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Abstract

Decarbonizing the electricity sector, through incorporating renewable generation,
is of central importance to emission reduction policies around the world. However,
many renewables are intermittent; incorporating largely intermittent generation into
the grid poses significant challenges since power can only be dispatched up the ran-
dom level of supply determined by nature. This feature of intermittent supply has
raised concerns about the potential volatility and viability of electricity spot markets
with intermittent generation. This paper builds a dynamic general equilibrium frame-
work of speculative storage to understand the potential role of commercially provided
electricity storage in attenuating the volatility of a spot market with intermittent sup-
ply. Our computed results show that grid-scale storage can serve to dispatch power
when needed, stabilising a market; however, for there to be sufficient incentives for
investment in storage capacity, the supply volatility must be high enough to generate
incentives for storage speculators to invest in storage capacity.
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1 Introduction

Motivated by the large contribution of the electricity sector to carbon emissions, policy
makers have placed central importance on de-carbonizing electricity generation to reduce
aggregate emissions. Many governments have adopted policies – varying from premium
tariffs to quantity mandates with tradable certificates – to promote renewable electricity
generation. These mandates have already led to a significant share of electricity generation
from intermittent renewables.
However, integrating significant shares of intermittent generation sources (“intermittent
sources”, henceforth), such as wind turbines (“wind”) and solar photovoltaics (“solar”),
into the electricity system poses unique challenges due to the characteristics of electricity
markets and intermittent generation. Among markets for goods, electricity markets are
unique because the market must clear, demand must equal supply, at every instant for
the grid to be stable. Generation from hitherto common sources such as coal and natural
gas has been “dispatchable” i.e. its load can be varied continuously and predictably up to
the maximum generation capacity even for short periods. Consequently, so long as spare
capacity is available, meeting varying power demands, and thus balancing the system, is a
relatively easy task. In a market with only intermittent renewable supply, power can only
be dispatched up to the random level determined by nature, regardless of consumers’
willingness to pay. This fact has led policy makers to raise concerns about the potential
volality of markets with intermittent supply. 1

This paper develops a dynamic general equilibrium framework to understand the role a
key anticipated mechanism to address the challenges posed by renewable, grid scale stor-
age, can play in addressing the challenges to market stability posed by intermittent supply.
Owing to significant predicted cost reductions in electricity storage technologies, the liter-
ature and policy makers have anticipated that grid-scale electricity storage ("storage") can
play a key role in addressing the challenges posed by integrating renewables into electric-
ity markets (Heal (2016); Newbery (2016); Sinn (2017); Zerrahn et al. (2018)). Storage can
address the challenges we raised above by becoming a predictable dispatchable source of
power, smoothing out supply shocks. Storage may also be able to help stabilize the market
price, allowing for investment in generation capacity. The main mechanism through which
storage providers can "stabilize" the market is by taking advantage of arbitrage opportu-
nities; commercial storage providers can buy electricity when prices are low and dispatch
electricity when demand is high and/or supply low.
Grid-scale storage, in fact, is anticipated to play different roles, at different time scales, in
electric systems with significant share of intermittent generation, including (Heal (2016);
Newbery (2016); Antweiler (2018)): shifting generation between more to less expensive pe-
riod (energy arbitrage); minimising curtailment by allowing generators to store excess elec-
tricity (the supply-side storage option); alternatively, intermittent generators may them-

1Intermittent sources face two sources of variability. The first is predictable, for example, the diurnal cycle.
The second is unpredictable variability in generation induced by unpredictable variation in e.g. wind . We
focus on the latter aspect in our analysis.
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selves deal with the possibility of curtailment by installing significant storage capacity
allowing them to capture these arbitrage opportunities.
Despite the significant role storage can play in electric systems with intermittent gener-
ation, the literature on the economics of electricity storage is sparse (Heal, 2016; New-
bery, 2016; Antweiler, 2018). In addition, the current literature in economics evaluating
the trade-offs between storage and intermittent generation (Pommeret et al., 2019; Helm
and Mier, 2018; Abrell et al., 2019) is focused largely on predictable variability (e.g. di-
urnal) in intermittent generation and on policies assisting the transition to intermittent-
dominant electricity generation (see section 2), largely in a non-market setting (see e.g.
Newbery et al. (2018); Riesz and Milligan (2015) and the references therein). The signif-
icance of unpredictable variability in intermittent generation has been discussed before
(Heal (2016) and references therein) and the possibility that the variance of aggregate gen-
eration increases with aggregate intermittent capacity has been demonstrated for Germany
in Sinn (2017). However, we are unaware of any dynamic general equilibrium analysis of
a market-based determination of price and investment in generation and storage capacity
when intermittent generation is stochastic. In particular, a detailed understanding of the
effects of grid-level storage upon price and supply volatility and the effects of this on the
ability of the market to facilitate sufficient generation and storage investment is missing.
Our intention is to fill this gap: we build a theoretical model to understand how electricity
markets of the envisaged future, which are largely renewable, will work.2 We focus on
the post-transition setting, where intermittent sources of generation are already dominant,
where electricity is traded in a wholesale (spot) market (as today in many countries) and
where the day ahead prices determine both capacity investment and storage dynamics. In
this context, we model storage both as a source of demand and supply, storage providers
can buy when the price is low in anticipation of supplying power when the price is high.
The decision to invest in storage and generation capacity is also made in the market taking
into account the future path of returns from owning storage or generation capital.
The key questions we address include: the nature of the relationship between storage and
generation capacity, such as whether storage complements, or substitutes for, generation;
the dependence of this relationship upon volatility of supply; the effect of storage upon
price volatility; and key questions involved in how price, and demand, volatility relate to
welfare. Questions such as these are at the forefront of the policy discussion on integrating
significant share of renewable generation in the electric grid and the literature in economics
examining them in a rigorous framework is sparse.
The model here draws on an established tradition of speculative models of commodity
storage dynamics (Wright and Williams, 1982; Scheinkman and Schechtman, 1983; Deaton
and Laroque, 1992; Bobenreith H. et al., 2002). (See Ernesto Guerra et al. (2018) for a recent
discussion of technical issues.) We build on the standard commodity storage model in key
ways by including a demand shock, endogenous generation capacity and storage capacity
decisions. This project also seeks to make a technical contribution by establishing new

2Renewable-dominance is in fact a key goal of many policy makers including e.g. the EU, which aims at
achieving a target of at least 70% of total generation being renewable by 2045.
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results on the existence and convergence properties of the model with endogenous storage
capacity decisions on unbounded state-space.
In our computational experiments, we seek to understand the role storage can play in
attenuating the effect of supply volatility on equilibrium demand volatility. We seek to
understand when and how storage can play the role of dispatchable power in a fully inter-
mittent system. Our main finding is that storage can play the role of dispatchable power,
effectively "breaking the link" between supply shocks and equilibrium demand. However,
for there to be sufficient incentives for investment in storage capacity, surprisingly, inter-
mittent supply must be sufficiently volatile. Without sufficient volatility in intermittent
generation there may not exist the arbitrage opportunities to drive investment in storage
capacity.
The rest of the paper proceeds as follows: Section 2 places our work in the context of
the relevant literature, while the model details are developed in Section 3. The results of
preliminary numerical simulations will be presented in Section 4.

