goods, and technical progress is input-specific.

The direction of technical change is endogenously determined following the relative

profitability of developing factor-specific innovations. This framework offers the op-

portunity to study Hick’s [22] original intuition that a change in relative prices leads to

innovation directed at economizing the use of the factor that has become relative more

expensive.

Whereas Acemoglu’s framework [1] considers labor and capital as intermediate in-

puts, there have been some application of the directed technical change framework in

the field of environmental and resource economics. This framework is ideal to explore

the response of the firm to regulatory constraints deriving from environmental policies.

The aim is to understand whether technical progress is resource-augmenting, as this

would lead to a more efficient and sustainable economy. There are a few applications

of the directed technical change framework to this field. These are usually based on a

two sector model in which one input is "clean" and the other is "dirty". Smulders and

de Nooij [41] use this setting to demonstrate that quantitative limits on the dirty input

induce a pollution-saving bias in technical change. Sue Wing [44] demonstrates in a

simplified framework that firm’s innovate in response to changes in relative prices of

inputs as a consequence of environmental regulation. Di Maria and van der Werf [14]

analyze carbon leakage effects under directed technical change. More recently, Ace-

moglu et al. [2] use the directed technical change framework in a two sector model

with a polluting input to analyze optimal climate policies when natural resources are

limited or when there is a policy restricting the use of the polluting good.

Technology-specific innovation has been investigated also in the context of climate-
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economy models with endogenous technical change. Some of these, such as Goul-

der [17], and Popp [39], assume that a general stock of knowledge is linked to climate

policy by imposing exogenous links between innovation and energy-efficiency. Other

works model sector-specific knowledge stocks, such as in the cases of Goulder and

Schneider [18], Sue Wing [42], Gerlagh [16], and Massetti et al. [33]. These mostly fo-

cus on energy- versus non-energy R&D to investigate on the level of crowding out

caused by climate policies.

Despite the rapid development of this literature and its policy relevance, empirical

evidence is limited. Furthermore, the applications of this theory are bound to parame-

ter values for which there are only a few empirical estimates. The only two examples of

empirical applications are both based on a directed technical change framework with

three inputs, namely capital, labor, and energy. Van der Werf [47] estimates elastic-

ities of substitution and technological parameters to find what specification best fits

the data. De Cian [11] tests the presence of input-specific technical change versus the

hypothesis of homogenous technical change.

The present study aims at contributing to the empirical literature on directed tech-

nical change applied to the environmental arena. We start from the theoretical frame-

work by Sue Wing [44]. This is chosen over the other models as it underlines the

importance of R&D as source of innovation, while leading to an equilibrium solution

illustrating the long-run relationship between relative innovation and relative prices.

We apply Sue Wing’s framework to the energy sector. This is an interesting application

in the field of climate change economics, as it allows us to test on the presence of inno-

vation between dirty (based on fossil fuels) and clean energy (renewables). Given the

current attention on the energy sector due to its consistent contribution to greenhouse

gases emissions, it is crucial that technological progress in this sector leads to improve-

ments in efficiency as well as that it is mostly directed towards carbon-free technolo-

gies. In particular, we focus on energy-efficient electricity generation technologies both

for fossil fuel and renewable energy. By focusing only on the most efficient technolo-

gies, we can study the changes in the direction of innovation in these two types of

electricity generation avoiding the bias that may arise from considering technologies
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with more difference in the levels of maturity.

The main contribution of this paper is to propose a different estimation methodol-

ogy respect to the previous empirical works. We apply a direct test of the steady state

relationship between relative innovation and relative prices. We correct for short-run

effects by using an Error Correction Model (ECM), drawing on induced innovation

studies such as Thirtle et al. [45]. Finally, the results allow us to obtain estimates for

the elasticity of substitution between fossil fuel and renewable energy. This is a cru-

cial parameter as the conclusion from climate-economy models with a disaggregated

energy sector (see Bosetti et al. [9] for the WITCH model, Popp [39] for the ENTICE

model) are based on the value of the elasticity between fossil and carbon-free energy.

Using a panel of 23 OECD countries over the period 1978-2006 and data relative

to patents, production, R&D expenditures, and energy prices, we find that changes in

relative prices induce changes in the relative amount of innovation between fossil-fuel

based and renewable technologies. Fossil fuel and renewable energies are found to

be substitutable with an elasticity of 1.64, which shows a high level of substitutabil-

ity. In order to further explore the crowding out hypothesis, we also estimate the

model’s parameter values and use them to evaluate how changes in relative prices

affect technology-specific innovation. We find that innovation is expected to increase

in renewables. In the fossil fuel sector innovation will increase initially but decrease

above a threshold level of the relative prices.

The remaining of the paper is organized as follows. Section 2 outlines the theoreti-

cal model and its conclusions. Section 3 illustrates the empirical model, describes the

data, estimation method, and the results. Section 4 concludes.

2 Theoretical Framework

The starting point of our analysis is the directed technical change framework proposed

by Sue Wing [44]. This model considers the optimization problem of a firm facing

a downward sloping demand curve, and producing with a clean and a dirty input.

The firm augments inputs investing in input-specific R&D. Changes in relative input
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prices due to regulatory constraints on the firm create a tradeoff between the two R&D

investments, leading to different levels of innovation.

