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A B S T R A C T

This paper addresses the question of whether countries can escape from poverty in a sustainable manner.
For this purpose, we introduce an endogenous growth model that incorporates human, physical, and natural
capital, as well as subsistence consumption. We provide a closed-form solution of the model to exploit the
entire transitional phase of countries with unequal initial endowments of human capital and natural resources.
We calibrate this model for 108 countries using data from the World Bank on countries’ physical capital
and natural resource endowments. Using a battery of established consumption-based sustainability tests, we
assess sustainability during the transition towards the economies’ steady-state. We find that most countries are
characterized by sustainable development. For those countries not qualifying for sustainable development, we
are able to quantify by how much initial capital endowments fall short of minimum requirements implied by
sustainability tests.
1. Introduction

Given they are endowed with natural resources, is it possible that
countries can escape from poverty in a sustainable manner? This paper
addresses this question — both, theoretically as well as empirically, by
focusing on sustainability during transition periods in the presence of
subsistence needs for a sample of 108 countries.

An answer to this question is particularly relevant for resource-
rich but otherwise poor countries.1 The relevant literature suggests
many possible sustainability tests to judge whether or not an economy
behaves sustainably. Based on an optimal growth model, we employ
these tests but we exploit the entire development path of countries with
unequal initial endowments of human capital and natural resources.
Controlling for possibly false signals of the tests, along the adjustment
path, we find that most countries in our sample behave in a sustainable
manner.

As stressed by the development literature, savings in developing
countries is determined not only by the willingness to save but also
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1 Venables (2016) reports on numbers issued by the IMF that 29 out of 51 resource-rich economies belong to the group of low or lower-middle income
countries.

2 Alternatively, we might be thinking of habit formation (Carroll et al., 2000).

by the ability to save (e.g. see Steger, 2000). Assuming a constant-
intertemporal-elasticity-of-substitution (CIES) formulation of prefer-
ences abstracts from the requirement of a minimum consumption level
that restricts the possibilities to substitute consumption between time
periods, and, hence, to save. To shed light on our above raised question,
it is necessary to account for such minimum consumption requirements.
This idea is supported by (Pezzy and Anderies, 2003), who stated that
ignoring subsistence consumption in a resource-economic modeling
environment might lead to a biased analysis of institutional evolutions
and biased policy recommendations.

To systematically reconcile sustainable development with escape
from poverty, we introduce an endogenous growth model with the
following attributes: First, we introduce a human capital sector fol-
lowing the famous Uzawa–Lucas endogenous growth model (Uzawa,
1965; Lucas, 1988), where physical and human capital are subject to
depreciation whereas population of the economy grows at a constant
exponential rate. Second, we allow for minimum consumption require-
ments by introducing Stone–Geary preferences (Stone, 1954; Geary,
1950) to acknowledge the possibility that some (resource-rich) coun-
tries are restricted by the ability to save.2 Third, we link the economy
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to the resource sphere by borrowing elements from the continuous
time Dasgupta–Heal–Solow–Stiglitz model (Dasgupta and Heal, 1974;
Solow, 1974; Stiglitz, 1974, DHSS from here on).

We show that our model allows for a closed form solution that
enables us to calibrate the economy’s transition towards its steady-state
using country specific data.3 This is necessary to investigate the possible
ustainable evolution at the beginning of an economy’s development
hase. We are, thus, able to exploit the entire dynamics of the resource-
conomy environment starting from its initial endowment. In turn,
sing a model linearized around the economy’s steady-state would
ot allow for this. The analytical solutions allow us to apply several
ustainability tests along the adjustment path.

The sustainability tests that we conduct are consumption based.
irst, it is the ability of realizing a minimum subsistence level of
onsumption. Second, we regard a non-decreasing consumption profile
s a sustainability criterion. A further contribution of our paper is
hat we expand Weitzman’s (1976, 1997) sustainability test. Weitz-
an’s (1976, 1997) approach has been originally developed for an

nvironment with a constant interest rate, and is therefore limited to
teady-state analyses. We adopt Weitzman’s approach by transferring
he implied sustainability test to the case of a non-constant interest rate
uring adjustment periods. The motivation for tracing out the required
uantities in our model theoretically is to conduct the tests on the
alibrated model and to draw conclusions regarding sustainability for
articular countries.

We calibrate the model for 108 countries using mainly data from
he World Bank’s Wealth of Nations database.4 The data provides us
ith information on countries’ natural resource, physical and human

apital endowments.
Our key findings are as follows: 98 out of 108 countries are equipped

ith sufficient initial endowments of resources, physical and/or human
apital to permanently allow subsistence consumption at the least. We
hoose the World Bank’s poverty lines as a measure for this level of
ubsistence consumption5

The countries with insufficient initial endowments are mostly low-
ncome countries. We find further, that 91 out of these 98 economies
ualify for positive long-run growth while 7 converge to a zero growth
cenario where households can just afford minimum subsistence con-
umption. Moreover, we find that the model’s predictions for most
ountries in our sample are characterized by sustainable development
ith respect to consumption growth and Weitzman’s (1976, 1997)

ustainability test. In the former case, the whole trajectory for wel-
are maximizing consumption towards the steady-state exhibits non-
egative growth rates. In the latter case, consumption is permanently
elow a consumption annuity level that is equal in its present value.

The structure of the paper is as follows. The next section reviews the
iterature relevant to our contribution. Section 3 lays out the economic
roblem that we aim to solve and provides the theoretical results.
ection 4 presents the calibration and the results of the sustainability
est. Section 5 discusses our findings and, finally, Section 6 concludes.

. Review of literature

Subsistence consumption that enables individuals to meet their
inimum basic needs of life, has been discussed frequently in an

conomic growth context. Two papers closely related to this one are
teger (2000) and Strulik (2010). Both solve a utility maximization

3 The R code and the calibration data are available from the authors upon
request.

4 The database is available at https://datacatalog.worldbank.org/dataset/
wealth-accounting.

5 Hence, we interpret subsistence as a consumption mode that is directly
related the concept of the poverty line that in turn is used to identify the
2

fraction of the population that is absolutely poor (see Steger, 2000). e
problem with Stone–Geary preferences but with a standard AK-type
production technology. Their models are nested in ours if one is setting
the output elasticity of the resource equal to zero and taking no
account of human capital accumulation. However, these settings ignore
that many developing low-income countries are resource rich (Barbier,
2005), facing substantial development needs (see Araujo et al., 2016)
and grow less rapidly (Gaitan and Roe, 2012).

Another strand of literature has extensively analyzed the DHSS
framework under some specific assumptions. The Cobb Douglas con-
stant returns to scale production structure with reproducible man-made
capital and resource input has been employed by Benchekroun and
Withagen (2011), Asheim and Buchholz (2004) and others. Mitra et al.
(2013) employ a general constant returns to scale technology with
reproducible man-made capital and resources. input.6 Antony and Klarl
(2019a,b) introduce minimum subsistence consumption in a utilitarian
approach into the DHSS model.

Our approach is also related to the nexus between resources, growth,
and development. First, as inter alia argued by Collier et al. (2010)
and van der Ploeg and Venables (2011), because of human as well
as physical capital scarcity, many resource rich developing countries
should use resource rent windfalls to speed up development by accu-
mulating capital. They argue that capital scarcity implies higher return
on domestic capital. Hence, it might be beneficial to invest in human
and physical capital than investing abroad. However, empirical findings
in Venables (2016) seem to suggest that this is not happening. We add
to this literature by asking the underlying question whether initial en-
dowments of physical and human capital together with initial resource
stocks are sufficient to allow the permanent realization of subsistence
level consumption at the least. If yes, we proceed by investigating how
far can development take countries above this subsistence level.

Accumulation of knowledge in terms of human capital together with
non-renewable resource depletion has been also analyzed in, among
others, Barbier (1999), Scholz and Ziemes (1999), Groth and Schou
(2002), Schou (2000), Grimaud and Rouge (2003) and Bretschger
and Smulders (2012), while the relationship between natural resource
abundance and human capital development is discussed by Leamer
et al. (1999), Gylfason (2001) or Stijns (2006).

A recent strand of the literature analyzes the implications of non-
renewable resources in an environment with directed technical change.
The most relevant contributions are Di Maria and Valente (2008),
Acemoglu et al. (2012) and André and Smulders (2014). Although the
economic set-up in this series of contributions differs from ours, these
paper stress the importance of incentives to produce new ideas that are
able to augment a scarce non-renewable resource.7 We are dealing with
the problem of efficient human capital accumulation that is increasing
the marginal productivity of a non-renewable resource. Effort can be
allocated to final goods production or to human capital accumulation
and, hence, we are dealing with the endogenous direction of such
activities.

Acemoglu et al. (2012) and André and Smulders (2014) are cali-
brating their theoretical models to trace out their dynamic implications
reflecting particular scenarios. While Acemoglu et al. (2012) focus on
optimal policies regarding taxes and subsidies and their implications for
R&D, André and Smulders (2014) use their calibration to understand
general stylized facts on the treatment of non-renewable resources.
Our focus differs as we want to calibrate our model to particular
country scenarios. This allows us to draw more specific conclusions

6 See Antony and Klarl (2019a,b) for a more detailed review of this
iterature.

7 The set-up in these contribution analyzes an economy with a clean and
dirty production sector where only the latter uses non-renewable resources

uch as fossil fuels while both sectors can substitute for each other. In our
et-up, production always uses non-renewable resources and consequently, the

conomy is more dependent on them.

https://datacatalog.worldbank.org/dataset/wealth-accounting
https://datacatalog.worldbank.org/dataset/wealth-accounting


Energy Economics 110 (2022) 106016J. Antony and T. Klarl

i
w
w
t
g
i
c
s

W
p
a
w
a
e
W
c
B
w
c
c

d

a
(
2

d
h

d
i
t

at the country level, in particular on quantities often used to judge
sustainability.

Focusing on periods after the industrial revolution (where subsis-
tence consumption might be still a relevant issue), we are totally aware
of the literature that explain the historical phases of development. This
development starts from the Malthusian Stagnation to the Industrial
Revolution and ends with sustained growth of per capita income (Galor
and Weil, 2000; Galor, 2005, 2011). Similar to our setting, in the
benchmark unified growth theory model, population growth affects
natural resource scarcity (and labor productivity). Focusing on popula-
tion dynamics and resource scarcity, Peretto and Valente (2015) discuss
a Schumpetarian growth model with endogenous fertility. Inter alia,
they show that if labor and resources are substitutes (complements), the
economy can be described to be in a steady-state in the long-run (ends
up with a demographic explosion or collapse).8 The economy might
converge to three possible steady-states: First, the economy grows
at positive rates in the long-run. Consumption and production per
capita grow without bound and tend to infinity. Second, the economy
realizes the subsistence level and there is no long-run growth. Third,
the economy follows a long-run zero growth scenario where per capita
production and consumption is above the subsistence level. This reflects
the implication of a weak scale effect of population size on human
capital in the Uzawa–Lucas model (Jones, 2005) that helps overcoming
Malthusian stagnation.

We add to this literature as our focus is on the question whether
economies that escape from poverty are able to do so in a sustain-
able manner. Typically, the aforementioned contributions focus on
the steady-state behavior and linearization techniques to discuss tran-
sitional dynamics (close to the steady-state). However, this strategy
comes at the cost that some interesting dynamics during the adjustment
phase are neglected, particularly during the early stages of develop-
ment. To overcome this caveat, we derive a closed-form solution of our
model along the entire optimal trajectory.9

We add further to the discussion on the appropriateness of compet-
ng measures of sustainability. Regarding the concept of sustainability,
e apply several approaches. First, we follow Holden et al. (2014)
ho give an interpretation of the Brundtland Report (WCED, 1987)

hat regards a development as sustainable if basic human needs are
uaranteed in an intergenerational way. Second, we are investigat-
ng consumption growth. Asheim and Buchholz (2004) regard any
onsumption path characterized by non-decreasing consumption as
ustainable.

Finally, exploiting the closed-form solution of our model, we extend
eitzman’s (1997) sustainability test on the economy’s consumption

attern for the case of a non-constant interest rate.10 Recently Cairns
nd Martinet (2014, 2021) pioneered the concept of the sacrifice which
e apply to the two last mentioned tests. The sacrifice can be seen
s a foregone quantity that would be potentially available without
ndangering the goal of sustainability traded in for future returns.
e calibrate our model and investigate the mentioned sustainability

oncepts using data for 108 countries largely drawn from the World
ank’s data bases. In contrast to e.g. Rodgríguez and Sachs (1999)
ho calibrate their model only for Venezuela, we are able to draw

onclusions about possible sustainable development for the majority of
ountries in the world.

8 Further relevant contributions on economic development include Smul-
ers (2005), Xepapadeas (2005), Schäfer (2014) and Bretschger (2013).

9 We do so by making use of the Gaussian hypergeometric function. This
pproach has been used in economics by e.g. Boucekkine and Ruiz-Tamarit
2008), Boucekkine et al. (2008), Ruiz-Tamarit (2008), Hiraguchi (2009,
014), Guerrini (2010) and Perez-Barahona (2011).
10 Weitzman (1997) mentions that besides a constant interest rate, other
iscount rates should be considered, but ‘‘he would hate to be the one who
3

as to make such recalculations in practice’’ Weitzman (1997, fn. 6, p. 6). l
3. The model

In this section, we lay out the intertemporal utilitarian problem
that we aim to solve. Preliminary calculations that are helpful in
finding a solution to the problem together with necessary conditions
for its existence are presented. The aim of this section is to derive a
closed-form solution of the model.

3.1. The optimization problem

The economy is populated by a mass 1 of infinitively living rep-
resentative households with the following Stone–Geary intertemporal
utility function

𝑈𝑡 = ∫

∞

0

(𝑐𝑡 − 𝑐)1−𝜂 − 1
1 − 𝜂

𝐿𝑡𝑒
−𝜌𝑡𝑑𝑡, (1)

where 𝑐𝑡 is consumption per capita at time 𝑡, 𝑐 is the minimum
subsistence level of consumption, 𝜂 > 0 and 𝜌 > 0 is the rate of time
preference. 𝐿𝑡 = 𝐿0𝑒𝑛𝑡 is the household size at time 𝑡 which is growing
at rate 𝑛. We will refer to 𝑐𝑡 − 𝑐 as the excess consumption in the sense
that is taking place in excess of a subsistence level 𝑐.

We consider a social planer to maximize households’ lifetime utility
given the relevant budget constraints. These constraints are given by
the accumulation of reproducible physical capital, the accumulation
of human capital, and by the use of a non-renewable resource that is
necessary for production.

We assume that production is given by the aggregate Cobb–Douglas
production technology

𝑌𝑡 = 𝐴𝐾𝛼
𝑡 (𝐻𝑡𝑢𝑡𝐿𝑡)𝛽𝑅

𝛾
𝑡 , (2)

where 𝐾𝑡 denotes the stock of physical capital and 𝐻𝑡 is the level of
human capital. Each household member supplies inelastically one unit
of raw labor of which the fraction 𝑢𝑡 is employed in the final goods
production. Total effective labor input into final goods production is
therefore 𝐻𝑡𝑢𝑡𝐿𝑡. 𝑅𝑡 is the use and extraction of the resource. We
assume constant returns to scale, i.e. 𝛼 + 𝛽 + 𝛾 = 1, and 0 < 𝛼, 𝛽, 𝛾 < 1.
𝐴 denotes a constant level of total factor productivity. (2) shows the
potential of long-run growth in case human and physical capital ac-
cumulation occurs fast enough to compensate for the scarcity problem
reflected by the presence of the non-renewable resource.11

Physical capital is produced from foregone final output with unit
productivity and depreciates at a rate 𝛿1 > 0. The net increase in the
stock of reproducible capital is therefore
𝜕𝐾𝑡
𝜕𝑡

= �̇�𝑡 = 𝑌𝑡 − 𝐶𝑡 − 𝛿1𝐾𝑡. (3)

Human capital is accumulated by foregone labor supply in produc-
tion of final output

�̇�𝑡 = 𝐵(1 − 𝑢𝑡)𝐻𝑡 − 𝛿2𝐻𝑡, (4)

where 𝐵 > 0 is a constant productivity parameter, 𝛿2 ≥ 0 is
the constant rate of depreciation of human capital and (1 − 𝑢𝑡) is the
fraction of labor supply not used in final goods production but spent on
learning and accumulation of human capital. (4) is linear in 𝐻𝑡 which
corresponds to the preferred specification in Lucas (1988).

The model uses human capital accumulation as the engine that
allows for permanent positive growth. As an alternative, one could
build on the (semi-)endogenous growth literature and where growth

11 Note that the production function (2) takes no account of any aggregate
human capital externality in the sense of Lucas (1988). For such an externality,
(2) would have to be multiplied by an additional factor 𝐻 𝛾

𝑎,𝑡 with 𝛾 > 0 and 𝐻𝑎,𝑡
enoting an aggregate stock of human capital which would be identical to 𝐻𝑡
n an analysis focusing on a centralized solution. However, even without this
ype of aggregate externality, the economy is still fully capable of producing
ong-run positive growth.
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originates from embodied technical change. Typically, this would stress
the importance of research and development (R&D) in intermediate
input factors required for final good production. Human capital accu-
mulation and embodied technological change are undoubtedly different
types of development. From the mathematical perspective, however,
the present representation also captures dynamics that can be produced
by (semi-)endogenous growth models.

The following representation of our set-up motivates this. Let final
output be given by12

𝑌𝑡 = 𝐴𝐿𝛽𝑌 ,𝑡 ∫

𝐻𝑡

0
𝑥1−𝛽𝑖,𝑡 𝑑𝑖,

with 𝑥𝑖,𝑡 = 𝐾𝜇
𝑖,𝑡𝑅

1−𝜇
𝑖,𝑡 , 0 < 𝜇 < 1, 𝐾𝑡 = ∫

𝐻𝑡

0
𝐾𝑖,𝑡𝑑𝑖, 𝑅𝑡 = ∫

𝐻𝑡

0
𝑅𝑖,𝑡,

and the development of 𝐻𝑡 by

�̇�𝑡 = 𝐻𝑡
𝐿𝐻,𝑡
𝐿𝑡

− 𝛿2𝐻𝑡. (5)

Now, labor is distributed across final output production, 𝐿𝑌 ,𝑡 = 𝑢𝑡𝐿𝑡,
and R&D activities, 𝐿𝐻,𝑡 = (1 − 𝑢𝑡)𝐿𝑡, to promote 𝐻𝑡 as in many (semi-
)endogenous growth models (see e.g. Jones, 1999). Consequently, 𝐻𝑡
would now be interpreted as the level of technology embodied in
horizontally differentiated intermediates and progress would take place
by increasing this variety of inputs. In our setting, intermediate input
factors would have to be produced using physical capital and the non-
renewable resource with a constant returns to scale Cobb–Douglas
technology. This representation is obviously one that is familiar from
the literature on (semi-)endogenous growth.

The R&D Eq. (5) is a modification of the basic formulation of the
production function for ideas in Romer (1987, 1990). The modification
follows the approach in Barro and Sala-i-Martin (2004) that has also
been discussed already by Jones (1995a) and eliminates scale effects
originating from population size in the steady-state growth rate of the
economy.13 Summarizing the argument, the chosen Uzawa–Lucas set-
up is also able to pick up dynamics that are known from the modern
semi-endogenous growth literature. This is important for our purpose
as we analyze among other things the growth behavior of economies.
Scale effects in growth rates in the long-run which are at odds with
empirical findings would render our theoretical results useless for
practical calibration purposes.14

Production requires the use of 𝑅𝑡 units of a non-renewable resource
at time 𝑡. The stock 𝑆𝑡 of the resource develops according to

�̇�𝑡 = −𝑅𝑡. (6)

12 We elaborate here on the issue focusing on technological change based
n an increasing variety of intermediate input factors. One could alternatively
onsider growth models using quality ladders, i.e. models based on Aghion
nd Howitt’s (1992) Schumpeterian approach. In reduced form, such models
eliver dynamics very similar to the case of increasing variety in input factors.
13 Following the original idea in Romer (1987, 1990) would assume a
roduction function for ideas as �̇�𝑡 = 𝐻𝑡𝐿𝐻,𝑡 and, hence, �̇�𝑡

𝐻𝑡
would depend on

he extend of 𝐿𝐻,𝑡. A larger population would yield, ceteris paribus, a higher
rowth rate for 𝐻𝑡 and purely endogenous growth. This implication gave rise
o the well-known Jones (1995a,b) critique and the development of the semi-
ndogenous approach to growth. For an overview, we would like to refer to
ones (1999, 2005). By letting �̇�

𝐻𝑡
depend on 𝐿𝐻,𝑡

𝐿𝑡
= 1 − 𝑢𝑡 instead of 𝐿𝐻,𝑡

s equivalent to follow Barro and Sala-i-Martin (2004, Sec. 6.1.7) leading to
semi-endogenous growth model where population size no longer influences

teady-state growth. Steady-state growth, though not growth during transition,
s influenced by quantities that are typically assumed to be exogenous such as
opulation growth.
14 Predicting a country’s development based on a theoretical model with
opulation scale effects in steady-state growth rates would paint an over-
helmingly rosy picture if such growth rates are used to judge factors such
s sustainability based on non-declining consumption growth as we will do
4

urther down below. t
The problem under consideration is to maximize the present value
amiltonian for the representative household that reads as

𝑡 =
(𝑐𝑡 − 𝑐)1−𝜂 − 1

1 − 𝜂
𝑒−𝜌𝑡𝐿𝑡 +𝜆1,𝑡[𝑌𝑡 − 𝑐𝑡𝐿𝑡 − 𝛿1𝐾𝑡] (7)

+𝜆2,𝑡[𝐵(1 − 𝑢𝑡)𝐻𝑡 − 𝛿2𝐻𝑡]

+ 𝜆3,𝑡[−𝑅𝑡],

where 𝜆𝑖,𝑡, 𝑖 = 1, 2, 3 are the co-state variables associated with the
constraints of the problem. At the same time, they represent the present
value shadow values of physical and human capital as well as the non-
renewable resource. The first order conditions for a solution to the
problem read as
𝜕H𝑡
𝜕𝑐𝑡

= (𝑐𝑡 − 𝑐)−𝜂𝑒−𝜌𝑡𝐿𝑡 − 𝜆1,𝑡𝐿𝑡 = 0, (8)

−
𝜕H𝑡
𝜕𝐾𝑡

= �̇�1,𝑡 = −𝜆1,𝑡
𝜕𝑌𝑡
𝜕𝐾𝑡

+ 𝜆1,𝑡𝛿1, (9)

𝜕H𝑡
𝜕𝑢𝑡

= 𝜆1,𝑡
𝜕𝑌𝑡
𝜕𝑢𝑡

− 𝜆2,𝑡𝐵𝐻𝑡 = 0, (10)

−
𝜕H𝑡
𝜕𝐻𝑡

= �̇�2,𝑡 = −𝜆1,𝑡
𝜕𝑌𝑡
𝜕𝐻𝑡

− 𝜆2,𝑡𝐵(1 − 𝑢𝑡) + 𝜆2,𝑡𝛿2, (11)

𝜕H𝑡
𝜕𝑅𝑡

= 𝜆1,𝑡
𝜕𝑌𝑡
𝜕𝑅𝑡

− 𝜆3,𝑡 = 0, (12)

−
𝜕H𝑡
𝜕𝑆𝑡

= �̇�3,𝑡 = 0. (13)

The corresponding transversality conditions are

lim
𝑡→∞

𝜆1,𝑡𝐾𝑡 = 0, lim
𝑡→∞

𝜆2,𝑡𝐻𝑡 = 0, lim
𝑡→∞

𝜆3,𝑡𝑆𝑡 = 0. (14)

Conditions (8) and (9) give rise to the well-known Keynes–Ramsey
rule. (10) decides on the optimal allocation of human capital towards
final good production and human capital accumulation by equating
its corresponding marginal productivity in both activities. It is iden-
tical to the corresponding condition in Lucas (1988) for the present
specification for human capital creation and guarantees an efficient
allocation of effort in final goods production and human capital alloca-
tion. The development of the shadow value of human capital is given
by (11). It accounts for human capital’s marginal contribution to final
good production and its own accumulation. (12) equates the marginal
product of resource use in production with its shadow value 𝜆3,0 which
characterizes an efficient use of the resource. Together, (12), (9) and
(13) give rise to the well-known Hotelling’s rule.

For the purpose of formulating the solution to our problem, it is
helpful to use the following notation

𝜓 =
𝛽(𝐵 − 𝛿2 + 𝑛) + (1 − 𝛼)𝛿1

𝛼
,

𝜑1 = 𝐴− 1
𝛼 𝜆

𝛼−1
𝛼

1,0

(𝜆2,0
𝛽

)

𝛽
𝛼
(𝜆3,0

𝛾

)

𝛾
𝛼
(

𝐿0
𝐵

)− 𝛽
𝛼
, (15)

𝜑2 = 1 − 𝛼
𝜓

, 𝜁 =
𝜑2 − 𝜑1
𝜑2

= 1 −
𝜑1
𝜑2
, 𝑥𝑡 = 𝑒−𝜓𝑡.

From a technical point of view, it might be relevant to note that
as time 𝑡 runs from zero to infinity in our economy, 𝑥𝑡 decays from
1 to zero. This enhances the use of special functions in their integral
representations and is therefore a technical variable that serves as a
substitute for time. 𝜓 is the decay parameter that essentially governs
how fast or slow the economy adjusts to the steady-state.

