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1 Introduction

Nonrenewable resources markets have key ingredients for the emergence of explicit cooperative

agreements between oligopolists in order to control the overall quantity supplied in the market.

In the case of nonrenewable resources, entry is limited by the resource endowment very few

countries can own large shares of resource. Furthermore, agreements between sovereign countries

are typically not subject to national antitrust laws. The Organization of Petroleum Exporting

Countries (Opec) which controls around 40 percent of the current crude oil production is perhaps

the most famous resource cartel. However, the oil market is not the exception: the markets

of mercury, uranium, diamond, bauxite or copper have each experienced at least a period of

successful cartelization1.

In this paper we characterize the set of potential agreements, i.e, Pareto e�cient equilibria,

between cartel members in a nonrenewable resource duopoly.

In the literature, a cartel is often modeled as a strong and monolithic coalition. For instance,

the "cartel versus fringe models", following the seminal papers of Salant (1976) and Ulph and

Folie (1980), consider a coherent cartel, as one player, facing a large number of �rms acting in

pure competition, see also Kagan et al. (2015) for a more recent contribution. Another branch

of literature, following Gilbert (1978), Newberry (1981) and more recently Groot et al. (2000,

2003), consider the case of a �rst-mover cartel in a Stackelberg equilibrium. However, in these

papers as well, the leader or the cartel is assumed to be a coherent structure and the agreement

between cartel members is not examined.

To the best of our knowledge, only two references consider a cartel as the result of a bargaining

process. Hnylicza and Pindyck (1976) model two �rms with asymmetric discount rates. They �nd

a "bang-bang" solution consisting for the �rms to produce in alternation. This solution may not

be realistic "since the temptation to cheat would be considerable" (Hnylicza and Pindyck, 1976,

p. 147). Okullo and Reynès (2016) consider a framework that captured important features that

are relevant in the case of the oil market (e.g., the cartel faces a fringe with a capacity constraint,

endogenous reserve development) in order to speci�cally study the Opec cartel. They introduce a

coe�cient of cooperation and select the level of the coe�cient using the Nash Bargaining solution.

The equilibrium under non-cooperation is an open-loop equilibrium where each player chooses

a production path at time zero. In our paper, the non-cooperative equilibrium we consider is

a vector of Markovian stationary strategies and therefore it is subgame perfect. Moreover in

contrast with both papers where the results are established using numerical simulations, our

results are shown analytically.

We use a cooperative di�erential game framework, see e.g., Hämäläinen et al., (1985) for a

seminal application in the case of the �sheries, Leitmann (1974) and more recently Reddy and

Engwerda (2013) for in�uential methodological contributions. We consider cooperation between

two �rms, each owning a private stock of a nonrenewable resource. We examine the case of

1See Teece et al. (1993) for case studies on oil, mercury, uranium and diamond cartels.
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economic exhaustion or scarcity rather than physical exhaustion of the resource: the amount of

the resource used by each �rm is endogenously determined and is dictated by market conditions

as well as how the extraction cost is a�ected by the level of the stock of the resource available. We

make use of a necessary condition to Pareto optimality in cooperative di�erential games recently

found in Reddy and Engwerda (2013) to fully characterize the set of all Pareto optimal payo�s

and study group and individual rationality of the potential agreements. The non-cooperative

scenario has been already described by Salo and Tahvonen (2001).

In a cooperative di�erential game, players negotiate to establish a cooperative agreement

on how to produce through time and how to share the total payo�. The cooperative agreement

must satisfy group rationality and individual rationality (Yeung and Petrosyan (2006) or Zaccour

(2008)). To achieve group rationality, the outcome has to satisfy Pareto optimality. Indeed, the

objective of cooperation is to reach a Pareto e�cient allocation, which is, in general, unattainable

in a non-cooperative market structure. To achieve individual rationality, both players' payo�s

must be at least equal to what they can get in the non-cooperative equilibrium. Otherwise, the

cooperation is not self-enforced. Inspired by the context of international markets of nonrenewable

resources we rule out direct monetary transfers between players.

Focusing �rst on group rationality, we �nd that for each ratio of resource stocks, there exists

a unique interior Pareto solution. Every other solutions are corner ones, involving that one of the

�rms does not produce for a period of time. This agreement has several properties which have

been corroborated in empirical studies of resource cartels. First, each �rm should get a share of

total production exactly equal to his share of the total nonrenewable resource stock of the cartel.

This result is often met as an assumption in the literature (Mason and Polasky (2005) or Wiggins

and Libecap (1987)) and is highly suspected to be the policy currently run by Opec. Second, as

an immediate consequence, the cooperative agreement presents a bias in favor of the small �rm

which also �nds empirical evidence (Gri�n and Xiong (1997)). Third, the rate of exhaustion of

the nonrenewable resource total stock of the cartel depends on its inner symmetry.

Checking the cooperative agreements that satisfy individual rationality, we �nd that the

interior cooperative agreement may be non-acceptable for the �rm with the largest resource stock.

Speci�cally, if �rms are too asymmetric, the player with the larger stock will have a discounted

sum of pro�ts lower than in the non-cooperative equilibrium. Motivated again by the context

of the countries involved in nonrenewable resource markets, we further examine the impact of

an agreement on short-run pro�ts. In many instances countries face budgetary constraints and

the income derived from the natural resource sector represents a substantial share of their gross

domestic product. It is therefore highly unlikely that a country would accept an agreement

that involves a short-run loss of income with respect to the non-cooperative equilibrium even if

this loss will be more than compensated by future gains. We call this condition the immediate

individual rationality, i.e., at the initial time of the agreement instantaneous pro�ts are required

to be larger under cooperation than under non-cooperation. We show that when the discount

rate is small enough, there exists no Pareto e�cient agreement such that the condition of short-
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run individual rationality is satis�ed. This is a rather surprising result that runs against the

general wisdom from the Folk Theorem in game theory whereby more patience is viewed as more

conducive to cooperation. In our case players are not using punishment strategies with delay of

detection. In our game, when players are su�ciently patient they have an incentive to postpone

the extraction of the resource since a larger stock in the ground allows to extract at a lower cost.

