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Abstract

Modern Portfolio Theory tells us that, inter alia, the expected correlation between

returns of different investments options shapes the composition of portfolios. In the

transition to a low-carbon economy, an important determinant of the risk-return

profile of energy sector investments is climate policy —either via direct policy inter-

ventions or through market equilibrium adjustments. Hence, climate policy and in

particular the uncertainty around its stringency and design shape the asset portfo-

lio an investor holds. In this paper, we explore the consequences of carbon pricing

schemes and fixed remuneration renewable energy support policies for investments

into clean and dirty assets under uncertainty and show that it might be optimal for

hedging purposes in certain cases to invest in fossil-fuel plants even if their relative

return is lower due to a more stringent environmental policy but with asymmetric

consequences on variances of the returns. Using the European power sector as a

case study, we calibrate a stochastic electricity market model to analyse the impact

of policy instruments on investment. We find that uncertainty about the continua-

tion of fixed remuneration policies for renewable energy deployment leads to more

potentially stranded investments in fossil fuel generation capacities —ranging from

1% to 35% of a risk-averse investor’ investment budget. In comparison, a carbon

price instrument is less affected by policy discontinuation risk. Moreover, fixed re-

muneration for clean power generation assets significantly lowers clean assets’ risk

and their return correlation with dirty assets —thus attracting both moderately and

highly risk-averse investors. This effect remains when fixed remuneration policies

coexist with carbon pricing schemes.
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1 Introduction

To transit to a low-carbon economy, enormous investments in clean technologies are

necessary. Global power sector investment was at USD 0.82 trillion in 2021; but to

reach net-zero emissions by 2050, clean energy investments need to triple the current

level by 2030 (IEA, 2021). In the European Union, a total of EUR 3 trillion renewable

energy investment is required by 2050 to reach climate neutrality (Hainsch et al., 2020).

These paradigms of ”shifting the trillions” aim to mobilise finance for a just transition

to a clean and green economy in a timely manner.

Power generation investments in the energy sector have a lifetime of several decades.

They are therefore exposed to substantial uncertainty as these investments take place in a

stochastic environment. Sudden demand fluctuations, as observed during the pandemic,

or changes in the input costs, as it is currently observed with natural gas, lead to ex-ante

uncertain return realisations of electricity market projects.

In order to stimulate clean energy investments, governments worldwide implemented

a fleet of policies. Carbon pricing —either as a cap-and-trade system or as a carbon tax

—aims at lowering the returns of greenhouse gas emitting projects relative to the returns

of low-carbon alternatives. Renewable deployment policies such as Feed-in Tariffs (FiT)

or Renewable Tax Credits directly raise the returns of low-carbon technologies and thus

make the investment into these technologies relatively more attractive. The design and

implementation of policy instruments might affect both the mean and the standard devi-

ations of expected return realisations. In addition, policies can also affect the correlation

between the expected returns of different electricity-generating technologies.

Investors might be aware that policy regimes are subject to change. Egli (2020)

identifies that policy risk —the risk of generating lower than expected revenues due

to retroactive renewable energy support policy changes —is one of the most important

and most frequently mentioned risks by investors interviewed in the study. Kempa

et al. (2021) show evidence that financing costs of firms engaged in renewable energy

technologies are decreasing if the stringency of environmental policies it is exposed to is

increasing, even when controlling for the direct policy effect on profits —in other words,

the increased policy stringency signals a decrease in the perceived policy risk by lenders.

The risk from sudden policy changes can be substantial, as several examples in Eu-

rope and other countries show. Austerity measures following the European debt crisis

induced a retroactive change on renewable support measures in several European coun-

tries including Italy, Spain, Greece, Bulgaria, Slovakia, Romania and the Czech Republic

(BNEF, 2013, 2015). Investors filed arbitration claims against the respective country

authorities (Patrizia et al., 2020). In certain cases, the court ruling favoured the in-

vestors, but it is not certain when the developers will be compensated (Kenning, 2016).

Not surprisingly, these sudden policy regime changes discouraged investor confidence

substantially. Directly after the retroactive policy changes, renewables investments de-

creased by 55% in Spain (BNEF, 2011) and by 71% in Italy (BNEF, 2015). Most recently,

the French parliament approved retroactive cuts for solar FiT (Scully, 2021). Outside
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Europe, there have been substantial uncertainties around the tax credits for renewable

energy after Biden took office; the support measure was subject to a makeover, which

brings uncertainties to clean energy investments (Moran et al., 2021).

Investors might be aware of these policy risks and take them into account with im-

portant, to the best of our knowledge so far not thoroughly examined consequences for

investment decisions in the electricity sector. Investors can respond to this risk by di-

versification as shown by the Modern Portfolio Theory (MPT) (Markowitz, 1952). MPT

provides an analytical framework to analyse the relationship between returns, individual

investment risk and the correlation of returns between investment opportunities. It is

therefore an ideal tool to understand how climate policy instruments and the uncer-

tainty about their implementation and stringency affect these three key parameters for

low-carbon investments and thus portfolio allocation of investments.

In this paper, we thus analyse —both analytically and numerically —how climate

policy instruments affect the variance of expected returns of specific generation technolo-

gies and their correlation by means of an analytical model and a numeric model. The

analytical model allows for a stylised investigation of climate policy effect on portfolio in-

vestment decisions and serves as a theoretical foundation for the numeric model. Within

the electricity sector, the expected returns of different assets are correlated through the

mediation of market mechanisms. We show how policies —intended to decarbonise the

electricity sector —can induce investments into fossil fuel technologies due to portfolio-

optimisation consideration.

Assessing the effectiveness of climate policy instruments given (policy) uncertainty

and risk-aversion for incentivising investments provides important new insights. Ex-

ante assessments of climate policy is often based on so-called techno-economic models.

In these models, investment pathways resulting under a certain climate policy scenario

are determined assuming cost-minimisation of the energy system (Hall and Buckley,

2016; Trutnevyte, 2016; Hirth and Steckel, 2016; McCollum et al., 2018). The cost-

minimisation approach assumes that investors are risk-neutral.

However, investors are generally recognised as risk-averse (Markowitz, 1952). This

even holds if the investment is undertaken by a firm, as it is the case for most investments

into energy-sector infrastructure. The reluctance to bear risk is empirically evidenced

in the extent of corporate hedging activity (Géczy et al., 1997). Moreover, factors such

as non-diversified owners, liquidity constraints, and costly financial distress can all drive

firms to behave in a risk-averse manner (Asplund, 2002).

As we show in this paper, the aspects mentioned earlier have important consequences

for investment decisions that need to be taken into account when using these techno-

economic models to provide guidance for policymakers. Recently, there is increasing

attention on the limitation of the techno-economic models and better integration of

financing issues into the models are called for (Battiston et al., 2021; Peng et al., 2021).

Accounting for finance and real investor decisions in climate policy models would likely

improve the models’ ability to inform policy and investment decisions.
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Our paper is related to two strands of the literature. The first strand is the literature

on environmental and climate policy instruments uncertainties (Sen and von Schickfus,

2020; van der Ploeg and Rezai, 2021). Weitzman (1974) discusses price and quantity

setting in policy instruments and shows that the policy instrument of choice is determined

by the relative steepness of the marginal abatement benefit and cost curves when there

are risks and uncertainties on the costs of pollution control. With an investment model

calibrated to the global oil and gas industry, van der Ploeg and Rezai (2020) show that

the uncertain climate policy changes would cause discrete jumps in the evaluation of

assets today and reevaluation of assets in the future. By studying a partial equilibrium

model of the energy sector, Kalkuhl et al. (2020) demonstrate how lobbying power or

fiscal considerations can lead the government to deviate from its previously announced

carbon tax, thus creating stranded assets. In another study, it is shown that carbon

price may prompt premature retirement of existing polluting capacities, but mandates

and feebates can attract new investments without inducing stranded assets (Rozenberg

et al., 2018). More recent research has also learned from macroeconomics adopting real

business cycle models (Garth, 2012; Heutel and Fischer, 2013). For instance, a emission

cap and a tax can induce equivalent outcomes in expectation (Fischer and Springborn,

2011). Furthermore, there is the extended issue of overlapping regulatory policies and

uncertainties. When studying the policy portfolio containing a cap and trade scheme

and a renewable share target under different states of aggregate electricity demand,

Flues et al. (2014) find that there would be unintended consequences on efficiency and

effectiveness, especially when aggregate demand is low and carbon prices and sensitive

to economic activity changes.

The second strand is the established literature on the optimisation of electricity

planning using MPT. When assessing the efficiency of the Brazilian electricity genera-

tion mix proposed, Losekann et al. (2013) find that a higher share of fossil fuel in the

portfolio is observable when CO2 is not priced and higher CO2 prices can increase the

share of renewables in the generation mix. FiT requires lower direct support levels than

feed-in premiums because they expose investors to fewer market risks (Kitzing, 2014).

