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Abstract

An analytically tractable climate-economy model is extended to allow for a plan-

ner that discounts the future differently than private agents. This is relevant to the

climate-policy debate: some have argued that climate policy should be designed

using a discount rate lower than the rate at which individuals appear to discount

their own future utilities. If a social planner discounts the future differently than

private agents, laissez-faire and socially optimal rate of fossil-fuel depletion differ

substantially. A planner more patient than the market wants to slow down fossil-fuel

depletion a great deal, which calls for carbon taxes that fall over time, eventually

turning into subsidies. Welfare losses in the event that the first-best cannot be

implemented are substantially larger when discount rates differ.
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1 Introduction

Climate change is a long-term phenomenon. The benefits of fossil fuel consumption are

enjoyed instantaneously, whereas the costs of the associated emissions of carbon dioxide

(CO2)—often referred to as damages—largely occur in the future. Indeed, parts of our

additions of CO2 to the atmosphere remain there for very long periods of time, if not

forever. For this reason, the issue how to weigh future generations against those currently

alive has been at the forefront of the climate-policy debate. Much of the discussion has

revolved around the appropriate choice of the rate of pure time preference in climate-

economy models. Weitzman (2007) argues that “it is not an exaggeration to say that

the biggest uncertainty of all in the economics of climate change is the uncertainty about

which interest rate to use for discounting. In one form or another, this little secret is

known to insiders in the economics of climate change, but it needs to be more widely

appreciated by economists at large.”

In this paper, I investigate the consequences for optimal carbon taxation of a point

made informally by Kaplow et al. (2010). These authors argue that, in principle, two quite

different discounting processes are involved, and these should be separated more clearly.

Beckerman and Hepburn (2007) stress the distinction between the same individual at

different points in time on the one hand, and different generations on the other hand.

They write: “Schelling notes that while the Ramsey and Pigou references to ‘impatience’

or ‘myopia’ might accurately describe the virtually universal preference for consumption

during one’s lifetime by oneself, it is absurd to apply these adjectives to the consumption

of somebody one will never know in 200 years’ time.”

The distinction between private and social discounting may be summarized as follows.

On the one hand, individuals discount their own utility at future dates (and that of their

offspring, to the extent they value it), using their own preferences for intertemporal con-

sumption smoothing. Let us refer to the time-preference parameter—a dicsount factor

β, say—as a ‘private’ or ‘market’ discounting parameter. This discounting process de-

termines consumers’ savings decisions, which gives rise to capital accumulation, and also

the choice of how to optimally deplete an exhaustible resource. Such discounting is not

readily affected by policy, and indeed the question at what rate the ‘market’ discounts

the future is an empirical one. On the other hand, when designing optimal climate pol-

icy, a policymaker has to aggregate the well-being of different generations into a welfare

function. In doing so, she may choose to discount future generations, or indeed not at all.
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What discounting practices should be employed in this setting is a normative question,

and as such an ethical decision rather than an empirical matter. Ramsey (1928), for one,

suggests that the only ethically defensible social discount rate is zero.

Climate-economy models such as, for example, DICE (Nordhaus, 2008) or PAGE

(Hope, 2006) model consumers as infinitely-lived representative agents, which helps ex-

plain why the distinction between the two types of discounting has been blurred in much

previous work: individual utility and social welfare coincide, and it is not obvious how

to distinguish the two different discounting concepts. In models, such as DICE, where

output and consumption are endogenous, this has necessarily led to a ‘descriptive’ stance

on discounting: discount parameters do not only determine how to compare climate dam-

ages over time, they also govern capital accumulation and fossil fuel depletion. Imposing

a low rate of time preference in such a model may lead to, e.g., savings behaviour that

does not seem plausible. On the other hand, modellers that see output or consumption

streams as exogenous, as in PAGE, can more easily treat discounting as a purely ethical

matter.

Stern (2006) advocates a rate of time preference of 0.1% per year, chosen on ethi-

cal grounds. Nordhaus (2007) discusses this stance in detail, stressing that such a low

time-preference rate, together with an assumption of logarithmic utility, results in an

equilibrium interest rate that is much lower than what is observed in reality. He goes on

to suggest that a Stern-type time-preference rate can be consistent with ‘reasonable’ in-

terest rates, provided that consumers exhibit strong enough preferences for consumption

smoothing. Put differently, if consumers make consumption and savings decisions that

give rise to a consumption sequence {Ct}t=0,...,∞, in order to maximize

∞
∑

t=0

βtC
1−η
t

1− η
, (1)

then observed market interest rates are consistent with a very high degree of patience (a

high β) if consumers are also very averse to consumption differences over time (a high

η). However, one cannot freely choose any combination of β and η and still get savings

behaviour and equilibrium interest rates that match reality.1

1A similar argument is used in Manne et al. (1995), in the context of the MERGE model:

Note that a lower or a zero rate of utility time preference would not provide a good descrip-
tion of the collective outcome of individual choices. It would also imply an unrealistically
rapid increase in the near-term rate of investment and capital formation [. . . ].
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The position implicit in this line of reasoning seems to be as follows. We may study

optimal taxes on fossil-fuel consumption using a model with an infinitely-lived represen-

tative agent. In that case, we should use preferences for the representative agent that

correspond to observed market outcomes2, such as interest rates and capital accumu-

lation, and implement climate taxes that maximize the consumer’s lifetime utility, as

defined by these preferences. This view is restrictive, for several reasons. Sælen et al.

(2008) argue that the preference structure in (1), which is standard in climate-economy

models, is underspecified. This refers to the fact that the parameter η is forced to simul-

taneously capture risk aversion, inequality aversion, and individuals’ attitudes towards

intertemporal consumption smoothing. Requiring η to be such that it ensures that the

model produces reasonable interest rates, given a choice of β, makes the model even more

underspecified.

In addition, the distinction between the concepts of individual utility and social welfare

makes it clear that we may well want to design climate policy in a way that implies a higher

weight on future utilities than what is suggested by consumers’ investment decisions. It

is far from obvious that a social planner, when defining a social welfare function, should

weight down the utilities of individuals who are not yet born simply because they will live

in the future. Nordhaus’s insistence on, e.g., ‘reasonable’ interest rates precludes such

an assessment, however. Climate policy designed using ‘market’ discount rates forces

the social planner to discount the utilities of future generations at the same rate that

individuals who are alive today discount their own future utilities.