This incentive to conserve the resource can be strong enough to imply a high initial reduction

of extraction with respect to the non-cooperative equilibrium which ultimately results in smaller

short-run pro�ts.

The remainder of the paper is the following. In section 2, we expose the model and char-

acterize a unique interior Pareto solution for any ratio of initial resource stocks. In section 3,

we focus on the individual rationality of the feasible cooperative agreements. In section 4, we

conduct a welfare analysis. In section 5, we make some concluding remarks.

2 The model

2.1 Basic framework

We use a standard framework nonrenewable resource duopoly with economic exhaustion (Salo

and Tahvonen 2001). Two �rms extract a nonrenewable resource from two stocks, denoted by Si,

i = 1, 2, with well-de�ned property rights. They face a linear inverse demand, p = p0 − q1 − q2,

where p designates the price, p0 the choke price and qi, i = 1, 2, the extraction rates of both

�rms. Unit extraction costs are stock-dependent, C(Si) = c0 − cSi, i = 1, 2, where c0 > 0 and

c > 0. For simplicity, we assume that parameters c0 and c are the same for both �rms.

We consider the case of economic exhaustion: the cost of extracting the last unit of the

resource stock exceeds the choke price, c0 > p0. As a consequence, each �rm leaves a stock

S̄ ≡ c0−p0
c unexploited. Introducing si = Si − S̄, the pro�table part of the physical resource

stock Si, the unit extraction cost can be expressed as p0 − csi.
With these speci�cations, �rm i's present value of his �ow of instantaneous pro�ts is

Ji =

∫ ∞
0

e−rt [(p0 − q1 − q2)qi − (p0 − csi)qi] dt (1)

which simpli�es into

Ji =

∫ ∞
0

e−rt (csi − q1 − q2) qidt (2)

Within this framework, we study the possibility for the �rms to make a binding cooperative

agreement on how to share a surplus they jointly generate. Such an agreement de�ned a pair
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of extraction paths (q?1 , q
?
2), one for each �rm. We assume that there is no possibility of side-

payments between �rms.

2.2 Group rationality

A cooperative agreement (q?1 , q
?
2) must satisfy group rationality. It is achieved when the pair of

extraction paths agreed upon is Pareto optimal. To characterize the set of all the Pareto optimal

controls in the context of a cooperative di�erential game with nontransferable payo�s, we use

the following Leitmann's Lemma (Leitmann, 1974):

Lemma 1. Let α ∈ (0, 1). If (q?1 , q
?
2) is such that:

(q?1 , q
?
2) ∈ argmax

q1,q2
αJ1 + (1− α)J2

s.t. ṡ1 = −q1 ṡ2 = −q2

(3)

Then (q?1 , q
?
2) is Pareto optimal.

Using this Lemma, we start by characterizing the cooperative agreements that yield an interior

solution for each player throughout the time horizon. We call such an agreement, an interior

cooperative agreement (ICA). It turns out that, given a pair of initial stocks, such a cooperative

agreement is unique.

Proposition 1 (ICA). For a given pair of initial resource stocks (s10, s20), the ICA is unique.

The solution to (25) is interior i� α = α? where

α? =

(
s20
s10

)2

1 +
(
s20
s10

)2 (4)

Under this unique ICA, we have

q?1(t) = −θ?s?1(t) (5)

q?2(t) = −θ?s?2(t) (6)

s?1(t) = s10e
θ?t (7)

s?2(t) = s20e
θ?t (8)

where

θ? =
r

2
−

√√√√√(r2)2

+ rc
s20
s10(

1 + s20
s10

)2
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Proof. See Appendix A.

To establish the uniqueness of the interior solution we used the contribution of Reddy and

Engwerda (2013) which provides a necessary condition to Pareto optimality and thus completes

Leitmann's Lemma and ensures that we have exhaustively listed all Pareto optimal payo�s.

An implication of the above proposition is that given a pair of initial stocks, aside from

the ICA, all the other cooperative agreements consist in corner solutions whereby at least one

of the players' production is nil during a period of time. We provide in Proposition 2 the

characterization of the set of all Pareto optimal agreements.

Proposition 2 (Corner solutions). Let initial stocks (s10, s20) and assume that we choose α > α?

with α? =

(
s20
s10

)2

1+
(
s20
s10

)2 . The cooperative agreement, solution to (3), consists of two phases:

• Phase 1: �rm 1 extracts alone until her stock equals s̃10 de�ne by:

α =

(
s20
s̃10

)2

1 +
(
s20
s̃10

)2

• Phase 2: both �rms extract and the extraction paths correspond to the ones characterized

in Proposition 1 for the initial stocks (s̃10, s20).

Proof. See Appendix C.

Figure 2.2 illustrates both Propositions 1 and 2. First, it shows the ICA corresponding to a

ratio of initial stocks s20
s10

(point A). It consists in the ray going to the origin with slope
√

α?

1−α?

where α? =

(
s20
s10

)2

1+
(
s20
s10

)2 . Starting from point A, both stocks evolve along this line. Second, it

shows the corner solutions, solution to (3) for α 6= α?. Starting from point A, the stocks evolve

in order to reach the ICA corresponding to α. If α > α? (α < α?), �rm 1 (�rm 2) has to extract

alone in a �st phase. It results in a horizontal (vertical) line until the new ICA is reached.
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Figure 1: Phase diagram of the resource stocks (r = 0.05, c = 0.08, α? = 0.8).

3 Individual Rationality (IR)

In this section we examine under what conditions a cooperative agreement (q?1 , q
?
2) satis�es in-

dividual rationality (IR), i.e., the payo� of each player under the agreement has to be no lower

than her payo� under non-cooperation. In this case, the agreement is also said to be 'acceptable'

(see de�nition 6.3 in Docker et al., 2000, p. 153). To this end, we provide the equilibrium payo�

of each player under non-cooperation. This equilibrium is characterized in Salo and Tahvonen

(2001) and reproduced in the subsection below for completeness.