Furthermore, we introduce prices for resources and human capital
in terms of final output, i.e. we define 𝑝𝑅,𝑡 =

𝜆2,𝑡
𝜆1,𝑡

and 𝑝𝐻,𝑡 =
𝜆3,𝑡
𝜆1,𝑡

.

.2. Results

This section presents the results obtained from solving the model.
e follow the typical approach by solving the model in real terms. All

uantities are implicitly measured in real units of final output except

hose representing the use and the stock of the resource as well as
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human capital. The price for final goods serves as the numeraire and
is normalized to unity. We will have to take account of this for the
calibration the model to match real world data which are denominated
in US $ at prices of 2014. The prices 𝑝𝑅,𝑡 and 𝑝𝐻,𝑡 are necessary
to translate resource and human capital quantities into final output
equivalents.

From the first order conditions (8) and (9) it is obvious that con-
sumption is governed by a typical Keynes–Ramsey rule and from (9)
and (12) we see that resource prices follow Hotelling’s rule
�̇�𝑡
𝑐𝑡

= 1
𝜂

𝑐𝑡
𝑐𝑡 − 𝑐

(

𝛼
𝑌𝑡
𝐾𝑡

− 𝛿1 − 𝜌
)

, (16)

�̇�𝑅,𝑡
𝑝𝑅,𝑡

=
𝜕𝑌𝑡
𝜕𝐾𝑡

− 𝛿1, (17)

here we observe in (16) a non-constant intertemporal elasticity of
ubstitution as long as minimum subsistence consumption 𝑐 is larger
ero. From (16) it is clear that capital productivity 𝑌𝑡

𝐾𝑡
is the key to solve

or the consumption path taken by the economy in its optimum.The
ollowing definition will be useful for the formal representation of the
olution to the problem.

efinition 1. Provided a solution to the problem exists, the initial
onditions for the co-states 𝜆1,𝑡, 𝜆2,𝑡 and 𝜆3,𝑡 characterizing this solution

are denoted by 𝜆∗1,0, 𝜆
∗
2,0 and 𝜆∗3,0. The corresponding values for 𝜁 and

𝜑1 characterizing the solution to the problem will be denoted by 𝜁∗ and
𝜑∗
1 which follow the notation in (15).

Definition 1 provides us a notation for the optimal trajectory of the
economy if a solution exists. The conditions for the existence of such a
solution will be worked out further down below. We proceed this way
as we already regard the existence of a solution, i.e. the existence of an
optimal trajectory for the economy that guarantees at least minimum
subsistence consumption as one possible test for sustainability as dis-
cussed in the literature review. Additional corresponding sustainability
indicators will be worked out in the next section.15

It is obvious from (15) that 𝜁∗, 𝜑∗
1 and 𝜑2 are reflecting initial

onditions and several of the model’s parameters. They will explicitly or
mplicitly appear in all trajectories characterizing the solution. Hence,
t is important to understand these quantities. Lemma 1 below gives
he trajectory for the capital productivity 𝑌𝑡

𝐾𝑡
= 𝑦𝑡

𝑘𝑡
where 𝑦𝑡 =

𝑌𝑡
𝐿𝑡

and

𝑡 =
𝐾𝑡
𝐿𝑡

denote corresponding per capita variables. As we will see, this
emma allows for an interpretation of 𝜁∗, 𝜑∗

1 and 𝜑2.

Lemma 1. If a solution of the problem exists, the trajectory for capital
productivity is given by
𝑦𝑡
𝑘𝑡

= 1
𝜑2

(1 − 𝜁∗𝑥𝑡)−1.

Hence,
1
𝜑∗
1
=
𝑦0
𝑘0

and 1
𝜑2

= lim
𝑡→∞

𝑦𝑡
𝑘𝑡
.

Furthermore, the net interest rate 𝑖𝑡 − 𝛿1 = 𝛼 1
𝜑2

(1 − 𝜁∗𝑥𝑡)−1 − 𝛿1 and

𝑖0 − 𝛿1 = 𝛼
𝑦0
𝑘0

− 𝛿1 and lim
𝑡→∞

𝑖𝑡 − 𝛿1 =
𝛼
𝜑2

− 𝛿1 =
𝛽

1 − 𝛼
(𝐵 − 𝛿2 + 𝑛).

Proof. The underlying problem is to maximize (7) and Appendix B
derives capital productivity’s trajectory. The results for 𝜑∗

1 and 𝜑2
ollow from taking limits as 𝑡 → 0 and 𝑡 → ∞ and using Definition 1.

15 There is also a technical reason for proceeding this way. One has,
irst, to solve for the trajectories of all state and co-state variables of the
odel and, second, to impose the transversality conditions associated with

he Hamiltonian. Following this way, it is possible to work out the conditions
or the existence of a solution.
5

The existence of a solution depends on further considerations that will
be worked out in the main text below. Formally, the conditions for
existence and uniqueness of the solution are derived in Appendix E.

Note. The expression of the net interest rate in this Lemma clearly
show the absence of any scale effects as 𝑡 → ∞ arising from the size
of the economy. This distinguishes our approach from those employ-
ing purely endogenous growth models such as Di Maria and Valente
(2008), Acemoglu et al. (2012) and André and Smulders (2014).

Following Lemma 1, 1
𝜑1

( 1
𝜑2

) measure the initial (asymptotic) cap-
tal productivity. Consequently, 𝜁∗ = 𝜑2−𝜑1

𝜑2
= 1∕𝜑1−1∕𝜑2

1∕𝜑1
reflects the

relative distance of the economy’s initial capital productivity from its
asymptotic counterpart. If 𝜁∗> (<)0, the initial capital productivity is
above (below) its asymptotic value, i.e., if the initial endowment with
physical capital is relatively low (high). 𝜁∗ = 0 implies a constant
capital productivity from 𝑡 = 0 onward. It is also interesting to note that
capital productivity given by Lemma 1 is following a logistic pattern
over time.

With the help of Lemma 1 it is now also possible to understand the
behavior of 𝑝𝑅,𝑡 and 𝑝𝐻𝑡

, i.e. the prices of resources and human capital
in terms of final output. 𝑝𝑅𝑡 grows at a rate equal to the net interest rate
implied by Hotelling’s rule (17). Appendix A shows that �̇�2,𝑡

𝜆2,𝑡
= 𝐵 − 𝛿2.

Using the first order condition (9), we find that 𝑝𝐻,𝑡 grows at the rate
𝑖𝑡−𝛿1−(𝐵−𝛿2) which is a no-arbitrage condition. 𝐵−𝛿2 is the net rate of
return on an investment in human capital. This return is composed of
the value of new human capital that can be created by this investment
and the marginal product in terms of final output that the investment in
human capital yields. The return has two sources as human capital use
is divided between production and human capital creation. Whenever
the net interest rate on physical capital exceeds 𝐵 − 𝛿2, this has to be
compensated by a growing 𝑝𝐻,𝑡 to make human capital investments
equally attractive.

As usual, the initial values for the co-states and, hence, 𝜁∗ and 𝜑∗
1

are determined by the respective initial values of the state variables if
they allow for a solution. As we will see later, the existence of a solution
depends on initial endowments with physical capital and resources to
guarantee at least minimum subsistence consumption. In Section 4 we
will calibrate the model to a particular scenario reflecting countries’
initial endowments and behavior. The initial endowment will contain
the per capital physical capital stock 𝑘0 while the economies’ initial
behavior will be reflected by the initial per capita production 𝑦0. Hence,
such a scenario will pin down 𝜁∗ right from the beginning.16

With help of Lemma 1 we are now capable of solving for the con-
sumption trajectory presented in Proposition 1 below. This is possible
as the capital productivity allows us to compute the interest rate which
can then be used in the Keynes–Ramsey rule (16).

Proposition 1. If a solution to the problem exists, the trajectory for optimal
consumption as a function of 𝑡 is given by

𝑐𝑡 = 𝑐 + (𝑐0 − 𝑐)
(

1 − 𝜁∗
)− 𝛼

(1−𝛼)𝜂
(

1 − 𝜁∗𝑥𝑡
)

𝛼
(1−𝛼)𝜂 𝑥

− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡 ,

with

𝑐0 − 𝑐 = (𝜆∗1,0)
− 1
𝜂 , 𝑥𝑡 = 𝑒−𝜓𝑡

where 𝑐0 denotes initial consumption at 𝑡 = 0.

16 It has, of course, to be checked whether the implied 𝜁∗ is indeed a solution
in the sense that it guarantees at least minimum subsistence consumption. We
will return to this issue further down below in Section 3.3. Of course, 𝜁∗ can
be equivalently determined by the initial values of the state variables as will
be demonstrated in Appendix E.
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Proof. Appendix A derives the behavior of 𝜆∗1,𝑡 over time. Using this in
the first order condition (8) together with Lemma 1 and the definition
of 𝑥𝑡 delivers the result.

In general, the behavior of 𝑐𝑡 is non-monotonic as it is highly
nonlinear in 𝑥𝑡 and, hence, 𝑡. The part in consumption exceeding 𝑐 is
governed by two components. First, the term involving 1 − 𝜁∗ reflects
the deviation from the path that characterizes the dynamic behavior
as 𝑡 → ∞. As 𝑡 → ∞, 𝑥𝑡 → 0 and 1 − 𝜁∗𝑥𝑡 → 1. Second, the term
involving 𝑥𝑡 only reflects the dynamic behavior as 𝑡 → ∞. This can be
best seen by looking at the limiting behavior of 𝑐𝑡. Depending on the
model’s parameters, in the limit (𝑡 → ∞, 𝑥𝑡 → 0), we might obtain three
different general consumption profiles that read as

lim
𝑡→∞

𝑐𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐 if 𝛽
1−𝛼

(𝐵 − 𝛿2 + 𝑛) − 𝜌 < 0,

𝑐 + (𝜆∗1,0)
− 1
𝜂 (1 − 𝜁∗)−

𝛼
(1−𝛼)𝜂 if 𝛽

1−𝛼
(𝐵 − 𝛿2 + 𝑛) − 𝜌 = 0,

𝑐 + (𝜆∗1,0)
− 1
𝜂 (1 − 𝜁∗)−

𝛼
(1−𝛼)𝜂 ×

lim𝑡→∞ 𝑥
− 1
𝜓

𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌
(1−𝛼)𝜂

𝑡 → ∞ if (𝐵 − 𝛿2 + 𝑛) − 𝜌 > 0.

(18)

From (18) we observe one case with unbounded growth and two
ases of asymptotic stationary consumption. Which one is realized
epends on whether 𝛽

1−𝛼 (𝐵 − 𝛿2 + 𝑛) − 𝜌 ⪌ 0. This condition has a clear
economic interpretation as it reflects the usual trade-off spanned by
the return on investments and time preference. In the limit, the net
returns to human capital and physical capital investments are identical
and equal to 𝛽

1−𝛼 (𝐵 − 𝛿2 + 𝑛).17 If the net return outweighs the rate of
time preference, consumption is postponed. This allows for additional
investments which will produce positive consumption growth in the
limit. If the net return on investments is smaller than or equal to the
rate of time preference, consumption will be asymptotically constant
either at 𝑐 or above. The low incentive for investments prevents their
accumulation at a sufficient speed that would allow for permanent
growth.

As the limiting net rate of return appears in further results derived
below, we need to discuss this quantity in more detail. It is the pro-
ductivity in human capital accumulation and a positive externality that
gives rise to this expression. With a constant rate of return and human
capital utilization 𝑢𝑡, the contribution of a marginal unit of human
capital to output growth is 𝛽(𝐵−𝛿2+𝑛). The last term 𝑛 enters as human
capital provides a positive externality to all household members as they
all benefit from its development at the same time. Human capital’s
contribution to growth is amplified through pre-multiplication with
1

1−𝛼 = 1
𝛽+𝛾 as human capital complements resource inputs and allows

or permanent growth of resource prices by the net rate of return on
nvestments.

From the first derivative of the consumption trajectory given in
roposition 1 with respect to 𝑥𝑡 we see that consumption can behave
on-monotonically. This applies to the cases of limiting unbounded
ositive growth as well as limiting subsistence consumption. With
nbounded limiting growth, we observe exactly one consumption min-
mum if 𝜁∗ < 0. The initially high relative endowment with physical
apital leads to initially high consumption. Consumption subsequently
alls before rising again approaching an asymptotic positive growth
ate. In the limiting subsistence consumption case, we observe exactly
ne maximum if 𝜁∗ > 0. This is because high initial capital productivity
ncourages investments in the beginning before consumption starts to
ecline to its subsistence level. All remaining cases are characterized by
ither monotonically increasing, decreasing or constant consumption
rofiles. The latter occurs if and only if it happens that 𝜁∗ = 0.

Next, we turn to the dynamic behavior of per capita input factors
devoted to final goods production. Lemma 2 traces the behavior of

17 In the limit, also the return on holding resources is identical to this
xpression as the resource price follows Hotelling’s rule given by (17).
6

𝑘𝑡 = 𝐾𝑡
𝐿𝑡

over time by making use of the Gaussian hypergeometric
function 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧).18

emma 2. (a) The development of the stock of physical capital per capita
ver time is given by

𝑡 =
(𝜆∗1,0)

− 1
𝜂

𝜓
(

1 − 𝜁∗
)− 𝛼

1−𝛼
1
𝜂
(

1 − 𝜁∗𝑥𝑡
)

1
1−𝛼

× 𝑥
− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗𝑥𝑡)
�̃�1

(19)

+
(

1 − 𝜁∗𝑥𝑡
)

1
1−𝛼

𝑐
𝜓

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗𝑥𝑡)
�̃�2

,

where
�̃�1 =

𝜂 − 𝛼
𝜂(1 − 𝛼)

,

�̃�1 =
1
𝜓

(

𝜌
𝜂
+

𝜂 − 𝛼
(1 − 𝛼)𝜂

𝜓 +
1 − 𝜂
𝜂

𝛿1 − 𝑛
)

= 1 +
(1 − 𝛼)(𝜌 − 𝑛) + (𝜂 − 1)

[

𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝑛
]

(1 − 𝛼)𝜂𝜓
,

�̃�2 =
1

1 − 𝛼
> 1,

�̃�2 =
1

1 − 𝛼
−
𝛿1
𝜓

− 𝑛
𝜓

= 1 +
𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝑛

(1 − 𝛼)𝜓
.

The solution demands �̃�1 > 0 and �̃�2 > 0.
(b) Given 𝜁∗, the initial value 𝜆∗1,0 and, hence, the implied initial value

of excess consumption is given by

𝜆∗1,0 = (𝑐0 − 𝑐)−𝜂

=
[

𝑘0 −
(

1 − 𝜁∗
)

1
1−𝛼

𝑐
𝜓

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)
�̃�2

]−𝜂

×

{

(1 − 𝜁∗)
𝜂−𝛼

(1−𝛼)𝜂

𝜓
2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗)

�̃�1

}𝜂

.

Proof. For part (a) see Appendix C. The proof of part (b) follows from
applying part (a) at 𝑡 = 0 and solving for 𝜆∗1,0.

Note. From Lemma 2 we learn that a violation of either �̃�1 > 0 or
�̃�2 > 0 would imply that the economy would not be able to accumulate
sufficient physical capital to solve the problem. If �̃�2 ≤ 0, the econ-
omy would deplete its physical capital stock in finite time to afford
minimum subsistence consumption. If �̃�1 ≤ 0, the economy cannot
afford consumption in excess of its subsistence level over an infinite
time horizon. In these cases the parameters of the model, reflected
by �̃�1 and �̃�2, would imply an economy that is not productive enough
to accumulate physical capital in a sufficiently high manner to allow
for the chosen consumption path. For 𝜆∗1,0 to be strictly positive, the
economy has to be endowed with a sufficiently large initial stock of
physical capital 𝑘0 in combination with a minimum subsistence level
of consumption 𝑐 that is not too large. This has to be reflected by a
strictly positive term in squared brackets in the expression for 𝜆∗1,0 in
part (b) of the Lemma.

The appearance of the hypergeometric function is due to com-
pounding over a transition path with a non-constant interest rate. The
representation of the results directly in the steady-state with a constant
interest rate are much less complex. In this case, 𝜁∗ = 0 and the
hypergeometric functions would disappear as 2𝐹1(𝑎, 𝑏; 𝑏 + 1; 0) = 1.

18 For a general overview regarding the use of the Gaussian hypergeometric
function in economics see e.g. Abadir (1999). In Appendix C, we give a short
introduction of using its integral representation for solving the differential
equations appearing in the solution of the present problem.
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The behavior of the physical capital stock is in general non-mono-
tonic and the limiting behavior of the capital stock is qualitatively
identical to the one of consumption.19 The development is driven by
wo additive components in (19). The first represents the physical
apital stock that is necessary to allow for consumption in excess of
. The second represents physical capital requirements for realizing
via a sufficiently high production. Both components are influenced

by a long-run asymptotic and a transitional element. The asymptotic
element is represented by the term involving 𝑥𝑡 that grows at the
same asymptotic rate as does 𝑐𝑡 − 𝑐. The terms involving 1 − 𝜁∗𝑥𝑡
reflect the transitional deviations from the asymptotic path. The capital
requirement for subsistence consumption is of course governed by 𝑐. As

is constant, capital requirements for subsistence consumption are only
changing over time due to transitional effects.

The stock of physical capital accumulates past consumption deci-
sions via their compounded value at time 𝑡. This is reflected by the
two Gaussian hypergeometric functions 2𝐹1(⋅) in (19) which essentially
compute the compounding factor for past consumption. For 𝜁∗ ≠ 0
compounding handles the deviation of the compounding rate from its
steady-state value. �̃�1 > 0 implies that in the limit the growth rate of
(𝑐𝑡 − 𝑐)𝐿𝑡 is smaller than the net capital productivity 𝑦𝑡

𝑘𝑡
− 𝛿1. This is the

typical transversality condition one finds for AK models. Indeed, the
present model belongs to this class as all factors of production can be
accumulated although resources only at negative rates.20 Further, �̃�2 > 0
demands that in the limit the growth of 𝑐𝐿𝑡 is below the net capital
productivity. If one of these conditions is violated, total consumption
growth would require more than the economy can realize in terms of
productivity. �̃�1 and �̃�2 are responsible for the part in compounding due
to steady-state growth, while the deviation during transition is captured
by �̃�1 and �̃�2, respectively.

With the result in Lemma 2 we are now ready to trace final output
per capita 𝑦𝑡 over time in Lemma 3.

Lemma 3. If a solution to the problem exists, final output per capita 𝑦𝑡 is
given by

𝑦𝑡 =
1
𝜑2

(1 − 𝜁∗𝑥𝑡)−1𝑘𝑡,

where 𝑘𝑡 is provided by Lemma 2.

Proof. The result is obtained by multiplying capital productivity in
Lemma 1 by 𝑘𝑡.

Next, we turn to human capital 𝐻𝑡 and its development over time.
The stock effectively employed in final goods production is 𝐻𝑡𝑢𝑡. Both
are measured in human capital units. For our calibration exercise be-
low, however, we need both measured in the same units as final output.
The necessary translation of units is done via a simple multiplication
by human capital’s real price 𝑝𝐻,𝑡. The corresponding human capital
quantity will be denoted by �̃�𝑡 = 𝑝𝐻,𝑡𝐻𝑡. The following lemma provides
us with their developments over time.21

Lemma 4. The stocks of human capital employed in final goods production
and total human capital measured in equivalent units of final output behave
according to

�̃�𝑡𝑢𝑡 = 𝑒(𝐵−𝛿2+𝑛)𝑡
𝛽𝜓
1 − 𝛼

𝐿0

𝐵
(1 − 𝜁𝑥𝑡)−1𝑘𝑡

= 𝑒−𝛿1𝑡𝑥
− 1

1−𝛼
𝑡 (1 − 𝜁∗)

𝛼
1−𝛼

𝛽
1 − 𝛼

𝐿0

𝐵
×

×
[

𝜆
− 1
𝜂

1,0 (1 − 𝜁∗)−
𝛼

(1−𝛼)𝜂
1
�̃�1
𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

19 The formal details are given in Appendix C.
20 This becomes obvious as all factors earn the same rate of return implied
y the developments of 𝑝𝑅,𝑡 and 𝑝𝐻,𝑡 as explained above.
21 Appendix D also derives the expressions for 𝐻 𝑢 and 𝐻 .
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𝑡 𝑡 𝑡
+𝑐 1
�̃�2
𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

]

,

�̃�𝑡 = 𝑒−𝛿1𝑡
𝛽

1 − 𝛼

(

𝑥𝑡
1 − 𝜁∗𝑥𝑡

)− 𝛼
1−𝛼

𝐿0 ×

×
{

𝜆
− 1
𝜂

1,0 (1 − 𝜁∗)−
𝛼

(1−𝛼)𝜂
1
𝜓

1
�̃�1(�̃�1 − 1)

𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)

+𝑐 1
𝜓

1
�̃�2(�̃�2 − 1)

𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
}

.

he solution demands �̃�1 > 1 and �̃�2 > 1.

roof. See Appendix D.

ote. A violation of either �̃�1 > 1 or �̃�2 > 1 would imply that the
conomy would not be able to accumulate sufficient capital to solve
he problem.22 In this case, the argument applies to human capital.
he implied parameter restrictions are stronger compared to physical
apital accumulation. �̃�1 > 1 (�̃�2 > 1) demand that in the limit the

growth rate of (𝑐𝑡 − 𝑐)𝐿𝑡 (𝑐𝐿𝑡) is below the economy’s net interest rate.
We note further that the positive externality provided by human capital
introduces a scale effect into the economy. This is visible as 𝐻𝑡 depends
ositively on the population size 𝐿0.23

As effective human capital in production depends linearly on 𝑘𝑡,
it shares the non-monotonic behavior of physical capital per capita in
general.

Appendix D at the end of the paper shows that 𝑢𝑡𝐻𝑡 =
𝑢𝑡�̃�𝑡
𝑝𝐻,𝑡

and 𝐻𝑡 =
�̃�𝑡
𝑝𝐻,𝑡

tend to infinity as 𝑡→ ∞.24 This distinguishes human from physical
apital where we have seen that the latter might become stationary
s 𝑡 → ∞. The cause for this behavior is simultaneously a solution
or the economy’s problem. The argument is as follows: The marginal
ontribution of human capital in its own creation is not vanishing as
𝑡 increases (see Eq. (4)). In case of physical capital and due to the
obb–Douglas production technology, its own marginal contribution

n accumulation is diminishing. In case of a limiting bounded 𝑘𝑡,
human capital takes the leading role and compensates for the increasing
scarcity of the non-renewable resource that is depleted over time. In
this case, human capital accumulation allows for a constant level of
consumption in the long-run.

Finally, we turn to the use of non-renewable resources in produc-
tion. For our calibration below, we have to trace the final output
equivalent of per capita resource use 𝑟𝑡 = 𝑝𝑅,𝑡

𝑅𝑡
𝐿𝑡

and its stock �̃�𝑡 = 𝑝𝑅,𝑡
𝑆𝑡
𝐿𝑡

presented by the following lemma.25

Lemma 5. Per capita resource use and the stock of resources in final output
equivalents are given by

𝑟𝑡 = 𝑝𝑅,𝑡
𝑅𝑡
𝐿𝑡

= 𝛾𝑦𝑡 =
𝛾
𝜑2

(1 − 𝜁∗𝑥𝑡)−1𝑘𝑡,

�̃�𝑡 = 𝑝𝑅,𝑡
𝑆𝑡
𝐿𝑡

= 1
𝜑2

𝛾
𝜓2

𝑒−(𝛿1+𝑛)𝑡(1 − 𝜁∗)−
1

1−𝛼

(

𝑥𝑡
1 − 𝜁∗𝑥𝑡

)− 𝛼
1−𝛼

×

22 At first sight, these parameter restrictions seem to be absent from the
result obtained for �̃�𝑡𝑢𝑡. From Lemma 4 we know that it exists if the path
for 𝑘𝑡 exists and therefore also for �̃�1 > 0 and �̃�2 > 0 but �̃�1 ≤ 1 and
�̃�2 ≤ 1. This case, however, would not be a solution to the problem, as the
transversality condition (14) associated with 𝐻𝑡 would be violated as shown
in Appendix D. Nevertheless, 𝐻𝑡𝑢𝑡 could be computed using the lemma. Doing
so would however, hide that both, 𝐻𝑡 and 𝑢𝑡 would be negative.

23 See Jones (1995a, 1999) for scale effects in endogenous growth models.
24 This holds as long as 𝐵 − 𝛿2 + 𝑛 > 0 which is reasonable to assume. If

this condition is violated, marginal productivity of human capital in its own
creation will be below its rate of depreciation, preventing accumulation of
human capital.

25 Appendix D at the end of the paper also derives the trajectories for 𝑅𝑡
and 𝑆 .
𝑡
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𝑡
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𝜁

⎡

⎢

⎢

⎣

(𝜆∗1,0)
− 1
𝜂
(

1 − 𝜁∗
)− 𝛼

(1−𝛼)𝜂
𝑥�̃�1−1𝑡

�̃�1(�̃�1 − 1) 2
𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁∗𝑥𝑡)

+�̃�
𝑥�̃�2−1𝑡

�̃�2(�̃�2 − 1) 2
𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁∗𝑥𝑡)

⎤

⎥

⎥

⎦

,

here 𝑘𝑡 is provided by Lemma 2 and �̃�𝑡 only exists for �̃�1, �̃�2 > 1.

roof. The result for 𝑟𝑡 follows as the resource rents’ share in final out-
ut is constant at 𝛾 owed by the Cobb Douglas production technology
nd using Lemma 3. For �̃�𝑡 see Appendix D.