These arguments seem uncontroversial when applied to the real world, where individ-

uals live finite lives and many who will suffer the most from a changing climate have not

yet been born. In climate-economy models, however, the standard approach is to model

individuals’ preferences with an infinitely-lived representative agent. As alluded to earlier,

this makes it unclear how to distinguish between private and social discounting.

An obvious solution to this dilemma would be to instead consider a climate-economy

model with finitely-lived agents, possibly with a structure of overlapping generations

Dasgupta (2007) does not strike a clear balance between private and social discounting, but emphasizes
the point that if β is seen as an ethical parameter, then so should η. This is also a central argument in
Dasgupta (2008).

2Schneider et al. (2010) show that a representative agent in an infinite-horizon model will appear less
patient than a finitely-lived agent in an overlapping-generations model, if both agents exhibit the same
preferences for intertemporal consumption smoothing (η). This is due to the fact that in an OLG model,
individuals’ consumption growth exceeds overall consumption growth, as long as consumers do not fully
incorporate the utilities of future generations.
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(OLG). Schneider et al. develop such a model, and argue that in some respects an OLG

model behaves quite differently from a representative-agent model. Howarth (2000), on

the other hand, shows that the standard infinitely-lived representative-agent model com-

mon in climate economics closely approximates an OLG model, in terms of optimal-policy

prescriptions. In an OLG model, the planner’s rate of time preference used for aggregat-

ing utilities over generations is separate from the individuals’ time-preference rate, and

can thus in princple be set to a different value.

In Blanchard’s (1985) perpetual-youth model, which is somewhat of a hybrid between

an infinite-horizon and an OLG model, consumers discount future utilities due to two

separate factors. On the one hand, consumers exhibit a pure rate of time preference,

θ. They also face a constant (and time-invariant) risk of death, p. Consumers end up

discounting future utilities at the rate θ + p. In the paper there is no detailed discussion

of what discount rate a policymaker should use in this setting, but the implied default

value seems to be θ. In other words, if the planner shares the consumers’ pure rate of

time preference, she may still discount the future at a lower rate. This is due to the fact

that an individual faces a risk of dying, whereas society as a whole does not face a risk of

extinction (if nonzero, that risk is much smaller than the individual risk). Indeed, similar

arguments were used in the Stern review for why a planner should use a low discount

rate.

Still, the standard representative-agent setup has much to recommend it in terms of

simplicity, in addition to its widespread use in climate-economy models. In this paper

I explore the consequences for climate policy of a difference between social and private

discount rates, and I do so within a climate-economy model that is standard in the sense

of considering an infinitely-lived representative agent. More precisely, I make use of the

climate-economy model laid out in Golosov et al. (2011), but unlike these authors I allow

for ‘social’ and ‘market’ discount factors to differ. I investigate how this affects optimal

taxes on emissions of CO2 (or, equivalently, on the consumption of carbon-based energy),

as well as the welfare implications. As we shall see, the optimal rate of depletion of fossil

fuels depends on the social planner’s preferences only, and not on the market’s discount

rates. By contrast, the sequence of energy taxes required to make market participants

deplete fossil-fuel reserves at this optimal rate depend on the difference between social

and market discount rates. When the planner is more patient than consumers, a tax

sequence that falls more quickly than in the standard case is required, eventually turning

into subsidies for fossil-fuel consumption.
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The model by Glolosov et al. is a simple dynamic model of the global economy and

climate, much in the spirit of William Nordhaus’s DICE model (e.g., Nordhaus, 2008).

The main difference to DICE is that (carbon-based) energy is explicitly modelled as

an input into the production process.3 The authors first present a general model with

few assumptions about functional forms.4 A number of simplifying assumptions, some

less innocuous than others, are then introduced, which allow the model to be solved

analytically. These will be discussed in more detail below.

The paper is organized as follows. Section 2 looks at a two-period model, which

brings out the main message of the paper in a straightforward manner: when the market

discounts the future more heavily than the social planner, the time profile of energy

taxes must be adjusted in order to ensure fossil fuels are depleted at an optimal rate.

Section 3 considers an infinite-horizon model with similar characteristics, which brings

out additional insights about the time path of optimal energy taxes. Section 4 presents

results from a calibrated infinite-horizon model, and discusses welfare considerations.

Section 5 concludes.

2 A Two-Period Model

First, let us consider a simple two-period version of the model laid out in Golosov et al.

(2011). Time is denoted by t ∈ {1, 2}. Preferences are logarithmic in consumption, and

period felicity functions are aggregated into lifetime utility using a discount factor β:

U(C1, C2) = lnC1 + β lnC2.

The central theme of the paper is to explore the implications of market participants using

a discount factor different from that of the planner. Throughout, β is used to denote the

discount factor of private agents’ (consumers’), whereas the discount factor of the planner

3A distinction should be drawn between DICE and the related RICE model in this respect. RICE
considers a world economy consisting of several regions, whereas in DICE there is only one globally
representative consumer. The version of RICE in Nordhaus and Boyer, (2000) does indeed feature a
production technology where energy enters explicitly as an input. In this model, however, exhaustibility
of fossil fuels is assumed away.

4The general model already embodies assumptions that do not correspond to the most general case.
For example, it is assumed that carbon based energy is essential in production, and that—except for
the possibility of a so-calld backstop that makes carbon-based energy redundant—it will remain essential
indefinitely. Dasgupta and Heal (1974) discuss this and many other aspects relevant to optimal fossil-fuel
depletion.
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is referred to as β∗.

Production takes place using a Cobb-Douglas production function in capital, Kt,

labour, Nt, and fossil-fuel based energy, Et,

Yt = DtAtK
α
t N

1−α−ν
t Eν

t .

Yt denotes output, and At is a productivity shifter. Dt ∈ [0, 1] represents the effects of

climate change on total production: a fraction (1 −Dt) of total output is destroyed due

to the changing climate. Dt depends on the concentration of CO2 in the atmosphere, St.