3.1 The non-cooperative game: Salo and Tahvonen (2001)

Each player takes a stationary Markovian strategy of its competitor as given, and maximizes her

individual payo�, subject to the state constraints. The equilibrium strategies denoted (q̄1, q̄2)

are given by (see, Salo and Tahvonen (2001), Proposition 1, p.678):

q̄1(s1, s2) = −θ1 + θ2

2
s̄1 +

θ1 − θ2

2
s̄2 (9)
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q̄2(s1, s2) =
θ1 − θ2

2
s̄1 −

θ1 + θ2

2
s̄2 (10)

The resulting equilibrium paths of each resource stock, denoted s̄1(.) and s̄2(.), are given by:

s̄1(t) =
s10 − s20

2
eθ1t +

s10 + s20

2
eθ2t (11)

s̄2(t) =
s20 − s10

2
eθ1t +

s10 + s20

2
eθ2t (12)

where

θ1 = r
2 −

√(
r
2

)2
+ cr

2
r0(γ)+9√
63+r0(γ)2

θ2 = r
2 −

√(
r
2

)2
+ cr

2
r0(γ)−3√
63+r0(γ)2

r0(γ) = 3γ + 5 + 2
√

64 + 60γ + 9γ2 cos
[

1
3 arccos

(
404+666γ+270γ2+27γ3

(64+60γ+9γ2)3/2

)]
, γ = r

c

Extraction rates (9) and (10) are positive i� θ1−θ2
θ1+θ2

< s̄2(t)
s̄1(t) <

θ1+θ2
θ1−θ2 . For instance, in the case

the initial stocks are such that: s20
s10

> θ1+θ2
θ1−θ2 , �rm 1 extracts alone until s20s10 = θ1+θ2

θ1−θ2 , after what

�rm 2 eventually starts to extract.

3.2 Individual rationality of the ICA

If we denote by J?i �rm i's payo�, under cooperation, and J̄i �rm i's payo�, under non-cooperation,

the condition for the cooperative agreement to be acceptable, or individually rational (IR), is

formally:

(IR) ∀i ∈ {1, 2}, J?i − J̄i ≥ 0 (13)

This condition is also sometimes referred to as overall individual rationality (Zaccour (2008))

since it is the discounted sum of pro�ts over the whole time horizon, under a cooperative agree-

ment that are compared to the non-cooperative case. In our di�erential game framework, using

the discounted sum of pro�ts of a player as her payo� leaves the possibility that an agreement

may be rational even if during an initial phase, say [0, τ ], the discounted sum of pro�ts of one of

the players is lower than it would be under non-cooperation. In the absence of side-payments,
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such an agreement would lead to an immediate loss for one of the players due to the agreement.

While this is theoretically conceivable, incurring losses especially in the short term can be di�-

cult to accept politically. Indeed for many of these markets, the important players are developing

countries for which the revenues from their natural resources represent an important part of their

gross domestic product.

Therefore, we de�ne a second rationality criterion: the immediate individual rationality (IIR).

If we denote the initial pro�ts by π?i (0), under cooperation, and π̄i(0), under non-cooperation, a

condition for immediate individual rationality to be satis�ed for player i is:

(IIR) π?i (0) > π̄i(0) (14)

This is related and a weaker form of the notion of instantaneous individual rationality (Zac-

cour (2008)) which requires, throughout the agreement that if the game is stopped at time t > 0

and the agreement has been followed up-until t then we must have

π?i (t) > π̄i(t) ∀t ≥ 0 i = 1, 2

Thus, corner solutions, characterized in Proposition 2, are ruled out because they never satisfy

the IIR criterion (14). The only candidates which can possibly satisfy both IR and IIR, that is

(13) and (14), is the ICA characterized in Proposition 1. Furthermore, along the ICA's stock

path (s?1(.), s?2(.)), any renegotiation at any date t > 0 will result in the same agreement, that is

the value of α? remains unchanged. Thus, if condition (14) is satis�ed at date t = 0, it will also

be satis�ed along the whole stock path, providing instantaneous individual rationality (Zaccour,

2008).

In the remainder of this section, we focus then on the ICA characterized in Proposition 1.

Consider �rm 1 (results are symmetric for �rm 2), we know, from Salo and Tahovonen (2001),

that her discounted sum of pro�ts is, for a given pair of initial stocks (s10, s20):

J̄1 =
cθ1

2θ1 − r

(
s10 − s20

2

)2

+
θ2(c+ 2θ2)

2θ2 − r

(
s10 + s20

2

)2

+
c(θ1 + θ2) + 2θ1θ2

θ1 + θ2 − r

(
s2

10 − s2
20

4

)
(15)

Using Proposition 1, we have for the ICA:

J?1 =
θ?

2θ? − r
s10 ((c+ θ?)s10 + θ?s20) (16)
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Comparing payo�s (15) and (16), we �rst observe the following results about IR:

Lemma 2. The IR of the ICA characterized in proposition 1 only depends upon the ratio of

initial resource stocks s20
s10

and γ = r
c .

Proof. This straightforward result is obtained by dividing both sides of condition (13) by cs2
10.

Proposition 3 (IR). For any γ > 0, there exists ε ∈ (0, 1), such that the ICA associated with a

pair of initial stocks (s10, s20) satis�es Individual Rationality (IR) i� s20
s10
∈ (1− ε, 1 + ε)

Proof. See Appendix D.

Figure 3.2 provides an illustration of Proposition 3. In the space of payo�s (J1, J2), it shows

the Pareto frontier, that is every reachable payo� vector corresponding to the cooperative agree-

ments described in Proposition 1 and Proposition 2. For a given pair of initial stocks (s10, s20),

the unique ICA is represented by a star over the frontier. The non-cooperative payo� is desig-

nated with a cross. We see that, depending on the pair of initial stocks, the star can be on the

top-right region of the cross (left) or, in contrast be outside of this region (right). On the left

Figure, the ICA is IR whereas on the right Figure, the ratio of stocks s20
s10

is too high for the ICA

to be IR.