2 Related Literature

Our work relates to an increasing number of studies dealing with the energy transition
with storage, where intermittent generation is beginning to arise in a system comprised
largely of conventional generation sources, with storage being a potential source of de-
mand or supply. While many studies evaluate storage along with intermittent generation
as an explicit strategy in the energy transition in a static set up, treating in essence stor-
age capacity as fixed (e.g. Sinn (2017); Zerrahn et al. (2018)), only a few papers explicitly
consider storage in a dynamic set up (or at least allow for capacity addition), including
Pommeret et al. (2019); Helm and Mier (2018); Abrell et al. (2019). Some of this litera-
ture, in turn, builds on models focused on the design of electric system where intermittent
generation is accounted for (e.g. Ambec and Crampes (2012)). The motivation is climate
related, and policies considered in this setting reflect it, a tax (e.g. upon conventional fu-
els) or subsidy (for intermittent generation or storage) leading to the appropriate emissions
level.
Of the three most relevant studies, Helm and Mier (2018) only consider the predictable
variability involved in the provision of electricity from intermittent sources, not the ran-
domness in generation from intermittent sources arising from the inherent uncertainty
in actual wind or solar-related conditions. The set up here is an extended version of a
classical discrete-time peak-load pricing set up with storage, with conventional and inter-
mittent generation technologies and a storage technology, and comprises of three-stages;
in the first stage, government chooses policy (capacity subsidies/taxes); in a second stage,
capacity choice occurs; finally, day-to-day operations occur. Variability is accounted for
by letting generation depend upon a deterministic function of time, αptq (over a cycle, de-
fined arbitrarily). Storage, as always, involves conversion losses. In view of the cyclic na-
ture of variability, the model leads to periods of storage followed by periods of discharge.
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Capacities (hence generation) are provided by competitive firms in respective sector. De-
mand and supply both being subject to no uncertainty, market clearing is simple, and the
market maximises consumer surplus. The optimal policy here is more complex than the
simple pigouvian tax and depends upon relative fossil and intermittent capacity choice,
and whether conventional generation is allowed to access storage; for low intermittent
share, renewable subsidies and taxation on storage maximise welfare; at higher levels of
penetration, this scheme is second-best.
Pommeret et al. (2019), on the other hand, consider the case of a planner in continuous
time, and evaluate the effects of both variability and (a very simplified form of) intermit-
tency. A day is is defined by two periods, ‘day’ and ‘night’, with intermittent generation
available only during the ‘day’. Consumers evaluate consumption during these periods
differently, have a low elasticity of demand, and are unwilling to substitute demand be-
tween these two time periods (demand is separable across the periods). Storage plays two
roles here; in the first role, it provides the needed “time shifting” (detailed above) while in
the second role, it can “smooth out” some of the uncertainties involved in intermittent gen-
eration. Uncertainty is modelled very simply, as leading to one of two outcomes (“sunny”
or “cloudy”) with known probabilities. The planner maximizes utility from consumption
in these two periods, net of the cost of electricity provision. Storage capacity is available
at no investment cost, subject to the usual conversion losses. Intermittent generation has
a capacity factor, there is a carbon budget ceiling, and capacity is costly, comes online in-
stantaneously. In the case with no intermittency, a key finding is that investment in solar
panels here may be monotonic or not, depending upon many aspects of the problem. With
intermittency, much depends upon how “significant” the uncertainty involved is: if low
enough, it can be effectively ignored; if high enough, storage optimally commences sig-
nificantly early, since “smoothing out” is now rather important. While no specific policies
were considered (e.g. taxes/subsidies), the presence of a carbon budget drives much of
the system.
The study of Antweiler (Antweiler, 2018) can be considered complementary to ours in a
sense. That study considers stylized models of both the energy arbitrage and the supply
side option channel of grid-scale storage, and provides an exposition of the effect of dif-
ferent parameters in a counter-factual setting. The basic set up for the energy arbitrage
framework is similar to the others detailed above, but capacity choices are exogenous,
and no explicit price determination occurs. In any case, we are unaware of any rigorous
analysis of the scope of the energy arbitrage channel in the context of stochastic weather
conditions and endogenous price and capacity choice. Our analysis, similar to other ag-
gregate analyses detailed above, considers aggregate grid-level storage that combines both
channels identified above.3

3Very little is known regarding the economic aspects of the supply side option, investigated only in
Antweiler (2018) in a stylized setting, which may be an optimal response when curtailment is uneconomi-
cal (it occurs frequently or is of significant duration)
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3 Equilibrium storage and investment with stochastic demand
and supply

3.1 Model Outline

We develop a speculative storage model enriched with stochastic consumer demand and
supply and an endogenous choice of storage capacity and generation capital. Specula-
tors make hour-to-hour decisions about how much power to charge or discharge subject
to the wattage of their storage and "round-trip" line losses. Speculators also make an ini-
tial decision about the total storage capacity (total gigawatt hours of of "battery capacity").
Generators make an initial investment decisions on the level of intermittent generation
capacity (total gigawatts of name-plate generation capacity). Consumers provide the ul-
timate source of demand, and an equilibrium corresponds to a price that clears storage
demand/supply of power, consumer demand and supply from generators for each hour
and "state of the world".
We note that the storage framework developed here model bears a strong resemblance
to the speculative storage model in e.g. Deaton and Laroque (1992), with the addition of
endogenous decisions about storage capacity and generation capital, stochastic demand
non-linear constraints on flow and friction-related elements in storage losses.
A key way in which the market with storage differs from that without, encapsulated in
the conventional L-shaped (or step) supply curve, is in the inherently dynamic nature of
determination of price. Storage is by definition an arbitrage decision over time, and hence,
the equilibrium price for any day will be connected to expected price at all future periods
and states.4

While we enrich the standard speculative storage model with many features of electricity
markets, our initial model does make a number of simplifying assumptions; in particular,
we assume i.i.d shocks, no curtailment, no negative prices and a continuum of homoge-
neous price taking generators.
A few aspects of the model are described next, before mathematical details of the model
are presented.

