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Abstract

Many dynamic systems exhibit tipping points – they fundamentally change their character
once a critical value, or threshold, is crossed. The location of such thresholds is typically
unknown. In this project, we consider a resource economic model where an infinitely lived
agent can learn about the location of threshold. The utility of the agent is increasing in
consumption. The threshold is catastrophic, however, since the resource collapses if con-
sumption exceeds the threshold. At each point in time, the agent chooses how much to
increase consumption. This enables two types of learning. First, if the resource does not
collapse, the agent learns that the threshold is located at higher consumption. This leads
to successive experiments being increasingly cautious. Second, the possibly to obtain in-
formative signals on the location of the threshold through consumption gives an additional
incentive to experiment. Counterintuitively, the presence of such “early warning signals”
can make experiments more risky.
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1 Introduction

Many economic and ecological systems have complex dynamics that feature tipping

points where the system suddenly shifts from a desirable regime to an undesirable regime.

While the exact location of these tipping points is almost always unknown, it may be

possible to receive “early warning signals” (or EWS, for short) that herald an impending

∗This research has been funded by the European Research Council Project NATCOOP (ERC StGr
678049). Correspondence: dheyen@ethz.ch.
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collapse. A key question is whether EWS can be received, deciphered, and processed in

time before it is too late (Biggs et al., 2009). In other words, will EWS necessarily lead

to better management, or could they lull us in false security and lead to a slippery slope

in risk taking? This paper is a first attempt to answer how the possibility of receiving

an EWS affects the optimal management of dynamic systems.

The most important system that may exhibit tipping points is arguably the climate

system (Lenton et al., 2008, 2019). Suggested tipping points include the collapse of the

West Antarctic ice sheet (Feldmann and Levermann, 2015), a breakdown of the Mid

Atlantic Overturning Circulation (Hawkins et al., 2011), or an altered carbon cycle due

to boreal wildfires (Walker et al., 2019), with potential interactions leading to “domino

effects” (Lemoine and Traeger, 2016; Rocha et al., 2018). Ecological systems that are

likely to exhibit tipping points are tropical rain forests,1 fisheries,2 and coral reefs.3

But also economic systems may exhibit tipping points. Both the two largest economic

meltdowns of modern times, the great depression of the 1930s and the great recession

of 2007-08 were, at least in part, caused by a bank-run (Gorton, 2010): Once a critical

mass of actors has lost their faith in the banking system, there was no holding back.

The common element in all these examples is that the exact location of the tip-

ping point is unknown, which makes managing these systems very hard. However, an

important recent discovery has been the fact that these dynamic systems may show

indications of the impending regime shift before it happens (Wiesenfeld, 1985; Kleinen

et al., 2003). This phenomenon is known as “critical slowing down”, which may serve as

an EWS (Dakos et al., 2015). Critical slowing down describes the increase of variance

and auto-correlation of the dynamic system close to a tipping point. Mathematically,

the dominant eigenvalue of the Jacobian matrix tends to zero as a bifurcation point is

approached (Held and Kleinen, 2004; Dakos et al., 2008).

For an illustrative example, picture a student in class that leans back and balances

on a chair: There are two stable steady states in this system – sitting orderly at the

desk, and laying on the floor. In between these two, there is also an unstable steady

state in which the chair just balances. A small force perturbing an initial state at either

of the stable points will have little effect and lead to a rapid movement back towards

the respective initial state. In contrast, a small force perturbing the state close to the

1For the Amazon, scientists estimate that an irreversible dieback caused by a breakdown of the
self-sustaining hydrological system could occur when deforestation exceeds 20-25% (Lovejoy and Nobre,
2018).

2The Canadian fishery for cod, once the most productive and valuable fisheries in the world, has
collapsed in the 1990 has not recovered since (Frank et al., 2005).

3Ocean acidification, pollution, and global warming massively harm coral reefs ecosystems that may
face an irreversible collapse unless corrective action is undertaken (Hoegh-Guldberg et al., 2007).
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tipping point will lead to a slow movement and may have a large effect (and hence the

student’s excitement in balancing at the tipping point).

Empirically, critical slowing down has been shown to anticipate abrupt changes in

several systems, such as the past climate using paleontological time-series (Dakos et al.,

2008; Lenton et al., 2008), wetland ecosystems using remote sensing data (Alibakhshi

et al., 2017), and in experimentally controlled settings for yeast populations (Dai et al.,

2012), daphnia populations (Drake and Griffen, 2010), and whole lake ecosystems (Car-

penter et al., 2011).

The key application that we have in mind is the climate system. We take the per-

spective of a global government (henceforth: the agent) that seeks to maximize welfare

by choosing the optimal amount of global warming. Tolerating more warming means

increased consumption and hence higher short-run utility, but obviously increases the

chance of crossing a tipping point, and may hence be disastrous for long-run utility. We

isolate the issue of a potential tipping point and the effect of an EWS system by assum-

ing that all non-catastrophic consequences of increasing global warming are subsumed

in the current utility function. As a consequence, it is natural to assume that there is an

interior value of global warming that maximizes welfare, even if there were no tipping

point. We call this point L.

To focus attention on the inherent exploitation-exploration trade-off, we cast the

problem of choosing the optimal amount of global warming as a location choice l on the

domain [0, L] where a higher l yields higher utility, but also higher risk. That is, there

is an unknown tipping point value T ∈ [0, L] such that utility is increasing in l as long

as l ≤ T , but once the chosen location exceeds the tipping point (l > T ) utility is zero.

In other words, were the location of T known, the optimal location that maximizes the

discounted sum of utility would be to choose l = T indefinitely. However, because T

is not known, the agent can learn with every choice of l′ that exceeds the historically

highest choice of l, whether the T is located in the interval between l and l′. If T is in

(l, l′) the catastrophe occurs and utility is set to zero forever afterwards. If T is in not

(l, l′), the decision maker knows that choosing any l smaller or equal to l′ is safe and will

not cause the system to tip.