Laurikka and Koljonen (2006) show that emission trading impacts investment decisions

by affecting the expected allowance prices and their volatility and correlation with elec-

tricity and fuel prices. Most of the papers in this strand come from a social welfare

maximisation perspective, optimising the electricity generation portfolio of the whole

electricity system for policy analysis purposes. However, portfolio optimisation from a

private energy corporate investor point of view is not well studied. We fill this research

gap by investigating the direct effects of climate policy instruments on the investment

decision of private utilities investors. Our paper is the first of its kind to conduct this

type of assessment using the MPT approach.

Additionally, in one paper closely related to ours, the findings show a relationship

between portfolio optimisation in the financial market and climate actions —a trade-off

between diversification and climate action due to climate system uncertainties —with
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uncertain timing of climate disasters, investors hedge these uncertainties by keeping a

portion of dirty assets in the portfolio (Hambel et al., 2020). Thus, in general, brown

generation assets are not shut down completely. Similar to our findings, Hambel et al.

(2020) find that hedging used to minimise the effects of uncertainty can lead to stranded

assets. In contrast to their paper, we focus on a different source of uncertainty, which

is not caused by the climate system, but rather the uncertainty in the economy, such as

demand and price shocks and policy risk.

In our paper, we show that uncertainty about the continuation of fixed remuneration

policies for renewable deployment leads to more potentially stranded investments in fossil

fuel generation capacities —ranging from 1% to 35% of a risk averse investors’ budget.

On the contrary, a carbon price instrument is less affected by policy discontinuation in

comparison. Both fixed remuneration and carbon price policies can crowd out dirty asset

investments in an investor’s portfolio; however, for the same amount of clean energy in

the portfolio, the investors have to bear more investment risks under carbon pricing

policies. If implemented as an overlapping policy, a fixed remuneration scheme reduces

investment risks and thus can serve as a complementary tool to make the investment

risk profile more attractive for the more risk-averse investors to broaden the investor

base for clean energy.

Our paper has the following contributions. By going beyond cost-minimisation in the

techno-economic models and taking portfolio optimisation consideration into account,

we contribute to examining a mechanism of how policies affect real investment deci-

sions —investors are more likely to construct diversified portfolios to manage risks and

potential losses using MPT, rather than following investment pathways resulted from

cost minimisation of the electricity system. In addition, we analyse multiple climate

policy instruments in the same framework —thus contributing to the discussions of the

trade-off among the instruments. Policymakers should take uncertainties well into policy

design considerations because uncertainties beyond policy instruments lead to investors’

adjustment of portfolios and investment assets that can lead to potentially stranded

assets. Our recommendations and argumentation hold in other sectors. Our primary

model is about policy uncertainty in the power market, but policy uncertainty is es-

sentially a tax on capital, with the end effect of higher-than-expected capital cost on

the policy-supported technologies. Where one technology is more capital intensive than

the other in investment choices, our analysis framework could be adopted, and similar

results are likely in developing country contexts and in other goods markets, e.g. the

hydrogen capacity market.

In the remainder of the paper, we show our analytical model in Section 2 and the

numeric model in Section 3. The calibrated stochastic numeric model for the European

Union (EU) power sector demonstrates case studies of what risk-averse investors’ port-

folios look like under different policy schemes. The policy effect results are summarised

in Section 4, where an extension on the effect of uncertain policies on investment deci-

sions is examined. This is followed by a discussion of key findings in Section 5. Finally,
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Section 6 concludes.

2 Analytical Model

We develop a simple model on investing in the energy sector where the risk-return

profile of the investments, as well as their correlation is shaped to a large extent by

policy instruments. This model allows for identifying the main mechanisms of how

policy design governs the investment portfolio composition.

Let us assume for the moment that electricity can be produced by only two different

technologies. There are fossil-fuel burning and pollution emitting power plants (called

”dirty”) d. Alternatively, electricity can be produced with renewable energy (in short

”clean”) c. Technologies can be indexed by j ∈ {c, d}.
We assume that these plants use capital as their only production factor in our stylised

model, ignoring other input costs for the moment (the input costs will be considered later

in the numeric model). This simplification is reasonable in the simple model because

the costs will be reflected indirectly in the returns of the assets. We abstract from

the accumulation of capital stocks of multiple periods and assume that there are two

periods only1. In period t an investor can invest either dirty or clean projects or divide

its wealth wt between both technologies. We think of the investor as a power utility, or

another entity whose purpose is generating electricity and that is exclusively investing in

the power market. There are, therefore, no other options available such as government

bonds or other assets outside the electricity market.

In order to produce one unit of electricity with technology j, cj,t units of capital

are necessary in period t. Electricity producers face a given electricity price pt. This

equilibrium price is set on the electricity market. In the simplified model here, we are

agnostic about explicit demand and supply considerations, but we capture this more

explicitly in the numerical model in Section 3 of the paper. Due to externalities, the

electricity market is ripe with policy interventions. Dirty, fossil-fuel burning plants may

need to pay carbon taxes or are included in cap and trade schemes. Clean renewables may

be supported by tax credits, feed-in tariffs or other forms of support mechanisms. We

denote the regulative price intervention per unit of electricity with %j,t. Thus, electricity

producers make per-unit profit πj,t = pt + %j,t − cj,t, where %j,t is positive if the policy

intervention is a subsidy and negative if it is a tax or another cost.

Hence, the return on capital in t is πj,t/cj,t. In the end, the invested unit of capital

in technology j has thus a value of

Rj,t+1(pt, %j,t) =
pt + %j,t
cj,t

,

which we call the return factor. The return is increasing in prices and subsidies, decreas-

1Thus we assume implicitly that the capital is fully depreciated after the end of the second period.
The uncertainty of the investment comes from return uncertainties. The period index t is only necessary
because we care about expected returns in the future.
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ing in taxes or other policy costs.

However, when investing at time t, the utilities do not know the the return the

respective projects generate in period t+ 1. Building and investing in a power plant are

long-term decisions, and the returns of a project are ex-ante unknown as (i) electricity

demand changes due to changes in aggregate demand, preferences or technology, (ii)

an asset’s average remuneration changes as its location on the merit order changes due

to changes in the marginal costs of other plants in the market, or as policies changes.

Though the exact return realisation is ex-ant unknown to the investor, we assume that

the investor has expectations about the distribution of potential returns as well as the

covariance of returns between the projects. 2

A key determinant of the capital return expectation formation in the energy sector is

policy instruments. They can either affect the variance of expected returns; for example,

Feed-in-Tariffs provide a fixed remuneration per produced unit of electricity, independent

of market prices. Obviously, many policies also affect the expectation of mean returns. A

carbon tax, for instance, increases marginal costs and reduces profits and thus returns of

fossil-fuel plants. In addition, policies can also affect the correlation between clean and

dirty assets. This becomes obvious if renewable power plants get a Feed-in-Tariff such

that their remuneration becomes independent from market prices and less correlated

with returns of fossil-fuel power plants.

We will model these power market asset returns and their correlation more explic-

itly in the next section. For the moment, we remain agnostic about the source of the

underlying risks and just assume that both assets have lognormally distributed return

factors Rj,t+1 with j ∈ {c, d} and thus: logRj,t+1 = rj,t+1 ∼ N (µj , σ
2
j ).

3 The covariance

matrix is given by
( σ2

c σcd
σcd σ2

d

)
, where σ2j denotes the variance of return factors and σcd is

the covariance.

We assume that investors are risk-averse, an assumption that can be justified even if

the investor is a firm. The delegation of investment decisions to a risk-averse manager,

whose pay is linked to firm performance, can cause the firm to behave in a risk-averse

manner (Wiseman and Gomez-Mejia, 1998; Asplund, 2002). The manager’s risk aversion

is one of the key factors that make safer projects relative more desirable than risky

projects for a firm (Parrino et al., 2005).

On this basis, we adopt and adjust the constant relative risk aversion (CRRA) frame-

work to model the risk aversion characteristics of the firm investors and their preferences,

V = W 1−γ
t+1 /(1− γ),

where V is the risk-preference adjusted valuation for a firm, Wt+1 is the expected

value of the firm’s investment portfolio in t + 1 and with γ ≥ 1.4 The value of the

investment portfolio in t + 1 depends on the its value in the previous period times the

2Real power market investors consider return uncertainties in their investment assessments Egli (2020)
3A log-normal distribution is commonly used in finance to characterise investment returns
4In the limit with γ = 1, V = log(Vt+1).
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portfolio return factor R̄t+1, hence

Wt+1 = R̄t+1Wt. (1)

As the investor can allocate her resources on two different assets, the lognormally dis-

tributed portfolio return factor is the weighted average of both assets’ returns, weighted

by their portfolio weight 0 ≤ αj ≤ 1. As we have only two assets, we express everything

in terms of the portfolio weight of dirty assets αd = (1 − αc), i.e. the clean asset as

benchmark.