We apply the model by Sue Wing [44] to study the changes in the direction of in-

novation in renewable and fossil fuel energy technologies. The clean industry is repre-

sented by renewables, and the dirty industry by fossil-fuel electricity production. Final

demand for energy is satisfied by the energy produced with the two technology types1.

In such a framework, both types of energy are treated as substitutable intermediate

goods. This is a common assumption in the literature on energy and it is coherent

with the work by Baker and Shittu [6] who also focus on energy-efficient electricity-

generation technologies. As both intermediate goods produce energy, they are close

substitutes and therefore the elasticity of substitution between them is expected to be

greater than unity.

In the model a firm produces output E using quantities Xi of two goods, indexed by

i ∈ {REN, FF}: the clean renewables XREN, and the dirty fossil-fuel energy XFF. Input

markets are assumed to be competitive and inputs to be in perfectly elastic supply with

prices pREN and pFF. Production at each point in time assumes that the two goods are

substitutes with a constant elasticity of substitution σ, so that the production function

is:

E(t) =
[
θREN(AREN(t)XREN(t))

σ−1
σ + θFF(AFF(t)XFF(t))

σ−1
σ

] σ
σ−1 (1)

where for each type of energy, θi are the input cost shares (∑i θi = 1), and Ai are

augmentation coefficients indicating the state of input-augmenting technology. The

firms instantaneous net profit π(t) is given by the difference between variable profits

and research expenditure:

π(t) = V(t)−Φ(t) (2)

where V(t) = pE(t)E(t)−∑i pi(t)Xi(t) are the firms variable profits given by the dif-

ference between the revenues and the expenditure in the intermediate goods. Research

expenditure is given by Φ(t) = 1
2 ∑i R2

i (t), where R&D exhibit increasing costs and are

1In this sense we can think of fossil fuel and renewable energy as two intermediate goods represent-
ing electricity which is supplied into the electricity grid. The final energy good instead is what is taken
out of the grid for consumption and use by households.
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modeled using a separable quadratic function following Parry and Fischer [37]. R&D

is modeled heterogeneously, by splitting it into renewable-augmenting and fossil fuel-

augmenting research. In this way the growth of the productivity parameters Ai can

be modeled as directly dependent from its relative R&D expenditure Ri. The input

augmentation coefficients represent the state of technological knowledge of the firm.

Knowledge is the result of cumulated ideas resulting from the research activity, with

the value of these ideas decaying over time. The augmentation coefficients are stocks

of input-augmenting knowledge and they are modeled following the linear perpetual

inventory model:

Ȧi = ηiRi(t)− δAi(t) (3)

in which the parameter δ reflects the decay of knowledge, and ηi the input-specific

productivity of R&D. With knowledge decaying over time, the firm must continue to

invest in R&D.

The demand for the firm’s overall electricity output is modeled with a downward-

sloping demand curve for the firm’s product, with price elasticity γ > 02:

E(t) = MpE(t)−γ. (4)

Taking prices as exogenous, the intertemporal profit maximization problem of the firm,

subject to (1), (2), (3), and (4), is3:

max
E(t),XREN(t),XFF(t),RREN(t),RFF(t)

∫ ∞

0
π(t)e−rtdt (5)

where r is the firm’s discount rate. The solution to the model is shown in the Appendix.

It is found that the control variables for the firm’s research expenditure are given by

2Whereas Sue Wing [44] assumes the value of the elasticity to be greater than 1, we assume that it can
also take values in the interval between 0 and 1. The model by Sue Wing addresses the case of a final
good for which it is reasonable to assume an elasticity greater than 1. However, as we consider energy
as our final good, it is more reasonable to assume that the market can be rigid and the elasticity can have
lower values.

3While variables continue to be in function of time, the time indication is omitted from now on for
the sake of clarity.
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the linear equation:

Ṙi = (r + δ)Ri − ηiθ
σ
i Aσ−2

i p1−σ
i χσ−γ (6)

where χ =
(

θσ
REN Aσ−1

REN p1−σ
REN + θσ

FF Aσ−1
FF p1−σ

FF

) 1
1−σ is the CES unit cost function with

input-augmenting technical change. The steady state results for research R∗i are de-

rived from the equilibrium condition Ṙi = 0 and are given by:

R∗i =
ηiθ

σ
i (A∗i )

σ−1p1−σ
i χσ−γ

(r + δ)
(7)

where A∗i is the equilibrium level for the input-augmenting technological factors, also

derived from the steady-state condition Ȧi = 0:

A∗i =
ηiR∗i

δ
. (8)

From these equations we can see that the higher the input-specific R&D productivity

ηi, the higher the R&D expenditure will be. R&D expenditures also positively depend

on the cost share of the input θi. The effect of the input prices on R&D is less straight-

forward and it depends on the value of the elasticity of substitution σ. When the two

goods are substitutes (σ > 1), an increase in price leads to a decrease in R&D expen-

diture. This is because there will be a change in production and R&D towards the

substitute good. Conversely, when substitution between the two goods is not possible,

it will be more convenient for the firm to invest in R&D in the same sector in order

achieve lower costs by increasing the augmentation factor. The effect of the unit cost

function for energy χ depends on the values of the elasticity of substitution and of

the price elasticity of demand γ. When the energy market is elastic and demand re-

sponds to price changes, an increase in price will lead to a decrease in demand and a

consequent fall in R&D expenditures for both inputs. If instead the market is rigid, it

will be necessary for the firm to invest in R&D to reduce production costs. There is a

tradeoff between the substitution effect and the demand effect. For high substitution

levels between inputs, R&D expenditures will increase for any price elasticity of de-

mand. Similarly, for very high price elasticities of demand R&D will decrease for any
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substitution elasticity.