The existence of an EWS system now means that the agent not only learns whether

or not she has crossed the tipping point, but – in case the tipping point has not yet been

crossed – she also updates her belief about the value of T due to the potential reception

of an EWS. In other words, there are two types of learning. One is by experience –

whether or not the tipping point has been crossed. Figuratively speaking, this shifts the

agent’s belief upwards, but does not change its shape: Upon extending location from l
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Figure 1: Illustration of the timing and updating of the agent’s belief about the location of T .
The top part of the figure shows the belief of the agent when choosing the location for time
t+ 1. If the new location does not exceed the threshold, the agent gets the corresponding utility
u(lt+1) and updates his belief. First, not crossing the threshold means that the original belief is
truncated. For concreteness, we say this happens at time t+ 0.5 (illustrated in the middle part
of the figure). Second, the agent updates his belief differently, depending on whether she receives
an early warning signal, or not. As the bottom part of the figure illustrates, not receiving an
EWS implies a more optimistic belief about the location of the threshold near lt+1.
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to l′ and not crossing the tipping point, the agent’s prior belief about the location of

the tipping point is now truncated to the domain (l′, L) as the tipping point is not in

(l, l′). Correspondingly, it is more likely that T is at any place on (l′, L), but the relative

likelihood between two location within (l′, L) does not change (see the middle part of

Figure 1 for an illustration).

The other type of learning comes from the reception of the EWS. This information

changes the shape of the agent’s belief. A model of EWS needs to describe both the

probability of receiving a signal and the posterior belief that the reception of an EWS

induces. We capture the former issue by a signal function, f , and assume that the signal

is at least partly informative. In particular, we assume that the closer one is to the

actual realization of the threshold T , the more likely it is to receive a signal. This means

that the reception of an EWS makes the decision-maker more pessimistic about the

location of the threshold. Conversely, the absence of an EWS makes the decision-maker

more optimistic about the location of the threshold (see the bottom part of Figure 1 for

an illustration). The solution to the planner’s problem therefore depends on the initial

belief as well as the history of location choices and received signals.

We find that the potential to obtain an EWS by increasing consumption induces

successive learning in a model in which it is optimal to learn only once in the absence of

an EWS (Diekert, 2017). It may therefore become optimal to experiment several times

before eventually settling on a location l∗ at which exploration stops.

On the one hand, EWS is welfare enhancing because successive experimentation may

induce the decision-maker to stop earlier, or go further, than they would have done in

absence of an EWS. On the other hand, EWS can actually imply a more risky optimal

plan than without EWS even though the initial location choice is smaller than without

the EWS (depending on signal realizations), see Figure 2.

Figure 2: Example of optimal plan, without and with early warning signals (EWS). The potential
to obtain an EWS can induce successive learning and a more risky optimal plan (higher l∗).
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The intuition is as follows. At the margin, there is more information to be gained by

choosing an additional small increases in l. Conditional on survival, the decision-maker

may become more optimistic for given signal realizations. This implies stopping at a

higher location l∗, and may deliver a slippery slope in risk-taking.

The contribution of our paper is to provide the first analysis of how a decision maker

optimally reacts to the possibility of receiving an early warning signal. While there is an

active literature on EWS in the natural sciences, there are – to the best of our knowledge

– only three applications of the concept in economics.

First, Richter and Dakos (2015) investigate whether EWS occur in a simulations

of a stylized socio-ecological system. They find that indeed upcoming regime shifts

may be detected using socio-economic outcomes, such as individual profits. Second,

Diks et al. (2019) analyze the observed time series of historical financial crises and find

statistical evidence for critical slowing down before Black Monday 1987 but no EWS for

more recent crises. Finally, Barrett and Dannenberg (2014) report on an incentivized

experiment in which reduced uncertainty about the location of a tipping point made

it easier for the participants to coordinate on the cooperative outcome. While these

studies are important in showing that EWS may play an important role in economic

applications, they do not consider active learning.

As active learning is the central aspect of our paper, our study is related to the large

literature on experimentation/bandit models in economics (Bergemann and Välimäki,

2008). However, our model differs in two important ways from the workhorse models.

First, the realization of the signal depends on the amount of experimentation. This

may lead to a distribution of the signal arrival rate that is hump-shaped (Boyarchenko,

2018). Second, learning in our model combines active learning by experimentation with

“affirmative learning” by experience (Diekert, 2017).

In addition to the literature on experimentation, our paper is of course closely re-

lated to the literatures on regime shift models. We bring those two strands of literature

together in a resource economic model, but our focus is different than in (Liski and

Salaniè, 2019), the paper closest to ours. While Liski and Salaniè study optimal pattern

of experimentation and resource use when the threshold could be crossed but the catas-

trophic regime shift occurs later (relating to the concept “extinction debt”); we study a

setting where the threshold has not yet been crossed and the decision-maker can learn

about the threshold location.

Crépin and Nævdal (2019) organize the literature on regime shift models by distin-

guishing between papers that consider “time-distributed catastrophes” (TDC) (such as

Cropper, 1976; Polasky et al., 2011; Cai and Lontzek, 2019) and papers that consider
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“state-space-distributed catastrophes” (SDC) (such as Tsur and Zemel, 1995; Nævdal,

2006; Lemoine and Traeger, 2014).

In the “TDC” class of models, the regime shift risk is captured by a hazard rate

that depends on time, and the catastrophe consequently occurs with probability one as

t → ∞. In the “SDC” class of models, it is possible to secure the sustainability of the

system by freezing the state variable at its current state. Without a change in the state

variable, the probability of a regime shift is zero. In this latter class of models, the

optimal response to regime shift risk is often non-monotonic. Sakamoto (2014) shows

that this non-monotonicity is amplified in a non-cooperative setting. In simple terms,

agents try to grab what they can before it is too late when catastrophe avoidance becomes

unlikely, but cooperation and caution increases when the catastrophe may be avoided.

Crépin and Nævdal (2019) then propose a hybrid of both standard approaches, that

they call “inertia risk”. Similar to (Liski and Salaniè, 2019), this intermediate case

of “inertia risk” may produce path dependency and stabilization targets at which the

occurrence of a catastrophe is neither ruled out nor occurs with probability one. Different

from (Liski and Salaniè, 2019), who model a lag between the triggering the catastrophe

and feeling the consequence, Crépin and Nævdal (2019) model a lag between the increase

in the hazard rate and the regime shift.

Whether the catastrophe occurrences is distributed along the dimension of time, or

state-space, has dramatic consequences for the prospects of learning. In the former class

of models, there is no learning and the long-run steady states do not depend on initial

conditions. For state-space-distributed catastrophes, in contrast, learning is extreme.