I follow Golosov et al. and use an exponential function Dt = e−γSt , where the parameter

γ is a measure of the strength of climate-change impacts. This functional-form assump-

tion implies that the marginal externality damage due to an additional unit of CO2 is

independent of the atmospheric CO2 stock, St. While this assumption is a simplification,

Golosov et al. show that the resulting ‘damage function’ Dt approximates the functions

used in DICE quite well.

The physical resource constraints are Y1 = C1 + I1 and Y2 = C2 where I1 denotes

first-period investment. Capital has a standard law of motion: K2 = (1 − δ)K1 + I1. In

the interest of analytical tractability, capital fully depreciates between time periods, i.e.,

δ = 1. This is arguably not a very extreme assumption if we consider a time period to be

ten years, as is common in climate-economy models.

The natural resource constraint reads E1+E2 = R, where R is the available amount of

fossil fuel. I will assume that all fossil fuel gets used up, hence the equality.5 Atmospheric

carbon follows a simple decay structure6 defined by a decay parameter ϕ:

S1 = E1;S2 = ϕS1 + E2. (2)

In addition, it is assumed that consumers supply labour inelastically, and there is

no population growth. Without loss of generality, labour supply is normalized to unity

(Nt = 1). The supply of fossil-fuel energy takes place under perfect competition, and

there are no extraction costs for oil.
5As will become clear, this is the interesting case in terms of the extension considered in this paper.

If it is not optimal to use up all available fossil fuels, then the simple fact that discount factors differ
matters very little for optimal policy. In addition, based on the calculations in Golosov et al., it seems
likely that at least all globally available oil will be consumed.

6The infinite-horizon model discussed in Section 3 has a more sophisticated carbon cycle formulation.
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2.1 The planner’s problem

The planner maximizes the discounted sum of utilities, internalizing the climate external-

ity due to fossil fuel consumption. This is captured by the presence of St in the objective

function. Here, St has been substituted away using the law of motion for the carbon cycle

in (2). Note that the planner uses the discount factor β∗:

max
K2,E1

[

ln
(

e−γE1A1K
α
1E

ν
1 −K2

)

+ β∗ ln
(

e−γ(ϕE1+R−E1)A2K
α
2 (R− E1)

ν
)]

The first-order conditions are

K2 :
1

C1
= β∗

1

C2

αY2

K2
, and (3)

E1 :
1

C1

νY1

E1
−

1

C1
γY1 − β∗

1

C2
γϕY2 = β∗

1

C2

νY2

E2
− β∗

1

C2
γY2. (4)

Using the physical resource constraints C1 +K2 = Y1 and C2 = Y2, the Euler equation in

(3) gives standard consumption and investment functions

C1 =
1

1 + αβ∗
Y1 and K2 =

αβ∗

1 + αβ∗
Y1. (5)

The first-order condition for energy, (4), is a Hotelling result (Hotelling, 1931). The first,

positive terms on each side of the equality represent the marginal product of energy, valued

at the marginal utility of consumption, and discounted. The negative terms capture the

externality damage due to fossil fuel consumption. First-period energy use causes negative

effects in both time periods, hence the two negative terms on the LHS, whereas period-two

energy use only causes damages in the same period, hence the single negative term on the

RHS. The equation states that the marginal product of energy net of damages, valued

at the marginal utility of consumption and appropriately discounted over time, should

be equal across time periods. We can use the expression for C1 in (5), along with the

constraint that C2 = Y2, to arrive at

ν

E∗

1

− γ
1 + β∗(α + ϕ)

1 + αβ∗
=

β∗

1 + αβ∗

(

ν

E∗

2

− γ

)

. (6)
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The equation in (6), together with the physical resource constraint E1+E2 = R, uniquely

determines the optimal fossil-fuel consumption over time from the planner’s perspective.

The notation E∗

t denotes optimal energy consumption. Note that optimal energy con-

sumption is defined by the solution to the planner’s problem only, and hence does not

involve the market discount rate, β.

2.2 The decentralized economy

2.2.1 Consumers

Let consumers discount the future using a discount factor β. The consumer’s problem is

then

max
C1,C2,K2,E1,E2

lnC1 + β lnC2,

subject to budget and resource constraints

C1 +K2 = (1− τK1 )r1K1 + w1 + (p1 − τE1 )E1 + T1,

C2 = (1− τK2 )r2K2 + w2 + (p2 − τE2 )E2 + T2, and

E1 + E2 = R.

Here, two tax instruments are introduced. τKt is a tax on capital returns, and τEt is a tax

on energy profits.7 It is assumed that the government budget is balanced in each time

period: τEt Et+τKt rtKt = Tt. In other words, any tax revenue is rebated back to consumers

in the form of lump-sum transfers. This means that consumers’ disposable income is equal

to the income generated by total output: (1 − τKt )rtKt + wtNt + (pt − τt)Et + Tt = Yt.

7The former is formulated as a standard ad valorem tax. As we will see, a constant ad valorem

capital tax (subsidy) will be required to decentralize the optimal allocation; hence this formulation is
more straightforward. A per-unit capital tax (subsidy) could be used instead, with the same results. The
energy tax is expressed as a per-unit tax, as in Golosov et al. The advantage of such a formulation is that
optimal taxes are expressed in terms of, say, dollars per tonne of carbon, which is the standard measure
for carbon taxes in the climate-policy debate (as opposed to what percentage of the gross oil price that
is accounted for by taxes, which would be the interpretation of an ad-valorem tax).
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The first-order conditions of the consumer’s problem are

K2 :
1

C1
= β

1

C2
r2(1− τK2 ), and (7)

E1 :
1

C1
(p1 − τE1 ) = β

1

C2
(p2 − τE2 ) (8)

⇔
(p2 − τE2 )

(p1 − τE1 )
= r2(1− τK2 ). (9)

The Euler equation in (7) states a standard result, and the Hotelling equation in (9) is

also familiar. In equilibrium, the after-tax price on the exhaustible resource must rise at

a rate which corresponds to the return on other assets. The relevant rate of return is the

effective interest rate on capital, also inclusive of the (capital) tax.

2.2.2 Firms

Firms maximize profits, taking factor prices as given:

max
Kt,Nt,Et

DtAtK
α
t N

1−α−ν
t Eν

t − rtKt − wtNt − ptEt.