Figure 2: Pareto frontier in the space of payo�s (J1,J2) for c = 0.08, r = 0.05, s10 = 10, s20 = 10
(left) and s20 = 11 (right). Plain line: Pareto frontier, cross: non-cooperation, star: cooperation
payo�s.

We note that, for a given pair of initial stocks, the relative weight of each player under the

unique ICA only depends on s20
s10

and along this unique ICA the ratio of stocks s2(t)
s1(t) remains
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constant. We can therefore conclude that the ICA remains a robust agreement if even renegoti-

ations are reopened at a future date. This is the time-consistency property of an agreement (see

Zaccour (2008) for a tutorial).

We now examine whether the ICA determined in Proposition 1 also satis�es IIR , given by

(14). We �nd the following result a priori surprising: for any given pair of initial stocks (s10, s20),

when γ is small enough any Pareto optimal pair of extraction paths necessarily has an initial

phase where, at least one player is worse o� than under non-cooperation. Surprisingly this holds

even for the case of symmetric players: when γ is small enough, the ICA results in instantaneous

losses for both players. More precisely we have the following proposition.

Proposition 4 (IIR). For any given pair of initial stocks (s10, s20), there exists γ̄ > 0 such that

for all r, c with r
c < γ̄, there is no Pareto optimal agreement that satis�es immediate individual

rationality (14).

Proof. See Appendix E.

Since our IIR criterion is weaker than the instantaneous IR criterion (Zaccour 2008) we

can also conclude that when the discount rate is small enough, there exists no Pareto optimal

agreement that satis�es the instantaneous IR.

This result is interesting and counter-intuitive: it is when players are su�ciently patient

that they can not reach any agreement that achieves immediate gains with respect to the non-

cooperative outcome. This appears to run against the general wisdom from the Folk Theorem

where more patience increases the range of situations where cooperation is sustainable. We

should note however that in our analysis we are interested in cooperative agreements and do not

examine sustaining cooperation with punishment strategies. The intuition behind our result is

that, in our framework, in addition to the duopolistic competition in the output market, when

players are su�ciently patient they tend to conserve the stock longer for cost savings purposes.

This conservative attitude helps achieve larger long-run pro�ts at the expense of short-run pro�ts.

Unfortunately, both Propositions 3 and 4 do not provide exact values of the bounds of pa-

rameters γ = r
c and s20

s10
inside which the ICA, characterized in proposition 1, is individually

rational (IR) and / or immediately individually rational (IIR). We conduct a numerical analysis

of these bounds and summarize the results in Figure 3 which shows two areas. The �rst one,

delimited by plain lines, is the set of ratios of initial stocks s20
s10

and γ = r
c for which the ICA is

IR for both �rms. The second area, delimited by dotted lines, is the set of ratios of initial stocks
s20
s10

and γ = r
c for which the ICA is IIR for both �rms.

A decrease in r, or an increase in c, tends to enlarge the bandwidth of the area inside which

the ICA is IR. It follows the intuition of the Folk Theorem, that is the more patient the �rms
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are, the more feasible is a cooperation between them. In contrast, a decrease in r, or an increase

in c, tends to reduce the bandwidth of the area inside which the ICA is IIR. For r
c ≤ γ̄, this set

is even empty: no cooperative agreement is IIR below this threshold.

Figure 3: Areas inside which the ICA is IR and / or IIR (r ∈ [0, 0.1], c = 0.01).

12



4 Welfare analysis

We compare social welfare, de�ned as the sum of consumers' surplus and �rms' surplus, under

the cooperative agreement obtained in Proposition 1, to social welfare under non-cooperation.

It is interesting to note that within our framework, cooperation is not a priori necessarily

detrimental to social welfare. There is the usual cartelization e�ect whereby an initial reduction

in overall output. However, in the case of asymmetric �rms, there is a cost ine�ciency under

non-cooperation due to the fact that the owner of the smaller stock, and therefore the �rm with

larger marginal cost, is simultaneously extracting along the low marginal cost �rm. What is

the impact of cooperation on this source of ine�ciency? This is an important question that

does not have an a priori obvious answer. If cooperation reduces this source of ine�ciency then

the cooperative agreement has the potential to increase social welfare de�ned as the sum of

consumers' surplus and �rms' surplus. Our analysis reveals that despite this potential e�ciency

gain, cooperation of �rms is detrimental to social welfare.

We �rst compare, for a given pair of initial stocks (s10, s20), the total extraction path under

the associated ICA, q?(.), and under non-cooperation, q̄(.). We have

q?(t) = −θ?(s10 + s20)eθ
?t (17)

q̄(t) = −θ2(s10 + s20)eθ2t (18)

Initial extraction rates equal q?(0) = −θ?(s10 + s20) and q̄(0) = −θ2(s10 + s20). We show

that θ? > θ2 > θ1 (see appendix F) and, therefore, q?(0) < q̄(0). This implies an initial loss

of consumers' surplus due to cooperation between the duopolists. This cooperation is in fact

detrimental to the discounted sum of consumers' surplus. Indeed, this latter is given by:

CS =

∫ ∞
0

(
p0q −

q2

2
− pq

)
e−rtdt =

∫ ∞
0

q2

2
e−rtdt

Then, straightforward calculations give:

CS? =

∫ ∞
0

q?2

2
e−rtdt = − θ?2

2θ? − r
(s10 + s20)2

2
(19)

CS =

∫ ∞
0

q̄2

2
e−rtdt = − θ2

2

2θ2 − r
(s10 + s20)2

2
(20)

Note that the function F (θ) ≡ − θ2

2θ−r is a decreasing function of θ ∈]−∞, 0). Therefore, as

we have shown that θ? > θ2, we can conclude that CS? < CS.
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Cooperation on the other hand results in an increase in the industry's discounted sum of

pro�ts only for a range of initial stocks. The �rms' surplus is the sum of the individual �rms'

surplus, given by (15), under non-cooperation, and (16), under cooperation. More precisely, we

have

J?1 + J?2 =
cθ?