Once a given location in state space has been explored and no regime shift has occurred,

it is known to be safe.

2 Model

This section presents the general model that we use to explore the effect of EWS on

the optimal management of a dynamic resource system. As stated in the introduction,

the key application that we have in mind is climate change. The agent (a hypothetical

world government) controls the optimal amount of global warming. Up to a point L, the

marginal benefits of more warming exceed the marginal cost of more warming. However,

the agent is worried that the climate system exhibits a catastrophic tipping point T

before the amount of global warming L is reached.

The location of the threshold is determined and constant, but unknown. In other

words, the agents holds a belief p about the location of the tipping point, or threshold, T
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in [0, L]. Define p : [0, L]→ R and
∫
p(T )dT = 1. At each step in time t = 0, 1, 2, ..., the

agent can choose an amount of warming for the next period lt+1 (henceforth: a location

lt+1). Hence, the action space is L = [0, L]. Choosing lt+1 yields a reward of u(lt+1)

in the next period, where u is increasing and concave. However, when lt+1 exceeds the

threshold T , the climate system tips and utility in the next and all subsequent periods

is normalized to zero.4 The agent maximizes the discounted sum of period utilities by

choosing a sequence of locations lt+1 starting from l0 = 0. To keep track of whether

the catastrophe has occurred yet, we introduce the variable Ct ∈ {0, 1}, where Ct = 0

indicates that the threshold has not been crossed at time t.

Importantly, the agent may receive an early warning signal about the tipping point.

The signal itself is not informative about the exact location of T , but the probability of

receiving a signal is higher, the closer the chosen location is to the threshold realization.

We denote the signal realization at time t by st ∈ {0, 1} with

Pr(st = 1|T, lt+1, lt) = f(T, lt+1, lt) =

Ke−λ(T−lt+1) if lt+1 > lt,

ke−λ(T−lt+1) if lt+1 ≤ lt,
(1)

where λ ∈ [0,∞) and 0 ≤ k ≤ K ≤ 1. The parameter K in equation (1) is the sen-

sitivity of the EWS. In other words, the probability to hear a signal when the threshold

is at the chosen location lt+1 is K, meaning that K is the true positive rate (i.e. the

sensitivity), while 1-K is the false negative rate or “miss rate”. This implies that when

the agent does not receive a signal, she knows with probability K that the threshold is

not at the chosen location (“no news is good news”).

Moreover, we distinguish the case where k = 0, in which no early warning signal can

be received except new and unknown area of the state space is explored, and the case

when k > 0, in which it is possible to receive an early warning signal even if no active

experimentation is undertaken in the current period.

The parameter λ is the “EWS shape parameter” or “EWS distance specificity”. It can

indeed be shown that the higher λ, the higher the specificity of a certain hypothesis test

(this specificity also depends on K though). The limit K=1 and λ → ∞ corresponds

to an EWS system of maximal sensitivity (=1) and maximal specificity (=1). The

relationship of EWS to hypothesis testing is further explained in Appendix A-2.

Before we can formulate the value function corresponding to this problem, we detail

4Note that the assumption that choosing lt+1 = T does not cause the regime shift allows us to model
the case where there is no tipping in climate system simply by having positive mass of the probability
distribution of T at L.
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the timing of events, the updating of beliefs, and the probability of receiving an EWS.

2.1 Timing of events and Bayesian updating

At time t, the agent’s state is fully described by (Ct, lt, pt), where Ct = 0 indicates that

the threshold has not been crossed yet. If Ct = 1 for any t = θ, we have Ct = 1 for all

t > θ (the regime shift is irreversible) and the agent can neither make any choices nor

receive any utility. Thus, we only look the case Ct = 0 in the following.

The timing is as follows. At the beginning of period t, the agent is at location lt and

receives utility u(lt). Moreover, the agent holds a belief pt about the threshold position

T . Clearly, pt(T ) = 0 for all T < lt. Next, the agent chooses a location lt+1, with

0 ≤ lt+1 ≤ L.

After choosing the location lt+1, the agent gets essentially two pieces of information.

For concreteness, say this happens at t+ 0.5. At that time, she first learns whether she

has crossed the threshold or not. The probability of crossing the threshold when moving

the location to lt+1 is
∫ lt+1

lt
pt(τ) dτ and we hence define the probability of not crossing

the threshold:

P (Ct+1 = 0 ; lt, lt+1, pt) = 1−
∫ lt+1

lt

pt(τ) dτ. (2)

If the agent has crossed the threshold, Ct+1 = 1, payoffs for the rest of the game

are set to zero and no further action is possible. If she has not crossed the threshold,

Ct+1 = 0, and the agent updates her belief about threshold positions to:

p̃t+0.5(T ) =

0 for T < lt+1,(∫ L
lt+1

pt(τ) dτ
)−1

pt(T ) for T ≥ lt+1.
(3)

If the threshold has not been crossed, the second piece of information the decision-

maker gets at time t+ 0.5 is to see whether she observes an early warning signal, s = 1,

or not, s = 0. We denote the probability to receive an EWS, conditional on the new

location not crossing the threshold, by q. We have:

q(s = 1|Ct+1 = 0 ; lt, lt+1, p̃t+0.5) =

∫ L

lt+1

f(τ, lt, lt+1)p̃t+0.5(τ) dτ, (4)

where f(τ, lt, lt+1) is the early warning signal function, equation (1).

Depending on whether the agent receives an EWS (s=1) or nor (s=0), she updates
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her belief p̃t+0.5 to pt+1, where

pt+1(T ) =


f(T,lt,lt+1)p̃t+0.5(T )∫ L

lt+1
f(τ,lt,lt+1)p̃t+0.5(τ) dτ

if s = 1,

(1−f(T,lt,lt+1))p̃t+0.5(T )∫ L
lt+1

(1−f(τ,lt,lt+1))p̃t+0.5(τ) dτ
if s = 0.

(5)

Notice that, due to (3), this can also be written as

pt+1(T ) =


f(T−lt+1)pt(T )∫ L

lt+1
f(τ,lt,lt+1)pt(τ) dτ

if s = 1,

(1−f(T−lt+1))pt(T )∫ L
lt+1

(1−f(τ,lt,lt+1))pt(τ) dτ
if s = 0.