Equilibrium factor prices are determined by theh first-order conditions (FOCs) for firms,

Kt : rt = α
Yt

Kt

,

Nt : wt = (1− α− ν)
Yt

Nt

, and

Et : pt = ν
Yt

Et

.

2.2.3 Market equilibrium

Using the Euler equation in (7), the firm’s FOC for Kt, and the budget constraints, we

find

K2 =
αβ(1− τK2 )

1 + αβ(1− τK2 )
Y1 and C1 =

1

1 + αβ(1− τK2 )
Y1.

Substitute the Euler equation and the expressions for r2 and pt from the firms’ first-order

conditions into the Hotelling equation, and rewrite it as

( ν
E2
Y2 − τE2 )

( ν
E1
Y1 − τE1 )

= α
Y2

K2
(1− τK2 ).
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Divide through by Y2

Y1
, and, as in Golosov et al. define τ̂Et energy taxes as a proportion of

output, τ̂Et ≡ τEt /Yt
8. Simplify using the physical resource constraints, and arrive at the

following equation, which pins down E1 and E2 = R−E1, for a given set of taxes τ̂1 and

τ̂2:
(

ν

E1
− τ̂E1

)

=
β

1 + αβ(1− τK2 )

(

ν

E2
− τ̂E2

)

. (10)

2.3 Implementing the optimal allocation

Assume there exists a set of tax parameters
{

τK2 , τE1 , τE2
}

that allows the planner to

implement the optimal allocation.9 Output, consumption, capital stocks and energy con-

sumption in the decentralized equilibrium will then be identical to the planner’s solution.

In such a solution, both Euler euqations (3) and (7) must hold, with identical consumption

levels. In other words,

β∗
αY2

K2
= βr2(1− τK2 )

= β
αY2

K2
(1− τK2 )

⇒ τK2 = −
(β∗ − β)

β
.

To implement the optimal allocation, the capital tax must be a subsidy when β∗ > β:

a government should subsidize the return to captial such that the effective return at

the desired savings rate is consistent with the consumer’s private discount rate β. The

decentralized Hotelling equation in (9) can then be written as

ν

E1
− τ̂E1 =

β

1 + αβ∗

(

ν

E2
− τ̂E2

)

. (11)

The condition in (11) pins down energy consumption {E1, E2}, assuming that all fossil

fuel gets used (E1+E2 = R), for a given set of energy taxes
{

τ̂E1 , τ̂E2
}

. From the planner’s

8Although τ̂Et should properly be considered as ‘per-unit energy taxes as a proportion of output’, I
will refer to τEt and τ̂Et interchangeably as energy taxes. The usefulness of defining the object τ̂Et will
become clear in the infinite-horizon model discussed below.

9Unsurprisingly, the first-period capital tax τK1 is redundant.
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point of view, optimal oil consumption is defined by (6):

ν

E1
− γ

1 + β∗(α + ϕ)

1 + αβ∗
=

β∗

1 + αβ∗

(

ν

E2
− γ

)

Comparing (6) and (11), we notice a number of things. First, consider a situation where

the optimal sequence for fossil-fuel consumption does not deplete the total available stock,

R. This happens when (6) holds, with E∗

1 + E∗

2 < R, i.e., it is not optimal to increase

either E∗

1 or E∗

2 . This means that

ν

E∗

1

= γ
1 + β(α+ ϕ)

1 + αβ
and

ν

E∗

2

= γ.

Increasing fossil-fuel consumption in either period would then push down the marginal

product of energy, making it fall short of the marginal externality damage. In other words,

both sides of (6) will equal 0. From (11), we see that this must imply

τ̂E1 = γ
1 + β(α+ ϕ)

1 + αβ
and τ̂E2 = γ.

Now, the difference in discount factors plays no role: optimal energy taxes, as a proportion

of output, depend on the planner’s discount factor, β∗, but not on the consumers’ discount

factor, β. This highlights why the interesting case, for the purposes of this paper, is the

one with scarcity of fossil fuels.

Let us thus consider the case with scarcity, i.e., all fossil fuel gets used up.10 First,

notice that if β = β∗, it is easy to see that

τ̂E1 = γ
1 + β(α + ϕ)

1 + αβ
and τ̂E2 = γ

will still implement the optimal allocation, together with τK2 = 0. These are Pigouvian

taxes: simply set the tax equal to the marginal climate damage caused by the optimal

energy consumption, discounted appropriately. This is not the only set of taxes that

works, however—an infinite number of combinations of taxes
{

τ̂E1 , τ̂E2
}

will do. Any
{

τ̂E1 , τ̂E2
}

that satisfies (11), where {E1, E2} is defined by (6), will implement the optimal

energy consumption, as long as ν
Et

≥ τ̂Et ∀t.11

10Technically, there is also a boundary case where the optimal total fossil fuel consumption E1 +E2 is
exactly R. In such a situation, all oil gets used up, but there is still no scarcity.

11If this latter condition were not met, the marginal units of energy used would incur taxes that exceed
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To see how optimal τ̂E1 and τ̂E2 relate to each other when private and social discount

rates differ, fix τ̂E2 = γ and substitute this into (11), which gives

τ̂E1 =
ν

E1
−

β

1 + αβ∗

(

ν

E2
− γ

)

.

Combine this expression with (6) to find

ν

E1
= γ

1 + β∗(α + ϕ)

1 + αβ∗
+

β∗

1 + αβ∗

(

ν

E2
− γ

)

⇒ τ̂E1 = γ
1 + β∗(α + ϕ)

1 + αβ∗
+

(β∗ − β)

1 + αβ∗

(

ν

E2
− γ

)

. (12)

If τ̂E2 is set to γ, the first-period energy tax must be set at a higher level; this is necessary

in order to induce an optimal postponement of fossil-fuel consumption. Part of this is

captured by the first term on the RHS of (12) (which is greater than γ, as ϕ > 0).

The second term on the right-hand side is only relevant when social and private discount

factors differ. The term is positive when β∗ > β ( ν
E2

> γ, by assumption), which can

be interpreted as follows: When the planner is more patient than private agents, the tax

differential between periods 1 and 2 must be even greater in order to induce an optimal

postponement of fossil-fuel depletion. Note that this second term is directly proportional

to the difference in discount factors, (β∗ − β).