R̄t+1 = αdRd,t+1 + (1− αd)Rc,t+1.

The portfolio rate of return rp,t+1 can be approximated from a second-order Taylor

expansion (Campbell and Viceira, 2002b). We demonstrate this in the Appendix A.1

and obtain

r̄t+1 = rc,t+1 + αd(rd,t+1 − rc,t+1) +
1

2
αd(1− αd)η, (2)

where η = σ2c +σ2d−2σcd. Note that r̄t+1 = log(1+ R̄t+1) is the normally distributed log

return on the portfolio. 5 Generally, we denote log variables in small letters and write

the firm investors’ budget constraint in (A.1) in log-form:

wt+1 = r̄t+1 + wt

Using the approximation of the portfolio rate of return in (2), the expectation of the

investment value adjusted by risk-preferences as of date t is:

E[V (Wt+1)] ≈ (1− γ)−1E
[
(wte

rc,t+1+αd(rd,t+1−rc,t+1)+αdαcη/2)1−γ
]
. (3)

The rate of return realisations rc,t+1 and rd,t+1 in t + 1 are stochastic. In fact,

(1−γ)(αcrc,t+1+αdrd,t+1) ∼ N ((1−γ)(αcµc+αdµd), (1−γ)2(αcσ
2
c +αdσ

2
d+2αcαdσcd)).

We therefore take the deterministic variables wt as well as the third summand in the

exponential function out of the expectations. Thus,

E[V (Wt+1)] ≈ (1− γ)−1w1−γ
t e(1−γ)αdαcη/2E

[
(e(rc,t+1+αd(rd,t+1−rc,t+1))(1−γ)

]
.

the investor aims at maximising the risk-preferences adjusted valuation of the portfolio

by choosing the asset allocation through αc and αd = 1− αc. Following Carroll (2013),

we show the derivation of the problem’s first-order conditions in the Appendix A.1 and

obtain the valuation-maximising portfolio weight αd for dirty power plant assets:

αd =
µd − µc + (σ2c + σ2d − 2σcd)/2 + (1− γ)(σcd − σ2c )

γ(σ2c + σ2d − 2σcd)
. (4)

Equation (4) shows that the share that an investor is willing to invest in dirty assets is

5This is the so-called continuously compounded portfolio return in financial terms
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governed by five parameters. Obviously, the portfolio share of dirty assets is increasing in

the mean return difference µd−µc between dirty and clean assets. A greater markup on

returns of dirty relative to clean assets increases the portfolio weight of dirty assets. Un-

der deterministic returns, the asset allocation would be driven by return considerations

only. However, given uncertainty on the realisation of future returns, the investment

decision is more complex depending also on variances and covariances of asset returns.

This leads to the question if there are conditions that lead to an increase in αd even if

the expected returns of clean assets are increasing? Since policy instruments may shape

these conditions in the power market, it is important to understand these mechanisms.

A risk-averse investor with γ > 1 chooses her portfolio weights with respect to

variances and covariance. Further assuming µc = µd and σcd = 0, and the partial

derivative of (4) with respect to σc gives (2(γ − 1)σcσ
2
d)/(γ(σ2c + σ2d)

2). Under risk

aversion with γ > 1 both numerator and denominator are positive. Thus, if both assets

are uncorrelated, an increase in σc (more volatility in clean assets) leads to an increase

in the share of dirty assets. In case of an increasing volatility of the dirty asset σd,

everything else equal, the investor reduces her holding of dirty assets at the margin.

Additionally, the dirty asset share αd also depends on the covariance between both

assets’ returns. Assuming µd > µc ,one can see that a marginal rise in the covariance

σcd leads to an increase in αd if σc > σd.
6 On the contrary, a marginal decrease in σcd

leads to an decrease in αd given the same conditions.

If a policy intervention that supports clean renewables such that µc is (marginally)

increasing, the policy intervention can still lead to an increase in dirty asset holdings if

the variance of clean (or dirty assets) is (marginally) increasing and ∂2αd
∂µc∂σ2

cd
> 0.

From (4) we see that

∂2αd
∂µc∂σ2cd

=
1

γ(σ2c + σ2d − 2σcd)2
(5)

Proposition 1. [Potential Stranded Assets] A policy instrument %j that marginally in-

creases the expected return of clean assets µc leads still to an marginal increase of the

portfolio weight of dirty asset αd if σc marginally increases and σ2c + σ2d − 2σcd 6= 0.

A proof of the proposition is in the Appendix A.2. This shows that it potentially

possible that policy instruments that generally improve the expected profitability of clean

assets still induce additional investments into dirty assets if the the policy at the same

time increases the variance sufficiently. Although with good intentions, an instrument

to support clean assets can thus lead to more potentially stranded assets that are mainly

bought for hedging purposes.

By evaluating the changes of signs and magnitude of the various terms in the equa-

tions after a climate policy is implemented, the policy effects of two sorts are analysed

in a stylised manner:

6 ∂αd
∂σcd

= 2(µd−µc)+(γ−1)(σc−σd)(σc+σd)
γ(σ2

c+σ
2
d
−2σcd)

2 .
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Will the climate policy instrument lead to decreased share of dirty asset in

the portfolio? αc, the optimal clean asset holding is the rest of the share not invested

in αd. To transit to a low-carbon economy, clean energy technologies should have a

higher share than the dirty ones. We find that the difference between the clean and

dirty asset holding is

αc − αd = 2
(µd − µc)

γ(σ2c + σ2d − 2σcd)
+ (1− γ)

(σ2c + σ2d)

γ(σ2c + σ2d − 2σcd)
. (6)

From equation (6), it can be seen that if climate policies are to improve the expected

returns of clean assets, which is µd > µc, it is only a necessary condition, not a sufficient

condition for the clean asset share to be larger than the dirty asset share in the portfolio.

In fact, the risk aversion level, riskiness and the variance-covariance relations of the assets

all play a role.

Will the instrument result in a portfolio with more clean assets than dirty

assets? Equation (4) can be rewritten as

αd =
1

γ

(
µd − µc

σ2c + σ2d − 2σcd

)
+

1− γ
γ

(
σcd − σ2c

σ2c + σ2d − 2σcd

)
+

1

2γ
. (7)

Depending on whether a climate policy instrument affects the market though quan-

tity or price, we study two types of instruments. The first type is the fixed remuneration

policies, which provide a guaranteed remuneration for clean electricity generation. This

includes the Feed-in Tariffs, Feed-in Premiums, and auctions that pay fixed clearing

price. The second is the price instruments, which penalises dirty assets by putting a

price on it. This includes the carbon taxes and emission trading scheme.

To investigate the above two questions, we make use of the insights from our numeri-

cal model results in Section 4 of the paper. The risk aversion of an investor is assumed to

be stable in the long-term; therefore the risk preference of the investor does not change

with market conditions.Under fixed remuneration policies, the risk-return profile of dirty

assets does not change, whereas that of clean assets is improved —meaning that the fixed

remuneration policy leads to higher expected returns and lower risks in clean assets. The

correlation between dirty and clean assets is reduced, providing better diversification ef-

fect. Under price instruments, the expenses for dirty assets are increased by carbon tax

or emission trading scheme. The expected returns of dirty assets become lower than

those of clean assets. As electricity price is pushed up though the carbon pricing instru-

ments, clean assets gain higher expected returns but also have higher return volatility

along with the price fluctuations —becoming similar to that of dirty assets in financial

characteristics, thus the correlation between both assets increases. Taking these obser-

vations into Equation 6 and Equation 7, we find that the fixed remuneration policies

will lead to a portfolio with reduced dirty asset share and larger clean asset share. The

price instruments have similar effects. Retroactive changes in both types of instruments
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would reduce the promotional effect for clean assets.

Figure 1: Portfolio choices of representative risk averse investors

The above analytical model has provided insights into stylised policy effects on in-

vestments. However, it is still limited in analysing investment decisions in the economy

in more concrete terms and does not give more details into how fixed remuneration and

carbon pricing instruments’ policy effects on investor choices differ. In order to further

study market interactions and uncertainties, portfolio allocation decisions and climate

policy effects, a calibrated stochastic numerical model of energy market investments is

developed in the section below. The theoretical foundation for the numeric modelling is

based on Markowitz modern portfolio theory (Markowitz, 1952). Seen in Figure 1, the

optimal portfolio choice for an investor is determined by the indifference curves and the

efficient frontier of investments jointly, essentially when investor preference meets market

opportunities. On each indifference curve, the various combinations of dirty and clean

assets give the investor the same amount of utility (satisfaction). The rational investor,

however, can and will only invest in portfolio combinations with the least variance at

each possible level of expected portfolio return — the efficient frontier illustrating the

trade-off between the expected return and risk on a portfolio level. Given the risk pref-

erence of a investor, she is best-off at the point where the slope of the efficient frontier

equals the marginal utility.