Note. A violation of either �̃�1 > 1 or �̃�2 > 1 would imply that the
conomy would need an indefinitely large amount of resources to solve
he problem. The implied parameter restrictions are identical to the
nes applying to human capital accumulation.

Summarizing this section, we find that the economy tends towards
hree possible states in the long run. In case 𝛽(𝐵− 𝛿2 + 𝑛) − (1− 𝛼)𝜌 > 0,
he economy grows at positive rates in the long-run. Consumption
nd production per capita grow without bound and tend to infinity. If
(𝐵− 𝛿2 + 𝑛) − (1−𝛼)𝜌 < 0, the economy is characterized by subsistence
onsumption and production per capita in the long-run and there is no
ong-run growth. If 𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌 = 0, the economy is tending
owards a long-run zero growth scenario in per capita consumption and
roduction above the subsistence level. Thus, the relevance of the case
epends on the parameters of the model. Below, we will calibrate the
odel to the situations of particular countries and find some countries
ith zero and some with positive long-run growth.

.3. Sustainability

We employ three sustainability tests: (1) The existence of a solu-
ion to the problem guaranteeing minimum subsistence consumption.
2) We analyze the development of consumption and regard only a
on-decreasing behavior as sustainable as e.g. Asheim and Buchholz
2004) among others. (3) We adopt Weitzman’s (1976, 1997) test for
ustainability and sustainable development.26

As we employ different sustainability tests, we have to define prop-
rly what we interpret as sustainable or as sustainable development. We
ollow Weitzman (1976, 1997) and distinguish between sustainability
t a point 𝑡 in time and sustainable development according to the
ollowing definition.

efinition 2. An economy is characterized by sustainability at time
∈ [0,∞) according to a particular sustainability test if it passes this

est at this particular point in time regardless whether the test is passed
t other instances in time. If the economy passes the test for 𝑡 → ∞, it

is governed by asymptotic sustainability. An economy is characterized
by sustainable development according to a particular sustainability test
if it passes this test for all 𝑡 ∈ [0,∞) and for 𝑡→ ∞.

In our calibration, we find that some countries are characterized by
sustainability over limited periods of time. As the optimal trajectories
presented in the previous section are all continuous and differentiable,
sustainability can only occur at 𝑡 in closed subsets of [0,∞). Therefore,
we define a degree of sustainability for these cases.

26 We abstract from using genuine savings as an indicator for sustainability
see e.g. Hamilton and Naikal, 2014). Our approach is built on an Uzawa–Lucas
odel with positive human capital externalities. Well established theoretical

esults on the behavior of genuine savings are not valid in the presence of
xternalities as pointed out in Hanley et al. (2015). We therefore restrict our
8

nalysis to consumption based tests applicable to our theoretical set-up.
Definition 3. An economy is characterized by a degree of sustain-
able development if it is not qualifying for sustainable development
according to Definition 2. The degree of sustainability is defined as
the length of all intervals on the domain of 𝑥𝑡 over which we observe
sustainability.

Whenever we observe a degree of sustainable development smaller
than one but greater than zero, a test on sustainability at time 𝑡 might
give a false signal as the same test applied at a different instance in time
might produce a different result. The following definition distinguishes
between the two possible types of false signals. We formulate these false
signals taking the forward looking perspective as such a signal is critical
if the signal is extrapolated into the future.

Definition 4. A type I false signal occurs at time 𝑡 if the sustainability
test is passed at 𝑡 but not passed at least at one instance in time 𝑠 > 𝑡. A
type II false signal occurs at time 𝑡 if the sustainability test is not passed
at 𝑡 but passed from some instance in time 𝑠 > 𝑡 onward.27

Next, we need to work out the details regarding the sustainability
tests considered. We focus on per capita quantities as we interpret
sustainability as a concept applying to the individual although this is
only a representative household member in our case.28

Sustainability (1) - existence of a solution. The first sustainability test
checks whether a solution to the problem of maximizing (1) subject to
(3), (4) and (6) exists. Existence of a solution to the problem implies
two types of conditions. First, the parameters of the model need to
fulfill certain inequalities. Only then finite initial endowments with
resources and capital in general allow the economy to cover at least
minimum consumption for an infinite time horizon. Second, the initial
endowment needs to fulfill particular requirements. Both sets of condi-
tions are necessary, but only if fulfilled together, they are sufficient for
the existence of a solution. This is summarized in Proposition 2.

Proposition 2. For finite and positive initial endowments with physi-
cal capital and resources, a unique solution to the problem exists if the
parameters of the model satisfy

�̃�1 > 1 and �̃�2 > 1

and 𝜁∗ fulfills:

𝜁 < 𝜁∗ < 𝜁,

where

𝜁 = argmin
𝜁≤1

|

|

|

|

|

𝑘0 −
𝑐
𝜓
(1 − 𝜁∗)

1
1−𝛼 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)

�̃�2

|

|

|

|

|

,

̄ = argmin
𝜁≤1

|

|

|

|

|

�̃�0 −
𝛾

1 − 𝛼
𝑐
𝜓
(1 − 𝜁∗)

𝛼
1−𝛼 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁∗)

�̃�2(�̃�2 − 1)

|

|

|

|

|

.

Proof. The parameter restrictions regarding �̃�1 and �̃�2 were already
discussed in the preceding section and are derived in Appendices C and
D. Appendix E proves that if a solution exists, it is necessarily unique
and requires 𝜁 < 𝜁∗ < 𝜁 .

Note. If a solution to the problem exists at an any point in time 𝑡,
a solution also exists at all subsequent points in time. If an economy
is characterized by sustainability according to this test at time 𝑡 it
is also characterized by sustainable development from 𝑡 onward. This
sustainability test is not able to produce false signals.

27 Note that just passing at some but not all points in time from 𝑠 onward is
not sufficient to produce a type II false signal as no sustainable development
would follow from 𝑠 onward.

28 If one looks at the economy-wide level, an additional aspect would have
to be considered. Population growth then adds a source of autonomous growth
which has to be taken into account. In this case, time has an economic value

that adds to sustainability measures (see Weitzman, 1976 or Pezzy, 2004).
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We define the indicator 𝐼𝑐 taking the value 1 if the conditions of
roposition 2 are fulfilled and 0 otherwise.
𝜁 and 𝜁 define a lower and an upper bound for 𝜁∗ which. They also

have an economically intuitive meaning. They implicitly define lower
bounds for 𝑘0 and �̃�0 required to realize permanent minimum subsis-
ence consumption at the least. These lower bounds are the present
alue equivalents of subsistence consumption in terms of physical
apital and resources necessary for a corresponding level of production.
∗ and the hypergeometric functions appear as the economy is subject
o a non-constant interest rate in transition if 𝜁∗ ≠ 0.29 If the economy
alls short of one or both of these requirements, minimum subsistence
onsumption cannot be realized over the infinite planning horizon. This
ould be seen as unsustainable according to e.g. Holden et al. (2014).
hether or not an economy is able to realize a solution to the problem

s naturally a question that needs the inspection of case specific data.

ustainability (2) - Consumption growth. A more standard approach
o sustainability is to follow the development of consumption. Non-
ecreasing consumption at time 𝑡 can be associated with sustainability
t 𝑡. Consumption growth based on Proposition 1 provides us with
he necessary information. Again, knowledge about the values of the
odel’s parameters are necessary to judge whether the development is

ustainable in a particular case or how high the degree of sustainability
s.

To do so, we need to work out some additional theoretical details.
rom the Keynes–Ramsey rule (16) and Lemma 1 it follows that �̇�𝑡

𝑐𝑡
=

for 𝑐𝑡 − 𝑐 ≠ 0 at 𝑥𝑡(�̇�𝑡 = 0) = 1
𝜁∗

(1−𝛼)𝜌−𝛽(𝐵−𝛿2+𝑛)
(1−𝛼)(𝜌+𝛿2)

. Consequently,
the point in time when consumption growth is zero is 𝑡(�̇�𝑡 = 0) =
− 1
𝜓 ln 1

𝜁∗
(1−𝛼)𝜌−𝛽(𝐵−𝛿2+𝑛)

(1−𝛼)(𝜌+𝛿2)
. It is straightforward to show that the optimal

path for 𝑐𝑡 is strictly concave (convex) at 𝑥𝑡(�̇�𝑡 = 0) for 𝜁∗ > 0 (𝜁∗ < 0),
i.e. if the initial physical capital stock is below (above) its steady-state
value at 𝑡 = 0.

As soon as we find 0 < 𝑥𝑡(�̇�𝑡 = 0) < 1, we can conclude that the
country is not characterized by sustainable development but is only
behaving in a sustainable manner over a particular finite period of time.
If 𝜁∗ > 0 (𝜁∗ < 0), the country displays non-negative consumption
growth for 𝑡 ≤ 𝑡(�̇�𝑡 = 0)

(

𝑡 ≥ 𝑡(�̇�𝑡 = 0)
)

.30 In case 𝑥𝑡(�̇�𝑡 = 0) ≤ 0 and 𝜁∗ > 0
(𝜁∗ < 0), the economy is characterized by non-negative consumption
growth only as 𝑡→ ∞ and increasing (decreasing) consumption before.
In case 𝑥𝑡(�̇�𝑡 = 0) ≥ 1 and 𝜁∗ > 0 (𝜁∗ < 0) we have an economy that
is characterized by a monotonic decreasing (increasing) consumption
path.

We can therefore define an indicator 𝐼�̇�≥0 that measures the degree
f sustainability along the adjustment path towards the steady-state
ased on non-negative consumption growth. More precisely, we define

�̇�≥0 ∶=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥𝑡(�̇�𝑡 = 0) if 𝜁∗ < 0 and 0 < 𝑥𝑡(�̇�𝑡 = 0) < 1,
0 if 𝜁∗ < 0 and 𝑥𝑡(�̇�𝑡 = 0)≤0,
1 if 𝜁∗ < 0 and 𝑥𝑡(�̇�𝑡 = 0)≥1,
1 − 𝑥𝑡(�̇�𝑡 = 0) if 𝜁∗ > 0 and 0 < 𝑥𝑡(�̇�𝑡 = 0) < 1,
1 if 𝜁∗>0 and 𝑥𝑡(�̇�𝑡 = 0)≤0,
0 if 𝜁∗>0 and 𝑥𝑡(�̇�𝑡 = 0)≥1,
1 if 𝜁∗ = 0.

(20)

Thus, the larger the indicator, the higher is the degree of sus-
tainable development during adjustment. As consumption can behave

29 We would have 𝜁∗ = 0 in case the economy is in the steady-state right
rom the beginning. In this case, 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 0) = 1 would simplify the

expressions significantly. Implicitly, the upper bound 𝜁 also defines a minimum
requirement for �̃�0, i.e. the initial resource endowment. See Appendix D for
the details.

30 From the practical perspective, the case 𝜁∗ = 0 is hardly relevant. It would
refer to an economy that starts right from the beginning in the steady-state.
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Moreover, consumption growth would be non-negative for all 𝑡 ≥ 0.
non-monotonically, this test is able to produce type I and II false signals.
However, these can only occur for 0 < 𝑥𝑡(�̇�𝑡 = 0) < 1 as consumption
is only then subject to a local maximum. We observe a type I (II) false
signal then at all 𝑡 < 𝑡(�̇� = 0) in case 𝜁∗ > 0 (𝜁∗ < 0).

Sustainability (3) - Weitzman (1976, 1997). Finally, we apply Weitz-
man’s (1976, 1997) sustainability test on the economy’s consumption
pattern. In the original publications of Weitzman (1976, 1997), an
economy with a constant interest rate is analyzed. This simplifies the
necessary computations considerably but limits, of course, applicabil-
ity. As we focus on the transitional dynamics of the economy, we
adopt Weitzman’s idea along the complete adjustment path with a
non-constant interest rate.

The idea behind this sustainability test is to compute a hypothetical
value for period’s 𝑡 consumption as a sustainability benchmark against
which we compare the welfare maximizing consumption. To arrive at
this benchmark, one computes a constant value for consumption that
is in its present value equal to the present value of the welfare maxi-
mizing consumption level. This has been termed as the present value
annuity equivalent by Weitzman (1976). As the present value of welfare
maximizing consumption path and the annuity equal each other, both
could be interchanged on a perfect capital market if they differ. It is the
rate of time preference in combination with the decreasing marginal
utility that prevents the household from doing so. We take account of
minimum subsistence consumption and apply Weitzman’s idea on the
consumption in excess of its subsistence level.

We are looking at our economy at time 𝑡 and denote the present
value (𝑃𝑉 ) of a constant excess consumption as 𝑃𝑉 (𝑐𝑡 − 𝑐)𝑡, where we
compute the present value over all points in time 𝑠∈ [𝑡,∞). 𝑐𝑡 is carrying
a time subscript as this annuity depends on time 𝑡 from which we start
our computations. Consequently, the present value at time 𝑡 of welfare
maximizing excess consumption is denoted by 𝑃𝑉 (𝑐𝑠−𝑐)𝑡 for 𝑠 ∈ [𝑡,∞).
The critical benchmark value for the sustainability test is obtained by
equating 𝑃𝑉 (𝑐𝑡 − 𝑐𝑡)𝑡 with 𝑃𝑉 (𝑐𝑠 − 𝑐)𝑡 and solving for the annuity 𝑐𝑡.

According to Weitzman (1976, 1997), sustainability at time 𝑡 is
given if 𝑐𝑡−𝑐 ≤ 𝑐𝑡−𝑐 whereas we can speak of sustainable development if
the whole consumption trajectory satisfies 𝑐𝑠−𝑐 ≤ 𝑐𝑠−𝑐 for all 𝑠 ∈ [𝑡,∞).
Proposition 3 summarizes this sustainability test.

Proposition 3. The economy is characterized by sustainability at time 𝑡 if
𝑐𝑡 − 𝑐 ≤ 𝑐𝑡 − 𝑐 or equivalently if

𝑐𝑡−𝑐
𝑐𝑡−𝑐

≥ 1 where

𝑐𝑡 − 𝑐
𝑐𝑡 − 𝑐

=
�̃�2 − 1
�̃�1 − 1

(1 − 𝜁∗𝑥𝑡)
− 𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1 − 1, �̃�1 − 1; �̃�1; 𝜁∗𝑥𝑡)

2𝐹1(�̃�2 − 1, �̃�2 − 1; �̃�2; 𝜁∗𝑥𝑡)
.

The economy is characterized by sustainable development if 𝑐𝑠−𝑐𝑐𝑠−𝑐
≥ 1 for all

𝑠 ∈ [𝑡,∞).

Proof. The concept is adopted from Weitzman (1976, 1997); the
derivation of 𝑐𝑡 − 𝑐 is given in Appendix F.

The idea in Weitzman (1976, 1997) is also very much related to
the sacrifice discussed in Cairns and Martinet (2014, 2021). 𝑐𝑡 − 𝑐𝑡 can
e seen as the sacrifice implied by Weitzman’s sustainability test. If
assed, a part of present consumption is sacrificed to allow for higher
uture consumption based on the returns foregone earlier.31 During our
alibration exercise we will compare actual consumption in excess of
with the benchmark value given in Proposition 3 to see whether

sustainability in the sense of Weitzman (1976, 1997) is given.
Based on this sustainability test, we construct an indicator 𝐼𝑊 that

eturns the degree of sustainable development during the transition
owards the steady-state. Denote the number of discrete grid points by
+ 1 at which point we investigate genuine savings. The time grid is

31 Such behavior also increases the present value annuity of consumption at
future dates as higher consumption then is discounted less and less.
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Table 1
Summary of sustainability tests.

Sustainability test (1) (2) (3)

Criterion
Existence of solution, Non-decreasing Consumption not exceeding annuity
i.e. 𝑐𝑡 ≥ 𝑐 ∀𝑡 consumption, i.e. �̇�𝑡 ≥ 0 equivalent (Weitzman, 1976, 1997),

i.e. 𝑐𝑡 ≤ 𝑐

Degree of sustainability 𝐼𝑐 ∈ {0, 1} 𝐼�̇�≥0 ∈ [0, 1] 𝐼𝑊 ∈ [0, 1](definition 3)

Sustainable development if 𝐼𝑐 = 1 𝐼�̇�≥0 = 1 𝐼𝑊 = 1(definition 2)

False signals possible no yes yes(definition 4)

Note: See the main text for the definitions of 𝐼𝑐 , 𝐼�̇�≥0 and 𝐼𝑊 .
e
i
i
𝜁
h
c
e
P

ℎ

defined over 𝑡𝑗 = [− 1
𝜓 ln 𝑥𝑗 ] where 𝑥𝑗 ∈ [ 𝑗𝑁 ]𝑁𝑗=0. The indicator is defined

as

𝐼𝑊 ∶=

∑𝑁
𝑗=0 𝐼

(

𝑐𝑡𝑗 −𝑐

𝑐𝑡𝑗 −𝑐
≥ 1

)

𝑁 + 1
, (21)

where

𝐼

(

𝑐𝑡𝑗 − 𝑐

𝑐𝑡𝑗 − 𝑐
≥ 1

)

=

⎧

⎪

⎨

⎪

⎩

1 if
𝑐𝑡𝑗 −𝑐

𝑐𝑡𝑗 −𝑐
≥ 1,

0 if
𝑐𝑡𝑗 −𝑐

𝑐𝑡𝑗 −𝑐
< 1.

The interpretation of this indicator is qualitatively the same as in
ase of 𝐼�̇�≥0.

From the theoretical perspective, we can conclude that clear cut
answers regarding sustainability along the transition path are possible
for sustainability tests (1) and (2). For the first test, we were able
to work out conditions for initial endowments and parameter values
that guarantee sustainability in Proposition 2. For sustainability test
(2) based on non-negative consumption growth, we derived explicit
expressions for the timing of sustainability. For test (3), we have to
rely on numerical analyses during the adjustment period. However, the
explicit solutions given in Proposition 3 provide us with the necessary
tools. Evaluating the Weitzman (1976, 1997) sustainability test as
𝑡 → ∞ returns analytically clear cut results. In all possible cases for
asymptotic growth, we find that the economy behaves in an asymptot-
ically sustainable manner which is shown in Appendix E at the end of
the paper. Table 1 summarizes the sustainability tests and their main
properties.

4. Calibration

This section uses the above findings to analyze the full adjustment
path of the model economy calibrated to the situation of different coun-
try groups and individual countries. Given that we can theoretically pin
down the initial conditions for the solution to the problem, this allows
us to calibrate the model using recent World Bank data on endowments
with different types of capital and an initial level of production.

4.1. Preliminaries

Before starting our calibration of the above model, some words on
the units of measurement are in order. As usual in theoretical models,
all the quantities in our model are denominated in real units. The data
we are using in the below standing sections will be denominated in US $
of 2014. This requires us to use all model’s quantities in common units
that can be calibrated to match this currency. Due to this, relative prices
in the model become relevant and we have to make use of resources’
input and stock as well as human capital measured in the common unit
of final output.

Our calibration will match a country’s actually realized output and
its stock of reproducible capital per capita in the base year 𝑡 = 0,
i.e. we match 𝑦0 and 𝑘0, with the model’s predicted output and its initial
capital productivity which implies 1 − 𝜁∗ = 1

(

𝑦0
)−1

by Lemma 1 at
10

𝜑2 𝑘0
𝑡 = 0. We choose the year 2014 as the base year and will trace the
models quantities thereafter. 2014 is chosen as the most recent data
are available for 2014. The other quantities of interest that we trace
over time will be consumption 𝑐𝑡, resource use 𝑟𝑡 and its corresponding
stock �̃�𝑡 as well as the stock of human capital �̃�𝑡.

Given the initial scenario reflected by 𝜁∗, we have to solve for 𝜆∗1,0
by using Lemma 2(b) next and proceed by computing the trajectories
for the calibrated quantities of the model.

As we use the initial capital productivity 𝑦0
𝑘0

to calibrate 𝜁∗ as
xplained above we have to check whether this calibrated value indeed
mplies a solution to the problem, i.e. whether sustainability test (1)
s passed. Based on Proposition 2, we use the calibrated value for
∗ to compute the amount of initial endowments with physical and
uman capital as well as resources that are available for covering
onsumption in excess of its minimum subsistence level. A solution
xists if these remaining quantities are positive. Mathematically, we use
roposition 2, and Lemmata 4 and 5 to arrive at the conditions

�̃�0 =
�̃�0
𝐿0

=
�̃�0
𝐿0

−
�̃�
𝜓
(1 − 𝜁∗)

1
1−𝛼 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)

�̃�2
> 0, (22)

�̃�0 =
�̃�0
𝐿0

=
�̃�0
𝐿0

−
𝛾

1 − 𝛼
�̃�
𝜓
(1 − 𝜁∗)

𝛼
1−𝛼 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁∗)

�̃�2(�̃�2 − 1)
> 0, (23)

̃
0 =

�̃�0
𝐿0

=
𝛽
𝛾
�̃�0 > 0. (24)

�̃�0 (�̃�0), �̃�0 (�̃�0) and ℎ̃0 (�̃�0) denote the parts of initial endowments
that are still available to the economy after its needs to cover subsis-
tence consumption are fulfilled. ℎ̃0 is a per capita value that is not to be
interpreted as per capita human capital as human capital is benefiting
all household members as a positive externality. Rather, it should be
interpreted as accumulated investment per capita in human capital (net
of depreciation) done in the past up to 𝑡 = 0.

4.2. Data on initial endowments

The data on initial endowments used for the calibration were ob-
tained from the World Bank (2018). The World Bank (2018) provides
estimates for stocks of produced, natural and human capital up to
2014 in US $ at current prices. This is part of a comprehensive cross
country database on what is termed as ‘‘The Wealth of Nations’’. For
our calibration, we chose 2014 as the starting year to make use of the
most recent data available.

Although it is clear that such a database only provides estimates, the
data are the best available and can be of use for the present purpose.
Table 2 provides a summary of the data for 2014 in per capita terms
for income based groups of countries.32

Table 2 also contains data on the country groups’ net foreign assets.
For calibration of initial stocks of physical capital, we will add these

32 Income groups according to the World Bank’s thresholds on countries
GNI. Details are available from the World Bank’s permanent URL http://go.
worldbank.org/L547EEP5C0.

http://go.worldbank.org/L547EEP5C0
http://go.worldbank.org/L547EEP5C0


Energy Economics 110 (2022) 106016J. Antony and T. Klarl

w
o
T

Table 2
Capital stocks and GNI per capita in 2014 US$.

World Bank data

No. Prod. Nat. capital Nat. capital Net for. GNI
countries capital (incl. land) (excl. land) assets

Low-income 24 1,967 6,421 1,236 −322 789
Lower-middle income 37 6,531 6,949 2,187 −650 2,035
Upper-middle income 36 28,527 18,960 8,339 −432 8,563
High-income (non-OECD) 15 59,069 80,104 74,243 14,005
High-income (OECD) 29 195,929 19,525 12,877 −5,464
High-income 44 166,438 32,579 26,100 −1269 43,351
World 141 44,760 5,841 8,810 −676 10,987

Note: World Bank (2018, Appendix B) estimates for stocks of different types of capital and net foreign assets per capita in 2014 US $. High-income values are
averaged values (weighted by population) for OECD and non-OECD high-income countries reported in World Bank (2018, p. 233). Produced capital: machinery,
equipment, structures, urban land; natural capital (incl. land): energy resources (oil, natural gas, hard coal, lignite), mineral resources (bauxite, copper, gold,
iron, lead, nickel, phosphate, silver, tin, zinc), timber resources, non-timber forest resources, crop land, pasture land, protected areas. natural capital (excl. land):
natural capital (incl. land) less of crop land, pasture land, protected areas. Human capital estimated from expected presented value of labor income. Population
in millions. GNI for 2014 in US $ taken from the World Bank data base https://data.worldbank.org/indicator/NY.GNP.PCAP.CD
i

d
w
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𝐿
I
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to the stock of produced capital to arrive at the capital stock which is
actually owned by the economies. Consequently, we are investigating
the domestic economy as our model analyzes the closed economy case.

Regarding natural capital, we will draw on the data on natural
capital excluding land in our calibration. The reason for doing so will
become clear further down below where we elaborate on the model’s
parameters. In case of resources, natural capital excluding land fits
quite well with other data used for calibration of the resources output
elasticity.

The numbers in Table 2 reflect country groups’ averages. However,
our calibration can be executed for any single country where we have
no missing values in the data base. World Bank (2018) also provides
us with estimates of the stock of human capital. However, we are
not using them in our calibration. The reasons for this are twofold.
First, the World Bank data on human capital do not match with the
model’s stock of human capital. The World Bank estimates the stocks
by computing an expected present value of labor income. Labor income
in 2014 is thereby largely determined by the labor share in GDP taken
from the Penn World Tables (PWT Feenstra et al., 2015). The expected
present value is computed assuming the economy is in a steady-state
where growth is constantly exceeding the discount rate by 1.5% p.a.
The expectation is reflecting countries demographic characteristics re-
garding life expectancy. This concept is not reflecting our intention of
calibrating the model for economies potentially starting in the base year
off the steady-state and adjusting to a balanced growth path over time.
Second, we do not need to pick a value for initial human capital as the
nominal value of human capital is implicitly calibrated as explained in
the preceding section.33

In addition to the data taken from World Bank (2018), we are using
World Bank data on the countries GNI for calibrating initial output.
We decide to choose GNI instead of GDP following the argument in
Asheim and Buchholz (2004) who favor national income over domestic
production in relation to the DHSS model. Thus, we capture output
produced using the production factors owned by the economy. This
squares well with correcting produced capital using the net foreign
asset position of the economies.