2θ? − r
(s10 − s20)2

2
+
θ?(c+ 2θ?)

2θ? − r
(s10 + s20)2

2
(21)

J̄1 + J̄2 =
cθ1

2θ1 − r
(s10 − s20)2

2
+
θ2(c+ 2θ2)

2θ2 − r
(s10 + s20)2

2
(22)

First, recall that, according to Proposition 2, the agreement is such that J̄1 + J̄2 > J?1 + J?2

for symmetric �rms. Consider now asymmetric �rms. Note that the function G(θ) ≡ cθ
2θ−r is a

decreasing function of θ ∈] −∞, 0). Thus, the inequality θ? > θ1 implies that cθ?

2θ?−r <
cθ1

2θ1−r .

Moreover, we have showed, in Appendix D, that the function G(θ) ≡ θ(c+2θ)
2θ−r reaches a maximum

for θ = r
2−
√(

r
2

)2
+ rc

4 , over ]−∞, 0), and is decreasing hereafter. This latter value is exactly the

one taken by θ? when stocks are equal. Therefore, we get that θ
?(c+2θ?)
2θ?−r > θ2(c+2θ2)

2θ2−r for symmetric

�rms and θ?(c+2θ?)
2θ?−r < θ2(c+2θ2)

2θ2−r when �rms are 'too' asymmetric. Finally, with asymmetry the

discounted sum of pro�ts ends up by being higher under non-cooperation than under cooperation.

This point is illustrated on Figure 4, the range of relative stocks where industry's discounted

sum of pro�ts increases due to the cooperative agreement is s10
s20
∈ [0.72, 1.39]. When the stocks

are 'too' asymmetric, the agreement is heavily distorted towards the small �rm's payo� and

implies a 'very' conservative industry's extraction path. The range [0.72, 1.39] clearly includes

[0.91, 1.09], under which the cooperative agreement is individually rational.

The social welfare is the addition of the consumers' surplus and the �rms' surplus:

J?1 + J?2 + CS? =
cθ?

2θ? − r
(s10 − s20)2

2
+
θ?(c+ θ?)

2θ? − r
(s10 + s20)2

2
(23)

J̄1 + J̄2 + CS =
cθ1

2θ1 − r
(s10 − s20)2

2
+
θ2(c+ θ2)

2θ2 − r
(s10 + s20)2

2
(24)

Again, we know that cθ?

2θ?−r < cθ1
2θ1−r . Moreover, the function L(θ) ≡ θ?(c+θ?)

2θ?−r reaches a

maximum θ = r
2 −

√(
r
2

)2
+ rc

2 , over ]−∞, 0), and is decreasing hereafter. But both θ2 and θ?

are higher than this latter value. Therefore, θ
?(c+θ?)
2θ?−r < θ2(c+θ2)

2θ2−r and the social welfare is always

higher under non-cooperation than under cooperation.
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Figure 4: Consumers' surplus (left), �rms' surplus (center) and social welfare (right) for r = 0.05,
c = 0.08 and s20 = 100

Finally, this welfare analysis is summarized in this last Proposition:

Proposition 5. For any pair of initial stocks (s10, s20), the discounted sum of social welfare

under the ICA is smaller than under non-cooperation.

5 Concluding remarks

In a linear quadratic di�erential game framework, inspired by Salo and Tahvonen (2001), and

using recent results of Reddy and Engwerda (2013), we fully characterize the set of Pareto

e�cient cooperative agreements. We �rst show that, for each pair of initial stocks, there is a

unique Pareto e�cient agreement where the extraction paths of both �rms are positive. Any

other Pareto e�cient agreement implies that one producer initially refrains from extracting for

a period of time. The interior solution has several properties among which the fact that the rate

of depletion depends on the ratio of both �rms' resource stocks. The reason is that, in order

to produce simultaneously, a larger weight must be given to the �rm with the smallest resource

stock in the overall maximization. Therefore, the more the �rms are asymmetric, the more they

have to exert their market power and slow extraction to push up the price.

However this interior cooperative agreement may not satisfy individual rationality. We show

that there exists a neighborhood of the pure symmetric situation where the interior cooperative

agreement is acceptable to both players. Thus, if a resource duopoly is not too asymmetric,

cooperation is rational for both players. However when the discount rate is small enough, there

15



exists no Pareto e�cient agreement that can result in short-run gains for both players with

respect to the non-cooperative equilibrium, even in the case where the players are symmetric.

Our framework is obviously stylized and some additions such as incorporating exploration

decisions would be both relevant and insightful. Indeed, since agreements are very much depen-

dent on the ratio of stocks owned by each player, examining how the possibility of an agreement

a�ects players' incentive for exploration would be particularly insightful. This is beyond the

scope of the present paper but constitutes a promising line for future research.
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A Proof of Proposition 1: Interior Cooperative Agreements

(ICA)

First, we have to check that the dynamical system

ṡ1(t) = −q1(t)

ṡ2(t) = −q2(t)

is controllable. Rewriting it in a canonical way, we get that

[
ṡ1

ṡ2

]
=

[
0 0

0 0

]
︸ ︷︷ ︸

A

[
s1

s2

]
+

[
−1 0

0 −1

]
︸ ︷︷ ︸

B

[
q1

q2

]

This system is controllable i� the controllability matrix

[
B AB

]
=

[
−1 0 0 0

0 −1 0 0

]

has full row rank (see Theorem 3.19 in Engwerda, 2005, p. 92). This is trivially the case here:

the dynamic system is therefore controllable. Under this condition, Reddy and Engwerda (2013)

showed that Leitmann's Lemma is actually a necessary and su�cient condition for Pareto opti-

mality and, thus, we can get every feasible Pareto optimal controls by maximizing the weighted

sum of the payo�:

max
q1,q2

αJ1 + (1− α)J2

s.t. ṡ1 = −q1 ṡ2 = −q2 α ∈ (0, 1)
(25)