In the following, we will study risk averse investors in our paper, in particular, in-

vestors with high, moderate and low risk aversion in stylised case studies. The three

points on the efficient frontier line represent the portfolio choice of three different in-

vestors with different risk preferences. An investor with higher risk tolerance is willing

to accept more risks for higher expected returns.
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3 Calibrated Stochastic Model of Energy Market Invest-

ments

As seen in the analytical model above, optimal portfolio composition depends on several

key parameters, including expected returns, variance and correlation of the assets in

the portfolio. We use a calibrated model to generate these key parameters to study

the optimal investment portfolios for a representative risk-averse investor into clean and

brown generation assets in the EU power market in a mean-variance portfolio approach.

The mean-variance portfolio (MVP) approach is chosen because it is applied by

utilities in the real world. Oil & gas companies have been systematically deploying

MVP for capital allocation and risk management purposes (Walls, 2004). The electric

utility industry has also moved towards a more efficient portfolio since the 1980s (Roques

et al., 2008). An example of an electricity utility using MVP for investment decision

guidance is E.ON, one of the largest power utility company in Europe. Optimising

E.ON’s electricity generation portfolio using MVP was conducted by the E.ON Energy

Research Centre (Madlener et al., 2010) and it concluded that the optimal portfolio

could include more renewables. Subsequently, E.ON stated in its 2011 annual report a

renewables expansion plan worth EUR 7 billion in investments (E.ON, 2011). E.ON has

invested more and more in renewable energy generation in recent years (SE, 2021) .

3.1 Model description

The modelling framework developed below is grounded in literature. The mean-variance

portfolio analysis approach in our model is consistent with that in Laurikka and Koljonen

(2006), Losekann et al. (2013) and Kitzing (2014). In particular, the framework is

based on the methods recommended by Gross et al. (2010), which states that modelling

based on cost estimates is of limited use in designing policies for promoting investments.

Instead, a simple model should be used to calculate potential returns to investment

in technologies, then taking market and policy uncertainties in different scenarios to

conduct policy analysis.

Our numeric model aims to answer the question: If there are additional financing

sources available for new investments, what would the investment allocation to different

power generation technologies look like for a representative risk-averse investor in the

EU power market?

We assume that there is one representative investor and she represents the mar-

ket. Later in the case studies, we will choose a representative investor with different

risk aversion levels, however, the assumption of one representative market investor does

not change. We further assume that there is no feedback effect between the portfolio

allocation and the power market.

The standard model consists of three parts. The three sub-models are executed

sequentially. As shown in Figure 2, the outputs from the power market model are

used as part of the inputs in the cash flow model, and the outputs from the cash flow

11



Figure 2: Model flow chart (Source of uncertainties marked by *star: electricity demands,
dispatch costs, capital costs, policy uncertainties)

valuation are used to calculate the optimal mean-variance portfolio. Moreover, climate

policy instruments affect the investment decisions through the first two parts of the

model. Fixed remuneration instruments directly guarantee a stable electricity price,

enhancing the revenue stream of renewable energy producers. Carbon price instruments

differs from these two approaches by not only increasing costs for dirty assets, but also

changing the power market equilibrium as the carbon costs are factored in dispatch

decisions.

The sources of uncertainties in the model are marked by stars (*). Market uncer-

tainties come from electricity demands and marginal dispatch costs, affecting market

electricity price and dispatch quantities through the power market. Financing costs un-

certainties are captured by uncertain capital costs. Policy uncertainties exist as climate

policies supporting clean assets have a mid to long term horizon and retroactive changes

due to fiscal deficit, lobbying and other political factors occur.

Part 1: Power market model. The power market model generates optimal electric-

ity dispatch. We extend an electricity dispatch model (Rutherford, 1995). In equilibrium,

electricity demands and marginal dispatch costs by power plant technologies determine

dispatch amounts and the electricity price in the power market.

The electricity dispatch model is highly simplified, providing equilibrium prices and

quantities of dispatch. It is compact enough to run a large number of Monte Carlo

Simulations. There are three load segments, which are peak load, intermediate load and

baseload. The time framework for the investment plan is assumed from 2015 to 2035.

Power generation technologies are solar, wind, hydro, biomass, nuclear, coal, and gas.

The demand side is divided into three segments: residential, commercial and industrial.
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The model does not capture the intermittent nature of renewable energy sources. This

shortcoming only affects our research objectives marginally because our electricity dis-

patch model’s purpose is not to realistically project power market dispatches but to

serve as a simplified market equilibrium experiment so that the equilibrium parameters

generated in the model can be used as inputs for the next step’s cash flow model. The

key input parameters for the power market model are reference demand in Megawatt

(MW), the marginal cost of dispatch in EUR per Megawatt hours (MWh), capacity

constraint in MW, and the demand shares for different loads by segment.

In the first step, reference prices and quantities of electricity for each segment are

calculated with linear programming. The objective function is to minimise the total

dispatch costs in the power system in the total cost function (Equation 8) while satisfying

the demand function (Equation 9).

Cost refers to the total costs of power supply, s is the load segments, Y is the unit

power supply, βrefs is the baseline reference demand for loads in the year 2015.

cost =
∑
j, s, t

(cj,t · Yj, s) (8)

∑
j

Yj, s = βrefs (9)

In the second step, electricity supply, profits and capacities are calculated in an

equilibrium model, with additional three binding conditions: market-clearing condition

(Equation 10), zero profit condition (Equation 11) and capacity constraint condition

(Equation 12), while satisfying the aggregate demand function (Equation 13). The

model is solved as a mixed complementarity problem.

B is the power demand, p is the electricity price, i refers to the demand categories,

K refers to the capacity constraints of technologies, π is the unit profits, tax is the taxes,

ε is the elasticity of demand, p̄ refers to the reference price of demand.

∑
j

Yj, s ≥
∑
i

Bi, s(p) ⊥ ps ≥ 0 (10)

cj,t + taxj + πj, s ≥ ps ⊥ Yj, s ≥ 0 (11)

Kj ≥ Yj, s ⊥ πj, s ≥ 0 (12)

The three complementarity conditions above are written in the orthogonal form with

⊥ to indicate the orthogonal relationship between the two.

Bi, s = β̄ref i, s(1− εi(ps/p̄s − 1)) (13)

In the third step, market uncertainties are taken into consideration. The models are

looped through simulated stochastic input variables. Volatilities come from demand and
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marginal dispatch costs. The model is run 10,000 times in the Monte Carlo simulation.

The 10,000 states of equilibrium market prices and quantities are stored as inputs to be

used in the cash flow model.

Part 2: Cash flow valuation. The second part is a cash flow valuation used to

calculate the Net Present Values (NPVs) and the power plant projects’ returns. The

investment return calculation is assumed based on a 1 MW power plant, as there are

fixed and variable costs. Power generation assets’ key cost items are captured by in-

vestment costs, capital costs and variable costs (Ŕıo and Cerdá, 2014). The key input

parameters for the cash flow valuation are investment costs, capacity factor, operation

& maintenance (O&M) costs, other costs as adjusting factors, and the weighted average

cost of capital (WACC); WACC is a firm’s cost of capital indicator, where each capital

type such as debt and equity are proportionally weighted.

In the cash flow valuation, there is an initial investment in 2015. From the year 2016,

the investment generates revenues but also result in costs. The sum of the discounted

cash flow is the NPVs. The net cash inflows are calculated by deducting cash outflows

from cash inflows. The WACC then discounts the cash flows within the project’s lifetime.

NPV is a key financial indicator for judging a project’s investment attractiveness. A

positive NPV is desired; the higher the NPV, usually the more financially a project is.

The discounted total costs are obtained by discounting the total costs by the WACC.

Returns are defined and calculated as the NPV of a generation asset type divided by its

discounted total costs.

NPV is the net present value, θ is the different states, inv is the initial investment

cost,wacc is the weighted average cost of capital, cashflow is the cash flows starting

from period 1, p* is the equilibrium market price, τ is other costs —other inputs and

financing costs, unitcostj is the marginal costs of production, h is the operating hours,

capacity is the capacity factor, totinvestcost is the discounted total investment costs,

investcost refers to the investment costs, µ is the return. 1MW capacity is considered.

NPVθ, j = −invj +
T∑
t=1

cashflowθ, t, j
(1 + waccj)t

cashflowθ, t, j =
∑
s

(p*s, θ − unitcostj − τj) · hs · capacityj

totinvestcostt, j = invj +

T∑
t=1

investcostθ, t, j
(1 + waccj)t

investcostθ, t, j =
∑
s

(unitcostj + τj) · hs · capacityj

µθ, j =
NPVθ, j

totinvestcostθ, j

For each type of generation asset, we calculate the returns under 10,000 different
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power market outcome states. To capture the uncertainties in financing costs, we build

uncertainties in the WACCs using stochastic variables generated by following a normal

distribution. The simulated returns’ mean and standard deviation and the variance-

covariance matrix between asset types’ returns are calculated. These parameters will be

used as inputs in the mean-variance portfolio model.