3 An Infinite-Horizon Model

Let us turn to a full infinite-horizon model as in Golosov et al. Most properties of

the infinite-horizon model are directly analogous to the two-period model. The main

difference is the carbon cycle, which is based on Archer (2005). This study shows that large

proportions of greenhouse gas (GHG) emissions will remain in the atmosphere indefinitely,

a fact that is not captured by the carbon-cycle formulations in existing climate-economy

models, such as DICE. This turns out to matter a great deal for how society should value

the dynamic externality due to GHG emissions.

Here, it is assumed that a proportion ϕL of emissions remains in the atmosphere

forever. Out of the proportion (1−ϕL) that does not remain forever, (1−ϕ0) disappears

their product, in which case firms and consumers would be better off leaving some of the oil in the
ground—which is not optimal, by assumption.
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from the atmosphere immediately (within a decade). The remaining proportion, ϕ0(1 −

ϕL), disappears slowly from the atmosphere, at the rate ϕ per decade. This carbon cycle

setup is summarized in equation (14) below. R0 denotes the initial stock of fossil fuels,

and the natural-resource constraint is then that the sum of all energy consumption equals

this resource stock R0, as given by equation (15).

The setup here differs somewhat from that of the original paper, the most important

difference being the separation between the planner’s and the consumers’ discount factors.

In addition, Golosov et al. consider uncertainty about the damage parameter γ; I abstract

from that here. Finally, the original paper considers two types of fossil fuel, oil and coal,

with substantially different extraction technologies. I abstract from the coal type in their

paper, and treat all fossil fuel as if it were oil (i.e., all the available fossil-fuel resource

stock can be extracted at zero cost).

3.1 Infinite-horizon: Planner’s problem

The planner’s optimization problem is

max
Ct,Kt+1,St,Et

∞
∑

t=0

β∗t ln(Ct),

subject to physical and natural resource constraints, and the dynamics of the carbon

cycle:

Ct = e−γStAtK
α
t N

1−α−ν
t Eν

t −Kt+1, (13)

St =
t

∑

s=0

(ϕL + (1− ϕL)ϕ0(1− ϕ)s)Et−s, and (14)

∞
∑

t=0

Et = R0. (15)

The first-order conditions from this optimization problem are similar to the ones found in

the two-period model. Combining the FOCs for Ct and Kt+1 gives us the Euler equation

Ct+1

Ct

= αβ∗
Yt+1

Kt+1
. (16)
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As expected, given the assumption of full depreciation, this gives a constant savings rate

αβ∗. In other words,

Ct = (1− αβ∗)Yt and Kt+1 = αβ∗Yt (17)

satisfy the Euler equation. The FOC for St can be simplified to give

ψt = γ
1

1− αβ∗
,

Where ψt is the multiplier on the carbon-cycle constraint (14) in period t (this result

stems from the assumption of a constant γ, i.e., a marginal externality damage du to

GHG emissions that is independent of St). Combine this with the FOC for Et to find

β∗t

(

Yt

Ct

ν

Et

− γ
1

1− αβ∗

[

ϕL

1− β∗
+

(1− ϕL)ϕ0

1− β∗(1− ϕ)

])

− µ = 0

⇒ β∗t

(

ν

Et

− Γ(β∗)

)

− µ(1− αβ∗) = 0, (18)

where µ is the (time-invariant) multiplier on the natural-resource constraint (15), and

Γ(β∗) is defined as

Γ(β∗) ≡ γ

[

ϕL

1− β∗
+

(1− ϕL)ϕ0

1− β∗(1− ϕ)

]

,

for notational convenience. Γ(β∗) is expressed as a function of the social discount rate β∗

to emphasize that society’s valuation of the dynamic climate externality due to GHG emis-

sions necessarily depends on the rate at which the future is discounted. Γ(β∗) measures

the externality damage associated with a unit of carbon emitted into the atmosphere,

incorporating the immediate externality γ as well as the discounted stream of damages

incurred throughout the infinite future. Using (18) in periods t and t+1 to eliminate the

term in µ, we arrive at

ν

E∗

t

− Γ(β∗) = β∗

[

ν

E∗

t+1

− Γ(β∗)

]

. (19)

As in the two-period model, E∗

t is used to denote optimal energy consumption. Together

with the physical resource constraint (15), (19) defines the optimal path for fossil fuel

consumption, {E∗

t }t. As in the two-period model, optimal depletion of the exhaustible

fossil-fuel resource only depends on β∗, γ and the parameters of the carbon cycle. The

15



market discount factor, β, does not play any role.

3.2 Infinite-horizon: Decentralized equilibrium

3.2.1 Consumers

Consumers optimize using a discount factor β, according to

max
Ct,Kt+1,Et

∞
∑

t=0

βt ln(Ct)

subject to physical and natural resource constraints:

Ct = rt(1− τKt )Kt + wtNt + (pt − τEt )Et + Tt −Kt+1, and (20)
∞
∑

t=0

Et = R0. (21)

Once more, it is assumed that the government budget is balanced in each time period,

τEt Et + τKt rtKt = Tt,

which means that disposable income equals total output in each time period. Combining

the first-order conditions with respect to Ct and Kt+1 gives the Euler equation

Ct+1

Ct

= βrt+1(1− τKt+1). (22)

To arrive at the Hotelling equation, note that the FOC for Et in the consumer’s problem

can be written as

βtθt(pt − τEt )− ξ = 0, (23)

where θt is the multiplier on the physical-resource constraint (20) at t, and ξ is the

multiplier on the natural-resource constraint (21). Combine (23) in periods t and t+1 to

eliminate ξ:

βtθt(pt − τEt ) = βt+1θt+1(pt+1 − τEt+1)

⇒ rt+1(1− τKt+1) =
(pt+1 − τEt+1)

(pt − τEt )
. (24)
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This Hotelling equation is directly analogous to the two-period version in (9).

3.2.2 Firms

The firms’ optimization problem in the infinite-horizon case is identical to the two-period

setting. The firms’ objective function in

max
Kt,Nt,Et

DtAtK
α
t N

1−α−ν
t Eν

t − rtKt − wtNt − ptEt, (25)

and the first-order conditions are rt = α Yt

Kt
, wt = (1−α−ν) Yt

Nt
, and pt = ν Yt

Et
, as previously.