Let α ∈ (0, 1), the Hamiltonian corresponding to (25) is:

H(s1, s2, q1, q2, λ1, λ2) = α(cs1 − q1 − q2)q1 + (1− α)(cs2 − q1 − q2)q2 − λ1q1 − λ2q2 (26)

Where (λ1, λ2) designate the costate variables of state constraints (ṡ1 = −q1, ṡ2 = −q2).
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Considering an interior solution (q?1 , q
?
2), the �rst order conditions of the maximization read:

λ1 = αcs1 − 2αq?1 − q?2 (27)

λ2 = (1− α)cs2 − q?1 − 2(1− α)q?2 (28)

λ̇1 = rλ1 − αcq?1 (29)

λ̇2 = rλ2 − (1− α)cq?2 (30)

Assume that α 6= 1
2 (the case α = 1

2 is solved separately, in Appendix B). Using (27) and

(28), we can express the extraction rates with respect to the state and costate variables as

q?1 =
−2α(1− α)cs1 + (1− α)cs2 + 2(1− α)λ1 − λ2

1− 4α(1− α)

q?2 =
−2α(1− α)cs2 + αcs1 + 2αλ2 − λ1

1− 4α(1− α)

Substituting these expressions into (29) and (30), we get the following Modi�ed Hamiltonian

Dynamic System:


ṡ1(t)

ṡ2(t)

λ̇1(t)

λ̇2(t)

 =



2α(1−α)c
1−4α(1−α) − (1−α)c

1−4α(1−α) − 2(1−α)
1−4α(1−α)

1
1−4α(1−α)

− αc
1−4α(1−α)

2α(1−α)c
1−4α(1−α)

1
1−4α(1−α) − 2α

1−4α(1−α)

2α2(1−α)c2

1−4α(1−α) − α(1−α)c2

1−4α(1−α) r − 2α(1−α)c
1−4α(1−α)

αc
1−4α(1−α)

− α(1−α)c2

1−4α(1−α)
2α(1−α)2c2

1−4α(1−α)
(1−α)c

1−4α(1−α) r − 2α(1−α)c
1−4α(1−α)


︸ ︷︷ ︸

Mα


s1(t)

s2(t)

λ1(t)

λ2(t)

 (31)
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The explicit expression of the eigenvalues of the Jacobian matrix Mα is known (see Kemp et

al., 1993, Dockner, 1991 or Salo and Tahvonen, 2001) and equal

θ?1,2,3,4 =
r

2
±

√√√√(r
2

)2

− δ

2
±

√(
δ

2

)2

− detMα (32)

where δ = 4α(1−α)rc
1−4α(1−α) and, after some transformations (L3 ← L3 − αcL1 and L4 ← L4 − (1−

α)cL2):

detMα = r2

∣∣∣∣∣
2α(1−α)c

1−4α(1−α) − (1−α)c
1−4α(1−α)

− αc
1−4α(1−α)

2α(1−α)c
1−4α(1−α)

∣∣∣∣∣ = − α(1− α)r2c2

1− 4α(1− α)

The negative sign of the determinant detMα and the positive sign of δ imply that among the

eigenvalues given by (32), only one is negative and its expression is

θ? =
r

2
−

√√√√(r
2

)2

− δ

2
+

√(
δ

2

)2

− detMα (33)

Because, of the transversality conditions on the costate variables, we only keep the negative

eigenvalue and the resource stocks can be expressed as

s1(t) = s10e
θ?t

s2(t) = s20e
θ?t

Substituting these expressions into (27) and (28), we get that costate variables (λ1, λ2) equal:

λ1(t) = (α(c+ 2θ?)s10 + θ?s20)eθ
?t (34)

λ2(t) = ((1− α)(c+ 2θ?)s20 + θ?s10)eθ
?t (35)

Substituting again (34) and (35) into (29) and (30), and rearranging the terms, leads to

α

(
rc− 2θ?(θ? − r)

θ?(θ? − r)

)
=
s20

s10
(36)

(1− α)

(
rc− 2θ?(θ? − r)

θ?(θ? − r)

)
=
s10

s20
(37)
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We verify that
(
rc−2θ?(θ?−r)
θ?(θ?−r)

)
6= 0. Indeed:

θ?(θ? − r) = −δ
2

+

√(
δ

2

)2

− detMα

which never equals rc
2 , whatever the value of α 6=

1
2 . Finally, combining (36) and (37) yields

to

α =

(
s20
s10

)2

1 +
(
s20
s10

)2

Substituting this expression into (33), after some algebra, we get that

θ? =
r

2
−

√√√√√(r2)2

+
rc s20s10(

1 + s20
s10

)2

B Proof of proposition 1 for α = 1
2

Assume that α = 1
2 . First-order conditions (27) and (28) give:

λ1 − λ2 =
cs?1 − cs?2

2

The derivation of this expression yields

λ̇1 − λ̇2 =
cṡ?1 − cṡ?2

2

Substituting this into (29) and (30), we get that

r(λ1 − λ2) = 0

and, thus, s?1(.) = s?2(.).
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In particular:

s10 = s20

Finally, stock, extraction, and co-state paths will be the same for both �rms. Consider, for

instance, �rm 1. Her stock variables s?1(.) is solution of

[
ṡ1

λ̇1

]
=

[
− c

4
1
2

− c
2

8
c
4 + r

]
︸ ︷︷ ︸

M1/2

[
s1

λ1

]

Eigenvalues of the Jacobian matrix M1/2 are:

θ?1,2 =
r

2
±
√(r

2

)2

+
rc

4

Again, the transversality condition leads to keep only the negative root θ? = r
2−
√(

r
2

)2
+ rc

4 ,

and

s?1(t) = s10e
θ?t
(

= s?2(t) = s20e
θ?t
)

We observe that this solution is exactly what we can obtain from the general case when

s10 = s20.