Part 3: Mean-variance portfolio model. The third part is a mean-variance portfo-

lio model, which calculates the optimal portfolio allocation of investments into different

power plants. The mean-variance portfolio theory is well established (Markowitz,1952;

Markowitz, 2016). We follow the standard theory in this part of the model.

The mean-variance portfolio model’s key input parameters are mean return, variance,

and variance-covariance matrix of each power generataion asset’s returns calculated.

µ̄ is the mean return, which is the average of the returns generated in the simulation.

σ2 is the variances. λ represents the variance-covariance matrix.

µ̄j =
∑
θ

µθ, j
θ

σ2j =
∑
θ

(µθ, j − µ̄j)2

θ

λj,jj =
∑
θ

(µθ, j − µ̄j) · (µθ, jj − µ̄jj)
θ

The objective function is to minimise portfolio variance function (Equation 14). The

portfolio return function calculates the portfolio return based on the optimal allocation

and the expected returns (Equation 15). The sum of all portfolio allocation weights is

equal to 1, which is the normalisation constraint (Equation 16).

portσ2 is the portfolio variance, α is the optimal portfolio share in a technology,portµ

is the portfolio return.

portσ2 =
∑
j, jj

αj
2 · σ2j + αjj

2 · σ2jj + 2 · αj · αjj · σj · σjj · λj, jj (14)

portµ =
∑
j

µ̄j · αj (15)

∑
j

αj = 1 (16)

This part of the model is solved by non-linear programming. The model’s outcome is

the optimal portfolio composition, consisting of shares in percentages in different types

of power generation assets.
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3.2 Data and calibration

The power market model is calibrated based on EU-28 power market data, taking 2015

as the base year. The key data source is the EU reference scenario 2016 (Capros et al.,

2016).

Table 1: Reference demand data (Capros et al., 2016)

Load segment βrefs (MW) hs r(%) c (%) i(%)

Peak load 115743 310 0.70 0.20 0.10
Intermediate load 97468 1780 0.45 0.25 0.30
Base load 98841 6670 0.25 0.30 0.45

Table 1 shows the demand side of the power market. There are three loads: peak,

intermediate and base loads and three demand categories: residential (r), commercial (c)

and industrial (i). The reference demand βrefs denotes the adjusted baseline demand

in the year 2015. The demand hours hs add up to 8760 hours, which correspond to a

standard year of operation.

Table 2 shows the power generation-related data by technology. Marginal costs of

production (unitcostj) and carbon intensities (ξj) are estimated values based on Lazard

(Lazard, 2015) and Annex III: Technology-specific cost and performance parameters

in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

(Schlömer et al., 2014). Capacity constraints (Kj) are adjusted in order to calibrate

electricity market price and the power generation profile, where the price levels (ps) are

calibrated to EU electricity price level in 2015. Power generation profile imitates the

composition of technologies to that in the EU’s power generation portfolio in 2015.

The power generation calibration is consistent with the following aspects of the real

electricity market. The market price in the base load is not greater than that of the peak

load, and renewables appear in all three types of load. However, due to the simplicity

of the dispatch model structure and disregard of the intermittent nature of renewable

energy, we cannot calibrate solar and wind to take a greater share in the peak load.

Technology unitcostj (EUR/MWh) Kj (MW) ξj(kg/MWh)

Solar 5 3950 0
Wind 5 10437 0
Hydro 5 13791 0
Biomass 225 1796 0
Nuclear 12 33006 0
Coal 175 32224 900
Natural gas 75 21540 700

Table 2: Reference electricity generation technology data (Capros et al., 2016)

The reference investments data are presented in Table 3. The cash flow model is

calibrated based on the investment data from the year 2015. Key data source are Lazard

(Lazard, 2015) and fifth IPCC assessment annex (Schlömer et al., 2014). In addition, we
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use Damodaran cost of capital for firms data (Damodaran, 2021). The calibration follows

market observations of the investment attractiveness of clean and brown generation

assets. Nuclear technology usually is planned as a national program and receives support

from the public sector (Jewell, 2011); we account for this by adjusting the extra costs

into support to reduce nuclear power plant costs. In a market without climate support

policies, the risk-return profiles of renewables are not as attractive for investors as that

of coal or natural gas.

invj
(mEUR/MW)

capacityj
(%)

unitcostj
(EUR/MWh)

tauj
(EUR/MWh)

waccj

Solar 1.3 0.25 85 10 0.065
Wind 1.6 0.35 70 30 0.065
Hydro 1.8 0.40 38 65 0.065

Biomass 3 0.60 55 45 0.065
Nuclear 5.5 0.94 82 -2 0.087

Coal 0.5 0.48 46 75 0.087
Natural gas 0.4 0.10 32 50 0.087

Table 3: Reference investment data: Lazard (2015); Schlömer et al. (2014); Damodaran
(2021)

The parameters used in the model are summarised in Table 4. Volatilities (vol)

characterise a normal distribution random number generators to capture uncertainties

in demand (β), marginal costs (unitcost) and WACC (wacc). The reference level in

Tables 1, 2 and 3 with respect to each variables are taken as the mean. The demand

shock is chosen at 0.1%, imitating a mild demand fluctuation. The volatility of the

marginal costs is calibrated to take high values to obtain price differences in different

states.

Parameters (selected from all sections of the model) Value

volβ 0.001
volunitcost 5
volwacc 0.005
εr 0.1
εc 0.2
εi 0.5

% (EUR/MWh) 200
carbonpricescale1 (EUR/ton CO2eq) 25 to 35 to 45 to 55

Table 4: An overview of the key parameters

The elasticity of demand (ε) for residential (r), commercial (c) and industrial (i)

sectors take the values from the original power dispatch model (Rutherford, 1995). The

fixed remuneration policy support levels (%) are set at 0,2 EUR/kWh for solar, wind,

hydro and biomass, a reasonable level as seen in the historical average support levels in

the EU countries (LEGAL, 2021). Carbon taxes are assumed to rise from 25 EUR to 55
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EUR; the increase happens every 5 years.

Technology Mean returns Variance

Solar 18% 0.0111
Wind 20% 0.0144
Hydro 20% 0.0144
Biomass 18% 0.0111
Nuclear 18% 0.0111
Coal 25% 0.0221
Natural gas 28% 0.0266

Table 5: Characteristics of the benchmark returns

Table 5 shows the mean and variance of the assets returns in the benchmark case.

In our benchmark calibration, dirty assets have higher mean return and variance levels

than the clean assets. Table 6 shows the covariance relations between the dirty and clean

assets.

SL WN HD BM NC

CL 0.00115 0.00124 0.00122 0.00120 0.00120
GS 0.00118 0.00128 0.00125 0.00123 0.00122

Table 6: Benchmark case variance-covariance matrix of assets
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies.C is covariance relation.

Statistically, the return distributions of different assets are close to normal distribu-

tions. The mean-variance approach used in the modelling part does not require returns

to be strictly normal. Thus the simulated data under policy shocks are all suitable for

analysis using this modelling framework.

4 Policy Instruments Analysis: Modelling Results

This section is structured to answer two layers of questions. Firstly, how do mean

returns, variance and variance-covariance relations among assets change with a fixed

remuneration instrument? Secondly, what does this mean for portfolio allocation? We

investigate the fixed remuneration instruments, carbon pricing instruments with case

studies, and selected cases of overlapping instruments.

4.1 Fixed Remuneration Instruments

Fixed remuneration instruments like Feed-in Tariffs guarantee a fixed compensation to

generators per unit of electricity sold. The payment is usually guaranteed for a period

of time, ensuring predictable cash inflows for the investors. This instrument’s support

level is incorporated in the cash flow equation. The level of support is denoted by %,

18



whereas τ is other costs —other inputs and financing costs. The cash flows for clean

assets are therefore:

cashflowθ, t, jc =
∑
s

(%fixedremunerationjc − unitcostjc − τjc) · hs · capacityjc

Retroactive policies that put taxes on the remunerated clean technology systems

reduce cash flows. Using taxretro to denote this tax rate, we have:

cashflowθ, t, jc =
∑
s

((%fixedremunerationjc − unitcostjc − τjc) · hs · capacityjc)(1− taxretro)

Potential stranded asset share is denoted by δPolicy. αuncer and αcer refer to the shares

of assets given policy uncertainty vs. those under uncertain policies. (αuncer − αcer) is

then the estimated potential stranded assets value.

δPolicy = αuncer − αcer

Policy effect on assets’ variance and covariance. Fixed remuneration instruments

increase the expected returns of clean assets while reducing their risks (see Table 7).