3.3 Infinite-horizon: Implementing the optimal allocation

The Euler equation in (22), together with the firm’s FOC for Kt and the budget con-

straints, leads to consumption and savings functions

Ct = (1− αβ(1− τK2 ))Y1 and Kt+1 = αβ(1− τK2 )Yt.

Once more, assume there to be a set of taxes
{

τKt+1, τ
E
t

}

t
that implements the optimal

allocation. Both (16) and (22) must then hold, with identical values for consumption,

output and capital, which means that

αβ∗
Yt+1

Kt+1
= αβ(1− τKt+1)

Yt+1

Kt+1

must hold. In other words,

β∗ = β(1− τKt+1)

⇒ (1− τKt+1) =
β∗

β
⇔ τKt+1 = −

(β∗ − β)

β
,

i.e., a constant capital tax implements the optimal savings rate (indeed, the same tax

as in the two-period case). In the case where the planner is more patient than private

agents, the capital tax is negative, i.e., a subsidy to capital returns is required to induce

high enough savings.

Now we can rewrite the Hotelling equation in (24), using the expressions for rt+1 and

pt from the firm’s first-order conditions, together with the result that (1−τKt+1) =
β∗

β
must

17



hold, as

α
Yt+1

Kt+1

(

β∗

β

)

=

(

ν
Et+1

Yt+1 − τEt+1

)

(

ν
Et
Yt − τEt

) .

Divide through by Yt+1

Yt
, and again define τ̂t ≡

τt
Yt
. Using this and the savings function for

Kt+1, we arrive at

α
Yt

αβ∗Yt

(

β∗

β

)

=
1

β
=

(

ν
Et+1

− τ̂Et+1

)

(

ν
Et

− τ̂Et

) (26)

⇒

(

ν

Et

− τ̂Et

)

= β

(

ν

Et+1
− τ̂Et+1

)

. (27)

The condition in (27) defines how the market will choose to consume energy over time,

given a sequence of energy taxes
{

τ̂Et
}

t
, whereas (19) defines the optimal sequence for

energy consumption, given parameter values ν, β∗, and the various carbon cycle param-

eters. If social and market discount factors coincide (β∗ = β), one set of taxes that

implements the optimal allocation is to simply set energy taxes equal to Γ(β∗) in each

time period. This is the central insight in Golosov et al.—optimal taxes on fossil fuel can

be set to a constant proportion of output.12 However, with different discount factors, this

elegant solution is no longer available. To explore the general case, consider the difference

equation in (28) below. This equation gives a relationship between τ̂Et and τ̂Et+1, for any

set of energy taxes
{

τ̂Et
}

t
that implements the optimal allocation (the derivation of this

equation is given in Appendix 6.A below)

τ̂Et+1 =
1

β
τ̂Et −

(β∗ − β)

β∗β

ν

E∗

t

−
(1− β∗)

β∗
Γ(β∗). (28)

Let us first consider the case when β∗ = β. The difference equation in (28) then reduces

to

τ̂Et+1 =
1

β
τ̂Et −

(1− β)

β
Γ(β∗),

which is straightforward to interpret. First, note that there is a stationary point at

Γ(β∗), i.e., τ̂Et = Γ(β∗) ∀t is a solution. Moreover, this is an unstable equilibrium: for

an initial τ̂E0 that exceeds Γ(β∗), τ̂Et must increase indefinitely. For a τ̂E0 that is lower

12At this point, the usefulness of considering carbon taxes as a proportion of output, τ̂Et , becomes
evident.
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than Γ(β∗), the opposite holds, i.e., taxes decrease and eventually turn into subsidies.

The highest possible initial-period tax that would implement the optimal sequence for

fossil-fuel consumption is τ̂E0 = ν
E∗

0

, which constitutes a full appropriation of all surplus

due to energy (see Appendix 6.B below).

When social and market discount factors differ, we must consider the more general

difference equation in (28). The presence of a term involving E∗

t indicates that it is not

possible to find a constant value for τ̂Et that solves the equation. By contrast, the only tax

sequences that will implement the optimal allocation are either a complete expropriation

of fossil-fuel reserves, or a sequence of taxes that may increase initially, but will eventually

have to start decreasing and finally turn into a subsidy. To see this, first note that the

full-expropriation tax schedule is still available, as shown in Appendix 6.B. This is indeed

a sequence of ever increasing taxes τ̂Et , starting out in period 0 with τ̂E0 = ν
E∗

0

. Starting

above this level is not feasible, in the sense that such a tax sequence will not implement the

optimal allocation. Finally, a tax schedule that starts out at less than full expropriation,

τ̂E0 < ν
E∗

0

, is feasible if it obeys (28). Appendix 6.C shows that any such tax sequence is

such that τ̂Et must eventually turn negative, i.e., taxes must turn into subsidies over time.

4 A Calibrated Example

This section presents results from a calibrated version of the model discussed in Section 3.

Most parameter values are taken from Golosov et al. The factor shares are set to α = 0.3

and ν = 0.03. The carbon-cycle parameters are chosen such that 20% of CO2 emissions

remain in the atmosphere forever (ϕL = 0.2), half of the remaining 80% has decayed

after 300 years (ϕ = 0.0228), and half of the total emissions has decayed after 20 years

(ϕ0 = 0.393). The damage parameter, which is calibrated using the damage function from

DICE, is set to γ = 2.379× 10−5 (see Golosov et al. for details). The initial capital stock

K0 is arbitrarily set to a fraction αβ of first-period output, and the initial TFP level A0

is chosen to match global output in 2010, 63 trillion 2010 US dollars (World Bank). A

TFP growth of 0.5% per year is assumed. This does not matter for the optimal sequence

of taxes per unit of output, τ̂Et , but productivity growth of course leads to output growth

and hence plays a role for τEt , i.e., taxes measured as dollars per tonne of carbon. Finally,

a fossil-fuel supply R0 = 400 GtC is used. This corresponds to the available reserves of

oil assumed in Golosov et al.