We assume that the units of the θi can be chosen to normalize pre-tax input prices

to unity, so that pREN = pFF = 1. Once the environmental regulation is imposed in the

fossil fuel sector we then have that τ = pFF/pREN > 1, where τ can be thought of as

a carbon tax on the energy sector. Combining equations (7) and (8) we can derive the

steady-state relative quantity of innovation in fossil fuel technologies A∗:

A∗ =
(

η2θστ1−σ
) 1

3−σ (9)

where η = ηFF/ηREN, and θ = θFF/θREN denote respectively the relative efficiency

parameters, and the relative importance of energy produced by fossil fuels in overall

energy production. Equation (9) establishes a steady state relationship between the di-

rection of innovation and relative energy price4. This expression shows that the degree

of crowding out depends on the carbon tax and on country-specific characteristics of

the firms. When R&D is relatively more productive in the fossil-fuel sector, there will

also be more innovation in this sector5. The higher the relative production cost share

of fossil fuel energy, the higher the level of innovation in the sector. It illustrates that

the effect of a change in relative prices on the direction of innovation depends on the

elasticity of substitution. The larger the value of σ, the smaller the denominator of the

exponent, and the greater the influence of prices on α∗. If the level of substitutability

between the two goods is high, then there will be a decrease in the relative amount of

innovation in fossil fuel technologies. Vice versa, with a low level of substitutability,

relative innovation will decrease. The intuition behind the effect of relative prices is

simple. As the price of fossil fuel energy increases, the demand for this type of energy

will decrease, fossil fuel augmenting research generates a smaller increase in output

and profit compared to renewable energy augmenting R&D. Thus, if it is easy for the

firm to substitute between the two goods (σ > 1), it will be more convenient for the

4Note that this expression is equivalent to the findings in Acemoglu [1] who finds that the ratio
of capital and labor augmenting innovation is a function of the relative magnitude of the capital and
labor coefficients in production, the relative factor abundance, and the elasticity of substitution between
capital and labor.

5Except in the case of a very high elasticity of substitution σ > 3.
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firm to invest in research the untaxed good. In this case, all else equal, α∗ decreases

showing a change in the direction of innovation from fossil fuels towards renewables.

In instead there are limited possibilities of substitution (σ < 1), the firm will invest

more in fossil fuel energy R&D to carry on having the same production levels of the

input whose relative price is now higher. In this case the direction of innovation will

change in favor of fossil fuels and there will be an increase in α∗.

Results so far do not show the effect of a carbon tax on the technology-specific inno-

vation. Thus, it is not possible to say whether there is an actual decrease in innovation

in fossil fuels. This is also interesting to explore as innovation will result into installed

capacity in the long run. A change in the focus of innovation will thus influence the en-

vironmental impact of a country in term of carbon emissions. Equations (7), (8), and (9)

combined lead to formulation of technology-specific expressions for the augmentation

coefficients in function of relative prices:

A∗FF = k1ω
σ−γ

(1−σ)(3−γ) (10)

A∗REN = k2ω
σ−γ

(1−σ)(3−γ) τ
1−σ
3−σ (11)

Where ω = 1 + (ω− 1) τ
2(σ−1)

3−σ , and θ, k1, and k2 are positive constant depending on

the firms parameters6. Studying the sign of these expressions tells us whether an in-

crease in the carbon tax τ would lead to an increase in innovation in the single sectors.

For what regards the renewable sector, innovation is monotone in relative prices and

whether it is increasing or decreasing depends on the values of the elasticities. We have

that:

sgn
[

∂A∗REN
∂τ

]
= sgn

[
σ− γ

(3− σ)(3− γ)

]
.

Therefore, for σ > γ an increase in the carbon tax will lead to an increase in innovation

in the renewable sector if the elasticity of substitution between the two sectors is greater

than the price elasticity of demand for energy. Only in the case of a very elastic market

6ω = 1 + η2 σ−1
3−σ ω

2σ
3−σ , k1 = η

2
3−γ

REN [δ(r + δ)]−
1

3−γ ω
σ(1−γ)

(1−σ)(3−γ) , and k2 = [1 + 1/η2
REN ]

γ−σ
(3−σ)(3−γ) [δ(r +

δ)/η2
FF]−

1
3−γ ω

2σ(1−γ)
(1−σ)(3−γ)
REN ω

σ
3−σ
FF .
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in which demand falls as prices rise we would have a decrease of innovation in this

sector. For what regards the fossil-fuel sector instead, the function is non-monotone

and we find that:

sgn
[

∂A∗FF
∂τ

]
= sgn

[
1− σ

3− σ
− γ− 1

3− γ
(ω− 1)

]
.