(6)

This completes one time step. The threshold has still not been crossed, Ct+1 = 0,

the agent is located at lt+1, and she holds beliefs about the threshold position pt+1(T ),

where pt+1(T ) = 0 for all T < lt+1.

2.2 Bellman equation and value function

At time t, the agent is in state Ct = 0, at location lt, and has belief pt(T ). We write

the pre-event value function as V (lt, pt) ≡ V (Ct = 0, lt, pt) and normalize the constant

post-event value V C ≡ V (Ct+1 = 1, lt, pt) = 0. Moreover, we express the posterior belief

after choosing lt+1, conditional on not crossing the threshold, by G(s = 1; lt+1, pt) if an

EWS has been received, and by G(s = 0; lt+1, pt) if no EWS has been received.

Let β ∈ (0, 1) be the discount factor. The Bellman equation is then:

V (lt, pt) = max
lt+1∈[0,R]

{
u(lt) + βP (lt, lt+1, pt)

×
[
q(lt, lt+1, pt)V (lt+1, G(s = 1; lt+1, pt)) (7)

+ (1− q(lt, lt+1, pt))V (lt+1, G(s = 0; lt+1, pt))
]}
.

In Appendix A-1, we derive the corresponding first-order-condition and show that

the continuation value of the Bellman equation depends only on pt as the current (safe)

location lt is encoded in the belief. A closed-form solution of the problem, however, seems

unattainable. Therefore, we use numerical methods to provide a first set of results.
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3 Numerical solution

We solve the model numerically by backward recursion. For the implementation, it will

be useful to normalize the lower value of the action space to 1 and to discretize the space.

Hence, L = {1, 2, . . . , L}.
We approximate the original problem, value function (7) at t = 0, by considering

a finite time horizon version of the problem. Our solution strategy is to solve for the

original problem sequentially from the final time period problem. We denote the final

time at which a decision is taken by tmax and the ultimate period in which no more

decisions are taken by t∞.

In principle we need to consider all attainable paths of location choices and signal

realizations (experienced histories from the initial point in time), {lt, st}t∞t=0. To increase

computational speed, we impose the restriction lt+1 ≥ lt, thereby ruling out location

choices that clearly cannot be optimal.

It will be useful to distinguish between the problem of the agent before and after

signals are realized. The way we account for this is by distinguishing between times t,

t + 0.5 and t + 1. As discussed above, at the beginning of period t, utility from the

location lt is received, and then the location for next period lt+1 is chosen. Time t+ 0.5

refers to the time after the location choice is made but before the signals are realized.

Time t+ 1 refers to the segment of time after signals are realized (the beginning of the

new period).

We solve the original problem by backward recursion from time t∞. Write the ter-

minal value as the utility of staying at lt∞ forever, which is the value of the discounted

stream of u(lt∞). Assuming logarithmic utility,

Vt∞(lt∞) =
log lt∞
1− β

. (8)

The value when location choices needs to be made, that is at any time t ∈ {1, 2, . . . , tmax}
(for now ignoring the original problem t = 0), can be written

Vt(lt, pt) = max
lt+1∈[lt,L]

{
u(lt) + β

[
P (lt, lt+1, pt)·Vt+0.5(lt+1, p̃t+0.5)

]}
.

The value at time t is the utility of the location lt as well as the discounted continuation.

Conditional on survival, the discounted continuation is the time t+ 0.5 value, the value

of the problem before signals are realized.

Let us now express the value after location choices are made but before signals are
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realized, that is any time t ∈ {0.5, 1.5, . . . , tmax−0.5}:

Vt+0.5(lt+1, p̃t+0.5(T )) = q(lt, lt+1, p̃t+0.5)·Vt+1(lt+1, G(s = 1; lt+1, pt)) (9)

+
(

1− q(lt, lt+1, p̃t+0.5)
)
·Vt+1(lt+1, G(s = 0; lt+1, pt))

where: q(lt, lt+1, p̃t+0.5) =

∫ L

lt+1

f(T, lt+1, lt)p̃t+0.5(τ) dτ

The value at time t+0.5 is the expected value at time t+1, weighted by the probabilities

of signal realization and no signal realization.

Finally, the original problem is symmetric to the time t problem when t = 0. We

thus repeat the same maximization process back to the original problem. We solve this

problem using Matlab (the code is discussed in Appendix A-4).

4 Preliminary results

In this section, we present the numerical solutions to the problem described above. We

will first present the optimal location choices given a specific EWS system, and then

discuss the effect of the EWS system on the value function and the total risk taken by

the agent.

4.1 Optimal location choices

We plot the optimal control paths given the parameter values tmax = 5, β = 0.95, and

an unbiased uniform initial prior about the location of T on L = {1, 2, . . . , 6}. In doing

so, we will distinguish between different EWS systems along two critical dimensions. For

reference, we repeat the signal function here:

f(T, lt+1, lt) =

Ke−λ(T−lt+1) if lt+1 > lt,

ke−λ(T−lt+1) if lt+1 ≤ lt,

First, we set the parameter K in the signal function equal to 1, or to 0.5. Recall

that the parameter K refers to the sensitivity of the signal. Setting K = 1 means that

the “miss rate” is zero, that is, there are no false negatives. When the agent does not

receive a signal in this case, she is certain that the next location is safe. This is of course

an extreme assumption, which is why we also explore the case K = 0.5.

Second, we differentiate whether the agent can only learn when making an active
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experiment (choosing lt+1 > lt), or when she can also receive a signal when not making

an active experiment (choosing lt+1 ≤ lt). The former case of only learning under active

experimentation is equivalent to setting the parameter k in the signal function equal to

zero, and to explore the latter case we set k = K. In our presentation of the results, we

will first start with the extreme case of no learning without active experimentation.