Besides the above World Bank data, we are drawing on the PWT
9.134 as we need additional information on countries’ labor share in
GDP and the depreciation rate of physical capital. Furthermore, we
are using additional World Bank data on mortality to calibrate human
capital depreciation. We postpone the discussion of these data to the
section where we elaborate on the model’s parameters.

33 Note that we are unable to identify real human capital this way. For this
e would require data on human capital measured in terms of real output
f the economy. To the best of our knowledge, such data are unavailable.
herefore, we can only trace human capital valued at its optimal price 𝑝𝐻,𝑡.
34 These data are available at https://www.rug.nl/ggdc/productivity/pwt/.
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4.3. Calibration values country groups

Regarding households’ preferences, 𝜌, 𝜂, 𝐿0, 𝑛 and c need to be
specified. The rate of time preference is a parameter that is frequently
calibrated. We feel that an extensive discussion on this parameter’s
value is not necessary. We will chose 𝜌 = 0.03 which seems to be a
common choice also used in e.g. Benchekroun and Withagen (2011).

There exist some contributions to the literature that calibrate the
type of Stone–Geary utility function used in the present context. Achury
et al. (2012) calibrate an intertemporal utility function identical to
the present one in (1) for the US and use 𝜂 = 1

0.23 which is roughly
equal to 4.3. They refer to their choice of 𝜂 as a standard choice
n the portfolio literature. Ogaki et al. (1996) provide estimates for
1
𝜂 ranging from 0.569 up to 0.646. In turn, this corresponds to 𝜂
decreasing from about 1.68 down to 1.55. Álvarez-Peláez and Díaz
(2005) calibrate 𝜂 in a range from 1.5 up to 2.5 in their application
of Stone–Geary preferences. Ravn et al. (2006, 2008) analyze the
influence of subsistence points such as subsistence consumption on the
dynamics of macroeconomic development in general. Despite this, their
specification for intertemporal utility is in accordance with the present
situation. During calibration of their models they use a value of 2 for 𝜂.
A value of 2 has also been applied for calibration purposes by Nordhaus
(2007) and Acemoglu et al. (2012). We follow this choice and use 𝜂 = 2
uring our calibration. This is an intermediate value that is in between
hat has been used in Álvarez-Peláez and Díaz (2005) and Achury et al.

2012).
We calibrate our model on a per capita basis and, hence, normalize

0 to 1. The population growth rate 𝑛 is taken from the World Bank.
ts value across different groups of countries during 2014 together with
he crude mortality rate across all age groups is given in Table 3 below.
he mortality rate will be used later on for calibrating human capital
epreciation 𝛿2 (see Eq. (4)).

For the level of subsistence consumption c, we consider the poverty
lines used by the World bank.35

As of today, the threshold for extreme absolute poverty is set at
1.90 US $ at 2011 prices and at PPP a day available to an individual
for covering basic needs (Ferreira et al., 2016). By now, this is consid-
ered to apply to low-income countries. The World Bank recently has

35 Values for subsistence consumption have also been proposed in Koulova-
tianos et al. (2007) and Atkeson and Ogaki (1996) which have been used also
in Achury et al. (2012) and Ogaki et al. (1996). These numbers, however,
reflect very specific countries which is not in accordance with our analysis.
Additionally, investigating poverty lines in this context is interesting as they
influence economic policy initiatives especially in low-income countries (see
e.g. the United Nation’s Sustainable Development Goal on poverty, https:

//www.un.org/sustainabledevelopment/).

https://data.worldbank.org/indicator/NY.GNP.PCAP.CD
https://www.rug.nl/ggdc/productivity/pwt/
https://www.un.org/sustainabledevelopment/
https://www.un.org/sustainabledevelopment/
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Table 3
Demographics, GDP shares and Capital Depreciation 2014 in %.

No. Pop. Crude Resource rents’ No. Labor income’s No. Capital
countries growth mortality share in GDP countries share in GDP countries depreciation

Low-income 34 2.6 0.9 12.57 15 51.30 24 4.99
Lower-middle income 47 1.5 0.8 5.57 26 52.87 34 4.58
Upper-middle income 56 0.8 0.7 5.83 37 47.94 35 5.00
High-income 79 0.6 0.8 2.00 55 52.79 44 4.40
World 216 1.2 0.8 3.38 133 51.29 137 4.70

Note: Population growth and mortality in % p.a. from the World Bank’s data base: https://data.worldbank.org/indicator/SP.POP.GROW and https://data.worldbank.
org/indicator/sp.dyn.cdrt.in. Averages of resource rents in % of GDP calculated using data from https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS. Labor
income share and depreciation rates on physical capital averages computed using the Penn World Tables 9.1 (variable labsh and delta, https://www.rug.
nl/ggdc/productivity/pwt/); country classification in accordance with the World Bank’s classification scheme available at https://datahelpdesk.worldbank.org/
knowledgebase/articles/906519.
introduced two additional poverty lines applying to lower- and upper-
middle-income countries at 3.20 US $ and 5.50 US $ per day at 2011
prices and PPP. For the calculation behind these numbers see Jolliffe
and Prydz (2016) who furthermore provide an absolute poverty level
for high-income countries at 21.70 US $ per day at 2011 prices and PPP.
We convert these numbers into yearly values at prices of 2014 in US $
using the PPP exchange rate. This gives a poverty line of 1,833 (3,631;
3,793; 8,675) US $ using the PPP exchange rate for low (lower-middle,
upper-middle, high) income countries.36

We turn now to the parameters governing production. The output
lasticity 𝛾 of resource use 𝑅𝑡 is, given the Cobb–Douglas production
echnology (2), which is set equal to the share of natural resource
ents in GDP. Data on this share is available from the World Bank.37

able 3 provides a summary of the data for different groups of countries
lassified according to the country’s level of income. It is clearly visible
hat the resource dependence increases as income decreases. Resources
eem to be most important for the low-income countries.

We use the labor income share in GDP for calibrating the output
lasticity of effective human capital in production 𝛽. Numbers for
he labor income share in GDP in 2014 were taken from the Penn

orld Tables 9.1 and are provided in Table 3. For the labor share we
annot observe a clear pattern and observe values on average of around
.5 with only moderate variation.38 Given the assumption of constant
eturns to scale in production, the capital’s share 𝛼 = 1 − 𝛽 − 𝛾 follows
s a remainder.

Produced capital published in World Bank (2018) and discussed
bove originates largely from the Penn World Tables. It is estimated
mploying the perpetual inventory method using country and capital
ood specific rates of depreciation. The country specific rates vary
etween 3 and 8% per annum. Table 3 gives the average depreciation
ates for the country groups under consideration.

Further, we need to find appropriate values for the parameters
overning the creation of human capital. Our specification (4) is similar

36 Price changes are taken account by using the implicit GDP deflator
btained by dividing the time series for GDP at PPP valued at constant and cur-
ent prices for low-income countries available at https://data.worldbank.org/
ndicator/NY.GDP.PCAP.PP.KD and https://data.worldbank.org/indicator/NY.
DP.PCAP.PP.CD. This results in a growth in prices of 5.34% between 2011
nd 2014. PPP exchange rates are implemented by using the implicit exchange
ate between GNI per capita in 2014 in int. $ (https://data.worldbank.org/
ndicator/NY.GNP.PCAP.PP.CD) and current US $ (https://data.worldbank.
rg/indicator/NY.GNP.PCAP.CD). This results in an adjustment factor of
.51 (2.95; 1.79; 1.04) for low (lower-middle, upper-middle, high) income
ountries.
37 Data are available from the World Bank Data Base at https://data.
orldbank.org/indicator/NY.GDP.TOTL.RT.ZS. For details on how the num-
ers are derived see World Bank (2011). Natural resources rents are the sum
f oil, natural gas, coal (hard and soft), mineral, and forest rents.
38 The labor shares reported in Table 3 are low compared with e.g. the

raditional 2
3

that is frequently used. See e.g. the discussion in Karabarbounis
and Neiman (2014) on the recently decreasing development of the labor
income share.
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to the specification originally proposed and calibrated by Lucas (1988).
In his specification, depreciation of human capital was excluded, i.e. 𝛿2
was set equal to zero. Lucas (1988) calibrated 𝐵 at a value of 0.05
which also has been used e.g. in Funke and Strulik (2000). Chen and
Funke (2013) used a higher value of 0.095 for a calibration concerning
the Chinese economy. We decided to use 0.05 as a conservative value
that is not too optimistic about human capital formation. Regarding
𝛿2, we choose for the crude mortality rate across all age groups as the
unconditional probability for individual human capital ceasing to exist.

Table 4 summarizes our calibration scenario for the different coun-
try groups.

4.4. Calibration results country groups

Proceeding as explained above and using the calibration values of
the last section, we find that for all country groups the parameter re-
strictions �̃�1, �̃�2 > 1 are fulfilled. This means that the problem is properly
defined and a solution can potentially exist according to Proposition 2.
The second question is then whether such a solution actually exists,
i.e. whether initial endowments with physical, natural and human
capital are sufficiently large enough (conditions (22), (23) and (24)).
If not, we would like to find out by how much initial endowments fall
short of their minimum requirements. Table 5 provides the results.

We see that a solution exists for all country groups. Initial endow-
ments with physical and natural capital are sufficiently large to guar-
antee subsistence consumption at all times. Per capita endowments,
�̃�0, �̃�0 and ℎ̃0, available for consumption in excess of its subsistence
level are all positive, i.e. endowments are sufficient to allow for excess
consumption.

It is interesting to investigate what is the maximum subsistence
consumption that could be afforded by the country groups. To find out,
�̃�max, we are searching the values for �̃� that solve for at least one of the
conditions (22), (23) and (24) with equality while the others are not
violated. The model’s predictions are optimistic with �̃�max clearly above
the poverty lines defined by the World Bank.

Looking at the long-run behavior implied by the calibration values,
we find that all country groups qualify for positive steady-state growth
in per capita quantities. Using the results from Section 3.2, we find
these growth rates to vary moderately around 1% p.a. and a rate of
interest net of depreciation between 4.3 and 5.4% p.a. Table 6 reports
the corresponding findings.

4.5. Calibration results individual countries

For calibration of individual country cases, we proceeded exactly
the same way as in case of country groups before by using the same data
sources. The calibration values can be found in Table H.1 Appendix H
at the end of the paper which lists all 108 countries for which all the
required data are available.39

39 In total 33 countries were excluded from the World Bank (2018) database.
Mostly, this was due to missing data on GNI in the World Bank data and

https://data.worldbank.org/indicator/SP.POP.GROW
https://data.worldbank.org/indicator/sp.dyn.cdrt.in
https://data.worldbank.org/indicator/sp.dyn.cdrt.in
https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS
https://www.rug.nl/ggdc/productivity/pwt/
https://www.rug.nl/ggdc/productivity/pwt/
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
https://data.worldbank.org/indicator/NY.GNP.PCAP.PP.CD
https://data.worldbank.org/indicator/NY.GNP.PCAP.PP.CD
https://data.worldbank.org/indicator/NY.GNP.PCAP.CD
https://data.worldbank.org/indicator/NY.GNP.PCAP.CD
https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS
https://data.worldbank.org/indicator/NY.GDP.TOTL.RT.ZS
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Table 4
Calibration values.

�̃�0 �̃�0 �̃�0 �̃� 𝜂 𝜌 𝑛

Low-income 1,980 3,953.1 2,970.2 304 2 0.03 0.026
Lower-middle income 6,001 17,482.5 6,501.3 414 2 0.03 0.015
Upper-middle income 15,358 50,474.3 14,981.5 1,177 2 0.03 0.008
High-income 45,327 173,039.0 27,344.0 7,964 2 0.03 0.006

𝐿0 𝛿1 𝐵 𝛿2 𝛼 𝛽 𝛾

Low-income 21.892 0.0499 0.05 0.009 0.3613 0.5130 0.1257
Lower-middle income 73.659 0.0458 0.05 0.008 0.4156 0.5287 0.0557
Upper-middle income 61.022 0.0500 0.05 0.007 0.4376 0.4794 0.0583
High-income 30.320 0.0440 0.05 0.008 0.4521 0.5279 0.0200

Note: Calibration values as explained in the main text. All values corresponding to nominal variables are measured in US $ at prices of 2014 per capita. Population
𝐿0 as of 2014 in million people.
Table 5
Calibration results country groups.

�̃�1 > 1 �̃�2 > 1 �̃�0 �̃�0 ℎ̃0 �̃�max

Low-income yes yes 3,003 2,047 8,354 625
Lower-middle income yes yes 15,704 6,092 57,827 3,848
Upper-middle income yes yes 44,748 13,755 113,106 8,082
High income yes yes 129,982 24,851 655,930 32,006

Note: Results using calibration values from Table 4. All quantities in 2014 US $ per
capita.

Table 6
Steady-state growth and interest rates in % p.a.

lim
𝑡→∞

�̇�𝑡
𝑐𝑡
= lim

𝑡→∞
�̇�𝑡
𝑦𝑡

= lim
𝑡→∞

�̇�𝑡
𝑘𝑡

lim
𝑡→∞

𝑖𝑡 − 𝛿1

Low-income 1.19 5.38
Lower-middle income 1.08 5.16
Upper-middle income 0.69 4.35
High-income 0.81 4.62

Note: Growth rates computed according to (16), Lemma1 and lim𝑡→∞ 𝑖𝑡 =
𝛼

1−𝛼
𝜓 .

We note that the problem we analyze is not properly defined for 4
of the countries: Iraq, Kuwait, Oman and Qatar. They are all subject
to a high resource rents’ share in GDP 𝛾 which leads to a violation
of the conditions �̃�1, �̃�2 > 1. Production in these economies is simply
too dependent on resources and no finite initial endowment could ever
fulfill their total resource consumption over time given their initial
output.

To apply the first sustainability test, we further have to check
whether initial endowments are sufficient to cover at least the subsis-
tence level of consumption. As in case of the analyzed country groups,
we compute �̃�0, �̃�0 and ℎ̃0 defined by (22), (23) and (24). Appendix H
eports on the results for all countries where we were able to assemble
he full dataset. We find several countries with insufficient endowments
n physical and natural capital. Table 7 reports them together with
he per capita gap in the initial endowment that prevents countries
rom realizing at least subsistence consumption. From the total of 108
ountries for which we have complete set of data, 98 are equipped with
ufficient initial endowments, 6 have insufficient endowments and 4
ave a parameter constellation preventing a solution to the problem.

We note in particular that low-income countries in our data sample
uffer from insufficient endowments with initial capital stocks. Some-
hat surprisingly, Saudi Arabia as a high income country is in such an

nitial position as well. It is important to remember that we calibrated
n initial situation matching actual GNI during 2014. Whenever we find
country with insufficient endowments, it is a combination of reasons

the labor share in the PWT 9.1. One country (Togo) was excluded due to
inconsistent output shares, i.e. the resource and labor share in GDP added up
to more than 1. Malta was excluded as being the only country with a resource
share in GDP of exactly zero which is not covered by the model’s formulation
above.
13
behind this finding. Initial production and subsistence consumption
is too high combined with the dependence on capital stocks implied
by output elasticities. Again, we compute the maximum subsistence
consumption �̃�max affordable at the initial and actual GNI during 2014.
In most of the cases in Table 7 it is well below the poverty lines defined
by the World Bank.

We take the Central African Republic as a particular country case. It
is the low-income country with the highest per capita endowments with
natural capital. Its endowment with produced capital stood at 2,374
US$ and falls short of the minimum requirements by 2,068 US$ per
capita. Hence, this resource rich country cannot afford permanently a
subsistence consumption of 437 US$. The latter is the US$ low-income
poverty line equivalent at prices of 2014. An initial capital transfer of
2,374 US$ per capita would suffice, ceteris paribus, to lift the country
up to an endowment that would allow to escape poverty. We consider
as a case study an initial transfer by 2014 that increases per capita
produced capital up to 5,000 US$.

This initial transfer allows the country to realize consumption in
excess of its subsistence level. Due to the country’s parameter con-
stellation, consumption would decrease to its subsistence level. One
reason for this is the comparably high share of resource rents in GDP.
If the country would be less dependent on resources, long-run positive
growth would be possible. The calibration results for the country’s
consumption path is displayed in Fig. 1. With the country’s labor and
resource shares 𝛽 = 0.164 and 𝛾 = 0.124 as given by the PWT,
consumption would peak at 𝑡1 = 69 and decline afterwards (scenario
1). A lower resource share and a correspondingly higher labor share
imply the peak in consumption to be postponed. With a sufficient
low resource share, permanent consumption growth is possible. This,
however, would probably demand deeper structural changes in the
country’s industry.

Next, we turn to countries’ sustainability performance with respect
to sustainability test (2)-(4). The results for each of the 98 countries
with an existing solution can be found in the table in Appendix H. Here
we note that 40 of these countries are characterized by full sustainable
development according to all indicators.

88 out of the 98 countries with a solution to the problem are
characterized by permanent non-negative consumption growth. Hence,
sustainability test (2) indicates sustainability at any 𝑡 and therefore
also a sustainable development for these countries. The underlying
mechanism leading to permanent non-negative growth is twofold. First,
the prerequisite is asymptotically non-negative growth. This is solely
determined by calibrating values of the model’s parameters (see (18)
for the condition). Second, during the transition period, initial endow-
ments are also important. A country always qualifies for non-negative
growth if the initial endowment gives rise to a high capital productivity
above the steady-state value. If the initial capital productivity is instead
lower initially, a high asymptotic interest rate is needed (see (20) for
the conditions applying).

Next, we turn to the indicators 𝐼𝑐𝑔 and 𝐼𝑊 for which we find just
10 countries with indicator values smaller than one. We report on

them in Table 8 together with the maximum deviation from Weitzman’s
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Table 7
Countries with insufficient initial endowments.

Country Income group �̃�0 �̃�0 ℎ̃0 �̃� �̃�max

Burundi low −119 −1,259 −4,482 247 28
Central African Rep. low −2,068 8,742 11,621 437 233
Mozambique low −34 1,543 4,719 399 294
Niger low −317 727 2,283 329 256
Saudi Arabia high 82,029 −440,228 −298,461 3,884 975
Sierra Leone low 470 −5,314 −7,945 289 95

Note: Countries with insufficient initial endowments in 2014. Negative numbers in columns 2 to 4 indicate the additional
needs of physical, natural or human capital per capita to guarantee subsistence consumption given in column 5. Column 6
gives the maximum subsistence consumption feasible with the given initial endowments. All quantities in 2014 US$.
Fig. 1. Potential consumption development Central African Republic.
Note: Consumption paths for the Central African Republic with an initial stock of produced capital of 5,000 US$ with different resource and human capital shares in GDP as
indicated in the graph. Scenario 1 reflects GDP shares as given by the PWT. Scenarios 2 - 3 use hypothetical lower resource (𝛾) and correspondingly higher labor shares (𝛽),
𝛼 = 0.712 throughout the scenarios. Minimum subsistence consumption 𝑐 = 437 US$. Consumption peaks at 𝑡1 = 69, 𝑡2 = 89 and 𝑡3 = 125. All quantities are expressed in 2014 US$.
Table 8
Countries with unsustainable development in 𝐼�̇�≥0 and/or 𝐼𝑊 .

Country Income group 𝐼�̇�≥0 𝐼𝑊 min(𝑐𝑠 − 𝑐𝑠)

Azerbaijan upper-middle 0.984 0.91 −48
Bosnia & Herzegovina upper-middle 0.937 0.69 −74
Bulgaria upper-middle 0.967 0.88 −101
Ecuador upper-middle 0.842 1.00 1,821
Latvia high 0.441 0.00 −365
Suriname upper-middle 0.069 0.98 −10
Swaziland lower-middle 0.570 1.00 952
Switzerland high 0.612 1.00 19,107
Tajikistan lower-middle 0.239 1.00 137
Ukraine lower-middle 0.00 0.00 −156

Note: Countries with negative consumption growth and/or failing Weitzman’s (1976,
1997) sustainability test. min(𝑐𝑠 − 𝑐𝑠) gives maximum deviation from Weitzman’s
benchmark annuity value for consumption in 2014 US$; negative values imply
non-sustainability at least at one point in time.

(1976) benchmark value for consumption. Weitzman’s test identifies
all countries not capable of sustainable development according to non-
negative growth. Non-negative growth, however, identifies countries
not conspicuous under the Weitzman test.

We note that mostly middle income countries experience devia-
tions from sustainable development with respect to these tests. The
exceptions are Latvia and Switzerland which suffer from negative con-
sumption growth. Latvia is additionally characterized by consumption
exceeding Weitzman’s benchmark annuity value by, however, a rather
moderate amount. The conclusions from Table 8 carry over to the
14
steady-state with respect to Weitzman’s test with all countries behaving
asymptotically not sustainable.

5. Discussion

The sustainability tests that we applied are consumption based
but look at different aspects of consumption. Hence, at least some
differences in results are to be expected. Table 9 provides an overview
of the results. We can observe that most of the countries failing at one
test do also not pass at least one other test.

Naturally, if no solution to the problem exists (sustainability test
1), the country will fail all other tests on sustainable development too.
Based on consumption growth, 20 countries fail in case of sustainability
test (2) and only 3 do not fail at any test. All countries that fall short of
sustainable development according to Weitzman’s test also do not pass
at least one of the other tests.

False signals arising from sustainability at a particular instance in
time are a critical issue. Whether a type I or II false signal is more
serious, might depend on the particular question addressed. A type I
false signal might influence policy to be inactive even if sustainable
development is on its agenda. A false signal of type II might draw an
overly pessimistic picture as from some future point in time sustainable
development will be realized. This might even be the case if policy aims
at sustainable development and sacrifices initial sustainability to allow
for this (Cairns and Martinet, 2014, 2021).

We investigate false signals from the perspective of time 𝑡 = 0,
i.e. we are identifying false signals that occur during 2014 the year at
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Fig. 2. Weitzman’s sustainability test potential scenarios Central African Republic.
Note: Paths of 𝑐𝑡−𝑐

𝑐𝑡−𝑐
for the Central African Republic with an initial stock of produced capital of 5,000 US$ with different resource and human capital shares in GDP as indicated.

Scenario 1 reflects GDP shares as given by the PWT. Scenarios 2 - 3 use hypothetical lower resource (𝛾) and correspondingly higher labor shares (𝛽). Values of 1 or above indicate
sustainability. Scenario 1 (2,3) yield a value of 1 at 𝑡1 = 39, 𝑡2 = 59 and 𝑡3 = 95.
Table 9
Number of countries failing at sustainable development.

Test: (1) Existence (2) Consumption (3) Weitzman
Also failing of solution growth (1976, 1997)

None other test 0 3 0

Existence solution 10 10 10
Consumption growth 10 20 16
Weitzman (1976, 1997) 10 16 16

Note: Number of countries on main diagonal in the lower part gives the total number
of countries failing a particular test. Off main diagonal table elements give the number
of countries failing at least the particular pair of test.

Table 10
Number of false signals.

Test: (1) Existence (2) Consumption (3) Weitzman
of solution growth (1976, 1997)

Type I false signal 0 3 3
Type II false signal 0 5 1

Note: Number of countries where false signals of type I and II according to Definition
4 are observed.

which our calibration starts. Sustainability test (1) is unable to produce
false signals as explained in Section 3.3. Sustainability tests (2) and (3)
are both characterized by moderate numbers on false signals. Table 10
provides the number of type I and II false signals.

For particular cases of type I false signals, we refer back to the
case of the Central African Republic. Consumption paths are given in
Fig. 1 and we observe consumption peaks for scenarios 1–3 at times 𝑡1,
𝑡2 and 𝑡3. The sustainability test based on non-negative consumption
growth would give type I false signals on sustainable development at
times 𝑡 ∈ [0, 𝑡1], 𝑡 ∈ [0, 𝑡2] and 𝑡 ∈ [0, 𝑡3], respectively. A similar picture
emerges in case of the sustainability test based on Weitzman’ test. Fig. 2
shows the development of 𝑐𝑡−𝑐

𝑐𝑡−𝑐
. A value of 1 or above at time 𝑡 indicates

sustainability at 𝑡. Also in this case we would observe type I false signals
on sustainable development at times 𝑡 ∈ [0, 𝑡1], 𝑡 ∈ [0, 𝑡2] and 𝑡 ∈ [0, 𝑡3].