In this case, the effect depends on the elasticities as well as on the value of the carbon

tax τ. For certain values of the elasticities the function will be monotone (increasing

for σ < 1 and γ < 1, and decreasing for σ > 1 and γ > 1)7. Thus, if the market is very

flexible in demand and in substitution of intermediates, innovation in fossil fuel energy

will decline, as it will be more convenient to invest more in renewables. If instead the

market is rigid, it will be necessary to invest more in fossil fuel technologies to keep

production costs down. For σ > 1 and γ < 1, or σ < 1 and γ > 1, the function will be

non-monotone and concave. It will achieve a maximum at:

τ
A∗FF
max = ηθ

σ
(σ−1)

[
(1− σ)(3− γ)
(γ− 1)(3− σ)

] 3−σ
2(1−σ)

Below this threshold increases in τ will cause innovation to increase in fossil fuel en-

ergy, whereas above it innovation in this sector will decline. Below τ
A∗FF
max the additional

costs of the tax are still low enough that the firm will invest more in R&D to increase

profits. Above the threshold instead the costs are high enough that the research costs

outweigh the profit loss so that innovation in fossil fuels declines. Given this, the reg-

ulator should aim at fixing the tax at the τ
A∗FF
max level, as too high taxes could reduce the

level of innovation below the pre-tax values.

3 Empirical Analysis

With the purpose to estimate the relationship between relative input prices and di-

rected innovation, we set up an empirical model to estimate equation (9). However,

7These intervals are for σ < 3 and γ < 3 as these are more plausible values. However, the same
reasoning applies for when considering also higher values of the elasticities.
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this relationship does not tell us whether the decrease (increase) in relative innovation

due to a change in prices, is due to innovation increasing in both sectors but increasing

less (more) in the fossil-fuel sector, or whether there is an actual decrease of innova-

tion in either sector. This is why, we will also estimate the necessary parameters in the

model, so as to be able to numerically evaluate equations 10 and 11. The elasticity of

substitution will be estimated from equation (9). The price elasticity of demand will be

estimated from equation (4). The R&D productivity parameters will be estimated from

the technology-specific equations (8). Finally, the production cost share parameters

will be derived combining the results from the from estimation of equations (9) and

(8). The different data and estimation methods will be explained in the next sections.

3.1 Empirical model

The starting point for this analysis is equation (9), which indicates how the relative

innovation changes according to changes in relative prices. In particular we expect the

relative use of fossil fuel energy to decrease with an increase in relative prices. In order

to test this hypothesis we need to linearize equation (9) so as to make it possible to

estimate it. By taking logs we have:

ln A =
2

3− σ
ln η +

σ

3− σ
ln θ +

1− σ

3− σ
ln τ (12)

This is a steady state equation establishing a long-run relationship between relative

prices and relative innovation. As such it is natural to hypothesize a cointegrating

relationship between the variables. A usual representation of cointegrating relation-

ships is done through the Error Correction Model (ECM). According to the Granger

representation theorem, time series that are cointegrated have an error correction rep-

resentation, and time series that can be represented by an ECM are cointegrated (Engle

and Granger [15]). The advantage of using an ECM is that it allows to consider both

the short run and the long run effects. In our case this is particularly interesting as the

short and long run effects of a carbon tax on the direction of innovation can be expected

to be different, with a long run adjustment being more consistent.
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We set up an ECM for the equation to be estimated to obtain, for country j and year

t:

∆ln(Ajt) = α0 + α1∆ln(τjt) + λ[ln(Ajt)− βln(τjt)]t−1 + εi + ujt (13)

Where all variables are in logarithmic form and correspond to the ratio of the levels

of fossil fuels over renewables. In this representation the coefficient α1 captures the

immediate effect of relative prices on relative innovation. This is the short run effect.

The long term effect occurs at a rate dictated by the error correction parameter λ. This

is an adjustment coefficient illustrating the speed at which the system can go back to

the equilibrium. We expect the error correction term to be negative to show that there is

a correction towards the equilibrium. The empirical model in equation 13 can be linked

to the structural model with the purpose to find values for the parameters of the model.

In particular we have that the coefficient expressing the effect of τ on A∗ corresponds

to β in equation 13. This can be calculated as the ratio of the estimated parameter

on the relative prices (βλ), and the error correction coefficient (λ). Comparing this

to the original equation 12, this can be used to obtain the elasticity of substitution

σ = (1− 3β)/(1− β). Note also that the constant term corresponds to the first part of

equation 12, so that α0 = 2
3−σ ln η + σ

3−σ ln θ.

Besides exploring the steady state relationship between relative prices and relative

innovation, we also want to estimate the model’s parameter values in order to be able

to infer on the model’s conclusions on the effect of relative prices on innovation in the

single technologies. In order to obtain estimates of the R&D productivities we estimate

the steady state relationship between R&D expenditures and knowledge stocks given

by equations (8). As this is another steady state relationship, it is also modeled with an

ECM:
∆(AFFjt) =αFF∆R&DFFjt + λFF[AFFjt − βFFR&DFFjt]t−1 + εFFi + uFFjt

∆(ARENjt) =αREN∆R&DRENjt + λREN[ARENjt − βRENR&DRENjt]t−1

+ εRENi + uRENjt

(14)

The disturbances in the two equations are likely to be correlated. As they are two
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different types of energy, the correlation could come for common shocks in the en-

ergy market. In order to gain efficiency, the equations are estimated as a system fol-

lowing the Seemingly Unrelated Regressions (SUR) firstly introduced by Zellner [50].