Every plot in Figures 3 to 6 shows the optimal location choice over time. In all

figures, the three plots correspond to different trajectories of observing EWS or not: the

leftmost plot shows the optimal location path when the agent never obtains an EWS

(s=0 at all time steps t = 0.5, 1.5, 2.5, ...). Similarly, the rightmost plot shows the case

in which the agent always obtains EWS (s=1 at all time steps t = 0.5, 1.5, 2.5, ...). The

plot in the middle shows the case of an alternating sequence, where the agent first does

not receive an EWS at t=0.5, then receives an EWS at t=1.5, does not receive an EWS

at t=2.5, etc. In all plots we show the optimal trajectories under different values of the

EWS shape parameter, ranging from λ=0 (equivalent to the absence of an EWS system)

to λ=3
2 (where the probability to receive an EWS if the threshold is 5 steps away is

already below 1% of the probability to receive an EWS if the threshold is at the current

location).

To discuss the optimal paths in an intuitive way and in easy language, we will use

words like “moving” or “walking” to describe situations in which the agent chooses

lt+1 > lt and “standing still” or “stopping” to describe situations in which the agent

chooses lt+1 = lt.

The first thing to note is that when the agent does not have an early warning signal

system to inform the decision (λ=0, red curves), then the agent may move at t=0, but

definitely not afterwards. This essentially replicates the finding in Diekert (2017). This

is holds independent of whether k=0 (Figures 3 and 4) or k=K (Figures 5 and 6).

Result 1 In absence of an EWS, any experimentation is undertaken in the first period.

Focussing on the case when the agent can only learn when making an active experi-

ment (k=0; Figures 3 and 4), we first see that the agent never resumes walking once she

has stopped. This is intuitive, as her belief cannot change without making a step into

unknown territory, and if it was optimal to not walk further at some time t for a given

belief, it must also be optimal to not walk at time t+ 1 for the same belief.

Second, we see that the agent may take another step after not receiving an EWS;

compare the move at time t=2 in plot (a) of Figure 3 with the corresponding move after

receiving an EWS (plot (c) of Figure 3). This pattern reflects the fact that no news

are good news. In fact, when the agent does not receive an EWS, she may take several
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Figure 3: Optimal paths for model parameters K=1, k=0
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Figure 4: Optimal paths for model parameters K=0.5, k=0

steps. Depending on the shape parameter λ and the signal sensitivity K, the initial step

may be larger than subsequent steps.

It is however not the case that the agent always continues to move upon not receiving

an EWS. As Figure 4 (a) illustrates, the agent stops after two steps, despite not receiving

EWS. The reason is that the sensitivity of the signal is low, such that the agent is not

sufficiently certain that the threshold is not located in the next step. The “miss rate”

of the EWS is too high for K=0.5.

Irrespective of whether K=1 or K=0.5, we see that the agent stops whenever her

belief gets more pessimistic due to the reception of an EWS. This can be clearly seen by

comparing plot (b) of either Figures 3 and 4) with plot (c) of the same Figure. At time

t=0.5, after having chosen l1, the agent hears no news in plot (b) but hears a warning

signal in plot (c). In plot (c) then, the optimal location choice at time 2 is then to choose

l2 = l1, while in plot (b), the optimal choice is l2 > l1 (except for λ=0, where the signal

is not informative). At time t=1.5, however, the agent hears bad news also in plot (b)

and does hence not move any further. In other words, once the agent receives an EWS

she stops, to never walk again.

14



The following statement summarizes our findings.

Result 2 When EWS are only received after active experimentation (k = 0), the agent

stops at the current (safe) location when she receives an EWS. When not receiving an

EWS, the agent may continue to move if she is sufficiently optimistic, but once the agent

stays, she stays forever.

We now discuss plots where learning is possible even when standing still (k > 0;

Figure 5 and 6). Similar to the case when k = 0, it is always optimal to stay for the

agent upon observing an EWS. However, it can happen that the agent moves again after

staying. This happens when the good news of no EWS comes in, see for instance plot

(b) in Figure 5 for λ 6= 0. Here, the agent receives an EWS at t=1.5 after moving to

l2 and then chooses l3 = l2. At t=2.5, however, she does not receive an EWS, and as a

consequence she chooses l4 > l3.

Not receiving an EWS (s=0), however, is not sufficient for making a move: The

confidence that the next step is safe can still be too low. This is illustrated in Figure

6 (b), which shows the optimal path for the same sequence of signal realizations as in

Figure 5 (b), but for a lower sensitivity of the test.
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Figure 5: Optimal paths for model parameters K=1, k=1

Figure 5 and 6 suggest that the first location choice (which only depends on prior

and expectations, but not on learning) is fundamentally different from all other location

choices (which can be conditioned on realizations of EWS) in terms of the dependence

of the shape parameter λ. On the one hand, the initial move gets more cautious as the

EWS structure gets more specific (i.e. with higher λ). On the other hand, later location

choices are more daring when λ is higher (cf. Figure 6 (a), where good news, i.e. the

absence of an EWS, induces the agent only for a high value of λ to move). Note that this

pattern is not monotonic: While the agent finds it optimal to take another step after
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Figure 6: Optimal paths for model parameters K=0.5, k=0.5

receiving no news about the threshold at t=4.5 for λ=1 (the agent chooses l5>l4 in this

case), she does not walk for λ=0.5 or λ=1.5 (the agent chooses l5=l4 in these cases).

Note further how EWS sensitivity (i.e. parameter K) impacts optimal paths. What

the comparison of Figure 5 with Figure 6 demonstrates is that lower EWS sensitivity

(K=0.5) pushes the optimal paths towards the behavior that we know from the case of no

EWS. Figure 6 (b) is a nice case in point: Under the alternating signal sequence (under

which the decision-maker alternatingly moved and stayed in the maximal sensitive EWS

structure K=1), the agent’s optimal path coincides with the optimal path in the absence

of an EWS structure. In fact, for k=0.5, neither the sequence of signal realizations, nor

the parameter λ plays a role. In all cases, the agent finds it optimal to only experiment

in the first period. The following statement summarizes our findings.

Result 3 The more informative the EWS system, the more responsive is the agent to

receiving or not receiving a signal.