So far, the number of cases not characterized by sustainable de-
velopment is limited. However, one might criticize the underlying
assumptions in our analysis as too optimistic. The Cobb–Douglas pro-
duction technology (2) naturally implies an elasticity of substitution
equal to one which might be seen as overly high. Assuming e.g. a
15
CES production function with a lower elasticity of substitution between
all three input factors would necessarily boil down to a steady-state
where at best minimum subsistence consumption could be realized. As
resource input is then a gross complement to physical and human capi-
tal, capital accumulation would lead to a higher demand for resources.
This would remove the possibility of positive consumption growth at
least in the limit. An interesting intermediate case emerges if we treat
physical capital and resource input as gross complements but allow
human capital to substitute for resource use. This could be implemented
by the following production function

𝑌𝑡 =
⎡

⎢

⎢

⎣

𝛼𝐾
𝜎−1
𝜎

𝑡 + (1 − 𝛼)
(

(𝐻𝑡𝑢𝑡𝐿𝑡)
𝛽

1−𝛼 𝑅
𝛾

1−𝛼
𝑡

)
𝜎−1
𝜎 ⎤

⎥

⎥

⎦

𝜎
𝜎−1

(25)

which is identical to (2) in case the elasticity of substitution 𝜎 equals
1.40 Appendix G analyzes the economy’s steady-state for 𝜎 < 1. In par-
ticular, the steady-growth behavior and the conditions for an existence
of a solution are derived. We find the following: First, steady-state
growth rates are unaffected by 𝜎. Second, for 𝜎 < 1 we observe
three possibilities for limiting consumption as given by (18). Third and
unsurprisingly, a lower 𝜎 influences the existence conditions which now
become more stringent. As such, the results from the first sustainability
test would be affected in case 𝜎 < 1. Unfortunately, the production tech-
nology (25) does not allow for explicit solutions tracing the transitional
dynamics.

6. Conclusion

We summarize by highlighting the two major contributions made
in this paper. First, the study make a technical contribution by solving
complex dynamic problems using special functions. Second, from an
economic point of view, the solution method allows us to calibrate the
model to individual countries’ endowment situation and to trace out
the entire dynamics during adjustment towards their steady-state.

This allows us to analyze the behavior of several sustainability tests
during the adjustment period as well as in the steady-state. This has not

40 This specification resembles the steady-state result in Di Maria and
Valente (2008) where directed technical change is purely resource augmenting.
In our case, human capital accumulation takes the role of technical change.
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been done in the literature before as an analytical solution for the ad-
justment paths is required for this. We find that the model’s predictions
for most countries in our sample of 108 economies are characterized by
sustainable development. We furthermore investigated the issue of false
signals that might be sent by sustainability tests. The number of cases
where such false signals could arise is, however, moderate.

Our contribution deals with the centralized solution to the welfare
maximization problem. Of course, the question arises how this solu-
tion can be implemented in a decentralized equilibrium. It would be
straightforward to start searching for suitable tools such as taxes or
subsidies and analyze issues related to the timing of such policies as
in Acemoglu et al. (2012). We leave this task for future research that
can provide valuable insights at the individual country level.
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ppendix A. Co-states

We start by solving for the co-states 𝜆𝑖,𝑡, 𝑖 = 1, 2, 3. Note that (13)
irectly implies 𝜆3,𝑡 = 𝜆3,0 which is the initial value for the resource’
hadow value.

Proceeding with 𝜆2,𝑡, we find conditions (10) and (12) to imply

1,𝑡𝛽𝐴𝐾
𝛼
𝑡 (𝐻𝑡𝑢𝑡𝐿𝑡)𝛽−1𝑅

𝛾
𝑡𝐻𝑡𝐿𝑡 = 𝜆2,𝑡𝐵𝐻𝑡, (26)

𝜆1,𝑡𝛾𝐴𝐾
𝛼
𝑡 (𝐻𝑡𝑢𝑡𝐿𝑡)𝛽𝑅

𝛾−1
𝑡 = 𝜆3,𝑡. (27)

From (9) and (11) we know that

�̇�1,𝑡 = −𝜆1,𝑡𝛼𝐴𝐾𝛼−1
𝑡 (𝐻𝑡𝑢𝑡𝐿𝑡)𝛽𝑅

𝛾
𝑡 + 𝜆1,𝑡𝛿1, (28)

�̇�2,𝑡 = −𝜆1,𝑡𝛽𝐴𝐾𝛼
𝑡 (𝐻𝑡𝑢𝑡𝐿𝑡)𝛽−1𝑅

𝛾
𝑡 𝑢𝑡𝐿𝑡 − 𝜆2,𝑡𝐵(1 − 𝑢𝑡) + 𝜆2,𝑡𝛿2. (29)

Using (26) in (29) gives

�̇�2,𝑡 = −𝜆2,𝑡𝐵𝑢𝑡 − 𝜆2,𝑡𝐵(1 − 𝑢𝑡) + 𝜆2,𝑡𝛿2 = −𝜆2,𝑡(𝐵 − 𝛿2),

which directly implies

𝜆2,𝑡 = 𝜆2,0𝑒
−(𝐵−𝛿2)𝑡, (30)

where 𝜆2,0 is the initial value of the co-state variable 𝜆2,𝑡 at time 𝑡 = 0.
It is this simple time path for the evolution of human capital’s shadow
price that allows for a closed form solution of the above problem. (30)
takes such a simple form because human capital creation is linear in its
own stock given 𝑢𝑡 and is not directly depending on 𝐾𝑡, 𝑆𝑡 or 𝑅𝑡.

Solving for the path of 𝜆1,𝑡 is a bit more complex. Dividing both
sides of (26) by (27) by each other gives
𝑅𝑡

𝐵𝐻𝑡𝑢𝑡
=
𝛾
𝛽
𝜆2,𝑡
𝜆3,0

. (31)

earranging (26) and using (31) yields

𝜆1,𝑡𝛽𝐴𝐾
𝛼
𝑡 (𝐻𝑡𝑢𝑡𝐿𝑡)𝛽𝑅

𝛾
𝑡 = 𝜆2,𝑡𝐵𝐻𝑡𝑢𝑡,

𝐴
(

𝐾𝑡

𝐵𝐻𝑡𝑢𝑡

)𝛼 ( 𝑅𝑡
𝐵𝐻𝑡𝑢𝑡

)𝛾 (𝐿𝑡
𝐵

)𝛽

=
𝜆2,𝑡
𝜆1,𝑡

𝛽𝐴
(

𝐾𝑡

𝐵𝐻𝑡𝑢𝑡

)𝛼 ( 𝛾
𝛽
𝜆2,𝑡
𝜆3,0

)𝛾

=
𝜆2,𝑡
𝜆1,𝑡

(

𝐿𝑡
𝐵

)−𝛽

𝐾𝑡

𝐵𝐻𝑡𝑢𝑡
=

( 𝜆2,𝑡
𝜆1,𝑡

1
𝛽𝐴

)
1
𝛼
(

𝛾
𝛽
𝜆2,𝑡
𝜆3,0

)− 𝛾
𝛼
(

𝐿𝑡
𝐵

)− 𝛽𝛼

= 𝐴− 1
𝛼 𝜆

− 1
𝛼

1,𝑡

( 𝜆2,𝑡
𝛽

)

1−𝛾
𝛼

( 𝜆3,0
𝛾

)

𝛾
𝛼
(

𝐿𝑡
𝐵

)− 𝛽𝛼
(32)

t this point it is helpful to introduce additional variables that simplify
he notation and are useful to solve the model. Define

1 = 𝐴− 1
𝛼 𝜆

𝛼−1
𝛼

(𝜆2,0
)

𝛽
𝛼
(𝜆3,0

)

𝛾
𝛼
(

𝐿0
)− 𝛽

𝛼
, 𝜑2 =

1 − 𝛼 ,
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1,0 𝛽 𝛾 𝐵 𝜓
𝜁 =
𝜑2 − 𝜑1
𝜑2

, 𝑥𝑡 = 𝑒−𝜓𝑡, 𝜓 =
𝛽(𝐵 − 𝛿2 + 𝑛) + (1 − 𝛼)𝛿1

𝛼
. (33)

As 𝑡 runs from 0 to ∞, 𝑥𝑡 develops from 1 to 0. 𝑥𝑡 makes it convenient
to solve the model using the Gaussian hypergeometric function. With
results (28), (31) and (32), 𝜆1,𝑡 develops as

�̇�1,𝑡 = −𝜆1,𝑡𝛼𝐴
(

𝐾𝑡
𝐿𝑡𝐻𝑡𝑢𝑡

)𝛼−1 ( 𝑅𝑡
𝐿𝑡𝐻𝑡𝑢𝑡

)𝛾
+ 𝜆1,𝑡𝛿1,

= −𝜆1,𝑡𝛼𝐴
(

𝐿𝑡
𝐵

)𝛽 ( 𝐾𝑡
𝐵𝐻𝑡𝑢𝑡

)𝛼−1 ( 𝑅𝑡
𝐵𝐻𝑡𝑢𝑡

)𝛾
+ 𝜆1,𝑡𝛿1,

= −𝛼𝐴
1
𝛼 𝜆

1
𝛼
1,𝑡

(𝜆2,𝑡
𝛽

)− 𝛽
𝛼
(𝜆3,𝑡

𝛾

)− 𝛾
𝛼
(

𝐿𝑡
𝐵

)
𝛽
𝛼
+ 𝜆1,𝑡𝛿1,

= −𝛼𝐴
1
𝛼 𝜆

1
𝛼
1,𝑡

(𝜆2,0
𝛽

)− 𝛽
𝛼
(𝜆3,0

𝛾

)− 𝛾
𝛼
(

𝐿0
𝐵

)
𝛽
𝛼
𝑒
𝛽(𝐵−𝛿2+𝑛)

𝛼 𝑡 + 𝜆1,𝑡𝛿1. (34)

(34) takes the form of a Bernoulli equation for 𝜆1,𝑡. Defining 𝑚𝑡 = 𝜆
1− 1

𝛼
1,𝑡

implies

̇ 𝑡 =
𝛼 − 1
𝛼

𝜆
− 1
𝛼

1,𝑡 �̇�1,𝑡

= −1 − 𝛼
𝛼

𝛿1𝑚𝑡 + (1 − 𝛼)𝐴
1
𝛼

(𝜆2,0
𝛽

)− 𝛽
𝛼
(𝜆3,0

𝛾

)− 𝛾
𝛼
(

𝐿0
𝐵

)
𝛽
𝛼
𝑒
𝛽(𝐵−𝛿2+𝑛)

𝛼 𝑡,

which has the solution

𝑚𝑡 = 𝑒−
1−𝛼
𝛼 𝛿1𝑡

⎡

⎢

⎢

⎣

𝑚0 + (1 − 𝛼)𝐴
1
𝛼

(𝜆2,0
𝛽

)− 𝛽
𝛼
(𝜆3,0

𝛾

)− 𝛾
𝛼

×
(

𝐿0
𝐵

)
𝛽
𝛼

∫

𝑡

0
𝑒
𝛽(𝐵−𝛿2+𝑛)+(1−𝛼)𝛿1

𝛼 𝑧𝑑𝑧
⎤

⎥

⎥

⎦

,

= 𝑒−
1−𝛼
𝛼 𝛿1𝑡

⎡

⎢

⎢

⎣

𝑚0 + (1 − 𝛼)𝐴
1
𝛼

(𝜆2,0
𝛽

)− 𝛽
𝛼
(𝜆3,0

𝛾

)− 𝛾
𝛼
(

𝐿0
𝐵

)
𝛽
𝛼 𝑒𝜓𝑡 − 1

𝜓

⎤

⎥

⎥

⎦

.

sing (33) and replacing for 𝑚𝑡 gives

1,𝑡 = 𝑒𝛿1𝑡
⎛

⎜

⎜

⎜

⎝

𝜑1

𝜆
𝛼−1
𝛼

1,0

⎞

⎟

⎟

⎟

⎠

𝛼
1−𝛼

𝜑
𝛼
𝛼−1
2 𝑒−

𝛼
1−𝛼 𝜓𝑡(1 − 𝜁𝑥𝑡)

𝛼
𝛼−1

= 𝜆1,0𝑒
𝛿1𝑡

(

𝜑1
𝜑2

)
𝛼

1−𝛼
(

𝑥𝑡
1 − 𝜁𝑥𝑡

)
𝛼

1−𝛼
. (35)

Appendix B. Capital productivity

Capital productivity 𝑌𝑡
𝐾𝑡

= 𝑦𝑡
𝑘𝑡

with 𝑦𝑡 = 𝑌𝑡
𝐿𝑡

, 𝑘𝑡 = 𝐾𝑡
𝐿𝑡

is obtained

y rewriting (10) as 𝛽𝑌𝑡 = 𝜆2,𝑡
𝜆1,𝑡
𝐵𝐻𝑡𝑢𝑡 which implies 𝑌𝑡

𝐾𝑡
= 1

𝛽
𝜆2,𝑡
𝜆1,𝑡

𝐵𝐻𝑡𝑢𝑡
𝐾𝑡

.
Making use of (32) and the results for 𝜆1,𝑡 and 𝜆2,𝑡 in (30) and (35)
gives

𝑌𝑡
𝐾𝑡

= 𝐴
1
𝛼 𝜆

1−𝛼
𝛼

1,𝑡

(𝜆2,𝑡
𝛽

)− 𝛽
𝛼
(𝜆3,0

𝛾

)− 𝛾
𝛼
(

𝐿𝑡
𝐵

)
𝛽
𝛼

= 𝐴
1
𝛼 𝜆

1−𝛼
𝛼

1,0

(𝜆2,0
𝛽

)− 𝛽
𝛼
(𝜆3,0

𝛾

)− 𝛾
𝛼
(

𝐿𝑡
𝐵

)
𝛽
𝛼

×
𝜑1
𝜑2

𝑥𝑡
1 − 𝜁𝑥𝑡

𝑒
𝛽(𝐵−𝛿2+𝑛)+(1−𝛼)𝛿1

𝛼 𝑡.

Using the definitions of 𝜓 , 𝑥𝑡, 𝜁 and 𝜑1 from (33) gives the result in
emma 1 for 𝜁 = 𝜁∗

𝑦𝑡
𝑘𝑡

=
𝑌𝑡
𝐾𝑡

= 1
𝜑2

(1 − 𝜁𝑥𝑡)−1.

Appendix C. Physical capital
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Solution to the differential eq. (3). The physical capital stock 𝐾𝑡 behaves
ccording to

̇ 𝑡 = 𝑌𝑡 − 𝑐𝑡𝐿𝑡 − 𝛿1𝐾𝑡 = 𝐾𝑡
𝑌𝑡
𝐾𝑡

− 𝑐𝑡𝐿𝑡 − 𝛿1𝐾𝑡.

Making use of Lemma 1 derived in Appendix B and 𝐿𝑡 = 𝐿0𝑒𝑛𝑡 gives

�̇�𝑡 =
[

1
𝜑2

(1 − 𝜁𝑥𝑡)−1 − 𝛿1

]

𝐾𝑡 − 𝑐𝑡𝐿0𝑒
𝑛𝑡.

This differential equation can be solved in a straightforward manner.
To do so, we reformulate this differential equation by making use of
Proposition 1’s representation of 𝑐𝑡 into a standard text book form used
for finding the solution

�̇�𝑡 + 𝑓1(𝑡)𝐾𝑡 = 𝑔1(𝑡), (36)
with

𝑓1(𝑡) = −
[

1
𝜑2

(1 − 𝜁𝑥𝑡)−1 − 𝛿1

]

,

𝑔1(𝑡) = −(𝑐𝑡 − 𝑐)𝐿𝑡 − 𝑐𝐿𝑡 = −𝜆
− 1
𝜂

1,𝑡 𝑒
−
(

𝜌
𝜂 −𝑛

)

𝑡𝐿0 − 𝑐𝑒𝑛𝑡𝐿0,

where −𝑓 (𝑡) is the net return on physical capital at time 𝑡. We denote
the initial stock of capital at 𝑡 = 0 by 𝐾0. The solution to the differential
Eq. (36) is given by

𝐾𝑡 = 𝐾0𝑒
− ∫ 𝑡0 𝑓1(𝑧)𝑑𝑧 + ∫

𝑡

0
𝑔1(𝑧)𝑒− ∫ 𝑡𝑧 𝑓1(𝑠)𝑑𝑠𝑑𝑧. (37)

Building the integral ∫ 𝑡𝑧 𝑓1(𝑠)𝑑𝑠 and using 𝑥𝑧 = 𝑒−𝜓𝑧 gives

−∫

𝑡

𝑧
𝑓1(𝑠)𝑑𝑠 = −𝛿1(𝑡 − 𝑧) + ∫

𝑡

𝑧

[

1
𝜑2

(1 − 𝜁𝑒−𝜓𝑠)−1
]

𝑑𝑠

= −𝛿1(𝑡 − 𝑧) +
1

1 − 𝛼
ln

[

(1 − 𝜁𝑥𝑡)𝑥−1𝑡
(1 − 𝜁𝑥𝑧)𝑥−1𝑧

]

. (38)

Using (38) in (36) gives

𝐾𝑡 = 𝐾0𝑒
−𝛿1𝑡

(

𝜑1 + 𝜑2(𝑥−1𝑡 − 1)
𝜑1

)
1

1−𝛼

− ∫

𝑡

0
(𝑐𝑧 − 𝑐)𝐿𝑧𝑒−𝛿1(𝑡−𝑧)

(

(1 − 𝜁𝑥𝑡)𝑥−1𝑡
(1 − 𝜁𝑥𝑧)𝑥−1𝑧

)
1

1−𝛼

𝑑𝑧

− ∫

𝑡

0
𝑐𝐿𝑧𝑒

−𝛿1(𝑡−𝑧)

(

(1 − 𝜁𝑥𝑡)𝑥−1𝑡
(1 − 𝜁𝑥𝑧)𝑥−1𝑧

)
1

1−𝛼

𝑑𝑧.

nserting (8) and rearranging delivers

𝑡 = 𝐾0𝑒
−𝛿1𝑡 (1 − 𝜁 )−

1
1−𝛼

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

−
(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

∫

𝑡

0
𝜆
− 1
𝜂

1,𝑧 𝑒
−
(

𝜌
𝜂 −𝑛

)

𝑧𝐿0𝑒
−𝛿1(𝑡−𝑧)𝑥

1
1−𝛼
𝑧 (1 − 𝜁𝑥𝑧)

− 1
1−𝛼 𝑑𝑧

−
(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

∫

𝑡

0
𝑐𝑒𝑛𝑧𝐿0𝑒

−𝛿1(𝑡−𝑧)𝑥
1

1−𝛼
𝑧 (1 − 𝜁𝑥𝑧)

− 1
1−𝛼 𝑑𝑧.

Using (35) and rearranging gives

𝐾𝑡 = 𝐾0𝑒
−𝛿1𝑡 (1 − 𝜁 )−

1
1−𝛼

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

− 𝑒−𝛿1𝑡 (1 − 𝜁 )−
𝛼

(1−𝛼)𝜂 𝜆
− 1
𝜂

1,0

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

×𝐿0 ∫

𝑡

0
𝑒−

(

𝜌
𝜂 −𝑛−𝛿1+

𝛿1
𝜂

)

𝑧𝑥
𝜂−𝛼

(1−𝛼)𝜂
𝑧 (1 − 𝜁𝑥𝑧)

𝛼−𝜂
(1−𝛼)𝜂 𝑑𝑧

− 𝑒−𝛿1𝑡
(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

𝑐𝐿0 ∫

𝑡

0
𝑒(𝑛+𝛿1)𝑧𝑥

1
1−𝛼
𝑧 (1 − 𝜁𝑥𝑧)

− 1
1−𝛼 𝑑𝑧.

Using 𝑥𝑧 = 𝑒−𝜓𝑧 gives

𝐾𝑡 = 𝐾0𝑒
−𝛿1𝑡 (1 − 𝜁 )−

1
1−𝛼

(

𝑥𝑡
)− 1

1−𝛼
17

1 − 𝜁𝑥𝑡
− 𝑒−𝛿1𝑡 (1 − 𝜁 )−
𝛼

(1−𝛼)𝜂 𝜆
− 1
𝜂

1,0

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

×𝐿0 ∫

𝑡

0
𝑥

1
𝜓

(

𝜌
𝜂 +𝜓

𝜂−𝛼
(1−𝛼)𝜂 −𝛿1+

𝛿1
𝜂 −𝑛

)

𝑧 (1 − 𝜁𝑥𝑧)
𝛼−𝜂

(1−𝛼)𝜂 𝑑𝑧

− 𝑒−𝛿1𝑡
(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

𝑐𝐿0 ∫

𝑡

0
𝑥

1
𝜓 ( 𝜓

1−𝛼 −𝑛−𝛿1)
𝑧 (1 − 𝜁𝑥𝑧)

− 1
1−𝛼 𝑑𝑧.

Changing the domain of integration from 𝑧 to 𝑑𝑥𝑧 with 𝑑𝑧 = − 1
𝜓 𝑥

−1
𝑧 𝑑𝑥𝑧

nd integrating from 𝑥𝑡 to 1 instead of 0 to 𝑡 gives

𝑡 = 𝐾0𝑒
−𝛿1𝑡 (1 − 𝜁 )−

1
1−𝛼

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

(39)

−𝑒−𝛿1𝑡 (1 − 𝜁 )−
𝛼

(1−𝛼)𝜂 𝜆
− 1
𝜂

1,0

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

×
𝐿0
𝜓 ∫

1

𝑥𝑡
𝑥

1
𝜓

(

𝜌
𝜂 +𝜓

𝜂−𝛼
(1−𝛼)𝜂 −𝛿1+

𝛿1
𝜂 −𝑛

)

−1
𝑧 (1 − 𝜁𝑥𝑧)

𝛼−𝜂
(1−𝛼)𝜂 𝑑𝑥𝑧

− 𝑒−𝛿1𝑡
(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 1
1−𝛼

𝑐
𝐿0
𝜓 ∫

1

𝑥𝑡
𝑥

1
𝜓 ( 𝜓

1−𝛼 −𝑛−𝛿1)−1
𝑧 (1 − 𝜁𝑥𝑧)

− 1
1−𝛼 𝑑𝑥𝑧.

The integrals in (39) – as long as they converge – can be evaluated
using the Gaussian hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) which has in
general the integral representation

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
𝛤 (𝑐)

𝛤 (𝑏)𝛤 (𝑐 − 𝑏) ∫

1

0
𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)−𝑎𝑑𝑡. (40)

his integral representation is valid for R(𝑐) > R(𝑏) > 0 where R(⋅)
enotes the real part of the argument and 𝛤 (⋅) the Gamma func-
ion (Abramowitz and Stegun, 1972, 15.3.1). In general, 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)
efined as a Gauss series (Abramowitz and Stegun, 1972, 15.1.1)
onverges if |𝑧| < 1. It also converges if additionally R(𝑐 − 𝑏 − 𝑎) > 0
or |𝑧| ≤ 1 and if −1 < R(𝑐 − 𝑏 − 𝑎) ≤ 0 for |𝑧| ≤ 1 but 𝑧 ≠ 1.
omparing the integral on the right hand side of (40) with the integrals

n (39) reveals that the present case can be seen as a special case with
− 𝑏 − 1 = 0 or equivalent 𝑐 = 𝑏 + 1. And hence, R(𝑐) > R(𝑏) holds.
e will see shortly that R(𝑏) > 0 poses no problem for the model’s

arametrization. If we apply the representation (40) to our problem, 𝜁
ill play the role of 𝑧. We already saw above that 𝜁 < 1 holds. If 𝜆1,0 is

ufficiently small and/or 𝜆2,0 or 𝜆3,0 are sufficiently large, it might turn
ut that 𝜁 ≤ −1. In this case, one has to think about how to compute
he integrals in (39) or other integrals of the same type that appear
urther down below. This is because the integral representation (40)
s an analytic continuation of the Gaussian hypergeometric function
efined by a Gauss series (Abramowitz and Stegun, 1972, 15.3.1). Only
or the restrictions on 𝑧 and R(𝑐−𝑏−𝑎) laid out above, both are identical.
n general, for 𝑧 ≤ −1 and R(𝑐) > R(𝑏) > 0, the integral (40) exists
ut the Gauss series that defines the hypergeometric function is not
onverging and hence, is not identical to the integrals that we aim
o compute. In such cases, it is necessary to use analytic continuation
ormulas for 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) (see Abramowitz and Stegun, 1972, 15.3.3
hrough 15.3.9).41

We can therefore make use of

𝐹1(𝑎, 𝑏; 𝑏 + 1; 𝑧) =
𝛤 (𝑏 + 1)
𝛤 (𝑏)𝛤 (1) ∫

1

0
𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)−𝑎𝑑𝑡

=
𝛤 (𝑏 + 1)
𝛤 (𝑏)𝛤 (1) ∫

1

0
𝑡𝑏−1(1 − 𝑧𝑡)−𝑎𝑑𝑡

= 𝑏∫

1

0
𝑡𝑏−1(1 − 𝑧𝑡)−𝑎𝑑𝑡,

here we applied the gamma function’s continuation 𝛤 (𝑏 + 1) = 𝑏𝛤 (𝑏)
nd that 𝛤 (1) = 1 (Abramowitz and Stegun, 1972, 6.1.15). Note that

41 For a general discussion about this situation see Section 3.1 in Boucekkine
and Ruiz-Tamarit (2008).



Energy Economics 110 (2022) 106016J. Antony and T. Klarl

i
h
i
s
r

𝐾

a

L

w
c

𝑡

we need to keep in mind that 𝑧 ≤ −1 needs special attention. Inspect-
ng (39) shows that we can apply this special case of the Gaussian
ypergeometric function to both integrals. Through a suitable change
n the variable of integration, the integrals ranging from 𝑥𝑡 to 1 can be
plit up into two separate integrals each running from 0 to 1 and each
epresentable by the hypergeometric function. This results in

𝑡 = 𝐾0𝑒
−𝛿1𝑡

(

𝜑1
𝜑2

)− 1
1−𝛼

(

1 − 𝜁𝑥𝑡
𝑥𝑡

)
1

1−𝛼

− 𝑒−𝛿1𝑡𝜆
− 1
𝜂

1,0

(

𝜑1
𝜑2

)− 𝛼
1−𝛼

1
𝜂
(

1 − 𝜁𝑥𝑡
𝑥𝑡

)
1

1−𝛼 1
𝜓

1
�̃�1
𝐿0

[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )

−𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)
]

(41)

−𝑐𝑒−𝛿1𝑡
(

1 − 𝜁𝑥𝑡
𝑥𝑡

)
1

1−𝛼 1
𝜓

1
�̃�2

×𝐿0

[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)
]

,

with
�̃�1 =

𝜂 − 𝛼
𝜂(1 − 𝛼)

,

�̃�1 =
1
𝜓

(

𝜌
𝜂
+

𝜂 − 𝛼
(1 − 𝛼)𝜂

𝜓 +
1 − 𝜂
𝜂

𝛿1 − 𝑛
)

= 1 + 𝛼
𝜂(1 − 𝛼)

(1 − 𝛼)(𝜌 − 𝑛) + (𝜂 − 1)
[

𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝑛
]

𝛽(𝐵 − 𝛿2 + 𝑛) + (1 − 𝛼)𝛿1
,

�̃�2 =
1

1 − 𝛼
> 1,

�̃�2 =
1

1 − 𝛼
−
𝛿1
𝜓

− 𝑛
𝜓

= 1 +
𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝑛

(1 − 𝛼)𝜓
.

where we require that �̃�1, �̃�2 > 0. In case these inequalities do not hold,
the integrals in (39) are not finite and the economy’s needs for accumu-
lating physical capital to solve the problem would be indefinitely large
and, hence, no solution would exist.