The increase in efficiency also applies to the ECM estimation, as demonstrated by

Thompson et al. [46]. From these equations we can derive ηFF = (βFF/λFF)δ, and

ηREN = (βREN/λREN)δ.

Finally, we estimate the energy demand to energy prices relationship given by

equation (4) in order to obtain estimates for the price elasticity of demand:

ln(Ejt) = ln(M)− γln(pEjt) + εi + ujt (15)

Which can be used to derive the price elasticity of demand γ. As this is not an equilib-

rium relationship we do not estimate it as an Error Correction Model.

3.2 Data

The key part of the empirical analysis is to construct measures of technology-specific

knowledge stocks for the augmentation parameters Ai. In order to do this we chose

patent data as an indicator of innovative activity. Patents are an output measure of

innovation, and as such reflect the innovative performance of firms and economies

(Griliches, 1990). They are a useful indicator as they can be distinguished by the na-

ture of the applicant, and of the invention. This allows dividing patents by country

and by technological field. Although not all inventions are patented, as underlined in

Dernis and Guellec [13] there are few examples of economically significant inventions

that have not been patented. Patents are issued by national offices and answer the ne-

cessity to protect new technologies with property rights that exclude others from the

production for a defined number of years, which varies upon the nature of innovation

and the rules of the national offices. Patent data can be disaggregated by technology,

which proves useful for the selection of the technological areas of interest. The Interna-

tional Patent Office (IPO) supplies patent classification codes developed by the World

Intellectual Property Organization (WIPO), thanks to which patents are classified into
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different technological areas and at several hierarchical levels. The International Patent

Classification (IPC) (WIPO [36]) is application-based, thus facilitating the identification

of specific technology classes, and particularly for the scope of the present work, of

classes including energy-efficiency patents.

Relevant patent classes have been selected in the area of energy-efficient fossil fuel

technologies, considering gas turbines, compressed ignition engines, cogeneration,

combined cycles, superheaters, steam engines, boilers, burners and fluidized beds.

Technology classes for the renewable technologies have been taken from previous se-

lections (Johnstone et al. [28]) which provide codes for the relevant renewable electric-

ity generation technologies. These include energy-efficient technologies which are not

based on the use of fossil fuels, namely wind, solar, geothermal, ocean, biomass and

waste. Patents relative to these technologies have been obtained from the EPO/OECD

Worldwide Patent Statistical Database (usually referred to as PATSTAT).

Although very useful, patents are an imperfect measure of innovation. It is difficult

to identify the value of a patent. Some patents may have a higher impact on the market

than others. For this reason patents are usually weighted to account for their difference

in value. The most common procedure to weight patents is to use citations8 (Popp [38]).

As an alternative methodology, instead of taking all patent applications we only count

the ’claimed priorities’9. Previous research has shown that the number of additional

patent applications (other than the priority application) is a good indicator of patent

value (see Guellec and van Pottelsberghe [20]; Harhoff et al. [21]). Claimed priority

counts are generated separately for fossil-fuel based technologies and for renewable

technologies. This allows us to construct two separate knowledge stocks for the two

types of technologies, namely AFF for the knowledge stock in fossil fuel energy and

AREN for the knowledge stock in renewable energy. Knowledge stocks are constructed

using the perpetual inventory method and with a rate of decay δ = 0.1 (Popp [38]).

Although the ideal variable to be used for the carbon tax τ would have been the

8The number of times the patent has been cited in other patent applications. This is an indicator on
the importance of the innovation in the technological field.

9Patents that have only been registered in one patent office are referred to as singulars. Patents that
have been registered in multiple offices are instead referred to as claimed priorities. A patent that is
registered in an office but that had already been registered before is referred to as a duplicate.
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carbon price or the actual value of carbon taxes, such data is not available yet. In the

European Union, the Emissions Trading Scheme has detailed information on the price

data, but only from its start date in 2005. However, as the other data are available only

up to 2006, the panel size would be too small to obtain reliable estimates. Thus, we use

the ratio of fossil fuel energy price pFF over renewable energy price pREN. The price

data is derived from the price indices in the Energy Prices and Taxes database of the

International Energy Agency (IEA [24]). The fossil fuel prices have been calculated as

a production-weighted average of the price index of coal, gas, and oil. The price of

non-carbon energy is used as a proxy for the price of renewable energy. Although this

is not the perfect policy variable, it fits the initial set up of the theoretical model. Fur-

thermore, energy prices, and in particular fossil fuel prices, have been at the center of

the debates on climate change and use of exhaustible natural resources. The ratio of the

prices should capture the pressure that is given on fossil fuels due to climate policies

and debates, and resource scarcity. On the other hand, the non-fossil fuel energy price

should reflect the regulatory support that has been given to carbon-free electricity gen-

eration. The price of the final energy good pE is also taken from the Energy Prices and

Taxes database of the International Energy Agency (IEA [24]).

Data on the demand for energy is taken from the Energy Balances database of the

IEA [23]. R&D expenditures are taken from the technology-specific R&D database of

the IEA [25]. Although this database is technology specific and thus makes it possible

to create separate R&D variables for fossil fuels and renewables, it is limitative as it

only includes data from public sources. However, as pointed out by Nemet and Kam-

men [34] who study R&D trends in the United States, the private R&D in the energy

sector has been decreasing and public R&D has been the main source of funding. The

detailed databases of the IEA allow us to construct a panel in which all variables are

technology specific. Tables 1 and 2 respectively summarize the data sources and char-

acteristics. The data form a panel of 23 OECD countries with a time span of 28 years

(from 1978 to 2006)10. The number of observations is reduced when variables with a

10Although patent data are available for more recent years, it is not advisable to take them into con-
sideration as the processing of the patents takes 2-3 years and the data from 2007 to 2009 may be still
incomplete.
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shorter time interval are included.