Demand Unlike in the existing storage literature, demand is both somewhat elastic and
random, meaning the overall degree of mismatch between demand and supply is
larger than when demand is treated as a fixed amount per hour. Consequently, the
significance of storage is potentially enhanced. For now, the demand curve does not
allow negative prices.

Storage Storage acts both as a source of supply and of demand, depending upon the price.
Storage capacity is determined as a fixed one-off capital investment by representative

4While this dynamic is equally true in hydro-dominant systems, there is a key difference between storage
and hydro-power, which is that equilibrium demand satisfied need not equal total generation (it can be more
or less).
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speculators. The investment decision takes into account the discounted sum of future
profits from owning the storage capacity.

Generation We only consider intermittent generators, who, with a known capacity at ev-
ery time period and with a zero marginal cost of generation, face a random weather
event. The resolution of the weather shock at each time period determines the to-
tal generation. In the absence of curtailment (and of storage capacity restrictions),
all electricity generated must be supplied to the market. In other words, the supply
curve of generation is vertical at the generation level given current weather condi-
tions.

Investment in Generation Capacity is made as a fixed one-off decision that takes into ac-
count the

Market Structure The market structure we consider is that of a spot or day ahead mar-
ket, which is becoming common the world over.5 The interaction between random
demand and supply in our model can lead to many scenarios, including significant
over or under-supply (respectively on days with too much demand and too little
wind and vice-versa). In contrast to many other settings with either no uncertainty at
all (Abrell et al. (2019); Helm and Mier (2018)) or only a high-low type of uncertainty
in supply (Pommeret et al. (2019)), our model not only accommodates the full range
of scenarios but also ensures that the resulting market price takes into account these
dynamics. The market outcomes here represent a benchmark for a decentralised set-
ting, and its structure is consistent with both the energy and the speculative storage
literature.

Curtailment For the initial version of the model, we do not allow for curtailment of inter-
mittent generation. With the introduction of unlimited storage, clearly curtailment
will never be needed, since prices can never go negative (even with round-trip losses,
it is clearly never sensible for the speculators to not store all available energy at non-
positive prices). Two cases may however lead to curtailment being necessary: (i)
without storage, it is profitable to curtail when prices can go negative i.e. in cases
where demand curve can accommodate negative prices; and (ii) with storage, when
there is a fixed storage capacity (since negative prices are possible when capacity
limits are binding). In any case, curtailment is also determined in equilibrium and
will be considered in a later analysis.6

5Many EU countries operate and share markets of this form e.g. the Nordic and Baltic countries together
participate in the NORDPOOL market, France and Germany in the EPEX-SPOT and Belgium and Netherlands
in the APX-ENDEX; many regional spot markets in the U.S. share many of these characteristics as well; and
the U.K. also operates a day-ahead market of the form considered here, the N2EX.

6It is important to note that in reality, curtailment is largely driven by two considerations: (i) grid capacity
and system frequency considerations, with this reason being by far the most important one for curtailment
(citations); (ii) contractual obligations–e.g. minimum offtake contracts– with existing conventional fossil gen-
eration plants (citations). In any case, at present, curtailment often occurs due either to a mix of intermittent
and non-intermittent generation, and limited transmission capacity. In most models of generation, the latter
reason is ignored and only the former is incorporated, an approach we will follow.

7



3.2 Model

3.2.1 Model environment in renewable only model

We now proceed to formally describe the model. Let t “ 0, 1, 2, . . . index time in the model.
Each time period represents an hour.
We begin with the structure of probability in the model. Let all uncertainty be defined on
a probability space pΩ, Σ, Pq. Let pztq

8
t“0 and petq

8
t“0 be two random variables defined on

pΩ, Σ, Pq with support Z and E respectively. The shocks pztq are generator supply shocks
and the shocks petq are consumer demand shocks.

Assumption 1. Uncertainty satisfies:

1. the random variables pztq are independently and identically distributed (i.i.d) with support
r0, 1s

2. the random variables petq are i.i.d demand shocks with finite variance.

We will use the term pFtq
8
t“0 to denote the filtration generated by the sequence pzt, etq

8
t“0.

Throughout the paper, whenever we use equalities or inequalities involving random vari-
ables defined on pΩ, Σ, Pq, the inequalities will hold P almost everywhere.
There is a continuum of two agents: generators and speculators. Both generators and
speculators face a two-stage problem. At the beginning of time 0, before shocks have
been realised, the generators decide upon a name plate generation capacity K that can be
purchased at price PK that we assume does not depreciate through time. Similarly, storage
providers decide on a storage capacity (number of batteries) S̄ that does not depreciate
through time and costs PS̄. After the first stage decisions have been made, generators
inelastically supply ztK of electricity to the spot market. Storage providers can also storage
electricity up to the level S̄. We assume the marginal cost of generating renewables is
zero in each period, thus generators would supply up to their capacity if prices are non-
negative.
At each t, storage providers make a second stage decision about how much total power to
take into the next period. The storage providers’ choices are constrained by, first, an upper
bound S̄ on total storage. Storage also depreciates period to period and the stored elec-
tricity taken by speculators in from the previous period into period t is p1 ´ γqSt. Storage
providers also face a constraint on how much power can be charged/ discharged in each
period. That is, stored power must satisfy:

´ ζS̄ ď p1 ´ γqSt ´ St`1 ď ζS̄, ζ P p0, 1q, (1)

where ∆St : “ St`1 ´ p1 ´ γqSt represents the net change in storage between periods t, t `

1. When St`1 ´ p1 ´ γqSt ą păq0, the battery is charging (discharging) in period t.7

7We note that our model is directly written in terms of the next period stock, St`1, rather than the amount
charged or discharged. This is due to the fact (clarified in §) that (as in many dynamic stochastic frameworks)
we can directly control St`1.
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Finally, storage providers face round-trip losses. Let ϕpxq “
η1