Transversality condition 𝐾𝑡. We have to show that lim𝑡→∞ 𝜆1,𝑡𝐾𝑡 = 0.
Using 𝜆1,𝑡 given by (35) and 𝐾𝑡 given by (41), 𝜆1,𝑡𝐾𝑡 reads as

𝜆1,𝑡𝐾𝑡 = 𝜆1,0𝐾0 (1 − 𝜁 )
−1 1 − 𝜁𝑥𝑡

𝑥𝑡

− 𝜆
1− 1

𝜂
1,0 (1 − 𝜁 )

𝛼(𝜂−1)
(1−𝛼)𝜂

1 − 𝜁𝑥𝑡
𝑥𝑡

1
𝜓

1
�̃�1

×𝐿0

[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)
]

− 𝜆1,0𝑐 (1 − 𝜁 )
𝛼

1−𝛼
1 − 𝜁𝑥𝑡
𝑥𝑡

1
𝜓

1
�̃�2

×𝐿0

[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)
]

.

As 𝑡 → ∞ we see 𝑥𝑡 → 0. and 𝑥−1𝑡 → ∞. Rewriting 𝜆𝑡𝐾𝑡 as 𝑥𝑡𝜆𝑡𝐾𝑡
𝑥𝑡

and
pplying L’Hospital’s rule as 𝑥𝑡 → 0 requires lim𝑥𝑡→0

𝜕𝑥𝑡𝜆𝑡𝐾𝑡
𝜕𝑥𝑡

= 0. 𝜕𝑥𝑡𝜆𝑡𝐾𝑡
𝜕𝑥𝑡

using the above expression is given by

𝜕𝑥𝑡𝜆𝑡𝐾𝑡
𝜕𝑥𝑡

= −𝜆1,0𝐾0 (1 − 𝜁 )
−1 𝜁

+ 𝜆
1− 1

𝜂
1,0 (1 − 𝜁 )

𝛼(𝜂−1)
(1−𝛼)𝜂 𝜁 1

𝜓
1
�̃�1
𝐿0

×
[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)
]

+ 𝜆
1− 1

𝜂
1,0 (1 − 𝜁 )

𝛼(𝜂−1)
(1−𝛼)𝜂 (1 − 𝜁𝑥𝑡)

1
𝜓

1
�̃�1
𝐿0

×
[

�̃�1𝑥
�̃�1−1
𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

]

+ 𝜆
1− 1

𝜂
1,0 (1 − 𝜁 )

𝛼(𝜂−1)
(1−𝛼)𝜂 (1 − 𝜁𝑥𝑡)

1
𝜓

1
�̃�1
𝐿0

×
[

𝑥�̃�1𝑡
𝜕2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

]

18

𝜕𝑥𝑡
+ 𝜆1,0𝑐 (1 − 𝜁 )
𝛼

1−𝛼 𝜁 1
𝜓

1
�̃�2
𝐿0

×
[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)
]

+ 𝜆1,0𝑐 (1 − 𝜁 )
𝛼

1−𝛼 (1 − 𝜁𝑥𝑡)
1
𝜓

1
�̃�2
𝐿0

×
[

�̃�2𝑥
�̃�2−1
𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

]

+ 𝜆1,0𝑐 (1 − 𝜁 )
𝛼

1−𝛼 (1 − 𝜁𝑥𝑡)
1
𝜓

1
�̃�2
𝐿0

×
[

𝑥�̃�2𝑡
𝜕2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

𝜕𝑥𝑡

]

.

Evaluating 𝜕𝑥𝑡𝜆𝑡𝐾𝑡
𝜕𝑥𝑡

at 𝑥𝑡 = 0 gives as long as �̃�1 − 1 > 0 and �̃�2 − 1 > 0

and because 2𝐹1(𝑎,𝑏;𝑏+1;0)
𝑏 = 1

𝜕𝑥𝑡𝜆𝑡𝐾𝑡
𝜕𝑥𝑡

|

|

|𝑥𝑡=0
= −𝜆1,0𝐾0 (1 − 𝜁 )

−1 𝜁

+ 𝜆
1− 1

𝜂
1,0 (1 − 𝜁 )

𝛼(𝜂−1)
(1−𝛼)𝜂 𝜁 1

𝜓
1
�̃�1
𝐿0

[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )
]

+ 𝜆1,0𝑐 (1 − 𝜁 )
𝛼

1−𝛼 𝜁 1
𝜓

1
�̃�2
𝐿0

[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )
]

.

For transversality to hold, it is then required additionally that 𝜕𝑥𝑡𝜆𝑡𝐾𝑡
𝜕𝑥𝑡

|

|

|𝑥𝑡=0
= 0 which implies

𝐾0 =
𝐿0
𝜓

[

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )
�̃�1

× + 𝑐 (1 − 𝜁 )
1

1−𝛼 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )
�̃�2

]

. (42)

Inserting this into (41) gives 𝐾𝑡 as

𝐾𝑡 = 𝑒−𝛿1𝑡
(

1 − 𝜁𝑥𝑡
𝑥𝑡

)
1

1−𝛼 𝐿0
𝜓

×
⎡

⎢

⎢

⎣

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )−
𝛼

1−𝛼
1
𝜂
𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

�̃�1

+ 𝑐
𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

�̃�2

⎤

⎥

⎥

⎦

.

Dividing by 𝐿𝑡 = 𝐿0𝑒𝑛𝑡 and evaluating at 𝜁 = 𝜁∗ gives the result in
emma 2.

In the limit, 𝑡 → ∞ and 𝑥𝑡 → 0, lim𝑡→∞ 𝑘𝑡 can behave in different
ays depending on the models parameters.42 We find the same three

ases that need to be differentiated as in case of consumption.

lim
→∞

𝑘𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐
𝜓�̃�2

for 𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌 < 0,

𝑐
𝜓�̃�2

+
(𝜆∗1,0 )

− 1
𝜂

𝜓
(1−𝜁 )−

𝛼
1−𝛼

1
𝜂

�̃�1
for 𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌 = 0,

𝑐
𝜓�̃�2

+
(𝜆∗1,0 )

− 1
𝜂

𝜓
(1−𝜁 )−

𝛼
1−𝛼

1
𝜂

�̃�1
× for 𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌 > 0.

lim𝑡→∞ 𝑥
− 1
𝜓

𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌
(1−𝛼)𝜂

𝑡 → ∞

Appendix D. Derivations related to 𝑯𝒕

Using (32) and (35) gives

𝐵𝐻𝑡𝑢𝑡 = 𝐴
1
𝛼 𝜆

1
𝛼
1,𝑡

(𝜆2,𝑡
𝛽

)− 1−𝛾
𝛼

(𝜆3,0
𝛾

)− 𝛾
𝛼
(

𝐿𝑡
𝐵

)
𝛽
𝛼
𝐾𝑡

= 𝐴
1
𝛼

(𝜆2,0
𝛽

)− 1−𝛾
𝛼

(𝜆3,0
𝛾

)− 𝛾
𝛼
(

𝐿0
𝐵

)
𝛽
𝛼
𝜆

1
𝛼
1,𝑡𝑒

(1−𝛾)(𝐵−𝛿2)+𝛽𝑛
𝛼 𝑡𝐾𝑡

= 𝑒[(𝐵−𝛿2)+𝛿1]𝑡 (1 − 𝜁 )
1

1−𝛼

(𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

𝑥
𝛼

1−𝛼
𝑡 (1 − 𝜁𝑥𝑡)

− 1
1−𝛼 𝐾𝑡. (43)

42 Note that 𝐹 (�̃�, �̃�; �̃� + 1; 0) = 1.
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𝐻
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(4) implies �̇�𝑡 = 𝐵(1 − 𝑢𝑡)𝐻𝑡 − 𝛿2𝐻𝑡 = (𝐵 − 𝛿2)𝐻𝑡 − 𝐵𝑢𝑡𝐻𝑡. Proceeding
analogous to (37) gives

𝐻𝑡 = 𝐻0𝑒
− ∫ 𝑡0 𝑓2(𝑧)𝑑𝑧 + ∫

𝑡

0
𝑔2(𝑧)𝑒− ∫ 𝑡𝑧 𝑓2(𝑠)𝑑𝑠𝑑𝑧,

with
𝑓2(𝑧) = −(𝐵 − 𝛿2), 𝑔2(𝑧) = −𝐵𝐻𝑧𝑢𝑧.

This delivers 𝐻𝑡 as 𝐻𝑡 = 𝐻0𝑒(𝐵−𝛿2)𝑡 − ∫ 𝑡0 𝐵𝑢𝑧𝐻𝑧𝑒(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧. Using (43)
gives

∫

𝑡

0
𝐵𝑢𝑧𝐻𝑧𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧 = 𝑒(𝐵−𝛿2)𝑡 ∫

𝑡

0
𝑒𝛿1𝑧 (1 − 𝜁 )

1
1−𝛼

(𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

× 𝑥
𝛼

1−𝛼
𝑧 (1 − 𝜁𝑥𝑧)

− 1
1−𝛼 𝐾𝑧𝑑𝑧.

Inserting (41) for the physical capital stock yields

∫

𝑡

0
𝐵𝑢𝑧 𝐻𝑧 𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧 = 𝑒(𝐵−𝛿2)𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

{

𝐾0 ∫

𝑡

0
𝑥−1𝑧 𝑑𝑧

− ∫

𝑡

0
𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓

1
�̃�1
𝐿0𝑥

−1
𝑧

×
[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1𝑧 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑧)
]

𝑑𝑧

− ∫

𝑡

0
𝑐 (1 − 𝜁 )

1
1−𝛼

1
𝜓

1
�̃�1
𝐿0𝑥

−1
𝑧

×
[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2𝑧 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑧)
]

𝑑𝑧
}

.

Using 𝜁𝑥𝑧 = 𝜁𝑒−𝜓𝑧, 𝑑𝜁𝑥𝑧 = −𝜁𝜓𝑒−𝜓𝑧𝑑𝑧, the integration rule

∫ 𝑧𝑏−22𝐹1(𝑎, 𝑏; 𝑐; 𝑧)𝑑𝑧 =
𝑧𝑏−1

𝑏 − 1 2𝐹1(𝑎, 𝑏 − 1; 𝑐; 𝑧) + constant for 𝑏 > 1

(44)

and adjusting the direction of integration delivers

∫

𝑡

0
𝐵𝑢𝑧 𝐻𝑧 𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧 = 𝑒(𝐵−𝛿2)𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

×
{

∫

𝜁

𝜁𝑥𝑡
𝐾0

𝜁
𝜓
(𝜁𝑥𝑧)−2𝑑𝜁𝑥𝑧

− ∫

1

𝑥𝑡
𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂
𝜁
𝜓2

1
�̃�1
𝐿0(𝜁𝑥𝑧)−2

× 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )𝑑𝜁𝑥𝑧

+ ∫

𝜁

𝜁𝑥𝑡
𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂
𝜁
𝜓2

1
�̃�1
𝐿0(𝜁𝑥𝑧)�̃�1−2

× 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑧)𝑑𝜁𝑥𝑧

− ∫

𝜁

𝜁𝑥𝑡
𝑐 (1 − 𝜁 )

1
1−𝛼

𝜁1−�̃�1
𝜓2

1
�̃�2
𝐿0(𝜁𝑥𝑧)−2

× 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )𝑑𝜁𝑥𝑧

+∫

𝜁

𝜁𝑥𝑡
𝑐 (1 − 𝜁 )

1
1−𝛼

𝜁1−�̃�2
𝜓2

1
�̃�2
𝐿0(𝜁𝑥𝑧)�̃�2−2

× 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑧)𝑑𝜁𝑥𝑧
}

,

= 𝑒(𝐵−𝛿2)𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

{

𝐾0
1
𝜓
(1 − 𝑥−1𝑡 ) (45)

−𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1
𝐿02𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )(1 − 𝑥−1𝑡 )

+ 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

𝐿0

×
[

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)
]

− 𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2
𝐿02𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )(1 − 𝑥−1𝑡 )

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1)

𝐿0

×
[

𝐹 (�̃� , �̃� − 1; �̃� + 1; 𝜁 ) − 𝑥�̃�2−1 𝐹 (�̃� , �̃� − 1; �̃� + 1; 𝜁𝑥 )
]}

,
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where we need to impose the parameter restriction

�̃�1 > 1 and �̃�2 > 1 (46)

or the solution to exist. Using (45), 𝐻𝑡 can now be computed as 𝐻𝑡 =
(𝐵−𝛿2)𝑡𝐻0 − ∫ 𝑡0 𝐵𝑢𝑧𝐻𝑧𝑒(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧

𝑡 = 𝑒(𝐵−𝛿2)𝑡𝐻0 − 𝑒(𝐵−𝛿2)𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

{

𝐾0
1
𝜓
(1 − 𝑥−1𝑡 )

− 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1
𝐿02𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )(1 − 𝑥−1𝑡 )

+ 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

𝐿0

×
[

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)
]

− 𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2
𝐿02𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )(1 − 𝑥−1𝑡 )

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1)

𝐿0

×
[

2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
]}

.

Effective human capital 𝐻𝑡𝑢𝑡 employed in final goods production fol-
lows next. Dividing both sides of (43) by 𝐵 gives

𝐻𝑡𝑢𝑡 = 𝑒[(𝐵−𝛿2)+𝛿1]𝑡 (1 − 𝜁 )
1

1−𝛼

(𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

1
𝐵
𝑥

𝛼
1−𝛼
𝑡 (1 − 𝜁𝑥𝑡)

− 1
1−𝛼 𝐾𝑡

= 𝑒[(𝐵−𝛿2+𝑛)+𝛿1]𝑡 (1 − 𝜁 )
1

1−𝛼

(𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

𝐿0

𝐵
𝑥

𝛼
1−𝛼
𝑡 (1 − 𝜁𝑥𝑡)

− 1
1−𝛼 𝑘𝑡. (47)

Effective human capital in units of final output is �̃�𝑡𝑢𝑡 = 𝑝𝐻,𝑡𝐻𝑡𝑢𝑡 =
𝜆2,𝑡
𝜆1,𝑡
𝐻𝑡𝑢𝑡. Using (30) and (35) in (47) gives

̃ 𝑡𝑢𝑡 = 𝑒(𝐵−𝛿2+𝑛)𝑡
𝛽𝜓
1 − 𝛼

𝐿0
𝐵

(1 − 𝜁𝑥𝑡)−1𝑘𝑡,

here it is clear that �̃�𝑡𝑢𝑡 even in case of a stationary 𝑘𝑡 grows without
ound as 𝑡 → ∞ for 𝐵 − 𝛿2 + 𝑛 > 0. Inserting (41) for 𝐾𝑡 and using

the transversality condition for 𝐾𝑡 gives effective human capital as a
function of time via 𝑥𝑡

𝐻𝑡𝑢𝑡 = 𝑒[(𝐵−𝛿2)]𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

1
𝐵
𝑥−1𝑡 ×

×

{

𝐾0 − 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓
𝐿0

�̃�1

×
[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)
]

−𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓
𝐿0

�̃�2
×

[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)
]}

= 𝑒[(𝐵−𝛿2)]𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

𝐿0
𝐵
𝑥−1𝑡
𝜓

×

×

[

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
�̃�1
𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
�̃�2
𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

]

,

�̃�𝑡𝑢𝑡 = 𝑒−𝛿1𝑡𝑥
− 1

1−𝛼
𝑡 (1 − 𝜁 )

𝛼
1−𝛼

𝛽
1 − 𝛼

𝐿0
𝐵

×

×

[

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )−
𝛼

(1−𝛼)𝜂 1
�̃�1
𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

+ 𝑐 1
�̃�2
𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

]

.

Next, we need to work out the transversality condition for 𝐻𝑡.

Transversality condition 𝐻𝑡. Transversality demands lim𝑡→∞ 𝜆2,𝑡𝐻𝑡 = 0.

𝜆2,𝑡𝐻𝑡 = 𝜆2,0𝑒
−(𝐵−𝛿2)𝑡𝐻0𝑒

(𝐵−𝛿2)𝑡 − 𝜆2,0𝑒−(𝐵−𝛿2)𝑡
𝑡
𝐵𝑢𝑧𝐻𝑧𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧
∫0
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T

𝐻

I

i
I
H

D
a

𝑅

w
i

𝑅

E
b

𝑅

= 𝜆2,0

(

𝐻0 − ∫

𝑡

0
𝐵𝑢𝑧𝐻𝑧𝑒

−(𝐵−𝛿2)𝑧𝑑𝑧
)

.

Using ∫ 𝑡0 𝐵𝑢𝑧𝐻𝑧𝑑𝑧 given in (43) together with the transversality condi-
tion for 𝐾𝑡 in (42) gives

𝜆2,𝑡𝐻𝑡 = 𝜆2,0𝐻0 − 𝜆2,0

(𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

𝐿0 ×

×
{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

×
[

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)
]

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1)

×
[

2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
]

}

.

As 𝑡 → ∞, 𝑥𝑡 → 0. With �̃�1, �̃�2 > 1 and by noting that lim𝑧→0 2𝐹1(�̃�, 𝑏 −
1; 𝑏 + 1; 𝑧) is finite, we find

lim
𝑥𝑡→0

𝜆2,𝑡𝐻𝑡 = 𝜆2,0𝐻0 − 𝜆2,0

(𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

𝐿0 ×

×

{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1) 2

𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1) 2

𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )
}

.

ransversality consequently demands

0 =
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

𝐿0

{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

× 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 ) (48)

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1) 2

𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )
}

.

mposing the transversality condition for 𝐾𝑡(42) onto (45) yields

∫

𝑡

0
𝐵𝑢𝑧 𝐻𝑧 𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧 = 𝑒(𝐵−𝛿2)𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

𝐿0 ×

×
{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

×
[

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)
]

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1)

×
[

2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
]

}

.

Inserting (48) into this expression gives

∫

𝑡

0
𝐵𝑢𝑧 𝐻𝑧 𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧 = 𝐻0𝑒
(𝐵−𝛿2)𝑡 − 𝑒(𝐵−𝛿2)𝑡

( 𝜆2,0
𝛽

)−1 𝜆1,0
𝜑1

𝐿0 ×

×

{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)

+𝑐 (1 − 𝜁 )
1

1−𝛼 1
𝜓2

1
�̃�2(�̃�2 − 1)

𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
}

,

and finally 𝐻𝑡 and �̃�𝑡 as

𝐻𝑡 = 𝐻0𝑒
(𝐵−𝛿2)𝑡 − ∫

𝑡

0
𝐵𝑢𝑧𝐻𝑧𝑒

(𝐵−𝛿2)(𝑡−𝑧)𝑑𝑧

= 𝑒(𝐵−𝛿2)𝑡
(𝜆2,0

𝛽

)−1 𝜆1,0
𝜑1

𝐿0 ×

×
{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1)

𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
}

,

�̃�𝑡 = 𝑒−𝛿1 𝑡
𝛽

1 − 𝛼

(

𝑥𝑡
1 − 𝜁𝑥𝑡

)− 𝛼
1−𝛼

𝐿0 ×

×
{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )−
𝛼

(1−𝛼)𝜂 1 1 𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡) (49)
20

𝜓 �̃�1(�̃�1 − 1)
+𝑐 1
𝜓

1
�̃�2(�̃�2 − 1)

𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
}

.

To arrive at the expression for �̃�𝑡, we have to multiply 𝐻𝑡 by 𝑝𝐻,𝑡 =
𝜆2,𝑡
𝜆1,𝑡

where 𝜆1,𝑡 and 𝜆2,𝑡 are given by (30) and (35).
𝐻𝑡 tends to infinity as 𝑡 → ∞. This is because of the second

term in curly brackets in the representation of 𝐻𝑡. It is easy to verify
that 𝑒(𝐵−𝛿2)𝑡𝑥�̃�2−1𝑡 = 𝑒

𝛾
1−𝛼 (𝐵−𝛿2+𝑛)𝑡.43 Hence, human capital necessary

to cover subsistence consumption grows asymptotically at a positive
rate. The first term in the curly brackets represents human capital
necessary to cover excess consumption. This part of human capital
might tend to zero or infinity depending on the model’s parameters and
consequently whether consumption tends to infinity. The responsible
term 𝑒(𝐵−𝛿2)𝑡𝑥�̃�1−1𝑡 = 𝑒−

1
(1−𝛼)𝜂 {(1−𝛼)(𝜌−𝑛)−[𝛽(𝐵−𝛿2)−𝛾𝑛]−𝛾𝜂(𝐵−𝛿2+𝑛)}𝑡 tends to

nfinity as long as −[𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌] − 𝛾𝜂(𝐵 − 𝛿2 + 𝑛) < 0.
f this condition is not met, this part of human capital tends to zero.
owever, total human capital will always grow without bounds.

We proceed by analyzing the behavior of 𝑅𝑡 and 𝑆𝑡.

erivations involving 𝑅𝑡 and 𝑆𝑡. Reformulating (31) using 𝐿𝑡 = 𝐿0𝑒𝑛𝑡

nd the time path for the co-state 𝜆2,𝑡 in (30) gives

𝑡 = 𝐿𝑡𝐻𝑡𝑢𝑡
𝜆2,0
𝛽

(𝜆3,0
𝛾

)−1 (𝐿0
𝐵

)−1
𝑒−(𝐵−𝛿2+𝑛)𝑡,

hich yields together with (47) the resource use depending on the
nitial values of the co-states

𝑡 =
𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1
(1 − 𝜁 )−

1
1−𝛼 𝑥

𝛼
1−𝛼
𝑡 𝐾𝑡. (50)

xpressing 𝑅𝑡 as a function of 𝑡 via 𝑥𝑡 can be done by substituting 𝐾𝑡
y (41) and using the transversality condition (42)

𝑡 =
𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1
𝑥−1𝑡

{

𝐾0

− 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓

1
�̃�1
𝐿0

×
[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)
]

−𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓

1
�̃�2
𝐿0

[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )

−𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)
]}

=
𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1
𝑥−1𝑡

𝐿0
𝜓

× (51)

×

[

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
�̃�1
𝑥�̃�1𝑡 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑡)

+𝑐 (1 − 𝜁 )
1

1−𝛼
1
�̃�2
𝑥�̃�2𝑡 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑡)

]

.

We turn to 𝑆𝑡 = 𝑆0 − ∫ 𝑡0 𝑅𝑠𝑑𝑠. Integration over 𝑅𝑡 given by (51) gives

∫

𝑡

0
𝑅𝑠𝑑𝑠 =

𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1 {

𝐾0 ∫

𝑡

0
𝑥−1𝑠 𝑑𝑠

− 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓

1
�̃�1
𝐿0 ∫

𝑡

0
𝑥−1𝑠

×
[

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1𝑠 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑠)
]

𝑑𝑠

−𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓

1
�̃�2
𝐿0 ∫

𝑡

0
𝑥−1𝑠

×
[

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2𝑠 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑠)
]

𝑑𝑠
}

.