Whether the agent can only learn when actively exploring new locations, or only

receive EWS when standing still has an important effect on the optimal paths. When

having to actively explore unknown locations to receive EWS, the agent becomes more

cautious (makes a smaller initial step), which can be seen by comparing the correspond-

ing plots of Figure 4 and 6. Here the agent always takes a step of size one under high λ

and k=0, but a step of size 2 under k=0.5. The reason for this difference could be due

to the interplay of time discounting and learning. Under k=0.5, the agent can learn also

when standing still so that she takes the increased risk of moving to l1=2 immediately

and, conditional on not crossing the threshold, she enjoys the payoff from this location

for another period while waiting to observe another signal. Under k=0, this is not pos-

sible, so that the agent moves to location 2 in several steps. How exactly these aspects

affect optimal paths in more general cases is an important area for future research.
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4.2 Total probability of crossing the threshold and the value of EWS

We calculate the risk of crossing the threshold as follows. We go through each potential

threshold position T and calculate the probability that the agent crosses that threshold.

The agent takes the optimal path through the tree that is jointly determined by deter-

ministic location choices by the agent and stochastic realizations of the EWS system.

Focusing on a certain threshold T enables us to calculate the probability of a certain

path: for each current location lt, and the optimal next location lt+1, we can calculate

the probability of receiving an EWS as f(T, lt+1, lt), cf. equation (1). Respectively, the

probability of not receiving an EWS is given by (1 − f(T, lt, lt+1)). The probability of

following a certain path is then the product of all those factors over all locations the

agent has visited. For a given threshold T we know whether a path is safe, i.e. all

lt ≤ T , or not. Accordingly we get, for a given threshold T , the probability of crossing

the threshold. In a last step we calculate the total probability of crossing the threshold

by weighing each threshold T by its probability p0(T ) and then summing over all possible

threshold positions T .5
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Figure 7: Contour plots showing the total probability of crossing T along the optimal path

Figure 7 shows the risk of crossing the threshold as a contour plot, where we vary the

two relevant parameters of the EWS structure, namely the sensitivity K on the vertical

axis and shape parameter λ on the horizontal axis. Cold and warm colors represent

a small and high probability of crossing the threshold, respectively. We show results

for three values of the discount factor, β=0.95, β=0.8 and β=0.5, and the numerical

simulation is based on six locations and time steps (locations ranging from l=1 to L=6

and time ranging from 0 to tmax=5) as in the plots of the optimal paths above. Here,

5The underlying assumption here is that the agent’s belief about the probability of different threshold
positions is accurate in the sense that it matches the ‘objective’ probability. An analysis of the risk of
crossing the threshold when the agent has a biased belief (either overly optimistic or overly pessimistic)
is left for future research.
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we focus on the case k=K and discuss the case k=0 in Appendix A-3.

We first note that if shape parameter or sensitivity is zero, λ =0 or K=0, then the

probability of crossing the threshold does not depend on the respective other parameter.

This is intuitive: A shape parameter of λ = 0 implies that the EWS structure is not

informative, it does not matter whether you always receive an EWS (K=1) or never

(K=0) if the likelihood of receiving an EWS is not a function of the distance to the

threshold. Similarly, an EWS structure with K=0 implies that the agent never gets an

EWS, even if the distance resolution of the EWS structure, encoded in λ, is very high.

Comparing the plots from left to right illustrates the following result:

Result 4 The risk of crossing the threshold increases as the discount factor β decreases.

This result is expected: the more the agent discounts the future, the less they care

about whether the threshold is crossed or not. Looking at each plot by itself, we then

notice the following result:

Result 5 The probability of crossing the threshold is not a monotone function of the

quality of the EWS structure, i.e. of sensitivity K and shape parameter λ.

This finding is surprising and future research ought to verify whether these patterns

hold more generally or whether they are an artifact of the numerical analysis. In general,

however, this non-monotonicity is quite intuitive, it comes from the fact that the EWS

introduces two aspects: On the one hand, the agent wants to advance to receive signals

(this increases the risk the agents is exposed to), but on the other hand, the EWS

also warns the agent, so that she is exposed to less risk. Depending on the parameter

constellation, either effect may be stronger. For example, it is clear that for K=1 the

former effect never increases the risk of crossing the threshold (as the miss rate is zero).

Consider the case of β=0.95 first, cf. Figure 7 (a). Here, the basic pattern is that the

higher λ and the higher K, the lower is the probability of crossing the threshold (but

even here we already observe a non-monotonic behavior in the sensitivity parameter K).

The case β=0.8 clearly shows non-monotonic behavior, cf. Figure 7 (b). While it

is still true that very large values of K and λ are associated with a low probability of

crossing the threshold (top-right corner), we see for intermediate values of sensitivity K

that an increase in λ first increases the risk when λ is small, but later decreases the risk

when λ is high. Similarly, for intermediate values of the shape parameter λ, an increase

in K increases risk as long as K is below 0.2; for higher values of K, however, a further

increase in K reduces the probability of crossing the threshold.
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Finally, consider the case of β=0.5, cf. Figure 7 (c). Not only do we observe the

generally higher risk of crossing the threshold already mentioned above; we also see that

we now see a monotonic behavior in the shape parameter, but in a strange and surprising

way: Here, the higher λ, the higher the probability of crossing the threshold. This is

the opposite pattern than the one found for a high value of beta, cf. Figure 7 (a). What

persists is the non-monotonicity in sensitivity K: We find high risk for sensitivity pa-

rameter values around K=0.2 and K=0.6, and relatively low risk for extreme sensitivity

values around K=0 and K=1.

Having discussed how the total probability of crossing the threshold depends on the

EWS structure, we now show how the value function depends on the EWS (see Figure

8). Not surprisingly, the value increases with EWS quality, for all values of the discount

factor. This finding, summarized in the final result, is essentially a reflection of the

Bayesian principle that better information cannot harm.

Result 6 The optimal value increases with the informativeness of the EWS, that is, the

higher K and the higher λ.

Inspecting Figure 8, we see that the value function is more sensitive to a change in

K than to a change in λ. Moreover, we note that the shape of the indifference curves

is virtually independent of the discount factor β (while the attainable value of course

decreases drastically with a lower β).
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Figure 8: Value function at l0 for different values of K and λ.
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5 Discussion

In this paper, we study how the opportunity to receive an early warning about the

location of a tipping point affects the optimal management of a resource that would

collapse once the tipping point is crossed. Our model is abstract and generic, but the

key application that we have in mind is the climate system.