1`e´η2x ` η3 be a logistic round-
trip loss function, where x is the change in storage, which can be positive or negative. If
at time t, storage providers decide to increase their stock of stored power, they need to
purchase ϕpSt`1 ´ p1 ´ δqStq(a value greater than 1) times the amount of energy "pumped"
into storage to make up for losses incurred by taking power from the grid and placing
it in storage. Conversely, if at time t, storage providers decide to use their stored power
and sell it on the market, then ϕpSt`1 ´ p1 ´ δqStq(a value less than 1) times the amount
of power pumped out of storage will become available on the spot market. Each period,
prices must clear the market with no free disposal. The round trip looses will imply the
following market clearing condition:

DpPt, etq ´ ztK “ ϕp∆Stqp∆Stq (2)

The expression says that total new electricity storage (or discharged into the market), sub-
ject to round-trip losses, must equal the balance of generation and consumer demand. To
ease the length of notation, we will define:

Ξp∆Stq : “ ϕp∆Stqp∆Stq (3)

as the total power bought/sold on the spot market by storage providers at any time t.
Turning now to consumer demand, we assume a demand function D : R2 Ñ R, whose
first argument is price and second argument is an exogenous shock.

Assumption 2. The demand function takes the form DpPt, etq “ D̄eet P
´ 1

η

t , where D̄ is an exoge-
nous demand shifter and ´η is the elasticity of demand.

Note the function D is invertible in the first argument and limxÑ8 Dpx, eq “ 0 for all e. Let
H denote the inverse of D.

3.2.2 Second stage maximisation problem

We now turn to the speculators’ second stage maximization problem. After the decision for
the level of storage capacity has been made, the speculators choose a sequence of history
contingent storage decisions to maximize the net present value of their profits. Thus, we
have defined the second stage problem as a sequential problem. We will later show that the
sequential equilibrium is equivalent to a recursive equilibrium, where firms follow policy
rules that define next period storage based only on the current period state. A sequential
equilibrium depends on the states in all periods to date.
The speculators’ maximization problem can be written as:

max
pStq

8
t“0

E0

8
ÿ

t“0

βtPtΞp∆Stq (4)
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such that pStq
8
t“0 is a sequence of random variables adapted to the filtration pFtq

8
t“0, 0 ď

St ď S̄ and (1) holds almost everywhere.
We characterize the equilibrium using first order conditions of the storage speculators. Be-
gin by noting that for each t, speculators maximize (4) if and only if speculators maximize
the "one period deviation problem":8

max
S̄ěSt`1ě0

PtΞ p∆Stq ` βEt tPt`1Ξ p∆St`1qu (5)

such that St`1 is Ft measurable and (1) holds. The first order condition yield:

pBDq PtΞ1 p∆Stq ě βp1 ´ γqEtPt`1Ξ1 p∆St`1q if St`1 “ maxtp1 ´ γqSt ´ ζS̄, 0u (6a)
pIq PtΞ1 p∆Stq “ βp1 ´ γqEtPt`1Ξ1 p∆St`1q if St`1 ě maxtp1 ´ γqSt ´ ζS̄, 0u (6b)

pBCq PtΞ1 p∆Stq ď βp1 ´ γqEtPt`1Ξ1 p∆St`1q if St`1 “ mintζS̄ ` p1 ´ γqSt, S̄u (6c)

The first order conditions are divided into three regions: the speculators’ constraint bind-
ing while discharging (BD), an interior region where constraints do not bind (I) and the
constraint binding while charging (BC). The three regions are represented in the figure
below.

Today’s total assets

p1 ´ γqStmaxt0, p1 ´ γqSt ´ ζSu mintS, p1 ´ γqSt ` ζSu

I

BD BC

Figure 1: Equilibrium regions for values of St`1 within each period.

Discharge constraint binds When the storage constraint binds at BD and speculators can-
not discharge any more, the price of selling power (PtΞ1p∆Stq) cannot be less than the
benefit of holding onto the power till the next period (βp1 ´ γqEtPt`1Ξ1 p∆St`1q). This
is because speculators have no incentive to deviate to the right of the point BD and
discharge less power. On the other hand, speculators may have an incentive to de-
viate to the left of the point BD and discharge more power, but are not able to do so
because of the binding constraint. This implies (6a) may hold with a strict inequality
and speculators may make profits here.

Interior Turning to the case where a point in region I is an equilibrium, speculators have
no incentive to move to the left or right of the equilibrium point. There is no marginal

8The proof of this statement is straight-forward and will be provided in an appendix

10



profit from deviation, hence the price of buying/selling power today must equal the
benefit of holding onto the power till the next period and (6b) holds with equality

Charge constraint binds Finally, when the equilibrium point is where the storage con-
straint binds at BC and speculators cannot charge anymore, the price of buying
power today (PtΞ1p∆Stq) cannot be more than the benefit of holding power till the
next period. This is because speculators have no incentive to deviate to the left of
point BC and charge less power. On the other hand, speculators may have an incen-
tive to deviate to the right of the point BC and charge more power, but are not able to
because of the binding constraint. This implies (6c) may hold with a strict inequality
and speculators may also make profits here.

Note speculators only make second stage profits when the storage capital choice limits
how much they can charge/ discharge. When we turn to the first stage problem, the cost of
storage capital in the first period will equal the expected discounted value of these second
stage-profits.
Before turning to the first stage problem, we can can write the first-stage problem in a more
tractable form as follows as:

PtΞ1 p∆Stq “ mintmaxt

βp1 ´ γqEtPt`1Ξ1 p∆St`1q , HpztK ` p1 ´ γqSt ´ Bt, etqu, HpztK ` p1 ´ γqSt ´ B̄t, etqu (7)

where Bt “ maxtp1 ´ γqSt ´ ζS̄, 0u and B̄t “ mintζS̄ ` p1 ´ γqSt, S̄u.