Table 1: Data sources (1978-2006)
Variable Source Measure Countries
AFF PATSTAT, OECD Patent stock 23
AREN PATSTAT, OECD Patent stock 23
R&DFF IEA Billion US$ 20
R&DREN IEA Billion US$ 20
pFF Energy Prices and Taxes, IEA real index 23
pREN Energy Prices and Taxes, IEA real index 23
pE Energy Prices and Taxes, IEA real index 23
ProdFF Energy Balances, IEA ktoe 23
ProdREN Energy Balances, IEA ktoe 23

Table 2: Descriptive Statistics
Variable Obs Mean Std.Dev. Min Max
AFF 644 15.45 28.48 0.00 133.40
AREN 644 12.62 27.54 0.00 212.88
R&DFF 580 0.07 0.18 0.00 1.82
R&DREN 580 0.04 0.11 0.00 1.38
pFF 644 102.77 22.74 51.15 199.77
pREN 644 111.86 21.86 51.03 210.66
pE 644 102.43 18.45 56.76 179.28
XFF 644 61736.92 125422.50 1211.95 691480.80
prodREN 644 11313.59 21148.35 3.70 116517.20

In order to verify whether the ECM specification is correct, we test for the presence

of cointegration on equations (13), and (14). There are a number of panel cointegra-

tion tests, most of which are based on the null hypothesis of cointegration. These test

whether there is a unit root in the panel, assuming that long-and short run effects are

the same. Examples are the Im-Pesaran-Shin test (see Im et al. [27]), the Levin-Lin test

(Levin and Lin [31]). A more flexible test has been introduced by Westerlund [49]. This

is based on the null hypothesis of no cointegration, and directly tests an ECM specifi-

cation. By testing whether the Error Correction parameter is zero, it allows to conclude

whether the ECM specification is correct. Table 3 illustrate results from the Westerlund

test for the four equations to be estimated11

11Results are reported only for the Westerlund test having null hypothesis cointegration in the full
panel.
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Table 3: Cointegration tests
Statistic Value Z-value P-value
log(A) -2.453 -6.806 0.000
AREN -1.464 -2.097 0.018
AFF -1.646 -2.879 0.002
E -0.668 1.423 0.923

The results show that the ECM specification is correct for the long-run equilibrium

equations, but not for the demand equation. Thus, the innovation equations will be

estimated with an ECM.

The demand equation will be estimated following a more appropriate specification.

Coherently with the literature on estimation of energy demand, we estimate equa-

tion (15) with a dynamic panel data methodology, drawing on previous works by as

Balestra and Nerlove [7], and Liu [32]. In this model energy demand is estimated as

a dynamic panel data, therefore including the lagged dependent variable between the

regressors. The authors used use the Arellano and Bond [4] estimator, which uses a

generalized method of moments estimation to correct for the autocorrelation deriving

from the inclusion of the lagged dependent variable. However, the Arellano and Bond

estimator assumes no autocorrelation in the idiosyncratic errors. As this is a very strict

assumption, we use an alternative estimator developed by Arellano and Bover [5], and

Blundell, and Bond [8], which allows for autocorrelation in the error terms.

3.3 Estimation results

3.3.1 Induced Innovation

As this is an equilibrium long-run relationship, we can model it through an Error Cor-

rection Model (ECM). We have already checked that this fits with the data. Further-

more, this allows us to explore both the short- and the long-run effect of a change in

relative prices. Table 4 illustrates the results from the ECM estimation.

Results are consistent with the induced innovation hypothesis. The negative co-

efficient on the difference in own-price ratio indicate that an increase in the price ra-

tio generates a short-run decrease in relative innovation. The error correction term
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Table 4: Induced Innovation Equation
Coefficient ∆lnA

Const α0 1.7619**
(0.011)

∆lnτ α1 -1.2844***
(0.000)

ln(At−1) λ -.5126***
(0.000)

ln(τt−1) λβ .2454*
(0.084)

Fixed Effect Yes
Observations 667
Adjusted R2 0.27
Significance levels: ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1%

is negative and significant, which means that when the system is not in equilibrium,

there is an adjustment towards the long-run equilibrium. The error correction term

is -.5126, indicating an adjustment towards the long-run equilibrium of around 51%.

The long run effect of the price on innovation is given by the coefficient on the lag

relative prices (λβ) over the error correction term (λ). This is negative showing that

increasing relative prices of fossil fuel energy will lead to a fall in relative innovation

in the long run. These results also allow us to calculate the elasticity of substitution,

which can be derived from the coefficient on the relative prices and the error correc-

tion term12. We find that the elasticity of substitution is σ = 1.64. This shows that

there is a relatively high level of substitutability between fossil-fuel and renewable en-

ergy. As there are no previous estimates of this elasticity it is not possible to compare

the result with previous works. However, it is interesting to compare it with the val-

ues of the elasticities between fossil-fuel and non-carbon energy used in the modeling

literature. The WITCH [9] model uses an elasticity of substitution of 2, whereas the

GTAP-E model [10]13 uses an elasticity of 1. Other models only give a range of values.