Interpreting the location choice lt as the target level of global warming of the agent,

a hypothetical and benevolent world government, at time t, we find that the existence

of an EWS would always improve welfare. However, we also find that an EWS may

lead to a slippery slope in risk taking in the sense that the agent increases the level

of global warming beyond the level that would be optimal in absence of an EWS. One

reason is that the agent may allow more global warming in the belief that she would be

warned when she would get close to the tipping point. Moreover, the EWS may itself

induce an incentive to increase global warming in order to receive new information about

the location of the tipping point. Both these reasons can then, for certain parameter

combinations, lead to a situation where the EWS actually increases the total probability

of experiencing the breakdown of the climate system.

Note that from a utilitarian perspective, this increase in risk taking is perfectly fine.

There is no time-inconsistency or irrationality behind this result. It derives from back-

wards induction and maximizes discounted utility. From a conservationist’s perspective,

of course, the fact that EWS could lead to a higher probability of resource collapse is

worrisome. Ruling out a trade-off between the utility of the discounted consumption

stream and the value of preserving the resource, could therefore lead to calls for a “pre-

cautionary principle” as a commitment device. Analyzing under which circumstances a

precautionary principle would be selected by agents with different mixes of preferences

in our model would be an interesting complement to the recent advances of Guillouet

and Martimort (2019), but is clearly beyond the scope of the current paper.

Allowing for multiple agents with potentially non-aligned preferences is more gen-

erally an important avenue for future research. Here, we have assumed a single agent.

How would results change if there is a sequence of agents, such as (overlapping) gener-

ations? Which contracts would avoid situations in which early generations either take

excessive risks or explore too little from the perspective of later generations? Similarly,

how would results change if the climate system is shared by several non-cooperative

agents that live at the same time? Under which structures of informational spillovers

would it be possible to agree on the optimal path, and under which structures would we

be in a similar situation as Cassandra, where no one would believe the warning signal
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disclosed by another agent?

In this paper, we have taken the quality of the EWS system as given. That is, for

a given parameter combination of K and λ, we have calculated the optimal path (con-

tingent on signal realizations) and the resulting value and risk of crossing the threshold.

However, the existence and the informativeness of generic early warning signals is not

undisputed in the natural science literature. Boettiger and Hastings (2012, 2013), for

example, point out that the detection of generic EWS is likely subject to the prosecu-

tor’s fallacy (false positives), because only systems with known regime shifts are being

analyzed. Such a concern could be included in our model by allowing agents to hold a

probabilistic belief about K. Future work could then also study how agents that have

overly optimistic beliefs about K differ in their experimentation choices from agents

that have overly pessimistic beliefs about K. In a setting where crossing the tipping

point does not lead to an irreversible collapse, this may lead agents to conduct “meta-

experiments”, not to learn more about the potential location of T , but to learn about

the quality of the EWS system.

Finally, an important distinction that we have made in our model and analysis is

whether the agent could only learn when choosing a location in the unexplored state

space, or whether she could receive an EWS also when not actively experimenting.

Either case could be more realistic, depending on the specific situation that one would

want to model, and maybe also on the general epistemological stance that the researcher

takes. An idealistic researcher in the German tradition may favor an approach where

learning is possible also without action, whereas a realist in the Anglo-Saxon tradition

may share the view of Aristotle that there is no knowledge outside of experience.

In conclusion, early warning signals are an important and exciting topic for research,

especially in light of the growing concerns about tipping points in the climate system

(Lenton et al., 2019) Here we have presented a first model that allows us to explore

the effects of EWS on optimal dynamic management. While we could only present a

numerical solution in the present paper, we are optimistic to be able to prove the key

results analytically. Stay tuned.
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Appendix

A-1 First-order condition

We show that the continuation value in (7) is independent of lt (as this information is encoded
in pt(T)). Assume an interior solution, giving the the first-order condition:

(
∂

∂l
V (lt+1, G(s = 1; ...) +

( ∂
∂p
V (lt+1, G(s = 1; ...)

∂

∂l
G(s = 1; ...)

)
q̂(s = 1, lt+1, pt(T ))

+ (
∂

∂l
V (lt+1, G(s = 0; ...) +

( ∂
∂p
V (lt+1, G(s = 0; ...)

∂

∂l
G(s = 0; ...)

)
q̂(s = 0, lt+1, pt(T ))

+ V (lt+1, G(s = 1; ...)
∂

∂l
q̂(s = 1, ...) + V (lt+1, G(s = 0; ...)

∂

∂l
q̂(s = 0, ...) = 0

(10)
Write π(lt, pt(T )) = l∗t+1. Insert for π and differentiate with respect to lt. It follows that

∂

∂lt
V (lt, pt(T )) = π′[...], (11)

where the terms in the bracket equals 0 because lt+1 fulfills the first-order condition.
We can therefore write

V (pt(T )) = max
lt+1

{
u(lt) + β

×
[
q̂(s = 1, lt+1, pt(T ))V (G(s = 1; lt+1, pt(T )) (12)

+ q̂(s = 0, lt+1, pt(T ))V (G(s = 0; lt+1, pt(T ))
]}
,

with first-order condition

V ′(G(s = 1; lt+1, pt(T ))
∂G(s = 1; lt+1, pt(T ))

∂lt+1
q̂(s = 1, lt+1, pt(T )

+ V ′(G(s = 0; lt+1, pt(T ))
∂G(s = 0; lt+1, pt(T ))

∂lt+1
q̂(s = 0, lt+1, pt(T ))

+ V (G(s = 1; lt+1, pt(T ))
∂q̂(s = 1, lt+1, pt(T ))

∂lt+1

+ V (G(s = 0; lt+1, pt(T ))
∂q̂(s = 0, lt+1, pt(T ))

∂lt+1
= 0

(13)
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A-2 Early warning signals and hypothesis testing

In this section we first outline the relationship between the agent’s decision-problem of choosing
a location and the general statistical concept of hypothesis testing. In a second step, we relate
the parameters of the EWS structure to the well-known concepts of sensitivity and specificity of
a test.

The link between the decision problem and hypothesis testing. For simplicity
assume that the set of possible threshold locations is the unit interval [0, 1] and that the agent is
located at l = 0. The agent contemplates whether to stay or move; and if to move, how far. The
agent, therefore, is interested in hypotheses of the form “The interval I(ε) = (0, ε) in front of me
contains the threshold”. If the latter hypothesis is true, then it is not safe to move to l+ ε. The
agent knows that the EWS structure provides information regarding the hypothesis.6. This can
be regarded as a “test” about the hypothesis where an EWS, s = 1, corresponds to a “positive”
test result and the absence of an EWS, s = 0, corresponds to a “negative” test result.