3.2.3 First stage problem

We first present a heuristic derivation of the first stage problem for the stock of storage. A
formal proof will be presented the Appendix.
To evaluate the value of a marginal increase in storage capital, we need to evaluate the
marginal returns to equilibrium storage and how a marginal increase in storage capital
effects equilibrium storage. Let Π̄t denote be the expected marginal return of equilibrium
storage providers per period:

Π̄t “ ´PtΞ1p∆Stq ` βp1 ´ γqEtPt`1Ξ1p∆St`1q

Following the discussion of eq.6(a)-(c), the marginal value storage capacity is strictly posi-
tive only when either the battery capacity or charge/discharge rate constraints are binding.
Moreover, when the charge/discharge rates constraints are binding and the parameter ζ is
not one, then the marginal effect of storage capital on equilibrium storage will depend on
ζ; ζ will be the marginal change in equilibrium storage from an increase in storage capital.
Consequently, the marginal value to storage providers of relaxing the constraint S̄ in any
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period will be:

´ζΠ̄t if p1 ´ γqSt ´ St`1 “ ζS̄ (8a)
ζΠ̄t if St`1 ´ p1 ´ γqSt “ ζS̄ (8b)

Π̄t if St`1 “ S̄ (8c)

The three cases above correspond to the three cases when speculators can gain positive
profits. Equation (8a)) corresponds to the case when no more power can be discharged
(charged) due to the pipe constraint; here the marginal value of expanding the stock of
storage capital will be the marginal effect of expanding the stock of storage capital on how
much extra can be discharged (charged), the charge/discharge rate ζ, multiplied by the
marginal profit made from the discharge (charge), ´p`qΠ̄t. And eq. (8c) corresponds to
the case when no more power can be charged due to the overall battery capacity.
The storage capital decision will be characterized by the point where the discounted sum
of marginal returns from increasing the stock of storage capital equals the price of stor-
age capital, PS̄. To ease notation, denote by D,R, C regions where profits are made and
discharge occurs (Equation (8a)), charge occurs (Equation (8b)), and capacity is reached
(Equation (8c)), respectively. The storage capital decision will then be characterised by:

8
ÿ

t“0

βt
”

´ E p1Dq ζΠ̄t ` E p1Rq ζΠ̄t ` E p1Cq Π̄t

ı

“ PS̄ (9)

where 1 t.u is the indicator function for the event (set) in question.
The first stage problem for the renewable energy generators is more straight-forward. The
maximization problem is:

max
K

E

«

8
ÿ

t“0

βt pPtztKq

ff

´ PKK (10)

where PK is the cost of generation capital. This yields the following condition characteriz-
ing the equilibrium choice (assuming stationarity):

1
1 ´ β

E pPtztq “ PK (11)

The following defines the equilibrium in the economy:

Definition 3.1. A sequential equilibrium is a tuple E “
`

pStq
8
t“0, pPtq

8
t“0, S̄, K

˘

such that:

1. the sequences pPtq
8
t“0 and pStq

8
t“0 are sequences of random variables adapted to pFtq

8
t“0

2. given pPtq
8
t“0, S̄ and K, pStq

8
t“0 solves (4) (agents are optimizing in the second stage)

3. given pStq and and pPtq, S̄ and K solves the storage capital and generation capital first
stage problems respectively

12



4. the market clearing condition, (2), holds almost everywhere for each t P N.

A sequential equilibrium gives us stochastic sequences pStq and pPtq defined on the prob-
ability space pΩ, Σ, Pq. However, for computation and analysis, we seek a recursive struc-
ture to the competitive equilibrium. That is, we seek a measurable pricing function func-
tion ρ and a measurable policy function σ such that:

Pt “ ρpzt, et, Stq (12a)
St`1 “ σpzt, et, Stq (12b)

Before we move to characterizing such a recursive equilibrium, we formalize its definition.

Definition 3.2. A sequential equilibrium is a recursive equilibrium if there exists a Borel
measurable function σ such that St`1 “ σpzt, et, Stq.9

Note that if an equilibrium is a recursive equilibrium, then, we must have Pt “ HpKzt `

p1 ´ γqSt ´ St`1, etqq. And, a such, Pt can be written in the form (12a).

3.2.4 Functional equations characterizing the pricing function

By defining a recursive equilibrium in the previous section, we collapsed the study of an
infinitely long, infinite dimensional sequence of the sequential equilibrium pstq to the study
of one function, either the policy function σ, or the pricing function ρ. In this section we
turn to how we can show that the pricing function is a solution to a functional equation
that can be computed. The approach of this section mirrors that by Deaton and Laroque
(1992) and is closely related to the literature on time iteration or Coleman-Reffett operators
(see Ernesto Guerra et al. (2018)).
Assuming a recursive equilibrium exists, we seek a measurable pricing function such that
Pt “ ρpzt, et, Stq for all t. The FOC, equation (7) will imply (where primes indicate values
in the next period and double primes in two periods’ time):

ρpz, e, sqΞ1pp1 ´ γqs ´ s1q “ min
␣

maxtβp1 ´ γqEρpz1, e1, s1qΞ1pp1 ´ γqs1 ´ s2q,
HpzK ` p1 ´ γqs ´ B, equ, HpzK ` p1 ´ γqs ´ B̄, eq

(

(13)

where p1 ´ γqs ´ s1 “ Ξ´1pDpρpz, e, sq, eq ´ Kzq, p1 ´ γqs1 ´ s2 “ Ξ´1pDpρpz1, e1, s1q, e1q ´ Kz1q

and B “ maxtp1 ´ γqs ´ ζS̄, 0u and B̄ “ mintζS̄ ` p1 ´ γqs, S̄u.
The arguments of the pricing function are the lower case alphabets. The expectation on the
right hand side of (14) can be taken with respect to e1 and z1.

9The definition implies that a sequential equilibrium is a recursive equilibrium if the sequence of storage is
a stochastic recursive sequence (see (Stachurski, 2009), Definition 9.2.3.
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We can now define an operator T that takes a measurable pricing function and returns a
pricing function Tρ. Given ρ, Tρpz, e, sq satisfies:

Tρpz, e, sqΞ1pp1 ´ γqs ´ s1q “ min
␣

maxtβp1 ´ γqEρpe1, z1, s1qΞ1pp1 ´ γqs1 ´ s2q

, HpzK ` p1 ´ γqs ´ B, equ

, HpzK ` p1 ´ γqs ´ B̄, eq
(

(14)

where p1 ´ γqs ´ s1 “ Ξ´1pDpTρpz, e, sq, eq ´ Kzq and p1 ´ γqs1 ´ s2 “ Ξ´1pDpρpz1, e1, s1q, e1q ´

Kz1q. An equilibrium pricing function will solve ρ “ Tρ.