Two discount factors, a higher β∗ and a lower β, are defined. In most of what follows,
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the social planner is assumed to discount the future using a pure rate of time preference

of 0.1% per year, based on Stern (2006). Refer to this time-preference rate as ρ∗ = 0.001,

and then define the corresponding discount factor

β∗ =

(

1

1 + ρ∗

)10

.

Note that β∗ refers to the discount factor in a setting where the time step is ten years.

The higher time-preference rate, ρ, is chosen to be 1.5% per year (ρ = 0.015), based on

Nordhaus (2008), and the discount factor β is defined in a manner analogous to β∗.

4.1 Optimal energy taxes

First, let us consider the standard case, where the planner discounts the future at the

same rate as consumers. Optimal and laissez-faire fossil-fuel consumption is illustrated

in Figure 1 below. Panel A illustrates the case when both the planner and consumers

use a discount factor β, and in Panel B both use a discount factor β∗. In both panels,

optimal climate policy is used in order to postpone the consumption of fossil fuel from

the laissez-faire sequence (represented by the dashed line) to the optimal sequence (given

by the solid line). In Panel B, the high β∗ used by the social planner implies a fossil-

fuel depletion schedule that is much flatter than that in Panel A. However, this optimal

schedule is not too far from the laissez-faire schedule in Panel B, given the assumption

that consumers discount also using β∗.

Consider now a situation where consumers discount using β, but the planner discounts

using β∗. Optimal climate policy then amounts to shifting the extraction path for fossil

fuel from the dashed line in Panel A to the solid line in Panel B. This is a graphical

illustration of the need for a substantially more pronounced tax differential between time

periods, in order to induce the optimal postponement of fossil-fuel depletion.

Figure 2 is an attempt at comparing optimal energy taxes in the standard model,

where the planner as well as consumers discount in the same way, with the extended

model presented here, where consumers discount using β and the planner uses β∗. Panel A

plots energy taxes as a proportion of output, τ̂Et , over time, whereas Panel B plots taxes

measured as dollars per tonne of carbon, τEt , for three model setups. For the standard

model, the constant-τ̂Et solution is shown, for the case when both the planner and the

markets discount the future heavily (shown by the grey line), and for the situation where
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Figure 1: Fossil-fuel consumption
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both the planner and the markets are more patient (the black line). The dashed line

shows a tax schedule that implements the optimal allocation (together with an interest

rate subsidy, as discussed above), when the planner is more patient than the market. This

tax schedule is one of an infinite number of tax schedules that will implement the optimal

allocation, and it is chosen such that the discounted stream of tax revenue from energy

taxes is the same as in the case when both the planner and the market use ρ∗ = 0.1% per

year (the black solid line).

With different social and market discount rates, carbon taxes rise initially, but must

eventually turn into substantial subsidies.

4.2 Welfare considerations

Let us now turn to the welfare effects of climate policy, first looking at the standard

model, where both the planner and the market discount by β∗. In the standard model,

the optimal allocation can be implemented using only one tax instrument, the sequence
{

τ̂Et
}

t
. The relevant welfare comparison in this setting is between the optimal allocation,

or first best, and the laissez-faire solution. For each consumption stream {Ct}t, define a

constant consumption level C̄, such that

∞
∑

t=0

β∗t ln(C̄) =
∞
∑

t=0

β∗t ln(Ct).

The difference in C̄ between the laissez-faire outcome and the first-best outcome is a mere

0.0013%. This corresponds to the first row in Table 1 below, which summarizes the welfare

comparisons discussed in this section. With a discount rate of 1.5% per year, common

to both planner and market, the welfare loss in the laissez-faire outcome is even more

negligible (second row in Table 1). In the extended model however, with the planner

discounting with β∗ and the market with β, the welfare loss in terms of C̄ is now a

substantial 6.10% (row 3 in the table).

In the extended model, two types of tax are needed in order to implement the first-best

allocation. One could therefore imagine more outcomes than only the first-best and the

laissez-faire solutions. For example, although a globally implemented tax on fossil-fuel

consumption seems far-fetched politically, it may well be easier to implement a global

energy tax only, compared to a global energy tax and a global subsidy to capital returns.
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Therefore, it is interesting to consider a second-best policy of optimal energy taxes without

the capital subsidy (row 4 in Table 1).13 Such a policy would amount to a drop in C̄ of

0.40% only, around 7% of the consumption drop in the laissez-faire solution.

We can consider two more thought experiments. First, suppose that a planner uses a

discount factor β∗, and thinks that this is also the case for the market, while consumers

actually discount using β. The planner would then choose a tax sequence τ̂Et = Γ(β∗) ∀t,

hoping to implement the optimal depletion of fossil fuels. However, the sequence for fossil-

fuel consumption actually implemented with this tax policy would not be the optimal one,

defined by (19). Instead, it will be the sequence that satisfies (27), given the chosen tax

policy τ̂Et = Γ(β∗) ∀t. This energy consumption profile lies in between the laissez-faire

outcome (the dashed curve in Figure 1A) and the optimal outcome (the solid curve in

Figure 1B). The welfare loss in such a scenario would amount to 3.29%, as measured by a

drop in C̄ (row 5 in Table 1). This situation could be thought of as ‘Stern’s mistake’: the

planner sets enery taxes based on her rate of time preference, but ignores the fact that

consumers discount the future at a different rate. Climate damages are valued correctly

over time, but energy taxes do not induce consumers to leave behind enough of the fossil-

fuel stocks to future generations.

Finally, consider what may be referred to as ‘Nordhaus’s mistake’. The planner still

discounts the future at a low rate, 0.1% per year, but is persuaded by the argument that

carbon taxes should be set with a market discount rate in mind. Such a planner would

implement a lower constant tax per unit of output τ̂Et = Γ(β). According to row 6 in the

table, such a policy leads to a welfare loss that is near the laissez-faire outcome in row

3, when the resulting consumption streams are valued using the planner’s true discount

rate of 0.1% per year.