Sensitivity and specificity. In the following we restrict to the EWS structure

f(d) = Ke−λd, (14)

where d = T − l is the distance between the actual threshold T and the location at which the
EWS is observed / is not observed and λ ∈ [0,∞] and K ∈ [0, 1]] are parameters. It is those
parameters that we want to link to properties of the hypothesis tests now.

For this section we make another simplifying assumption, namely that the decision-maker
holds a uniform belief over all possible (remaining) threshold positions.

For a given ε > 0, the relevant hypothesis is that the threshold is less than ε away, i.e.
T ∈ I(ε). Based on this hypothesis, we can characterize the ‘test’ EWS by

TP(ε) := Pr (s = 1 | T ∈ I(ε)) true positive

FN(ε) := Pr (s = 0 | T ∈ I(ε)) false negative

FP(ε) := Pr (s = 1 | T 6∈ I(ε)) false positive

TN(ε) := Pr (s = 0 | T 6∈ I(ε)) true negative

It suffices to calculate TP(ε) and TN(ε) as FN(ε) = 1−TP(ε) and FP(ε) = 1−TN(ε). It is

TP(ε) = Pr (s = 1 | T ∈ I(ε))

= [Pr (T ∈ I(ε))]−1 · Pr (s = 1 ∧ T ∈ I(ε))

=
1

ε

∫ ε

0

Ke−λτdτ

=
1

ε

K

λ
(1− e−λε) (15)

6Actually, the EWS structure provides information simultaneously about all hypothesis indexed by
ε ∈ (0,∞)).
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Similarly, we get

TN(ε) = Pr (s = 0 | T 6∈ I(ε))

= [Pr (T 6∈ I(ε))]−1 · Pr (s = 0 ∧ T 6∈ I(ε))

=
1

1− ε

∫ 1

ε

(1−Ke−λτ )dτ

=
1− ε
1− ε

− 1

1− ε

∫ 1

ε

Ke−λτdτ

= 1 − 1

1− ε
K

λ

(
e−λε − e−λ

)
(16)

The agent wonders whether to move at all and is accordingly interested in these tests for
very small values of ε. We therefore analyse the limit of above expressions for ε→ 0. From (15)
we get

TP(0) = lim
ε→0

TP(ε)

=
K

λ
lim
ε→0

λe−λ

1

= K (17)

Similarly, we use (16) and get

TN(0) = lim
ε→0

TN(ε)

= 1 − K

λ

(
1− e−λ

)
(18)

The true positive rate of a test is usually called sensitivity of the test. We therefore call K the
sensitivity of the EWS structure, or short EWS sensitivity. The true negative rate of a
test is called the specificity of the test. We here see that the specificity of the EWS structure
depends on both K and λ. It is interesting to look at the extreme cases of λ,

lim
λ→0

TN(0) = 1−K , lim
λ→∞

TN(0) = 1 (19)

We see that the EWS ’test’ has maximal sensitivity and specificity when K = 1 and λ is large;
this is essentially the case when, from hearing, the agent can infer that the threshold is close,
and from not hearing they can infer that it is safe to walk. The EWS test has a high sensitivity
and low specificity when K is near 1 and λ is near 0. This is the case when the agent nearly
always receives an EWS, irrespective of whether the threshold is close or not, and which is hence
of little use. On the other hand, an EWS structure with low K, essentially for all values of the
shape parameter λ, displays a high specificity; if the threshold is not near the agent will typically
not receive an EWS by mistake; the problem in this case is that even if the threshold is close
they will often not receive an EWS. From (17) and (19) we see that it is impossible to have an
EWS test with both low sensitivity and low specificity.

Extensions. What remains to be done is to generalize above analysis to arbitrary beliefs, i.e.
establish the link between the EWS parameters K and λ and the properties of the hypothesis
test for any belief the agent may hold. This is left for future research.
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A-3 Total probability of crossing the threshold when k=0

Figure A-1 shows the contour plots that indicate the risk of crossing the threshold when the
agent can only receive an EWS when actively experimenting (k=0). While the specific values
differ from the situation when k = K shown in Figure 7 in the main text (as the optimal paths
differ, notably they are simpler when k=0 because there is no stopping and walking again), we
see the same non-monotonicity. In other words, the risk of crossing the threshold may be higher
with an EWS than without.
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Figure A-1: Contour plots showing the total probability of crossing T along the optimal path
when k=0

Similarly, the value function is qualitatively the same when k=0 or when k=K (compare
Figure A-2 below to Figure 8 in the main text). That is, the value is monotonically increasing
the more informative the EWS (higher K and higher λ).
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Figure A-2: Value function at l0 for different values of K and λ when k=0

A-4 Numerical implementation

We use Matlab to solve the model. We rely on @tree, which is a user generated Matlab class to
represent tree data structures. The tree data structures enable a representation of the agent’s
original problem by backward recursion through paths of location choices and signal realizations
that are clearly not suboptimal (see Section 3).

The structure of the code is perhaps clearest from considering the location tree, which stores
the agent’s current location through such paths. Suppose for ease of illustration that tmax = 2
and L = 3. The root of the location tree is the initial location, that is l0 = 1. The root of the
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tree has three children nodes. These correspond to the timing after a location choice is made
(l1 ∈ {1, 2, 3}) but before signals are realized, and store the new location. We add two nodes
to each of the children nodes of the root, corresponding to the timing after signals are realized.
These nodes store the same location as their parent (the relevant children node of the root). At
the relevant grandchildren node of the root, the agent makes a new location choice.

Figure A-3: Example of location tree, under assumptions tmax = 2 and L = 3.

In addition to the location tree, we represent the following information in tree data structures:

• Signal tree: Stores whether the agent can observe and receive a signal at each node.

• Time tree: Stores the time at each node.

• Belief tree: Stores the belief at each node.

• Value tree: Stores the value at each node.

• Optloc tree: Stores the optimal location choice at each node.

• Optmove tree: Stores the optimal node to relocate to at each node.
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