3.2.5 The social planner’s problem and existence

So far, we have assumed a recursive solution does indeed exist and showed how it can be
characterised. The previous section did not, however, show that a solution to the planning
problem exists. In this section, we turn to the question of existence. The standard approach
to showing existence, used by, for instance, Deaton and Laroque (1992), is to show that a
fixed point to the operator T exists. However, in our study, the study of existence must also
include a solution to the first stage problem. Thus, we depart from the standard approach
and proceed to show the existence of a sequential competitive equilibrium first. We then
recover the recursive competitive equilibrium through a projection argument discussed in
Shanker (2017), which, to the best of our knowledge is novel.
To show the existence of a sequential competitive equilibrium, we first show existence
to a planning problem and then prove that the planners solution is in-fact the sequential
competitive equilibrium. Let us start by considering the planning problem as the sum of
producer plus consumer surplus. Such a formulation of the planning problem is a natural
starting point in analysis of welfare in models with complete and incomplete markets (for
example, see Gowrisankaran et al. (2016), equations (5) and (6)). The discounted sum of

14



consumer and producer surplus can be defined as:

WppSt, K, S̄q : “ E

8
ÿ

t“0

βt
ż 8

Pt

Dpp, etq dp
looooooooooooomooooooooooooon

Consumer surplus

`

Generator surplus
hkkkkkkkkkkkikkkkkkkkkkkj

E

8
ÿ

t“0

βtPtKzt ´ PKK

` E

8
ÿ

t“0

βtPtpp1 ´ γqSt`1 ´ p1 ´ γqStq ´ PS̄S̄
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Speculator surplus

“ E

8
ÿ

t“0

βt
"
ż 8

Pt

Dpp, etq dp ` PtDpPt, etq

*

´ PKK ´ PS̄S̄ (15)

“ E

8
ÿ

t“0

βt
ż DpPt,etq

0
Hpy, etq dy ´ PKK ´ PS̄S̄

“

8
ÿ

t“0

βt
ż Kzt`p1´γqSt´St`1

0
Hpy, etq dy ´ PKK ´ PS̄S̄

The first equality uses the standard definition of consumer and producer surplus. The sec-
ond equality follows from collecting terms in the infinite sums and the per period market
clearing condition from eq. (2) (with demand expressed as the sum of supply and change
in storage). The third equality follows from properties of integrals of inverse functions and
the final equality also follows from the market clearing condition.10

It is also possible to express the welfare function in terms of a direct utility function, U,
which will be more amenable to an intuitive understanding of welfare and connect the
welfare solution explicitly to the decentralised. To do so, define U as follows

Upx, etq : “ D̄´θe
et
θ

x1´θ

1 ´ θ
, (16)

where θ “ 1
η . Now, computing the integral on the RHS on the final line of (15), we can

10The law of integral of inverse function states that:

ż d

c
f ´1pxq dx “ ´

ż b

a
f pyqdy ` bd ´ ac

where f paq “ c and f pbq “ c. Applying this rule to our case gives:

ż 8

Pt

Dpp, etq dp ` PtDpPt, etq “

ż Dp0,ptq

HpDpPt ,etq,etq

Dpp, etq dp ` PDpPt, etq

“ ´

ż 0

DpPt ,etq

Hpy, etq dy
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write welfare for a sequence pStq and choice of capital stocks as:11

WppStq, K, S̄q “ E

«

8
ÿ

t“0

βtU
´

Kzt ` p1 ´ γqSt ´ St`1

¯

ff

´ PKK ´ PS̄S̄. (18)

Definition 3.3. The social planner’s problem (SPP) is to maximise (18) with respect to
tpStq, S̄, Ku such that (1) holds, St ď S̄ and St P mFt for each t.

We are now ready to connect the planner’s problem to the decentralised market allocation.
In the absence of externalities or other market imperfections, the planner’s choices will
be reproduced by the market, and these two problems are linked by the spot price. To see
this connection more explicitly, let tpStq, S̄, Ku be a solution to the social planner’s problem.
The solution generates a sequence of prices as follows:

Pt “ H
´

Kzt ` p1 ´ γqSt ´ St`1, et

¯

, (19)

yielding the sequential market equilibrium consisting of the 4-tuple tpStq, S̄, K, pPtqu.

Proposition 3.1. The tuple tpStq, S̄, Ku is a solution to the SPP if and only if the tuple tpStq, pPtq, S̄, Ku,
with pPtq satisfying, (19) is a sequential competitive equilibrium

Theorem 3.1. If Assumptions 1 - 2 hold, then there exists a solution pStq to the social planner’s
problem

Since there exists a solution to the social planner’s problem, by the above theorem, there
exists a sequential competitive equilibrium. Our next step is to connect the sequential
competitive equilibrium to a recursive competitive equilibrium. Consider a solution to the
sequential SPP as a sequence tS̄, K, pYtqu and construct the sequence:

S0 “ Y0 (20)
St “ EpYt|St´1, et´1, zt´1q @t ą 0

Lemma 3.1. If tpYtq, S̄, Ku is a solution to the SPP and pStq satisfies (20), then tpStq, S̄, Ku is a
solution to the SPP

Note that pStq has recursive in the sense that St`1 “ gpSt, etq for a measurable function g
by the proprieties of conditional expectation at (20). Moreover, let pPtq satisfy (19), then
Pt “ ρpSt, et, ztq for a measurable function ρ

11The definition of welfare, as the sum of consumer and producer surplus is connected to the notion of Value
of Lost Load as follows:

VOLL “

ş8
Pt

Dpp, etq dp ` PtDpPt, etq

DpPt, etq
(17)

Thus gross consumer and producer surplus is equal to Demand ˆ VOLL (see Gowrisankaran et al. (2016),
equation (6)).
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Corollary 3.1. If tpYtq, S̄, Ku is a solution the SPP and pPtq and pStq satisfy (20) and (19), then
tpStq, S̄, Ku is a recursive competitive equilibrium

Finally, we present the main existence proof for a recursive competitive equilibrium.

Theorem 3.2. If Assumptions 1- 2 hold, then there exists a recursive competitive equilibrium,
tpStq, pPtq, S̄, Ku.

Proof. By Theorem 3.1, there exists a solution to the social planner’s problem, which we
denote by tpYtq, S̄, Ku. Now construct a sequence pStq satisfying (20). By Lemma 3.1,
tpStq, S̄, Ku will also be a solution to the social planner’s problem. Moreover, letting pPtq

satisfy (19), by Proposition 3.1, tpStq, pPtq, S̄, Ku will be a sequential competitive equilib-
rium. Note the sequence pStq satisfies (20), thus there exists a measurable function ρ such
that St`1 “ ρpSt, et, ztq for each t. The tuple tpStq, pPtq, S̄, Ku thus satisfies the definition of
a recursive competitive equilibrium.