Using again the integration rule (44), 𝜁𝑥𝑠 = 𝜁𝑒−𝜓𝑠, 𝑑𝜁𝑥𝑠 = −𝜁𝜓𝑒−𝜓𝑠𝑑𝑠 =
−𝜓𝜁𝑥𝑠𝑑𝑠 (implying 𝑑𝑠 = − 1

𝜓
1
𝜁𝑥𝑠
𝑑𝜁𝑥𝑠) and adjusting the direction of

43 It is helpful to note that lim 𝐹 (𝑎, 𝑏 − 1; 𝑏 + 1, 𝑧) = 1.
𝑧→0 2 1
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𝑆

integration delivers

∫

𝑡

0
𝑅𝑠𝑑𝑠 =

𝜆1,0
𝜑1

( 𝜆3,0
𝛾

)−1 {

𝐾0
𝜁
𝜓 ∫

𝜁

𝜁𝑥𝑡
(𝜁𝑥𝑠)−2𝑑𝜁𝑥𝑠

− 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 𝜁
𝜓2

1
�̃�1
𝐿02𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )∫

𝜁

𝜁𝑥𝑡
(𝜁𝑥𝑠)−2𝑑𝜁𝑥𝑠

+ 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 𝜁
1−�̃�1

𝜓2
1
�̃�1
𝐿0 ∫

𝜁

𝜁𝑥𝑡
(𝜁𝑥𝑠)�̃�1−22𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁𝑥𝑠)𝑑𝜁𝑥𝑠

− 𝑐 (1 − 𝜁 )
1

1−𝛼
𝜁
𝜓2

1
�̃�2
𝐿02𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )∫

𝜁

𝜁𝑥𝑡
(𝜁𝑥𝑠)−2𝑑𝜁𝑥𝑠

+ 𝑐 (1 − 𝜁 )
1

1−𝛼
𝜁1−�̃�2
𝜓2

1
�̃�2
𝐿0 ∫

𝜁

𝜁𝑥𝑡
(𝜁𝑥𝑠)�̃�2−22𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁𝑥𝑠)𝑑𝜁𝑥𝑠

}

,

=
𝜆1,0
𝜑1

( 𝜆3,0
𝛾

)−1 {

−𝐾0
1
𝜓

[

1 − 𝑥−1𝑡
] (52)

+𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1
𝐿02𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )

[

1 − 𝑥−1𝑡
]

+ 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

𝐿0

×
[

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 ) − 𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)
]

+ 𝑐 (1 − 𝜁 )
1

1−𝛼
𝜁
𝜓2

1
�̃�2
𝐿02𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )

[

1 − 𝑥−1𝑡
]

+ 𝑐 (1 − 𝜁 )
1

1−𝛼 1
𝜓2

1
�̃�2(�̃�2 − 1)

𝐿0

×
[

2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 ) − 𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
]}

.

e proceed by working the transversality condition for 𝑆𝑡.

ransversality condition 𝑆𝑡. Transversality demands that lim𝑡→∞ 𝜆3,𝑡𝑆𝑡 =
0. As 𝜆3,𝑡 = 𝜆3,0, this is equivalent to lim𝑡→∞ 𝑆𝑡 = 0 or ∫ 𝑡0 𝑅𝑠𝑑𝑠 = 𝑆0.
Rearranging (52) yields

∫

𝑡

0
𝑅𝑠𝑑𝑠 =

𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1
[

1 − 𝑥−1𝑡
]

{

−𝐾0
1
𝜓

(53)

+𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1
𝐿02𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )

+ 𝑐 (1 − 𝜁 )
1

1−𝛼
𝜁
𝜓2

1
�̃�2
𝐿02𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )

}

+
𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1
{

𝜆
− 1
𝜂

1,0

(

𝜑1
𝜑2

)
𝜂−𝛼

(1−𝛼)𝜂 1
𝜓2

1
�̃�1(�̃�1 − 1)

×𝐿0
[

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )

−𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)
]

+ 𝑐 (1 − 𝜁 )
1

1−𝛼
1
𝜓2

1
�̃�2(�̃�2 − 1)

𝐿0
[

2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

−𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)
]

}

,

here we note that the first term in curly brackets is zero due to the
ransversality condition for 𝐾𝑡 given by (42). As �̃�1 and �̃�2 need to be
arger than one by (46), 𝑥𝑡 → 0 for 𝑡 → ∞ and we find44

im 𝑡→∞ ∫

𝑡

0
𝑅𝑠𝑑𝑠 = 𝑆0 =

𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1 1
𝜓2

𝐿0

×

{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
�̃�1(�̃�1 − 1) 2

𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )

+ 𝑐 (1 − 𝜁 )
1

1−𝛼
1

�̃�2(�̃�2 − 1) 2
𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

}

, (54)

s the transversality condition for 𝑆𝑡.
Inserting (42) and (54) into (53) gives 𝑆𝑡 as

𝑡 = 𝑆0 − ∫

𝑡

0
𝑅𝑠𝑑𝑠

44 It is helpful to note that lim 𝐹 (𝑎, 𝑏 − 1; 𝑏 + 1, 𝑧) = 1.
21

𝑧→0 2 1
=
𝜆1,0
𝜑1

(𝜆3,0
𝛾

)−1 1
𝜓2

𝐿0

×

[

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
�̃�1(�̃�1 − 1)

𝑥�̃�1−1𝑡 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁𝑥𝑡)

+𝑐 (1 − 𝜁 )
1

1−𝛼
1

�̃�2(�̃�2 − 1)
𝑥�̃�2−1𝑡 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁𝑥𝑡)

]

. (55)

Derivation of results in Lemmas 4 and 5. Dividing the transversality
condition (48) by (54) and using the definition of 𝜑1 from (15) by each
other gives

𝐻0
𝑆0

=
𝛽
𝛾
𝜆3,0
𝜆2,0

. (56)

It follows from the definitions of 𝜑1, 𝜑2 and 𝜁 in (15) that

𝜆1,0
𝜆2,0

𝛽 = 𝐴− 1
1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 𝛼

1−𝛼
2 (1 − 𝜁 )−

𝛼
1−𝛼 . (57)

Using this again in the definition of 𝜑1 gives

𝜆1,0
𝜑1

𝛽
𝜆2,0

= 𝐴− 1
1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2 (1 − 𝜁 )−

1
1−𝛼 . (58)

Using (58) in (47) together with the definitions in (15), 𝑘𝑡 =
𝐾𝑡
𝐿𝑡

, and
𝐿𝑡 = 𝐿0𝑒𝑛𝑡 gives the first result in Proposition 3. The development
of �̃�𝑡 follows after using (57) in (49) and multiplying by 𝑝𝐻,𝑡 =

𝜆2,𝑡
𝜆1,𝑡

.
Evaluating this at 𝜁 = 𝜁∗ gives the result in Lemma 4.

Using (50), dividing by 𝐿𝑡 and using (56) together with (57) gives
the result in Proposition 4 for 𝑟𝑡 = 𝑅𝑡

𝐿𝑡
. The result for the per capita

resource stock follows by dividing 𝑆𝑡 given in (55) by 𝐿𝑡 and using (56)
together with (57). The per capita stock in final output equivalents in
Lemma 5 is derived after multiplying by 𝑝𝑅,𝑡 =

𝜆3,𝑡
𝜆1,𝑡

and evaluation at
𝜁 = 𝜁∗.

Appendix E. Uniqueness of the solution 𝜻∗

The results (56), (57) and (58) used in the three transversality
conditions for 𝐾𝑡, 𝐻𝑡 and 𝑆𝑡 (42), (48), (54) give

𝐾0 =
𝐿0
𝜓

[

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )
�̃�1

+𝑐 (1 − 𝜁 )
1

1−𝛼 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )
�̃�2

]

, (59)

𝐻0 = 𝐴− 1
1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2 (1 − 𝜁 )−

1
1−𝛼

𝐿0

𝜓2
×

{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
�̃�1(�̃�1 − 1) 2

𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )

+𝑐 (1 − 𝜁 )
1

1−𝛼
1

�̃�2(�̃�2 − 1) 2
𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

}

, (60)

𝑆0 = 𝐴− 1
1−𝛼

(

𝐻0
𝑆0

)− 𝛽
1−𝛼

(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2 (1 − 𝜁 )−

1
1−𝛼

𝐿0

𝜓2
×

{

𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 1
�̃�1(�̃�1 − 1) 2

𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )

+ 𝑐 (1 − 𝜁 )
1

1−𝛼
1

�̃�2(�̃�2 − 1) 2
𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

}

. (61)

The system of reformulated transversality conditions (59) through (61)
is a system in just two variables, i.e. 𝜁 and 𝜆1,0, that condenses the initial
conditions 𝜆𝑖,0, 𝑖 = 1, 2, 3. Further, (61) together with (56) implies (60),
and hence, it is sufficient to concentrate either on (59) and (60) or (59)
and (61) in solving for 𝜁 in place of 𝜆𝑖,0, 𝑖 = 1, 2, 3.

To arrive at a system of equations that summarizes initial condi-
tions in only one variable, i.e. 𝜁 , we need to define some additional
quantities. We split up each state variable, i.e. each capital stock, into
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𝐻

r
a
a
g

i
w
c

W

s

0

s

T

a component used to cover subsistence consumption and a second
component available for excess consumption. A solution can only exist
if available stocks are able to cover both components.

𝐾+
0 =

𝐿0
𝜓
𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )
�̃�1

,

𝐾0 = 𝐾0 −
𝐿0
𝜓
𝑐 (1 − 𝜁 )

1
1−𝛼 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )

�̃�2

= 𝐾0 −
𝐿0
𝜓
𝑐 (1 − 𝜁 )�̃�2 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )

�̃�2
,

+
0 = 𝐴− 1

1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2 (1 − 𝜁 )−

1
1−𝛼

𝐿0

𝜓2

× 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
𝜂−𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )
�̃�1(�̃�1 − 1)

= 𝐴− 1
1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2

𝐿0

𝜓2

× 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
−𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )
�̃�1(�̃�1 − 1)

,

𝐻0 = 𝐻0 − 𝐴
− 1

1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2 (1 − 𝜁 )−

1
1−𝛼

×
𝐿0

𝜓2
𝑐 (1 − 𝜁 )

1
1−𝛼 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

�̃�2(�̃�2 − 1)

= 𝐻0 − 𝐴
− 1

1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2

×
𝐿0

𝜓2
𝑐 2
𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

�̃�2(�̃�2 − 1)
,

𝑆+
0 = 𝐴− 1

1−𝛼

(

𝐻0
𝑆0

)− 𝛽
1−𝛼

(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2

𝐿0

𝜓2

× 𝜆
− 1
𝜂

1,0 (1 − 𝜁 )
−𝛼

(1−𝛼)𝜂 2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )
�̃�1(�̃�1 − 1)

,

𝑆0 = 𝑆0 − 𝐴
− 1

1−𝛼

(

𝐻0
𝑆0

)− 𝛽
1−𝛼

(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2

𝐿0

𝜓2

× 𝑐 2
𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁 )

�̃�2(�̃�2 − 1)
.

𝐾+
0 , 𝐻+

0 and 𝑆+
0 are the parts of the initial capital stocks that are

equired to allow for future consumption in excess of 𝑐. 𝐾0, 𝐻0 and 𝑆0
re the parts of the initial capital stocks left for excess consumption
fter covering the needs for subsistence consumption. Taking ratios
ives

𝐾+
0

𝐻+
0

= 𝐴
1

1−𝛼

(

𝐻0
𝑆0

)− 𝛾
1−𝛼

(

𝐿0
𝐵

)
𝛽

1−𝛼
𝜑

1
1−𝛼
2 𝜓(�̃�1 − 1)(1 − 𝜁 )

1
1−𝛼

× 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁 )

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁 )
,

𝐾0
𝐻0

=
𝐾0 −

𝐿0
𝜓 𝑐 (1 − 𝜁 )

1
1−𝛼 2𝐹1(�̃�2 ,�̃�2;�̃�2+1;𝜁 )

�̃�2

𝐻0 − 𝐴
− 1

1−𝛼
(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼 𝜑

− 1
1−𝛼

2
𝐿0
𝜓2 𝑐 2𝐹1(�̃�2 ,�̃�2−1;�̃�2+1;𝜁 )

�̃�2(�̃�2−1)

.

Equilibrium requires
𝐾+
0

𝐻+
0

= 𝐾0
𝐻0

. This defines one non-linear equation
n 𝜁 given initial values 𝐾0, 𝐻0 and 𝑆0. Once a solution 𝜁∗ is found, it
ill pin down 𝜆∗1,0 through e.g. (59). This pins down 𝜆∗2,0 via (57). 𝜆∗3,0

an then be computed via e.g. (56). The equilibrium value 𝜁∗ satisfies
𝐾+
0

𝐻+
0
= 𝐾0

𝐻0
, with

𝐾+
0

𝐻+
0

= 𝐴
1

1−𝛼

(

𝐻0
𝑆0

)− 𝛾
1−𝛼

(

𝐿0
𝐵

)
𝛽

1−𝛼
𝜑

1
1−𝛼
2 𝜓(�̃�1 − 1)(1 − 𝜁∗)

1
1−𝛼

× 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗)
, (62)
22

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁∗)
𝐾0
𝐻0

=
𝐾0 −

𝐿0
𝜓 𝑐 (1 − 𝜁

∗)
1

1−𝛼 2𝐹1(�̃�2 ,�̃�2;�̃�2+1;𝜁∗)
�̃�2

𝐻0 − 𝐴
− 1

1−𝛼
(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼 𝜑

− 1
1−𝛼

2
𝐿0
𝜓2 𝑐 2𝐹1(�̃�2 ,�̃�2−1;�̃�2+1;𝜁∗)

�̃�2(�̃�2−1)

.(63)

e first notice that (62) and (63) demand 𝜁 < 1.
We show first that

𝐾+
0

𝑆+
0

given by (62) is decreasing in 𝜁∗. Second, we

how that 𝐾0
𝑆0

given by (63) is increasing in 𝜁∗. This implies that there

can be at most one solution to
𝐾+
0

𝐻+
0
= 𝐾0

𝐻0
.

Investigating
𝐾+
0

𝑆+
0

, we have to distinguish three cases, i.e. �̃�1 < 0, �̃�1 =
, �̃�1 > 0.
Case 1: �̃�1 < 0: Lemma 1 in Boucekkine and Ruiz-Tamarit (2008)

hows that 2𝐹1(�̃�1 ,�̃�1;�̃�1+1;𝜁∗)
2𝐹1(�̃�1 ,�̃�1−1;�̃�1+1;𝜁∗)

is decreasing in 𝜁∗ in case �̃�1 < 0. It is
obvious that (1− 𝜁∗)�̃�2 is decreasing in 𝜁∗ as well because �̃�2 =

1
1−𝛼 > 0.

herefore,
𝐾+
0

𝑆+
0

is in this case decreasing in 𝜁∗.
Case 2: �̃�1 = 0: This case prevails if it happens to be that 𝜂 = 𝛼.

Lemma 1 in Boucekkine and Ruiz-Tamarit (2008) shows that in this

case
𝜕 2𝐹1(�̃�1 ,�̃�1;�̃�1+1;𝜁

∗)

2𝐹1(�̃�1 ,�̃�1−1;�̃�1+1;𝜁∗)

𝜕𝜁∗ = 0 applies. As (1 − 𝜁∗)�̃�2 is decreasing in 𝜁∗,
𝐾+
0

𝑆+
0

is in this case again decreasing in 𝜁∗.
Case 3: �̃�1 > 0: The denominator in

𝐾+
0

𝑆+
0

is increasing in 𝜁∗ as
𝜕2𝐹1(�̃�1 ,�̃�1−1;�̃�1+1;𝜁∗)

𝜕𝜁∗ = �̃�1(�̃�1−1)
�̃�1+1 2𝐹1(�̃�1 + 1, �̃�1; �̃�1 + 2; 𝜁∗) > 0 (Abramowitz

and Stegun, 1972, 15.2.1) because �̃�1 −1 > 0 is required by (46). There
are opposing forces at work in the nominator as 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗)
increases and (1 − 𝜁∗)�̃�2 decreases in 𝜁∗. To find out which is stronger,
we define ℎ(𝜁∗) as

ℎ(𝜁∗) = (1 − 𝜁∗)�̃�2 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗) = (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1

× 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗)

with
�̃�2 − �̃�1 =

1
1 − 𝛼

−
𝜂 − 𝛼
𝜂(1 − 𝛼)

= 𝛼
𝜂(1 − 𝛼)

> 0,

2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗) = �̃�1 ∫

1

0
𝑥�̃�1−1(1 − 𝜁∗𝑥)−�̃�1𝑑𝑥.

Therefore,
𝜕ℎ(𝜁∗)
𝜕𝜁∗

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

− �̃�1
ℎ(𝜁∗)
1 − 𝜁∗

+ (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1

×
𝜕2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗)

𝜕𝜁∗

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

− �̃�1
ℎ(𝜁∗)
1 − 𝜁∗

+ (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1 �̃�1�̃�1

× ∫

1

0
𝑥�̃�1 (1 − 𝜁∗𝑥)−�̃�1−1𝑑𝑥

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

+ (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1 �̃�1�̃�1

× ∫

1

0

(

𝑥�̃�1 (1 − 𝜁∗𝑥)−�̃�1−1 − 𝑥�̃�1−1
(1 − 𝜁∗𝑥)−�̃�1

1 − 𝜁∗

)

𝑑𝑥

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

+ (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1 �̃�1�̃�1

× ∫

1

0

(

𝑥�̃�1 (1 − 𝜁∗𝑥)−�̃�1−1 − 𝑥�̃�1−1
(1 − 𝜁∗𝑥)−�̃�1

1 − 𝜁∗

)

𝑑𝑥

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

+ (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1 �̃�1�̃�1

× ∫

1

0

(

𝑥�̃�1−1(1 − 𝜁∗𝑥)−�̃�1−1
(

𝑥 −
1 − 𝜁∗𝑥
1 − 𝜁∗

))

𝑑𝑥

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

+ (1 − 𝜁∗)�̃�2−�̃�1 (1 − 𝜁∗)�̃�1 �̃�1�̃�1

× ∫

1

0

(

𝑥�̃�1−1(1 − 𝜁∗𝑥)−�̃�1−1 𝑥 − 1
1 − 𝜁∗

)

𝑑𝑥

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)

− �̃�1(1 − 𝜁∗)�̃�2−1�̃�1
1 − 𝜁∗
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×

∫
w
𝜅

w
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2

F

a
e

−

A
𝐻

2

× ∫

1

0
𝑥�̃�1−1(1 − 𝑥)(1 − 𝜁∗𝑥)−�̃�1−1𝑑𝑥

= −(�̃�2 − �̃�1)
ℎ(𝜁∗)
1 − 𝜁∗

− �̃�1(1 − 𝜁∗)�̃�2−1
2𝐹1(�̃�1 + 1, �̃�1; �̃�1 + 2; 𝜁∗)

�̃�1 + 1
.

s �̃�2 − �̃�1 > 0 and �̃�1 > 0 in this case, we find 𝜕ℎ(𝜁∗)
𝜕𝜁∗ < 0. Summing

up case 3, the denominator in
𝐾+
0

𝐻+
0

is increasing while the nominator is

ecreasing in 𝜁∗. Hence,
𝐾+
0

𝑆+
0

is again decreasing in 𝜁∗.

We turn to 𝐾0
𝐻0

given by (63). Its denominator is obviously decreas-

ng in 𝜁∗ as �̃�2 = 1
1−𝛼 > 0 and 𝜕2𝐹1(�̃�2 ,�̃�2−1;�̃�2+1;𝜁∗)

𝜕𝜁∗ = �̃�2(�̃�2−1)
�̃�2+1 2𝐹1(�̃�2 +

1, �̃�2; �̃�2 + 2; 𝜁∗) with �̃�2 − 1 > 0 due to the conditions (46).
The nominator in 𝐾0

𝐻0
is increasing in 𝜁∗. To see this, define

𝑘(𝜁∗) = (1 − 𝜁∗)�̃�2 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)

= (1 − 𝜁∗)�̃�2 �̃�2 ∫

1

0
𝑥�̃�2−1(1 − 𝜁∗𝑥)−�̃�2𝑑𝑥.

Therefore,
𝜕𝑘(𝜁∗)
𝜕𝜁∗

= �̃�2(1 − 𝜁∗)�̃�2 �̃�2

×

[

∫

1

0
𝑥�̃�2(1 − 𝜁∗𝑥)−�̃�2−1𝑑𝑥 − ∫

1

0
𝑥�̃�2−1

(1 − 𝜁∗𝑥)−�̃�2
1 − 𝜁∗

𝑑𝑥

]

= �̃�2(1 − 𝜁∗)�̃�2 �̃�2 ∫

1

0
𝑥�̃�2−1(1 − 𝜁∗𝑥)−�̃�2−1

[

𝑥 −
1 − 𝜁∗𝑥
1 − 𝜁∗

]

𝑑𝑥

= −�̃�2(1 − 𝜁∗)�̃�2−1�̃�2 ∫

1

0
𝑥�̃�2−1(1 − 𝑥)(1 − 𝜁∗𝑥)−�̃�2−1𝑑𝑥

= −�̃�2(1 − 𝜁∗)�̃�2−1
2𝐹1(�̃�2 + 1, �̃�2; �̃�2 + 2; 𝜁∗)

�̃�2 + 1

hich is negative for 𝜁∗ < 1.
Summing up, we have shown that 𝐾0

𝐻0
is increasing while

𝐾+
0

𝐻+
0

is

decreasing in 𝜁 . If an equilibrium
𝐾+
0

𝐻+
0
= 𝐾0

𝐻0
exists, it is unique.

Properties of
𝐾+
0

𝑆+
0
. To work out conditions for existence, we focus first

n
𝐾+
0

𝑆+
0

given by (62). Any solution 𝜁∗ needs to fulfill 𝜁∗ < 1; we know

hat
𝐾+
0

𝑆+
0

is decreasing in 𝜁∗. We show first that
𝐾+
0

𝑆+
0

is unbounded from
above for 𝜁∗ → −∞. Let 𝜀1 be an arbitrarily large but finite real number.
The critical term in

𝐾+
0

𝑆+
0

is (1 − 𝜁∗)�̃�2 2𝐹1(�̃�1 ,�̃�1;�̃�1+1;𝜁∗)
2𝐹1(�̃�1 ,�̃�1;�̃�1+1;𝜁∗)

. Now suppose that

lim
𝜁∗→−∞

(1 − 𝜁∗)�̃�2 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗)

2𝐹1(�̃�1, �̃�1 − 1; �̃�1 + 1; 𝜁∗)
< 𝜀1

ould be true. As
𝐾+
0

𝑆+
0

decreases with 𝜁∗. This would imply that for any
finite 𝜁∗ < 1 and for 𝜁∗ → −∞ it would be true that

𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗) < 𝜀1(1 − 𝜁∗)−�̃�2 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗),

̃1 ∫

1

0
𝑥�̃�1−1(1 − 𝜁∗𝑥)−�̃�1𝑑𝑥 − 𝜀1(1 − 𝜁∗)−�̃�2 �̃�1(�̃�1 − 1)

∫

1

0
𝑥�̃�1−2(1 − 𝑥)(1 − 𝜁∗𝑥)−�̃�1𝑑𝑥 < 0,

∫

1

0
𝑥�̃�1−2(1 − 𝜁∗𝑥)−�̃�1

[

𝑥 − 𝜀1(�̃�1 − 1)(1 − 𝜁∗)−�̃�2 (1 − 𝑥)
]

𝑑𝑥 < 0,

1

0
𝑥�̃�1−2(1 − 𝜁∗𝑥)−�̃�1𝜅(𝑥; 𝜀1)𝑑𝑥 < 0, (64)

ith
(𝑥; 𝜀1) =

[

𝑥 − 𝜀1(�̃�1 − 1)(1 − 𝜁∗)−�̃�2 (1 − 𝑥)
]

,

here 𝜅(𝑥; 𝜀) is an affine function of 𝑥. 𝜅(𝑥; 𝜀) is zero for 𝑥 = �̄�(𝜀1) with

�̄�(𝜀1) =
𝜀1(�̃�1 − 1)(1 − 𝜁∗)−�̃�2

.

23

1 + 𝜀1(�̃�1 − 1)(1 − 𝜁∗)−�̃�2
Therefore, 𝜅(𝑥; 𝜀1) < 0 for 𝑥 < �̄�(𝜀1) and 𝜅(𝑥; 𝜀1) > 0 for 𝑥 > �̄�(𝜀1). For
ny finite 𝜀1, �̄�(𝜀1) → 0 for 𝜁∗ → −∞ as �̃�2 = 1

1−𝛼 > 0. As we integrate
from 0 to 1, 𝜅(𝑥; 𝜀1) becomes positive for 0 ≤ 𝑥 ≤ 1 as 𝜁∗ → −∞ and
inequality (64) cannot be fulfilled. Hence,

𝐾+
0

𝐻+
0

cannot be bounded from

above as 𝜁∗ → −∞ and lim𝜁∗→−∞
𝐾+
0

𝐻+
0
= ∞. Next, turn to the case 𝜁∗ → 1.

uppose that
𝐾+
0

𝐻+
0

would be bounded from below by some 𝜀2 > 0. By the
ame logic as above, this would imply for any 𝜁∗ < 1 and 𝜁∗ → 1 that

𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗) > 𝜀2(1 − 𝜁∗)−�̃�2 2𝐹1(�̃�1, �̃�1; �̃�1 + 1; 𝜁∗),

∫

1

0
𝑥�̃�1−2(1 − 𝜁∗𝑥)−�̃�1𝜅(𝑥; 𝜀2)𝑑𝑥 > 0. (65)

or any finite 𝜀2 > 0, �̄�(𝜀2) → 1 for 𝜁∗ → 1 as �̃�2 = 1
1−𝛼 > 0. As we

integrate from 0 to 1, 𝜅(𝑥; 𝜀2) becomes negative for 0 ≤ 𝑥 ≤ 1 as 𝜁∗ → 1
and inequality (65) cannot be fulfilled. Hence,

𝐾+
0

𝐻+
0

cannot be bounded

from below by any finite 𝜀2 > 0 and lim𝜁∗→1
𝐾+
0

𝐻+
0
= 0.