The DEMETER model, developed by van der Zwaan and Gerlagh [48] uses a range of

elasticities between 1 and 8, and the GREEN [30] model developed by the OECD uses

12As explained in the previous section.
13This is the energy version of the GTAP (Global Trade Analysis Project) model developed by the

University of Purdue.
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values between 0.25 and 2. Therefore, the value obtained is in the range of the existing

literature and can give empirical foundation for the chosen elastiticies.

3.3.2 R&D productivities

The productivities are also estimated on an ECM as from equation (14). The two equa-

tions are estimated simultaneously with a seemingly unrelated regression (SUR). Table

5 illustrates the results.

Table 5: Estimation Results - R&D Productivities (SUR)
Variable Coefficient ∆AFF Coefficient ∆AREN
∆R&D αFF 6.5822 αREN 22.1285**

(0.254) (0.036)
At−1 λFF -.2996*** λREN -.1895***

(0.000) (0.000)
R&Dt−1 λFFβFF -1.8487*** λREN βREN -4.1128*

(0.000) (0.058)
Fixed Effect Yes Yes
Observations 560 560
Adjusted R-sq 0.2273 0.2187
Significance levels: ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1%

We find that higher R&D expenditure leads to higher innovation, as expected. We

also find that in the renewable sector there is a significant positive short-run effect of

R&D. The short run effect is non significant for fossil fuel energy instead. This may be

due to the fact that this is a more stable sector with lower levels of short-run changes

in R&D investments. The error correction terms are negative and significant in both

equations. The adjustment rate is higher in the fossil fuel sector, so that adjustments

take longer in the renewable sector. From the results we can calculate the technology

specific productivity parameters, which we find are ηFF = βFF/δ = 61.4 and ηREN =

βREN/δ = 217.0, so that their ratio is η = .29. Note that the productivity parameters

indicate the amount of knowledge stock per unit of R&D. Therefore the average output

in terms of knowledge created for an additional billion US$ spent in fossil fuel energy

will give 61.4 additional patent stock (discounted sum of patents), whereas it will give

217.0 if invested in renewables. The fossil fuel R&D is less productive. This may be
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due to the fact that the R&D data we are using is only relative to public expenditure,

whereas in the fossil fuel sector the share of private expenditure is more consistent.

3.3.3 Energy demand

The demand equation, as it is not cointegrated, is estimated as a dynamic panel. The

chosen estimator is the Arellano-Bover [5]/Blundell-Bond [8], as it allows for autocor-

relation between the idiosyncratic errors. Table 6 illustrates results for both estimators,

as well as for simple fixed effect estimation for comparison.

Table 6: Estimation Results - Energy Demand
Variable ln(E)
Constant 1.0017***

(0.000)
ln(E)t−1 .9422***

(0.000)
ln(pE) -.0849***

(0.000)
Fixed Effect Yes
Observations 560
Wald chi2 5914.38
Significance levels: ∗ 10% ∗∗ 5% ∗ ∗ ∗ 1%

The results illustrate that the effect of an increase in price has a negative effect on

demand. This negative short run effect is very small and it shows that the energy

market does not respond strongly to price changes in the short run. Energy demand

is also significantly dependent on the values of demand in the previous years. The

positive and significant coefficient shows that the previous period demand positively

influences current period demand. From the results it is also possible to calculate the

long-run price elasticity of demand. This can be obtained by equating demand in the

two time periods, as demand in the long run will be constant. The price elasticity of

demand is then γ = .0901. This is a low value, but coherent with the expectations on

the rigidity of the electricity market. It is reasonable that the price elasticity of demand

for energy is so low, as the energy market is rigid and only very substantial increases in

prices can lead to a change in the demand for energy. The result is also coherent with
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the previous literature. Liu [32] finds values in the range of 0.030 and 0.191, Nord-

haus [35] finds values between 0.03 and 0.68, and De Cian et al. [12] between 0.031

and 0.23. Such a low value of the price elasticity of demand mean that in the model

the main adjustments will take place in substitution between inputs, rather than in

changes in demand in response to price increases.

3.3.4 Numerical analysis

From the calculations we have obtained values for the relative productivity parameter

η = .29, for the elasticity of substitution σ = 1.64, and for the price elasticity of demand

γ = .09. However, it is still necessary to obtain the values of the relative production

cost share parameter θ. From the estimation of the induced innovation equation the

constant term and the error correction term give us α0 = 2
3−σ ln η + σ

3−σ ln θ = 1.76.

Using the estimated parameter values we find θ = 5.75. From this, knowing that

the production cost shares sum to 1, we have θFF = .85 and θREN = .15. These are

reasonable values given that most energy is produced from fossil fuels.