SL WN HD BM NC CL GS

Rno 18% 20% 18% 16% 16% 32% 35%
Ryes 34% 36% 34% 32% 16% 32% 35%

Vno 0.0012 0.0014 0.0013 0.0013 0.0014 0.0014 0.0017
Vyes 0.0004 0.0003 0.0003 0.0003 0.0014 0.0014 0.0017

Table 7: Assets’ expected returns and variance before and after a fixed remuneration
instrument is implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. R is return. V is variance. No indicates no policy. Yes
indicates policy is in place.

In addition, the instruments reduce the covariance correlation between clean and

dirty assets (see Table 8).

Policy Effect on Optimal Portfolio. The policy effect on assets’ variance and co-

variance is reflected in the investor’s choice of the optimal portfolio. We test three risk

tolerance level of tolerated portfolio variance: 0.001, 0.002 and 0.003 respectively for

three different representative risk averse investors. With fixed remuneration policy in

place, the optimal portfolio for all three risk averse investors have improved risk-return

characteristics, e.g., the portfolio variance changes from 0.0028 to 0.0009, whereas port-

folio return changes from 21.65% to 33.01% compared to with no policy. From Pnovara
and Pyesvara in Table 9, we see dirty assets CL (coal) and GS (natural gas) are reduced by
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SL WN HD BM NC

Cno: CL 0.00115 0.00124 0.00122 0.00120 0.00120
Cyes: CL -0.00008 0.00001 0.000004 0.000006 0.00120

Cno: GS 0.00118 0.00128 0.00125 0.00123 0.00122
Cyes: GS -0.00008 0.00002 0.000004 0.000003 0.00122

Table 8: Assets’ covariance relations before and after a fixed remuneration instrument
is implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies.C is covariance relation. No indicates no policy. Yes indicates
policy is in place.

17.3% together. This effect of dirty asset reduction is stronger in portfolios of investors

with risk tolerance of 0.001 and 0.002. As investors are willing to accept slightly more

volatility in their portfolio returns (portfolio variance of 0.003), the clean assets prove

to be the better choices than dirty assets and in this case, dirty assets can be largely

excluded from the portfolio —note that we ignore the technical requirements of dirty

assets in the power plants, but only discuss it from an investment portfolio construction

perspective.

SL WN HD BM NC CL GS

Pnovara 15.81% 14.54% 15.15% 15.18% 13.78% 14.24% 11.30%
Pyesvara 18.40% 23.12% 24.14% 21.40% 4.53% 4.69% 3.72%

Pnovarb 13.46% 12.38% 12.89% 12.91% 11.73% 12.12% 9.61%

Pyesvarb 21.05% 65.23% 7.77% 0% 0% 0% 5.95%

Pnovarc 17.10% 20.65% 21.15% 13.18% 10.03% 10.12% 7.77%
Pyesvarc 74.6% 25.4% 0% 0% 0% 0% 0%

Table 9: Investors’ optimal portfolio choice before and after fixed remuneration instru-
ment is implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. R is return. P is policy implementation. No indicates no
policy. Yes indicates policy is in place. var: variance, indicating the risks the investor
willing to tak, vara=0.001, varb=0.002, varc=0.003.

4.2 Carbon Pricing Instruments

Carbon pricing instruments put a price on carbon emissions. We incorporate carbon

pricing in our model through a progressing carbon tax. Equation 11 becomes:

unitcostj + taxj + carbontaxj + πj, s ≥ ps ⊥ Yj, s ≥ 0

Cash flows for dirty assets are reduced to:

cashflowθ, t, jd =
∑
s

(p*− ξj · carbontax − unitcostj − τj) · hs · (1 · capacityj)
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Policy Effect on Assets’ Variance and Covariance. Carbon pricing can take

different forms. In Sweden, the initial carbon tax was issued at EUR 25 per tCO2

with incremental increases in tax rate (Ackva and Hoppe, 2018). 7 Following this, in

our study, we assume that the implementation of carbon pricing instrument takes a

progressive method —the level of the carbon tax rate is increased steadily. The assumed

carbon tax rates have intervals of price increases of every five years. The carbon tax

pricing scheme assumes to increase from 25, 35, 45 to 55 EUR per tCO2.

Given carbon price, there is cost transfer of the increased generation costs to con-

sumers, thus the market electricity prices increase. The expected returns of clean assets

increase —and expected returns of the dirty assets decrease (see Table 10). At the same

time, the expected returns of clean assets become more volatile, while those of the dirty

assets become less volatile.

SL WN HD BM NC CL GS

Rno 18% 20% 18% 16% 16% 32% 35%
Ryes 40% 41% 39% 37% 36% 25% 33%

Vno 0.0012 0.0014 0.0013 0.0013 0.0014 0.0014 0.0017
Vyes 0.0015 0.0016 0.0014 0.0015 0.0017 0.0009 0.0012

Table 10: Assets’ expected returns and variance before and after a carbon pricing
instrument is implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. R is return. V is variance. No indicates no policy. Yes
indicates policy is in place. Carbon price assumes to rise from 25 to 55 EUR/tCO2.

Moreover, carbon pricing reduces the covariance correlation between clean and dirty

assets (see Table 8).

SL WN HD BM NC

Cno : CL 0.00115 0.00124 0.00122 0.00120 0.00120
Cyes : CL 0.00097 0.00104 0.00097 0.00094 0.00100

Cno : GS 0.00118 0.00128 0.00125 0.00123 0.00122
Cyes : GS 0.00105 0.00112 0.00108 0.00103 0.00107

Table 11: Assets’ covariance relations before and after a carbon pricing instrument is
implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies.C is covariance relation. No indicates no policy. Yes indicates
policy is in place.

Policy Effect on Optimal Portfolio. Carbon price instruments give incentives for

reducing dirty asset holding in portfolios. Same as in the analysis of fixed remuneration

instruments, we test three risk tolerance level for each pricing scheme: the tolerated

7Today Sweden’s power sector is included in the EU ETS and the carbon tax covers Non-EU ETS
sectors only.
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portfolio variance is assumed to be 0.004, 0.007 and 0.009 respectively. These indicate

three different levels of risk aversion.

Table 12 demonstrates the policy effect of a carbon pricing instrument. Carbon pric-

ing instrument has similar effect as the fixed remuneration instrument. However, the

efficient frontier line (thus the investment opportunities, the possible portfolio combina-

tions)in both cases are different. The least risky investment option under carbon pricing

scheme is riskier than that under fixed remuneration instrument. The investors thus

have to accept more risks in comparison under carbon pricing scheme for higher returns,

while fixed remuneration instrument takes away partial market risks making it a safer

investment for the investor.

SL WN HD BM NC CL GS

Pyesvara 22.00% 23.01% 20.98% 15.39% 11.78% 0% 6.84%

Pyesvarb 32.35% 39.23% 25.41% 3.00% 0% 0% 0%

Pyesvarc 33.38% 52.84% 13.78% 0% 0% 0% 0%

Table 12: Investors’ optimal portfolio choice before and after a carbon pricing instrument
is implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. P is policy implementation. Yes indicates policy is in place.
var: variance, indicating the risks the investor willing to take, vara=0.004, varb=0.007,
varc=0.009.

4.3 Overlapping policies

Overlapping climate policies refer to situations where fixed remuneration instrument,

carbon pricing instrument and other types of instruments co-exist to reduce emissions.

In the following case study, the fixed remuneration instrument and carbon pricing in the

above sessions are implemented together.

Policy Effect on Assets’ Variance and Covariance Overlapping policies have the

combined characteristics of both policy instruments. Together the instruments stabilise

the cash flows, reducing portfolio risks and reducing assets correlations, but not to the

extent as under fixed remuneration instruments (see Table 13 and Table 14).

Policy Effect on Optimal Portfolio As seen in Table 15, overlapping instruments

reduce dirty assets holding in the portfolio. The possibilities of constructing portfolio

with risk as low as 0.001 portfolio variance level is achievable again thanks to the fixed

remuneration instrument. With portfolio variance level of 0.001, 0.0012 and 0.0014, it

is already possible to achieve similar level of dirty asset reduction that require risks of

0.004, 0.007 and 0.009 under carbon pricing instrument alone.
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SL WN HD BM NC CL GS

Rno 18% 20% 18% 16% 16% 32% 35%
Ryes 35% 36% 34% 32% 36% 25% 33%

Vno 0.0012 0.0014 0.0013 0.0013 0.0014 0.0014 0.0017
Vyes 0.0003 0.0003 0.0003 0.0003 0.0017 0.0009 0.0012

Table 13: Assets’ expected returns and variance before and after a fixed remuneration
instrument and a carbon pricing instrument are implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. R is return. V is variance. No indicates no policy. Yes
indicates policy is in place.