Corollary 3.2. There exists a fixed point to the operator T

3.3 Graphical analysis of supply-demand curves

Before we begin a formal computational and mathematical analysis, we develop graphical
intuition of the modelled market based on our existing understanding of storage dynam-
ics. We know from Deaton and Laroque (1992) that there exists p‹ such that for any price
greater than p‹, it is not profitable for storage providers to carry any stocks to the next
period. For now, we assume p‹ does not depend on the demand shock. Thus, for equi-
librium prices below p‹, some stock of power will be carried over to the next day. If the
equilibrium quantity demanded, D, is above Ktzt, then batteries will discharge. On the
other hand, if the equilibrium demand is below Ktzt, batteries will charge. For demand
shocks that generate prices greater than p‹, there will be a “stock out”, in that all available
power will be discharged to meet demand.
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Ktzt xt

DpQ|eq

p˚

LpQ|xt, ktq

Q

P

Charge Discharge

Stockout

A

B

The hypothesized market equilibrium is characterized by Figure 3.3. The figure character-
izes the supply/ demand curves for a given realization of the state of the system — the
shocks and stock of capital. The function D is the demand curve in kWh (red line), the ver-
tical line at Ktzt represents the inelastic supply (in kWh) with no storage and the vertical
line xt is the stock at hand (i kWh). The function L (blue line) gives the supply curve of
power supplied to meet consumer demand, again conditioned on the state. In terms of the
sequential equilibrium, the function L gives the quantity xt ´ St`1 for different prices (not
necessarily the equilibrium price).
The intersection point of L with the demand curve, point A (at the price where (2) holds),
gives the equilibrium with storage while the point B is the equilibrium without storage.
The equilibrium at A is an equilibrium with "high" demand, where prices are depressed
compared to the case without storage. An equilibrium with low demand, in the charge
region, on the other hand, would have higher prices and lower quantity supplied than
without storage. Understanding the dynamics of the equilibrium between the charge and
discharge regions will be a key focus of our analysis: presumably, a feasible path must
spend an "equal" amount of its time in the charge and discharge region for storage not to
explode or converge to zero but that is among the aspects to be established. Of course, to
truly understand how the market quantity is affected by storage, one would also need to
relate the level of Kt to the availability of storage.
Another point of focus of our analysis will be the shape and volatility of the curve L. Under
the assumption that p‹ is fixed, observing the possible share of L, a high level of expected
xt would reduce the volatility of L. Note, however, the variance of xt is bounded below by
ztKt at-least in the case of i.i.d shocks. We can derive an implicit expression for L given a
recursive equilibrium. Recall that if St`1 is a recursive solution, then there exists a function
ϕ mapping the current state to the stock of power tomorrow. The function q ÞÑ Lpq|x, kq is
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then given by the root of the function:

p ÞÑ x ´ ϕpx, Epq, pq, kq ´ q (21)

where Epq, pq is the solution e to the equation q “ Dpe, pq. The root of the function above
is the price that would clear supply given a quantity q, implicitly defined by the demand
shock that would generate a demand for q at the clearing price. A key aspect of the sub-
sequent formal analysis will be to understand the shape and variance of the function L
defined above.

4 Quantitative results

In this section, we present preliminary simulation results for our model. For these prelim-
inary simulations, we assume mean intermittent generation capital is exogenous, equal to
the current total non-intermittent capacity in Swedish grid region 4. That is, 6.7 giggawatts
(Gw). While Swedish region 4has 6.7 Gw of capacity, equilibrium demand is on average,
1.51 Gw. The excess capacity is dispatched in response to a positive demand shock. In
our simulation, we compute the equilibrium market level of storage capacity investment.
Using the simulations, we ask whether storage can play the role of dispatchable power
and allow the demand profile to look like what it is today — with equilibrium demand
responding mainly to demand, rather supply shocks.
The simulations below are carried out assuming β “ .96, the supply shocks have a beta
distribution with mean .5 and variance ν. We de-trend the Swedish demand data and
discretize the distribution of the demand residual, drawing our demand shocks from this
discrete distribution. The investment adjustment cost function is assumed to be the iden-

tity function. Demand given a shock e and price p is assumed to be Dpp, eq “ exp
e
ζ p

´1
ζ , ζ

is 2 and the parameter γ is held at .05.12 Further details on the computational procedure
can be found in Appendix A

12To compute a solution, we follow a modified time-iteration algorithm. In particular, guessing ρ0 and
σ0, we iterate on the sequence ρt`1 “ Tpρt, σtq and σt`1 “ Cpρt`1, σtq till pρtq and pσtq both converge in the
supremum norm. At each iteration, we use piece-wise linear interpolation to approximate the functions.Using
package interpolation. See https://github.com/EconForge/interpolation.py. The grid-size for capacity
and stock at hand is 1000. Simulations are run on a Google Cloud 96 core Intel Skylake Compute Engine. Code
can be found at https://github.com/akshayshanker.
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Kzt(Gw) S̄ (GwH) P(MUSD/GwH) D (Gw) S (GwH) PS| PK

Today 1.51 (.15) 0.00 .05(.11) 1.51 (.15) 0.00 (0.00) 465.26| 1400
No storage 6.70 (5.09) 0.00 7ˆ107 (1.4ˆ108) 6.70 (5.09) 0.00 (0.00) 9.3ˆ1012| 6ˆ106

Baseline 6.70 (5.06) 20.68 0.01 (0.01) 6.00 (3.60) 18.82 (2.53) 465| 162
High variance 6.69 (6.28) 123.68 0.07 (0.01) 1.08 (0.23) 122.39 (1.94) 468| 5363
Low s cost 6.71 (5.05) 28.36 0.00 (0.00) 5.93 (3.02) 25.13 (3.79) 200.57| 163.24

Table 1: Supply shocks have a beta distribution. The no storage, baseline and low s cost
scenario have a supply shock variance of .1. The High variance scenario has a variance
of .2. The columns are denote generation, storage capacity, mean (std. dev.) spot market
price, mean (std. dev.) equilibrium demand, mean (std. dev.) storage level and the shadow
value of storage capacity and generation capacity in the first stage problem.