In order to verify the effect of an increase in relative prices on innovation in the sin-

gle technology types, we apply a numerical analysis based on the estimated parameter

values. The results are as follows:

[
σ− γ

(3− σ)(3− γ)

]
> 0⇒

[
∂A∗REN

∂τ

]
> 0

As the elasticity of substitution between the two energy types is greater than the

price elasticity of demand, a marginal increase in the carbon tax leads to an increase

in innovation in renewable technologies. For what regards the fossil-fuel technologies

instead, the results depend on the value of the tax. We can compute the tax level for

which the highest amount of innovation is achieved in the fossil fuel sector. Given the

estimated parameter values, τ
A∗FF
max = 18.22, that is to say that innovation will continue to

increase in the fossil fuel sector despite the imposition of a carbon tax until the carbon

price has reached its maximum value of 18.22US$. Innovation will increase until the
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threshold level and then it will decrease:

[
1− σ

3− σ
− γ− 1

3− γ
(ω− 1)

]
< 0⇒

[
∂A∗FF

∂τ

]
< 0 if τ > 18.22

[
1− σ

3− σ
− γ− 1

3− γ
(ω− 1)

]
> 0⇒

[
∂A∗FF

∂τ

]
> 0 otherwise

Figure 114 illustrates this relationship. For the given elasticities and parameter val-

ues, innovation in fossil fuel energy is a concave function of the carbon tax. The func-

tion is steeper for lower values of the tax demonstrating that innovation is respon-

sive to changes in relative prices. After the threshold level instead innovation declines

slowly. The maximum is achieved for a value of the carbon tax τ = 18.22$. Note that

although the estimations have been done using relative prices as a proxy for τ, in the

theoretical model it has been assumed that the prices of the two energy types are both

normalized to 1, so that τ is the value of the carbon tax.

Allowances in the EU Emissions Trading Scheme have been prices at around 13

Euro in 2009, equivalent to around 18US$. Thus, we should expect innovation in fossil-

fuel energy to start declining as prices increase further. Although innovation in fossil

fuel is initially increasing, as shown before, the relative amount of innovation is always

decreasing. Therefore, we have that below the threshold level all types of innovation

are increasing, but that innovation increases relatively more in the renewable sector.

Above the threshold instead innovation will still increase in the renewable sector, but

it will decline in fossil fuel electricity generation. This is interesting, as it shows that

firms will carry on innovating in both sector till the relative price of fossil fuel is high

enough for them start decreasing innovation in fossil fuel energy.

4 Conclusions

This paper presents an analysis of the changes in the direction of technical change

induced by increases in fossil fuel prices. By using a dynamic two-sector model of

14Note that in the figure the initial level of innovation has been normalized to k1 = 1, so that the figure
should be interpreted only for what regards its time path rather than magnitude.
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Figure 1: Innovation in fossil fuel energy in response to a carbon tax
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directed technical change, we establish and estimate a relationship between relative

energy prices and relative innovation between the fossil-fuel and the renewable en-

ergy sectors. We propose an Error Correction Model (ECM) estimation methodology

for this type of model. The ECM specification allows us to estimate the steady state re-

lationship while correcting for short run deviations from the equilibrium. We find that

increasing fossil fuel prices lead to a change in the direction of technical change from

fossil-fuel towards renewables. From the model solution we also obtain expressions

that illustrate the effects of increasing relative prices of fossil fuels on innovation in

the single type of technology. These expressions are evaluated with estimated model

parameters. It is found that the decrease in relative innovation due to an increase in

relative prices corresponds to an actual decrease in innovation in the fossil fuel sector

only above a certain level. Below this threshold innovation increases in both sectors, al-

though it increases more in the renewable sector. This shows that the increasing prices
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of fossil fuel energy lead to an increase in innovation in both energy sectors, unless

they are too high, which causes innovation in the renewable sector to decline. The aim

should thus be to achieve relative prices level close to the threshold so that innovation

is high in both sectors.

24



Appendix

Model solution

After deriving an expression for p using equation (4), we can use it in the maximization

problem to derive the current-value Hamiltonian:

H = M
1
γ E

γ−1
γ − pRENXREN − pFFXFF −

1
2
[(1 + ψREN)R2

REN + (1 + ψFF)R2
FF]

+λREN(ηRENRREN − δAREN) + λREN(ηFFRFF − δAFF)

where E is given by (1), and λi are the adjoint variables dual to the knowledge stocks

Ai. After substituting for the production function, the first-order conditions can be

derived as:
∂H
∂Xi

: −pi +
γ + 1

γ
M

1
γ E

1
σ−

1
γ θi A

σ−1
σ

i X−
1
σ

i = 0

⇒ Xi = M
1
γ

(
γ + 1

γ

)σ

E
γ−σ

γ θσ
i Aσ−1

i p−σ
i (16)

∂H
∂Ri

: −Ri + ηiλi = 0

⇒ λi = Ri/ηi (17)

∂H
∂Ai

: rλi − λ̇i =
(

γ + 1
γ

)
M

1
γ E

1
σ θi A

−1
σ

i Xσ− 1
σ

i − δλi (18)

By normalizing the units of outputs to 1 (Mγ−γ(γ − 1)γ = 1), we find output as a

function of its unit cost of production χ:

E = χ−γ (19)

where χ = (θσ
REN Aσ−1

REN p1−σ
REN + θσ

FF Aσ−1
FF p1−σ

FF )
1

1−σ is the CES unit cost function. Substi-

tuting (19) into (16) yields to the unconditional input demands:

Xi = θσ
i Aσ−1

i p−σ
i χσ−γ (20)
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Finally substituting (4) into (18), and using (16) and (19) we find the equation of motion

for the R&D variables in equation (6) which is now only parameter dependent.
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