5 Conclusions

It has been argued, most famously in the Stern Review (Stern, 2006), that climate policy

should be designed with a high weight on future generations, higher indeed than the

13Note that optimal energy taxes
{

τ̂Et
}

t
are the same, even if the capital subsidy is not available. To

see this, notice that the optimal sequence for fossil-fuel consumption, defined by (19), only depends on
parameters ν,β∗, and the carbon-cycle parameters. Therefore, optimal fossil-fuel consumption, {E∗

t }t,
is unchanged. Moreover, the market’s choice of of fossil-fuel consumption, in the presence of taxes, is
still defined by (27), which is also independent of capital stocks and output levels. Hence, any sequence
of energy taxes that implements the first-best allocation will still implement the optimal sequence for
fossil-fuel consumption if capital subsidies are not available.

24



Table 1: Welfare comparisons

Consumers’ Planner’s Policy Welfare

discount rate discount rate instruments loss

1 0.1% 0.1% none 0.0013%

2 1.5% 1.5% none 6.71×10−6%

3 1.5% 0.1% none 6.10%

4 1.5% 0.1% optimal
{

τ̂Et
}

t
0.40%

5 1.5% 0.1% τ̂Et = Γ(β∗)∀t 3.29%

6 1.5% 1.5% τ̂Et = Γ(β)∀t 5.88%

weight individuals currently alive seem to place on their own future selves. This may well

be a very reasonable approach to the issue of climate-change externalities, but policy-

makers must consider the fact that individual consumers still behave according to their

own preferences, which involves discounting the future (including their own future selves)

more heavily. This has some implications for optimal taxation of fossil-fuel consumption.

A policy-maker that cares for future generations must therefore not only pay attention

to impacts due to climate change arising in the future, but should also induce generations

currently alive to save more for the future, and leave more of the available stock of fossil

fuels in the ground for future generations to enjoy. Such considerations lie behind the

main result in this paper: optimal carbon taxes must in general decrease over time, and

finally become subsidies, in order to induce a consumption path for fossil fuels that is

optimal from the social planner’s perspective.
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6 Appendix

6.A Difference equation for optimal energy taxes

Optimal depletion of fossil fuels is given by (19), as

[

ν

E∗

t

− Γ(β∗)

]

= β∗

[

ν

E∗

t+1

− Γ(β∗)

]

.

Rearrange this to find ν
E∗

t+1

as a function of ν
E∗

t

,

ν

E∗

t+1

=
1

β∗

ν

E∗

t

−

(

1− β∗

β∗

)

Γ(β∗). (29)

Now use (27), which defines how the market will consume energy in the presence of taxes,

substituting out ν
E∗

t+1

using (29):

(

ν

E∗

t

− τ̂Et

)

= β

(

ν

E∗

t+1

− τ̂Et+1

)

⇒ βτ̂Et+1 = τ̂Et +
β

β∗

ν

E∗

t

−
ν

E∗

t

−
β(1− β∗)

β∗
Γ(β∗)

⇒ τ̂Et+1 =
1

β
τ̂Et −

(β∗ − β)

β∗β

ν

E∗

t

−
(1− β∗)

β∗
Γ(β∗)
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6.B Full expropriation of fossil-fuel reserves

The marginal net private benefit to using energy in production in period t is given by

(νYt

Et
− τEt ). This expression will never be negative—if it were, energy use would fall,

pushing up the marginal product until it reaches the level of the tax. Any sequence of

taxes that implements the optimal allocation {E∗

t }t must therefore be such that

τEt ≤
νYt

Et

⇔ τ̂Et ≤
ν

Et

.

Setting τ̂Et = ν
Et

in each period taxes away all profits in the energy market. To see that

this set of taxes is a solution to (28), consider a period-t tax τ̂Et − ν
E∗

t

. By (28), next

period’s tax is then

τ̂Et+1 =
1

β

ν

E∗

t

−
(β∗ − β)

β∗β

ν

E∗

t

−
(1− β∗)

β∗
Γ(β∗)

=
1

β∗

ν

E∗

t

−
(1− β∗)

β∗
Γ(β∗).

From (19), we see that ν
E∗

t

= β∗ ν
E∗

t+1

+ (1− β∗)Γ(β∗). Hence,

τ̂Et+1 =
1

β∗

(

β∗
ν

E∗

t+1

+ (1− β∗)Γ(β∗)

)

−
(1− β∗)

β∗
Γ(β∗)

=
ν

E∗

t+1

.

In other words, setting τ̂Et = ν
E∗

t

for all t implements the optimal consumption path for fos-

sil fuels, and taxes away all the surplus. Indeed, this may be considered an expropriation

of all existing fossil fuel reserves.
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6.C Energy taxes must turn into subsidies

Suppose we start out with a first-period tax τ̂E0 = ν
E∗

0

− ε, and let future tax leves be

defined by (28), so as to implement the optimal sequence for energy consumption, {E∗

t }t.

Energy taxes will then eventually have to turn into subsidies, for any ε > 0. To see this,

start with τ̂E0 and iterate forward using (28), making use of (29) when necessary:

τ̂E0 =
ν

E∗

0

− ε

⇒ τ̂E1 =
1

β

(

ν

E∗

0

− ε

)

−
β∗ − β

β∗β

ν

E∗

0

−
1− β∗

β∗
Γ(β∗)

=
1

β∗

ν

E∗

0

−
1− β∗

β∗
Γ(β∗)−

1

β
ε

⇒ τ̂E2 =
1

β

(

1

β∗

ν

E∗

0

−
1− β∗

β∗
Γ(β∗)−

1

β
ε

)

−
β∗ − β

β∗β

(

1

β∗

ν

E∗

0

−
1− β∗

β∗
Γ(β∗)

)

−
1− β∗

β∗
Γ(β∗)

=

(

1

β∗

)2 ν

E∗

0

−

(

1− β∗

β∗

)2

Γ(β∗)−

(

1

β

)2

ε

⇒ τ̂Et =

(

1

β∗

)t ν

E∗

0

−

(

1− β∗

β∗

)t

Γ(β∗)−

(

1

β

)t

ε

The middle term in the above expression converges to 0 as t grows, whereas the other

terms grow exponentially. When β∗ > β, the latter term grows faster than the first term.

Hence, for any ε > 0, τ̂Et must eventually turn negative. In other words, for any set of

taxes
{

τ̂Et
}

t
that implements the optimal allocation, and that does not constitute a full

expropriation of fossil fuel reserves, energy taxes must eventually turn into a subsidy.

30