SL WN HD BM NC

Cno: CL 0.28792 0.44222 0.330918 0.343518 0.5554
Cyes: CL 0.00005 0.00007 0.00001 -0.00006 0.0010

Cno: GS 0.10513 0.14298 0.098025 0.119170 0.2834
Cyes: GS 0.00002 0.00008 0.00005 0.00002 0.0011

Table 14: Assets’ covariance relations before and after a fixed remuneration instrument
and a carbon pricing instrument are implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies.C is covariance relation. No indicates no policy. Yes indicates
policy is in place.

SL WN HD BM NC CL GS

Pnovara 15.81% 14.54% 15.15% 15.18% 13.78% 14.24% 11.30%
Pyesvara 20.33% 28.95% 29.44% 12.46% 3.24% 2.84% 2.74%

Pnovarb 13.46% 12.38% 12.89% 12.91% 11.73% 12.12% 9.61%

Pyesvarb 26.57% 31.85% 32.18% 9.40% 0% 0% 0%

Pnovarc 17.10% 20.65% 21.15% 13.18% 10.03% 10.12% 7.77%
Pyesvarc 32.83% 33.19% 33.22% 0.77% 0% 0% 0%

Table 15: Investors’ optimal portfolio choice before and after a fixed remuneration
instrument and a carbon pricing instrument are implemented
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. R is return. P is policy implementation. No indicates no
policy. Yes indicates policy is in place. var: variance, indicating the risks the investor
willing to take, vara=0.001, varb=0.0012, varc=0.0014.

4.4 Extension: Effect of Retroactive Policies

Given retroactive policy changes happened in the past, investors may not trust climate

policies will be consistent through the project’s life time (Egli, 2020).The expectation

of policy change would be considered by investors in the investment evaluation. In this

section that extends the paper, we aim to answer the question: how does the policy

effect in the first two layers change given investor distrust and policy uncertainties?
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Uncertainty in Fixed Remuneration Instruments The long-term ”survival” of

the fixed remuneration policy are largely dependent on the ability of the government

to pay out the promised remuneration levels throughout time. Retroactive renewable

energy support changes happened many times in different European countries. For the

development of stylised case studies, we have selected policy uncertainty scenarios based

on the generalisation of the real retroactive policy changes in the past.

• Scenario 1: The complete suspension of the fixed remuneration instrument 8.

• Scenario 2: 15% cut on fixed remuneration support level 9.

• Scenario 3: 25% tax on renewable energy systems to get partially paid-out remu-

neration back due to fiscal and financial difficulties 10.

For a clean energy investor, the retroactive policy change could happen any time in

the middle of the project life-time. Therefore, to take this into consideration, we model

the above three scenarios at the early, middle and late life-time of the project —we

define them as at the 5th, 10th and 15th year into the project. We present the results of

the case when the uncertainty occurs in the middle of the project life (10th year). The

changes of expected returns, variance and covariance are time period dependent and we

omit the report of these changes here, but directly show the effect of retroactive policies

on the portfolio optimisation.

Under all cases of retroactive policies, the investors with three different levels of risk

aversion all decide to include dirty assets in their portfolios —in most cases they include

significantly more dirty assets (see in Table 18). The retroactive policy through system

taxation has more influence on the highly risk averse investors to hold on to dirty assets

than reducing fixed remuneration levels.

Assuming that the amount of new funds for investments from a risk averse investor

is 1,000,000 EUR, we estimate the potential stranded assets value for this investor by

comparing her portfolio choice given policy uncertainty with that of no uncertainty. As

seen in Table 17, unreliable fixed remuneration policy result in potential stranded asset

of values range from 12,000 million EUR to 66,600 million EUR for a high risk aversion

investor, 24,400 million EUR to 352,600 million EUR for an investor with relatively low

risk aversion. For a moderate risk aversion investor, though stranded dirty assets in the

portfolio may not occur in the first two scenarios, the nuclear asset share has significantly

increased in these cases, crowding out shares in clean assets.

8Based on the real case: Italy suspended Feed-in Tariff system in 2013.
9Based on the real case: Slovakia decreased Feed-in Tariff level with 1 month notice; Bulgaria reduced

FiT with 3 weeks notification time.
10Based on the real case: Czech Republic and Greece issued a tax of 26-28% for system > 30kw, and

a tax of 25-30% for system > 10kw.
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SL WN HD BM NC CL GS

Puncersce1vara 20.79% 21.25% 22.42% 20.74% 5.19% 5.36% 4.25%
Puncersce1varb 58.00% 5.00% 17.00% 5.00% 5.00% 5.00% 5.00%

Puncersce1varc 76.08% 3.33% 7.26% 3.34% 3.33% 3.33% 3.33%

Puncersce2vara 18.70% 24.31% 25.64% 22.12% 32.32% 3.34% 2.65%
Puncersce2varb 73.92% 5.56% 5.57% 5.55% 4.59% 4.63% 0.17%

Puncersce2varb 92.93% 1.11% 1.11% 1.11% 1.11% 1.11% 1.52%

Puncersce3vara 8.13% 7.99% 8.25% 8.40% 23.56% 24.35% 19.32%
Puncersce3varb 55.46% 10.08% 10.22% 10.04% 5.81% 5.94% 2.45%

Puncersce3varc 71.83% 5.15% 5.17% 5.15% 4.63% 4.66% 3.41%

Table 16: Investors’ optimal portfolio choices under certain vs. uncertain fixed remu-
neration instrument, uncertainty in midlife of the project
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. P is policy implementation. cer: certain. uncer: uncertain.sce:
scenario. var: variance, indicating the risks the investor willing to tak, vara=0.001,
varb=0.002, varc=0.003.

Dirty assets in % Dirty assets Nuclear in % Nuclear

Strsce1vara 1.20% 12, 000 0.66% 6, 600
Strsce1varb 4.05% 40, 500 5.00% 50, 000

Strsce1varc 6.66% 66, 600 3.33% 33, 300

Strsce2vara −2.42% −24, 200 27.79% 277, 900
Strsce2varb −1.15% −11, 500 4.59% 45, 900

Strsce2varc 2.63% 26, 300 1.11% 11, 100

Strsce3vara 35.26% 352, 600 19.03% 190, 300
Strsce3varb 2.44% 24, 400 5.81% 58, 100

Strsce3varc 8.07% 80, 700 4.63% 46, 300

Table 17: Potential stranded assets in percentage and absolute terms for risk averse
investors, uncertainty in midlife of the project
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. uncer: uncertain policy. cer: certain policy. Str is potential
stranded assets. Sce is scenarios of retroactive fixed remuneration policies. Calculation
based on Table 9 and Table 18. Table 9 serves as benchmark.

Uncertainty in Carbon Pricing Instruments Different from fixed remuneration

instruments, a retroactive policy change of carbon tax in the midlife of the project does

not necessarily lead to more dirty asset holding in the portfolios as seen in Table 18.

We do not observe policy uncertainty costs in this case because a carbon pricing scheme

makes the volatility of the clean and dirty assets increased significantly. According to

our Proposition 1 in the analytical section, the scheme would unintentionally lead to

the inclusion of more dirty assets in the portfolio. The halfway implementation of the

scheme therefore does not have negative effect on the clean asset share in the portfolio.
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SL WN HD BM NC CL GS

Puncervara 23.74% 43.63% 32.63% 0% 0% 0% 0%

Puncervarb 13.18% 73.63% 13.19% 0% 0% 0% 0%

Puncervarc 7.45% 85.11% 7.44% 0% 0% 0% 0%

Table 18: Investors’ optimal portfolio choices under certain vs. uncertain fixed remu-
neration instrument, uncertainty in midlife of the project
Note: SL,WN,HD,BM,NC,CL,GS are solar, wind, hydro, biomass, nuclear, coal and
natural gas technologies. P is policy implementation. cer: certain. uncer: uncertain.sce:
scenario. var: variance, indicating the risks the investor willing to take, vara=0.004,
varb=0.007, varc=0.009.

4.5 Robustness check

Our modelling results hold under different levels of fixed remuneration, or under

retroactive policies occurring at different stage of the project’s lifetime, when everything

else is equal. Higher carbon pricing would have different effect on the risks and covariance

correlation of the dirty and clean assets, but the general results still hold.

5 Discussion

Due to the low correlation between clean and dirty assets, one of them is frequently

used as a hedging device in the portfolio while the other asset has a dominating share.

About one decade ago, when renewable energy had high investment risks around the

world and considered to be a niche, renewable energy sources were served as a hedge

against fossil fuel plants in the power plant portfolios (Tietjen et al., 2016; Arnesano

et al., 2012; Bhattacharya and Kojima, 2012). We explained this phenomenon in our

analytical model: when the dirty asset has comparatively higher expected returns and

lower risks, a marginal decrease in the correlation between dirty and clean asset returns

can lead to an increase in clean asset shares. This situation is changing. Though re-

newable energy is still considered riskier and less attractive in many developing nations

for financing reasons (Shimbar and Ebrahimi, 2020) , in many markets where there are

commercially viability renewable investment opportunities, good sustainable policy en-

vironment and high investor confidence, the dirty asset is mixed in the portfolio to serve

potentially a hedging purpose. This may explain the current renewables development

situation in the EU, where there is commercial maturity of solar and wind technologies,

the EU’s strong commitments to financing sustainable growth and Non-Governmental

organisations (NGO) pressure on corporations. Some observations show that RWE,

one of the largest electricity generators worldwide, plans new investments are predom-

inantly shifted towards renewable energy generation alongside investments into natural

gas power plants (Bünder, 2021).