Table 1 gives the result our simulations for five scenarios. The first line is the profile of the
market today, average demand and generation is 1.51 Gw (while total capacity is 6.7 Gw),
the mean price is .05 Million USD per GwH, the level of storage is zero and the price of
intermittent generation capital today is 1400 USD per Gw.
No storage scenario. The second line gives the result for the case where there is no storage,
we simply set the price of storage, PS to 9.3 ˆ 1012USD{Gw, which is sufficiently high for
close to zero investment in storage capacity. Without storage, average demand is also
6.7 Gw, since all intermittent power is cleared in the market and supplied to consumers.
However, as expected, demand and price variance is high, with a standard deviation of
5.09. We also note the case without storage has a very high shadow value of capital. This
reflects a high willingness to pay for power when demand shocks are high and intermittent
generation low.
The baseline. The third lines gives a baseline scenario with endogenous storage capacity
and a "low" standard of supply of .1. In this scenario, storage capacity rises to just below
three hours of power (each time step is one hour in our model). Storage serves to dispatch
power somewhat, and the variance of equilibrium demand falls from 5.90 in the no storage
scenario to 3.60 in the scenario with storage. However, in this case, the shadow value of
generation capital falls to 162 USD per Gw, much below its current price, implying a fall
in generation capacity if that were to also be determined in the market.
The high variance scenario. The fourth lines gives a scenario where the variance of the
supply shocks is now doubled to .2. In this case, the variance provides increased arbitrage
opportunities to storage providers and increases the returns to storage investment. Stor-
age capacity increases to around one hundred days of equilibrium demand (capacity of
122.39 GwH); here storage functions to effectively smooth the effect of the supply shocks
on equilibrium demand. The level and variance of demand falls to levels similar to today.
The shadow value of capital also rises with higher supply variance.
Low storage cost scenario. In the final line, we compare the effect of doubling the vari-
ance of the supply shocks to reducing the price of the storage capital to 200 USD per GwH.
While storage capacity does increase, we find the effect modest and not close the the mag-
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nitudes required to reduce equilibrium volatility to the levels seen without intermittent
supply.
Figures 2 and 3 show us the distribution of price and equilibrium demand under the four
scenarios. The case with no storage generates a high power price along with prices of a
very high magnitude. The baseline level of storage serves to reduce the price and price
volatility, however, only the levels of storage under the high shock variance scenario re-
duce the volatility of the market to close to levels in the maretk today without intermittent
supply.

Figure 2: Box and whisker plots for equilibrium price.
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Figure 3: Box and whisker plots for equilibrium demand.

Finally, another way to understand how storage affects the relationship between equilib-
rium power and supply intermittent is to examine the co-variance between equilibrium
demand and the supply shocks in table 2. In a market with no intermittent supply, the
co-variance between equilibrium supply and demand is zero. In a market with no stor-
age and fully intermittent supply, the co-variance is one since supply is inelastic. The role
of storage is to make equilibrium demand less dependent on supply, and we see this as
the co-variance between equilibrium demand and supply falls to .2 in the case with high
supply variability.

Scenario Covariance

No storage 1.00
Baseline 0.97
High supply var 0.19
Halved storage cost 0.94

Table 2: Covariance of supply and equilibrium demand.
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5 Conclusion

This paper presented a dynamic equilibrium model of electricity generation, storage and
generation capacity investment. We demonstrated that the equilibrium model is well-
defined and can be computed to help us understand the potential role of storage in ad-
dressing the challenges of integrating renewables into electricity markets. Through our
computational experiments, we explored how demand and supply uncertainty affects the
market equilibrium in the presence of storage. We found that storage may rise to levels
needed to act as a source of dispatchable power. With sufficient storage capacity, the link
between equilibrium demand and supply shocks can be broken, resulting in price and de-
mand distributions similar to a market with no intermittent supply. However, investment
in storage capacity requires there to be sufficient supply uncertainty to generate the rents
for storage providers to invest in capacity in the first place.

A Appendix: Computational method

Under the assumption that pStq has a stationary distribution (to be established subse-
quently) and S0 follows the equilibrium stationary distribution, the dependence on time
of the summand at equation (9) disappears. Let ψ‹ be the joint stationary distribution of
tSt, zt, etu. To solve for the optimal storage decision, we can compute the root of 1

1´β Π̂ ´ PS̄,
where Π̂ is defined as:

Π̂ “ ´Eψ‹ p1Dq ζΠ̄ ` Eψ‹ p1Rq ζΠ̄ ` Eψ‹ p1Cq Π̄ (22)

where Eψ‹ is the expectation taken with respect to the the joint stationary distribution of
storage and the shocks.
For given K and S̄, let us use G to define the condition implied by (22), that is GpK, S̄q “

Π̂pS̄, Kq ´ PS̄. Let us also use F to denote the condition implied by (11), that is, FpK, S̄q “

EρpS̄, Kqpz, s, eqz ´ PK. The functions G and F depend on S̄ and K both through the equi-
librium distribution of St and the pricing function ρ.
Our solution will be a value of K and S̄ that is a root of G and F. For a given K, let G‹pKq

be the root of S̄ ÞÑ GpK, S̄q. Similarly, define F‹ as the root of the function K ÞÑ FpK, S̄q

for given S̄. To find a solution, we can iterate Ki`1 “ F‹pG‹pKiqq till the sequence pKiq

converges.
A more detailed pseudo-code for computation is as follows:

1. Guess K0 and S̄0, set i “ 0

2. Compute G‹pKiq given S̄i as the initial value of S̄ using Brent’s method. To compute
GpKi, xq in each evaluation of Brent’s method:

• compute the fixed point ρ of T given Ki, x
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• draw a sequence of size pStq of size 10, 0000

• evaluate Π̂ using the sample pStq and function ρ

3. set Si`1 “ G‹pKiq

4. Compute F‹pS̄i`1q given Ki as the initial value of K using Brent’s method. To compute
Fpx, S̄i`1q for each value of x iterated by Brent’s method:

• compute the fixed point ρ of T given x, S̄i`1

• draw a sequence of size pStq of size 10, 0000

• evaluate EPz using the sample pStq and function ρ

5. set Ki`1 “ F‹pS̄i`1q

6. if |Ki`1 ´ Ki`1| ą tol, then set i “ i ` 1 and return to 2
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