C Proof of Proposition 2: corner solutions

Let a pair of initial stocks (s10, s20), we show that a corner solution happens when we solve

optimal control problem (25) with α di�erent from α? =

(
s20
s10

)2

1+
(
s20
s10

)2 .

Let α > α? and de�ne s̃10 such that:

α =

(
s20
s̃10

)2

1 +
(
s20
s̃10

)2
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We postulate that �rm 1 produces alone within a �rst phase whose duration is denoted by

T , until her resource stock reaches s̃10. Then, the second phase consists in an the ICA which

corresponds to α, both �rms extracting until in�nite horizon. The optimal control problem is

then equivalent to

max
q1

∫ T

0

e−rtα
(
cs1q1 − q2

1

)
dt+ e−rTJ?α(s̃10, s20) (38)

where the scrap value e−rTJ?α(s̃10, s20) is the discounted payo� of the ICA for the pair of

stocks (s̃10, s20), starting at t = T .

Hamiltonian associated with (38) is

H(s1, λ, q1) = α
(
cs1q1 − q2

1

)
− λq1

First-order conditions are:

α (cs1 − 2q1)− λ = 0 (39)

λ̇ = rλ− αcq1 (40)

Equations (39) and (40) imply the following Modi�ed Hamiltonian Dynamic System

[
ṡ1

λ̇

]
=

[
− c

2
1

2α

−αc
2

2 r + c
2

]
︸ ︷︷ ︸

Mc

[
s1

λ

]

Eigenvalues of the Jacobian matrix Mc are ψ1,2 = r
2 ±

√(
r
2

)2
+ cr

2 where ψ1 < 0 and ψ2 > 0.

Thus, the solution can be written as

s1(t) = Aeψ1t +Beψ2t

λ1(t) =
αcψ1

ψ1 − r
Aeψ1t +

αcψ2

ψ2 − r
Beψ2t

where A and B are constants to determine.
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Initial and terminal conditions being s1(0) = s10, s1(T ) = s̃10, we get that:

A =
s̃10 − s10e

ψ2T

eψ1T − eψ2T

B =
s10e

ψ1T − s̃10

eψ1T − eψ2T

Last, the transversality condition is H(s1(T ), λ(T ), q1(T )) = rJ?α(s̃10, s20). Equivalently, it

leads to αq2
1(T ) = rJ?α(s̃10, s20) or

(
−ψ1

s̃10 − s10e
ψ2T

eψ1T − eψ2T
eψ1T − ψ2

s10e
ψ1T − s̃10

eψ1T − eψ2T
eψ2T

)2

=
r

α
J?α(s̃10, s20) (41)

To �nish the proof we have to show that this latter equation has a solution T > 0. We de�ne

the function

LHS1(T ) ≡
(
−ψ1

s̃10 − s10e
ψ2T

eψ1T − eψ2T
eψ1T − ψ2

s10e
ψ1T − s̃10

eψ1T − eψ2T
eψ2T

)2

which corresponds to the Left-Hand Side of equation (41). First, we show that there exists a

unique T̄ such that LHS1(T̄ ) = 0. Indeed,

LHS1(T ) = 0⇔ −s̃10(ψ1e
ψ1T − ψ2e

ψ2T )− s10(ψ2 − ψ1)e(ψ1+ψ2)T = 0

By continuity, this equation has a unique solution T̄ because the function LHS2(T ) ≡
−s̃10(ψ1e

ψ1T − ψ2e
ψ2T )− s10(ψ2 − ψ1)e(ψ1+ψ2)T is increasing and

LHS2(0) = −(ψ2 − ψ1)(s10 − s̃10) < 0 as s10 > s̃10

LHS2(+∞) = +∞

Note that over [T̄ ,+∞), the function LHS2 is positive. Therefore, it would result in a

negative expression inside the brackets of LHS1, which is impossible because q1(T ) cannot be

negative. As a consequence, we focus hereafter on (0, T̄ ]. Over this interval, the function LHS1

is decreasing and

LHS1(0) = +∞
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LHS1(T̄ ) = 0

By continuity, (41) has then a unique T > 0 and this concludes the characterization of the

corner solutions.

D Proof of Proposition 3: individual rationality of the ICA

Consider �rm 1. Factorizing by cs2
10, denoting γ = r

c , �rm 1's non-cooperative payo� can be

written as

J̄1(s10, s20) = cs2
10

(
θ1
c

2
θ1
c

−γ

(
1− s20

s10
2

)2

+
θ2
c

(1+2
θ2
c

)

2
θ2
c

−γ

(
1+

s20
s10
2

)2

+
(
θ1
c

+
θ2
c

)+2
θ1
c
θ2
c

θ1
c

+
θ2
c

−γ

(
1− s20

s10
4

))
︸ ︷︷ ︸

=φ̄1

(
s20
s10

)

Similarly, the ICA's payo� is

J?1 (s10, s20) = cs2
10

(
θ?

c

2 θ
?

c − γ

((
1 +

θ?

c

)
+
θ?

c

s20

s10

))
︸ ︷︷ ︸

=φ?1

(
s20
s10

)

Thus, studying the sign of J?1 (s10, s20)− J̄1(s10, s20) is equivalent to study those of φ?1

(
s20
s10

)
−

φ̄1

(
s20
s10

)
which only depends on the ratio of initial stocks s20

s10
and γ. Note that it proves Lemma

2.

The remainder of this Proof falls into three parts. First, we show that when the cartel is

symmetric, the ICA is always individually rational. Assume that s20
s10

= 1. In this case:

φ̄1(1) =
θ2
c

(
1 + 2 θ2c

)
2 θ2c − γ

φ?1(1) =

θ?

c

(
1 + 2 θ

?

c

)
2 θ

?

c − γ
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The function G(x) ≡ x(1+2x)
2x−γ reaches a local maximum over ]−∞, 0] for x = θ?

c . Indeed, its

derivative is:

G′(x) =
4x2 − 4γx− γ

(2x− γ)2

which is positive on

(
−∞, γ2 −

√(
γ
2

)2
+ γ

4

]
and negative on

[
γ
2 −

√(
γ
2

)2
+ γ

4 , 0

]
. Yet, the

threshold γ
2−
√(

γ
2

)2
+ γ

4 is exactly the value taken by θ?

c when s20
s10

= 1. Finally, we can conclude

that φ?1(1)− φ̄1(1) > 0: the ICA is always individually rational for symmetric �rms.