The portfolio risk of two assets depends on the asset shares, their variance, and the

correlation between assets’ returns. Changes in portfolio risks affect investment deci-
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sions significantly —not surprisingly —for risk-averse investors. Thus there is potential

in designing policy incentives considering this effect. For instance, increasing the risk-

iness of the dirty asset will incentivise a risk-averse investor to reduce her dirty asset

holding, given that the two assets are identical in expected returns and their returns are

independent of each other. In our analytical model of two assets, we further showed that

policies that increase mean returns of clean energy assets but at the same time increase

their risks might not yield the desired policy effect. This could happen, as illustrated in

Proposition 1, and lead to an increase of dirty asset holdings in the portfolio if the risk

level of clean assets marginally increase and the variance of return difference between

both assets are not equal to 0. This is in line with the literature, which says that climate

policies that reduce market uncertainties could reduce the risks related to an investment

decision (Masini and Menichetti, 2012).

Our calibrated stochastic model of the EU power sector further demonstrated and

extended the points made in the analytical framework. In comparing individual policy

instruments, we find that de-risking policies that guarantee certainties for investors have

similar effects in incentivising clean investments as carbon pricing instruments. The

merit of the fixed remuneration instrument is its power to reduce asset risks and reduce

correlation among clean and dirty assets, thus offering risk-averse investors a safe zone

and the possibility to construct portfolios suitable to their preferences. Carbon pricing

instruments are less affected by policy discontinuation, whereas remuneration policies

have to be trustworthy to fulfil their purposes. The merits of the different policy in-

struments have to be considered together with their costs. In terms of policy costs,

fixed remuneration policies, as well studied in literature, if set at a very high support

level, may not be sustainable. This is because fixed remuneration instruments promote

investments quickly in a large scale and the financial burden of supporting all of the

projects become immense. Carbon pricing instrument, in particular, carbon tax is a

fiscal instrument that brings cash inflows to the public sector, thus not subjecting to

fiscal risks in comparison.

6 Conclusion

Asset stranding caused by climate-related policy issues affects the sustainable develop-

ment of both developed and developing countries (Ansari and Holz, 2020); it could lead

to losses of wealth and employment linked to fossil fuels in fossil resource-reliant coun-

tries (Jin et al., 2021) . Moreover, in the lower-carbon transformation, the unanticipated

policy changes could cause discrete jumps in the evaluation and reevaluation of assets

and capital (van der Ploeg and Rezai, 2020) . These policy risks, as shown in our pa-

per, have serious consequences on power market investors’ portfolio composition choices.

Electric utility company investors intentionally hold dirty assets to manage uncertainties

and risks from the market and from policy uncertainties. Given that fossil fuel power

generation assets have a long lifetime, the dirty assets in the portfolio will likely lock in
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carbon-intensive technologies for an extended period of time.

Uncertainty about the continuation of fixed remuneration policies for renewable de-

ployment leads to more potentially stranded investments in fossil fuel generation capac-

ities —ranging from 1% to 35% of a risk-averse investors’ budget. On the contrary, a

carbon price instrument is less affected by policy discontinuation in comparison. Both

fixed remuneration and carbon price policies can crowd out dirty assets. However, the

investors have to bear more investment risks under carbon pricing policies. The invest-

ment risk profile becomes more attractive for risk-averse investors if fixed remuneration

policies coexist.

Policymakers should pay attention to how climate policies affect the risks and cor-

relation of dirty and clean assets. In designing climate policies, an evaluation of policy

instruments on the asset stranding potential is recommended.
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A Appendix

A.1 Portfolio return and expected utility

A risk-averse firm investor has the following constant relative risk aversion (CRRA)

preferences:

V = W 1−γ
t+1 /(1− γ),

with γ ≥ 1.11 The initial value in t+ 1 depends on the value in the previous period

times the portfolio return factor R̄t+1, hence

Wt+1 = R̄t+1Wt. (A.1)

R̄t+1 is the Log-normally distributed portfolio return factor realised in t + 1. The

portfolio is a composite of clean and dirty assets.αd is the portfolio weight of the dirty

assets and αc = (1− αd) is the share of clean assets.

R̄t+1 = αdRd,t+1 + (1− αd)Rc,t+1.

With some manipulation we get

1 + R̄t+1

1 +Rc,t+1
= 1 + αd

(
1 +Rd,t+1

1 +Rc,t+1
− 1

)
.

Taking logs —and again denoting log variables in small letters — gives

r̄t+1 − rc,t+1 = log [1 + αd(exp(rd,t+1 − rc,t+1)− 1)] (A.2)

This relation can be approximated using a second-order Taylor expansion (Campbell

and Viceira, 2002a) around the point rd,t+1 − rc,t+1 = 0:

f(rd,t+1 − rc,t+1) ≈ f(0) + f ′(0)(rd,t+1 − rc,t+1) +
1

2
f ′′(0)(rd,t+1 − rc,t+1)

2.

The Taylor approximation of (A.2) is thus (more details are in the appendix campbell

file we citepd)

r̄t+1 = rc,t+1 + αd (rd,t+1 − rc,t+1) +
1

2
αd αc η (A.3)

According to Carroll (2013) , (rd,t+1 − rc,t+1)
2 is approximated and replaced by

η = (σ2d + σ2c − 2σcd), which is the variance for the difference between the two variables

rc,t+1 and rd,t+1.

Using the approximation to the portfolio rate of return, the expectation of utility at

11In the limit with γ = 1, U = log(Wt+1).
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t+1 is

E[V (Wt+1)] ≈ (1− γ)−1w1−γ
t e(1−γ)αdαcη/2E

[
(e(rc,t+1+αd(rd,t+1−rc,t+1))(1−γ)

]
. (A.4)

Given

rt+1 = (rc,t+1, rd,t+1)
′ v (N (rc, σc

2),N (rd, σd
2))′

This implies that

(1− γ)(αcrc,t+1 + αdrd,t+1) v N ((1− γ)(αcrc + αdrd), var((1− γ)(αcrc,t+1 + αdrd,t+1)))

Which is

(1−γ)(αcrc,t+1+αdrd,t+1) v N ((1−γ)(αcrc+αdrd), (1−γ)2(αc
2rc

2+αd
2rd

2+2αcαdσcd)))

According to the log form manipulation rule If logR̂t+1 = γlogRt+1 where logRt+1 N (r, σr
2),

then Et[R̂t+1] = eγr+γ
2σr2/2, we obtain the log of the expectation

logE[e(rc,t+1+αd(rd,t+1−rc,t+1))(1−γ)] = (1−γ)(αcrc+αdrd)+(1−γ)2(α2
cσ

2
c+α

2
dσ

2
d+2αcαdσcd)/2

According to Carroll (2013), the expected utility of the investor with two risky assets

is

E[V (Wt+1)] ≈ (1− γ)−1W 1−γ
t e(1−γ)αdαcη/2*e(1−γ)(αcrc+αdrd)*

e(1−γ)
2(α2

cσ
2
c+α

2
dσ

2
d+2αcαdσcd)/2 (A.5)

The constant item (1− γ)−1W 1−γ
t in E[V (Wt+1)] is less than zero; to maximise the

expected utility level, the log of the non-constant item is minimised. The FOC for this

condition is

(1− γ)αdαcη/2 + (1− γ)(αcrc + αdrd) + (1− γ)2(α2
cσ

2
c + α2

dσ
2
d + 2αcαdσcd)/2 = 0

That is,

(1− 2αd)η/2 + rd,t+1 − rc,t+1 + (1− γ)(αdη + (σcd − σc2)) = 0

Thus, the portfolio weight αd for dirty power plant assets is

αd =
µd − µc + (σ2c + σ2d − 2σcd)/2 + (1− γ)(σcd − σ2c )

γ(σ2c + σ2d − 2σcd)
. (A.6)
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A.2 Proposition One - Potential stranded assets

We show that the dirty asset holdings αd will increase if the stated two conditions 1)

increasing µc; and 2) σ2c + σ2d − 2σcd 6= 0 hold.

The cross partial derivative of αd with respect to µc and σ2 is

∂2αd
∂µc∂σ2

=
1

γ(σ2c + σ2d − 2σcd)2
(A.7)

Since γ >= 1, if σ2c + σ2d − 2σcd 6= 0, the denominator is > 0. If µc is (marginally)

increasing, the change in αd with respect to changing µc changes as σc changes. The

change is positive but decreasing with increasing σc.
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