Second, we show that the ICA is never individually rational for s20
s10
→ 0. Indeed, we have

lim
s20
s10
→0

φ?1

(
s20

s10

)
= 0

Moreover, we know from Salo and Tahvonen (2001) that when s20
s10
∈] −∞, θ1−θ2θ1+θ2

], �rm 1 is

initially alone on the market, for a period of time, because �rm 2 is too small to enter it. At the

extreme, when s20
s10
→ 0, �rm 1's payo� tends to a monopolist payo�, the duration of the �rst

phase being in�nite.

Finally, we can conclude that lim
s20
s10
→0

(
φ?1

(
s20
s10

)
− φ̄1

(
s20
s10

))
< 0.

Third, knowing the two previous steps, by continuity, there exists s20
s10
∈ (0, 1] such that

φ?1

(
s20
s10

)
− φ̄1

(
s20
s10

)
= 0. The result being symmetric for �rm 2, we can conclude that there

exists ε > 0 such that φ?i

(
s20
s10

)
− φ̄i

(
s20
s10

)
> 0 (i = 1, 2) for s20

s10
∈ [1− ε, 1 + ε].
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E Proof of Proposition 4: immediate individual rationality

of the ICA

Assume that �rms are symmetric and consider �rm 1. Writing down her initial pro�t and

factorizing it by c2s2
10, denoting γ = r

c , we get, under non-cooperation:

π̄1(0) = c2s2
10

(
θ1
c

(
1− s20

s10
2

)2

+
θ2
c (1+2

θ2
c )

(
1+

s20
s10
2

)2

+(
θ1
c +

θ2
c )+2

θ1
c
θ2
c

(
1− s20

s10
4

))
︸ ︷︷ ︸

=χ̄1

(
s20
s10

)

Similarly, her initial pro�t under cooperation is

π?1(0) = c2s2
10

(
θ?

c

((
1 +

θ?

c

)
+
θ?

c

s20

s10

))
︸ ︷︷ ︸

=χ?1

(
s20
s10

)

We want to show that, for s20
s10

= 1, there exists γ̄ such that

χ?1 (1) > χ1 (1) when γ > γ̄

χ?1 (1) < χ1 (1) when γ < γ̄

The inequality χ?1 (1) > χ1 (1) is equivalent to

θ?

c

(
1 + 2

θ?

c

)
>
θ2

c

(
1 + 2

θ2

c

)

The function K(x) ≡ x (1 + 2x) reaches a minimum for x = − 1
4 over (−∞, 0]. Besides, for

γ → +∞, we can write that:

lim
γ→+∞

θ?

c
= −1

4

lim
γ→+∞

θ2

c
= −1

2

And therefore, for γ su�ciently high, χ?1 (1) > χ1 (1).
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In contrast, we know that

lim
γ→0

θ2 = 0

lim
γ→0

θ? = 0

Knowing also that θ2 < θ? (see F), there exists γ̄ such that for γ < γ̄, we get − 1
4 <

θ2
c < θ?

c .

It implies that for γ < γ̄, χ?1 (1) < χ1 (1) and, therefore, no agreement is IIR for symmetric �rms.

As a consequence, no cooperative agreement can be IIR for asymmetric �rms either.

F Proof of the ranking θ1 < θ2 < θ?

The property θ1 < θ2 < θ? is used several times in the welfare analysis. The inequality θ1 < θ2

has already been proved in Salo and Tahvonen (2001). In order, to prove that θ2 < θ?, we can

consider only symmetric stocks because, in this case,

θ? =
r

2
−
√(r

2

)2

+
rc

4

which is the minimal value that θ? can take, for given r and c. Recall that

θ2 = θ2 =
r

2
−
√(r

2

)2

+
cr

2

r0(γ)− 3√
63 + r0(γ)2

where r0(γ) = 3γ + 5 + 2
√

64 + 60γ + 9γ2 cos
[

1
3 arccos

(
404+666γ+270γ2+27γ3

(64+60γ+9γ2)3/2

)]
, γ = r

c .

Therefore, θ2 < θ? i�

√(r
2

)2

+
cr

2

r0(γ)− 3√
63 + r0(γ)2

>

√(r
2

)2

+
rc

4

This is equivalent to

√
γ + 2

r0(γ)− 3√
63 + r0(γ)2

>
√
γ + 1
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And by squaring this expression

(γ + 2)(r0(γ)− 3)2 > (γ + 1)(63 + r0(γ)2)

Or,

r0(γ)2 − 6r0(γ)(γ + 2)− 54γ − 45 > 0

This inequality is satis�ed i�

r0(γ) > 3γ + 6 +
√

9γ2 + 90γ + 81

In the expression of r0(γ), note that

cos

[
1

3
arccos

(
404 + 666γ + 270γ2 + 27γ3

(64 + 60γ + 9γ2)3/2

)]
> cos

[
1

3
arccos

(
404

643/2

)]
' 0.98

Therefore, for all γ

2
√

64+60γ+9γ2 cos

[
1
3 arccos

(
404+666γ+270γ2+27γ3

(64+60γ+9γ2)3/2

)]
>2
√

64+60γ+9γ2 cos
[

1
3 arccos

(
404

643/2

)]
>
√

9γ2+90γ+81

Moreover,

2
√

64 + 60γ + 9γ2 cos

[
1

3
arccos

(
404

643/2

)]
−
√

9γ2 + 90γ + 81 > 16 cos

[
1

3
arccos

(
404

643/2

)]
−9 > 1

Finally, r0(γ) satis�es

r0(γ) > 3γ + 6 +
√

9γ2 + 90γ + 81

and, therefore,

θ2 < θ?
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