Properties of 𝐾0
𝐻0
:. We turn to 𝐾0

𝐻0
which we know is increasing in 𝜁∗ for

𝜁∗ < 1. If a maximum exists, it must be reached as 𝜁∗ → 1. The critical
term in the nominator is (1 − 𝜁∗)�̃�2 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗) which can be
written as (1 − 𝜁∗) 2𝐹1(�̃�2 ,�̃�2;�̃�2+1;𝜁

∗)
(1−𝜁∗)1−�̃�2

. We are interested in

lim
𝜁∗→1

(1 − 𝜁∗) 2
𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)

(1 − 𝜁∗)1−�̃�2

s lim𝜁∗→1(1 − 𝜁∗) is finite and equal to zero, we can rewrite this
xpression as

lim
𝜁∗→1

(1 − 𝜁∗) 2
𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)

(1 − 𝜁∗)1−�̃�2

=
[

lim
𝜁∗→1

(1 − 𝜁∗)
] [

lim
𝜁∗→1

2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗)
(1 − 𝜁∗)1−�̃�2

]

if the second limit on the right hand side in the above equation is finite.
15.4.23 in DLMF (2010) states that

lim
𝜁∗→1

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)
(1 − 𝑧)𝑐−𝑎−𝑏

=
𝛤 (𝑐)𝛤 (𝑎 + 𝑏 − 𝑐)

𝛤 (𝑎)𝛤 (𝑏)

if R(𝑐−𝑎−𝑏) < 0. Applied to our case, 𝑐−𝑎−𝑏 = 1+ �̃�2− �̃�2− �̃�2 = 1− �̃�2 =
𝛼

1−𝛼 < 0. Furthermore, 𝛤 (𝑐)𝛤 (𝑎+𝑏−𝑐)
𝛤 (𝑎)𝛤 (𝑏) = 𝛤 (�̃�2+1)𝛤 (�̃�2−1)

𝛤 (�̃�2)𝛤 (�̃�2)
= �̃�2

�̃�2−1
which is

finite. Hence, lim𝜁∗→1(1 − 𝜁∗) 2
𝐹1(�̃�2 ,�̃�2;�̃�2+1;𝜁∗)

(1−𝜁∗)1−�̃�2
= 0 and lim𝜁∗→1 𝐾0 = 𝐾0.

The critical term in the denominator of 𝐾0
𝐻0

is 2𝐹1(�̃�2, �̃�2−1; �̃�2+1; 𝜁∗).

s 𝜕2𝐹1(�̃�2 ,�̃�2−1;�̃�2+1;𝜁∗)
𝜕𝜁∗ = �̃�2(�̃�2−1)

�̃�2+1 2𝐹1(�̃�2 + 1, �̃�2; �̃�2 + 2; 𝜁∗) > 0 for 𝜁∗ < 1,
0 declines with 𝜁∗ in this range. 15.3.6 in Abramowitz and Stegun

(1972) implies that lim𝜁∗→1 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁∗) = 𝛤 (�̃�2+1)𝛤 (2−�̃�2)
𝛤 (�̃�2+1−�̃�2)𝛤 (2)

if
2 − �̃�2 = 1−2𝛼

1−𝛼 > 0 which is the case for 𝛼 < 1
2 . In case 𝛼 > 1

2 we find
𝐹1(�̃�2, �̃�2 −1; �̃�2 +1; 𝜁∗) → ∞ as 𝜁∗ → 1. In both cases, it is possible that
𝐻0 turns negative as 𝜁∗ grows for 𝜁∗ < 1. Define 𝜁 as

𝜁 = argmin
𝜁∗≤1

|𝐻0 − 𝐴
− 1

1−𝛼

(

𝐻0
𝑆0

)
𝛾

1−𝛼
(

𝐿0
𝐵

)− 𝛽
1−𝛼

𝜑
− 1

1−𝛼
2

𝐿0

𝜓2
𝑐

× 2𝐹1(�̃�2, �̃�2 − 1; �̃�2 + 1; 𝜁∗)
�̃�2(�̃�2 − 1)

|,

As 𝐻0 is decreasing in 𝜁∗ for 𝜁∗ < 1, the admissible range for a solution
to the present problem has the upper bound 𝜁 . Therefore, if 𝜁 < 1
(𝜁 = 1) we find 𝐻0|𝜁∗=𝜁 = 0 (𝐻0|𝜁∗=𝜁 ≥ 0).

Lastly, we turn to 𝐾0
𝐻0

as 𝜁∗ → −∞. Again, we start with the
nominator 𝐾0. We know already that (1 − 𝜁∗)�̃�2 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗) is
decreasing in 𝜁∗ for 𝜁∗ < 1. Obviously, 𝐾0 then declines as 𝜁∗ → −∞.
15.3.4 in Abramowitz and Stegun (1972) states that

𝐹 (𝑎, 𝑏; 𝑐; 𝑧) = (1 − 𝑧)−𝑎 𝐹 (𝑎, 𝑐 − 𝑏; 𝑐; 𝑧 )
2 1 2 1 𝑧 − 1
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which implies for the present case

(1 − 𝜁∗)�̃�2 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁∗) = 2𝐹1(�̃�2, 1; �̃�2 + 1;
𝜁∗

𝜁∗ − 1
).

As �̃�2, �̃�2+1 > 0 and lim𝜁∗→−∞
𝜁∗

𝜁∗−1 = 1, lim𝜁∗→−∞(1−𝜁∗)�̃�2 2𝐹1(�̃�2, �̃�2; �̃�2+
1; 𝜁∗) = ∞. This implies that 𝐾0 becomes necessarily negative if 𝜁∗
becomes too small. The range for admissible values for 𝜁∗ is therefore
bounded from below at 𝜁 which satisfies the condition

0 =
𝐿0
𝜓
𝑐
(

1 − 𝜁
)

1
1−𝛼 2𝐹1(�̃�2, �̃�2; �̃�2 + 1; 𝜁 )

�̃�2
.

e observe lim𝜁∗→𝜁
𝐾0
𝐻0

= 0.

Taken together, if 𝜁 < 𝜁 and 𝜁 < 1, lim𝜁∗→𝜁
𝐾0
𝐻0

→ ∞. If 𝜁 < 𝜁 , 𝜁 = 1,

im𝜁∗→𝜁
𝐾0
𝐻0

either diverges to infinity or a strictly positive constant. The
atter occurs if 𝐻0 ≠ 0 for 𝜁∗ ≤ 1. In all possible cases we therefore
bserve lim𝜁∗→𝜁

𝐾0
𝐻0

> lim𝜁∗→𝜁
𝐾+
0

𝐻+
0

.

Furthermore, if 𝜁 < 𝜁 we know that lim𝜁∗→𝜁
𝐾0
𝐻0

= 0 and lim𝜁∗→𝜁
𝐾+
0
ℎ+0

>

0 as
𝐾+
0
ℎ+0

is decreasing in 𝜁∗ for 𝜁∗ < 1 and approaches 0 as 𝜁∗ → 1.
If it happens that 𝜁 = 𝜁 , this value is the unique solution to the initial

alue problem. If we find 𝜁 > 𝜁 , there is no solution to the initial value
roblem because initial endowments 𝐾0,𝐻0 are too low to allow for
ubsistence consumption 𝑐.

This proves that a unique solution always exists if and only if 𝜁 ≤
𝜁 < 1.

Appendix F. Sustainability present values

𝑃𝑉 [𝑋𝑠]𝑡 denotes the present value of 𝑋𝑠 at time 𝑡 for 𝑠 running from
𝑡 to ∞ and 𝑃𝑉 [𝑋𝑡]𝑡 denotes the present value of 𝑋𝑡 constant from 𝑡 to
∞. Discounting uses the net interest rate 𝑖𝑠−𝛿1 =

𝛼
1−𝛼𝜓(1−𝜁

∗𝑥𝑠)−1−𝛿1,
∈ [𝑡,∞). We start by evaluating the present value of a consumption

tream (𝑐𝑡 − 𝑐)𝐿𝑡 where 𝑐𝑡 and 𝑐 are constant from 𝑡 onward:

𝑃𝑉 [(𝑐𝑡 − 𝑐)𝐿𝑠]𝑡 = ∫

∞

𝑡
(𝑐𝑡 − 𝑐)𝐿0𝑒

− ∫ 𝑠𝑡 (𝑖𝜏−𝛿1−𝑛)𝑑𝜏𝑑𝑠

With 𝑥𝜏 = 𝑒−𝜓𝜏 , and 𝜓 given by (15)

∫

𝑠

𝑡
(𝑖𝜏 − 𝛿1 − 𝑛)𝑑𝜏 = −∫

𝑠

𝑡

𝛼
1 − 𝛼

𝜓(1 − 𝜁∗𝑥𝜏 )−1 − (𝛿1 + 𝑛)𝑑𝜏

= 𝛼
1 − 𝛼

𝜓 ∫

𝑠

𝑡

1
𝜓
(1 − 𝜁∗𝑥𝜏 )−1𝑥−1𝜏 𝑑𝑥𝜏 + (𝛿1 + 𝑛)(𝑠 − 𝑡)

= 𝛼
1 − 𝛼 ∫

𝑥𝑠

𝑥𝑡
(1 − 𝜁∗𝑥𝜏 )−1𝑥−1𝜏 𝑑𝑥𝜏 + (𝛿1 + 𝑛)(𝑠 − 𝑡)

= 𝛼
1 − 𝛼

[

ln
𝑥𝜏

1 − 𝑥𝜏

]𝑥𝑠

𝑥𝑡
+ (𝛿1 + 𝑛)(𝑠 − 𝑡).

herefore,

− ∫ 𝑠𝑡 (𝑖𝜏−𝛿1−𝑛)𝑑𝜏 =
(

𝑥𝑠
𝑥𝑡

1 − 𝜁∗𝑥𝑡
1 − 𝜁∗𝑥𝑠

)
𝛼

1−𝛼
𝑒(𝛿1+𝑛)(𝑠−𝑡) (66)

nd

𝑉 [(𝑐𝑡 − 𝑐)𝐿𝑠]𝑡 = (𝑐𝑡 − 𝑐)𝐿𝑡𝑒−(𝛿1+𝑛)𝑡𝑥
− 𝛼

1−𝛼
𝑡 (1 − 𝜁∗𝑥𝑡)

𝛼
1−𝛼

× ∫

∞

𝑡
𝑥

𝛼
1−𝛼
𝑠 (1 − 𝜁∗𝑥𝑠)

− 𝛼
1−𝛼 𝑒(𝛿1+𝑛)𝑠𝑑𝑠.

Using 𝑥𝜏 = 𝑒−𝜓𝜏 , defining 𝑥 = 𝑥𝑠
𝑥𝑡

and noting that 𝑑𝑥 = 𝑥−1𝑡 𝑑𝑥𝑠 =
−𝜓𝑥−1𝑡 𝑥𝑠𝑑𝑠 gives

𝑃𝑉 [(𝑐𝑡 − 𝑐)𝐿𝑠]𝑡 = (𝑐𝑡 − 𝑐)𝐿𝑡(1 − 𝜁∗𝑥𝑡)
𝛼

1−𝛼
1
𝜓

× ∫

1

0
𝑥

𝛼
1−𝛼 −

𝛿1+𝑛
𝜓 −1(1 − 𝜁∗𝑥𝑡𝑥)

− 𝛼
1−𝛼 𝑑𝑥

= (𝑐𝑡 − 𝑐)𝐿𝑡(1 − 𝜁∗𝑥𝑡)
𝛼

1−𝛼
1
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𝜓(�̃�2 − 1) c
× 2𝐹1(�̃�2 − 1, �̃�2 − 1; �̃�2; 𝜁∗𝑥𝑡),

here �̃�2 and �̃�2 are defined as in (41). The present value of welfare
aximizing total consumption in excess of 𝑐 is

𝑃𝑉 [(𝑐𝑠 − 𝑐)𝐿𝑠]𝑡 = ∫

∞

𝑡
(𝑐𝑠 − 𝑐)𝐿𝑡𝑒− ∫ 𝑠𝑡 (𝑖𝜏−𝛿1−𝑛)𝑑𝜏𝑑𝑠,

where 𝑐𝑠 − 𝑐 is given by Proposition 1. Using (66) and applying again
the definitions from above gives

𝑃𝑉 [(𝑐𝑠 − 𝑐)𝐿𝑠]𝑡 = (𝜆∗1,0)
− 1
𝜂 (1 − 𝜁∗)−

𝛼
(1−𝛼)𝜂 𝐿𝑡

× ∫

∞

𝑡
𝑥
− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑠 (1 − 𝜁∗𝑥𝑠)

𝛼
1−𝛼

1
𝜂

×
(

𝑥𝑠
𝑥𝑡

1 − 𝜁∗𝑥𝑡
1 − 𝜁∗𝑥𝑠

)
𝛼

1−𝛼
𝑒(𝛿1+𝑛)(𝑠−𝑡)𝑑𝑠

= (𝜆∗1,0)
− 1
𝜂 (1 − 𝜁∗)−

𝛼
(1−𝛼)𝜂 𝐿𝑡𝑥

− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡

× (1 − 𝜁∗𝑥𝑡)
𝛼

1−𝛼
1
𝜓

× ∫

1

0
𝑥(�̃�1−1)−1(1 − 𝜁∗𝑥𝑡𝑥)−(�̃�1−1)𝑑𝑥

= (𝜆∗1,0)
− 1
𝜂 (1 − 𝜁∗)−

𝛼
(1−𝛼)𝜂 𝐿𝑡𝑥

− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡

× (1 − 𝜁∗𝑥𝑡)
𝛼

1−𝛼
1
𝜓

× 2𝐹1(�̃�1 − 1, �̃�1 − 1; �̃�1; 𝜁∗𝑥𝑡)
�̃�1 − 1

,

where �̃�1 and �̃�1 are defined as in (41).
Equating 𝑃𝑉 (𝑐𝑡 − 𝑐)𝑡 and 𝑃𝑉 (𝑐𝑠 − 𝑐)𝑡 gives 𝑐𝑡 − 𝑐 as

�̄� − 𝑐 = (𝜆∗1,0)
− 1
𝜂 (1 − 𝜁∗)−

𝛼
(1−𝛼)𝜂 𝑥

− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡

�̃�2 − 1
�̃�1 − 1

× 2𝐹1(�̃�1 − 1, �̃�1 − 1; �̃�1; 𝜁∗𝑥𝑡)

2𝐹1(�̃�2 − 1, �̃�2 − 1; �̃�2; 𝜁∗𝑥𝑡)

= (𝑐0 − 𝑐)(1 − 𝜁∗)
− 𝛼

(1−𝛼)𝜂 𝑥
− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡

×
�̃�2 − 1
�̃�1 − 1

2𝐹1(�̃�1 − 1, �̃�1 − 1; �̃�1; 𝜁∗𝑥𝑡)

2𝐹1(�̃�2 − 1, �̃�2 − 1; �̃�2; 𝜁∗𝑥𝑡)

where we used the first order condition for 𝑐0 from (8) at 𝑡 = 0. We
note that 𝑃𝑉 (𝑐𝑡 − 𝑐)𝑡 and 𝑃𝑉 (𝑐𝑠 − 𝑐)𝑡 are in general depending on 𝑡.

For 𝑡 → ∞ and, hence, 𝑥𝑡 → 0 we arrive at the steady-state. In
teady-state, lim𝑡→∞ 𝑐𝑡 − 𝑐 behaves differently depending on the models

parameters. In the subsistence consumption case, i.e. 𝛽(𝐵 − 𝛿2 + 𝑛) −
(1 − 𝛼)𝜌 < 0 and lim𝑡→∞ 𝑐𝑡 = 𝑐, we find lim𝑡→∞ 𝑐𝑡 − 𝑐 = 0. This becomes

obvious from as 2𝐹1(𝑎, 𝑏; 𝑏+ 1; 0) = 1 and lim𝑡→∞ 𝑥
− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡 = 0.

For the intermediate case 𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌 = 0, we find
lim𝑡→∞ 𝑐𝑡 − 𝑐 = lim𝑡→∞ 𝑐𝑡 − 𝑐. This is true as 2𝐹1(𝑎, 𝑏; 𝑏 + 1; 0) = 1

nd additionally in this special case lim𝑡→∞ 𝑥
− 1
𝜓
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

(1−𝛼)𝜂
𝑡 = 1 and

�̃�2−1
�̃�1−1

= 1.
For the permanent positive growth case, i.e. 𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌 > 0,

e find lim𝑡→∞
𝑐𝑡−𝑐
𝑐𝑡−𝑐

= �̃�2−1
�̃�1−1

> 0 as the existence of a solution to the
problem demands �̃�1, �̃�2 > 1. This follows from using the expression
for 𝑐𝑡 − 𝑐 from Proposition 1 with (𝜆∗1,0)

− 1
𝜂 = 𝑐0 − 𝑐 and 2𝐹1(𝑎, 𝑏; 𝑏 +

1; 0) = 1. Inspecting the definition of �̃�1 and �̃�2 in (41) reveals that
�̃�2−1
�̃�1−1

=
[

1 − 1
𝜂
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝑛

]−1
> 1 as 𝛽(𝐵 − 𝛿2 + 𝑛) − (1 − 𝛼)𝜌 > 0. This

uarantees asymptotically sustainability.

ppendix G. Factor substitution

We consider a generalization of the production technology (2) that
aptures an elasticity of substitution between physical capital and
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Calibration values for individual countries 2014.

Country 𝑏1 , 𝑏2 > 0 𝐿0 𝑦0 𝑘0 𝑠0 𝑐 𝑛 𝛿1 𝛿2 𝛽 𝛾 𝑘0 𝑠0 ℎ̃0 𝑐max lim𝑡→∞
𝑐𝑡
𝑐𝑡

𝐼𝑐𝑔 𝐼𝑔𝑠 𝐼𝑊

High income countries

ARG yes 42.98 11,994 38,901 7,033 5,144 0.0103 0.0377 0.0076 0.5443 0.0303 14,947 4,619 82,837 8,353 0.0100 1.00 0.92 1.00
AUS yes 23.48 60,767 280,077 168,785 11,125 0.0149 0.0378 0.0066 0.5966 0.0734 221,057 148,928 1,210,076 52,795 0.0110 1.00 0.98 1.00
AUT yes 8.55 51,786 256,361 10,353 8,842 0.0078 0.0432 0.0092 0.5781 0.0020 200,370 10,015 2,930,020 40,485 0.0092 1.00 1.00 1.00
BEL yes 11.21 47,682 236,425 1,398 8,858 0.0044 0.0419 0.0093 0.6321 0.0002 184,458 1,362 4,271,091 40,299 0.0076 1.00 1.00 1.00
BHR yes 1.34 20,745 100,488 13,722 4,500 0.0158 0.0347 0.0023 0.2936 0.0861 65,592 9,078 30,944 5,049 0.0095 1.00 0.80 1.00
CAN yes 35.54 49,813 233,383 44,420 9,281 0.0108 0.0356 0.0073 0.6418 0.0211 183,759 40,301 1,227,601 43,647 0.0109 1.00 0.99 1.00
CHE yes 8.19 86,978 435,276 3,366 11,673 0.0122 0.0515 0.0078 0.6442 0.0001 369,774 3,331 16,018,929 77,570 0.0122 0.61 1.00 1.00
CHL yes 17.61 14,280 43,453 51,354 5,372 0.0086 0.0430 0.0060 0.4396 0.1468 18,721 35,694 106,885 9,438 0.0047 1.00 0.87 1.00
DEU yes 80.98 49,085 253,695 3,906 8,512 0.0042 0.0373 0.0107 0.6189 0.0009 200,532 3,747 2,532,906 40,618 0.0067 1.00 1.00 1.00
DNK yes 5.64 64,824 299,123 9,402 10,895 0.0051 0.0402 0.0091 0.6137 0.0102 237,215 7,207 434,275 29,115 0.0076 1.00 0.96 1.00
ESP yes 46.48 29,525 116,579 5,164 7,332 −0.0030 0.0374 0.0085 0.5756 0.0008 77,318 5,078 3,640,052 21,771 0.0042 1.00 1.00 1.00
EST yes 1.31 19,671 83,770 015,487 5,832 −0.0026 0.0455 0.0118 0.5846 0.0143 50,749 13,904 568,762 14,796 0.0024 1.00 0.89 1.00
FIN yes 5.46 50,368 248,303 13,111 10,042 0.0041 0.0404 0.0096 0.6087 0.0059 187,585 11,929 1,229,367 41,068 0.0071 1.00 0.96 1.00
FRA yes 66.32 43,941 214,595 5,326 8,939 0.0048 0.0372 0.0085 0.6327 0.0005 162,802 5,241 6,766,450 37,039 0.0081 1.00 1.00 1.00
GBR yes 64.61 46,004 182,879 4,625 9,589 0.0075 0.0384 0.0088 0.5862 0.0060 132,009 3,630 352,220 26,387 0.0091 1.00 1.00 1.00
GRC yes 10.89 21,908 109,716 5,611 6,765 −0.0067 0.0301 0.0104 0.4930 0.0018 63,510 5,469 1,534,619 16,063 0.0014 1.00 1.00 1.00
HRV yes 4.24 13,337 47,597 6,719 5,142 −0.0041 0.0434 0.0120 0.5960 0.0091 22,189 5,914 388,834 9,633 0.0017 1.00 0.90 1.00
HUN yes 9.87 13,606 56,339 3,013 4,642 −0.0027 0.0428 0.0128 0.5926 0.0040 30,426 2,669 392,506 10,093 0.0021 1.00 0.91 1.00
IRL yes 4.66 46,979 136,491 2,996 9,066 0.0073 0.0530 0.0063 0.4320 0.0009 95,124 2,925 1,428,837 29,915 0.0105 1.00 1.00 1.00
ISL yes 0.33 51,612 83,266 3,390 9,900 0.0111 0.0390 0.0063 0.6082 0.0000 57,702 3,389 590,192,538 32,245 0.0124 1.00 1.00 1.00
ITA yes 60.79 35,398 177,497 3,803 8,188 0.0092 0.0364 0.0098 0.5223 0.0014 121,296 3,609 1,312,410 25,858 0.0096 1.00 1.00 1.00
JPN yes 127.28 39,481 202,798 2,286 8,116 −0.0013 0.0448 0.0101 0.5621 0.0003 148,485 2,242 4,183,485 30,303 0.0043 1.00 1.00 1.00
KOR yes 50.75 27,899 127,476 1,161 6,909 0.0063 0.0510 0.0053 0.5176 0.0005 83,891 1,108 1,177,813 20,206 0.0105 1.00 1.00 1.00
KWT no 3.78 47,131 258,269 585,432 4,793 0.0499 0.0475 0.0026 0.2495 0.5515 232,143 - - - 0.0001 - - -
LUX yes 0.56 78,931 398,040 5,011 9,787 0.0236 0.0487 0.0069 0.3675 0.0005 316,481 4,952 3,938,495 47,765 0.0183 1.00 1.00 1.00
LVA yes 1.99 15,660 104,696 13,948 5,508 −0.0094 0.0328 0.0143 0.5446 0.0104 58,363 12,911 674,992 12,445 0.0000 0.45 0.73 0.00
NLD yes 16.87 52,699 266,325 4,713 8,953 0.0036 0.0395 0.0083 0.5877 0.0080 210,091 3,369 246,719 18,707 0.0073 1.00 1.00 1.00
NOR yes 5.14 100,268 563,923 98,381 12,285 0.0113 0.0386 0.0079 0.5083 0.0794 476,107 75,103 480,618 30,514 0.0081 1.00 0.91 1.00
OMN no 3.96 19,361 61,021 98,895 4,004 0.0650 0.0536 0.0026 0.3027 0.3966 41,985 - - - 0.0093 - - -
POL yes 38.01 13,858 31,173 7,185 4,673 −0.0007 0.0500 0.0099 0.5582 0.0094 14,795 6,631 394,877 8,894 0.0044 1.00 0.95 1.00
PRT yes 10.40 21,700 93,101 5,079 6,408 −0.0054 0.0331 0.0101 0.5786 0.0029 56,355 4,798 955,193 16,235 0.0022 1.00 0.95 1.00
QAT no 2.37 82,936 342,282 603,424 5,674 0.0536 0.1004 0.0015 0.1767 0.3055 286,146 - - - 0.0037 - - -
RUS yes 143.82 13,876 50,982 43,517 4,569 0.0022 0.0335 0.0131 0.6303 0.1327 31,865 25,807 122,564 8,566 0.0011 1.00 0.99 1.00
SAU yes 30.78 25,016 104,184 250,438 3,884 0.0274 0.0554 0.0035 0.2796 0.4124 82,029 −440,228 −298,461 975 0.0000 - - -
SGP yes 5.47 55,597 309,021 22 5,559 0.0130 0.0531 0.0047 0.4395 0.0000 263,184 22 1,777,791 37,476 0.0141 1.00 1.00 1.00
SVK yes 5.42 18,395 58,445 5,205 5,373 0.0010 0.0492 0.0095 0.5496 0.0044 33,458 4,860 602,647 12,568 0.0056 1.00 1.00 1.00
SVN yes 2.06 23,975 112,045 11,317 6,545 0.0010 0.0417 0.0092 0.6384 0.0026 75,521 10,978 2,701,517 20,077 0.0058 1.00 0.95 1.00
SWE yes 9.70 60,506 281,718 23,802 10,613 0.0099 0.0431 0.0092 0.5616 0.0057 216,264 22,660 2,214,136 45,679 0.0101 1.00 1.00 1.00
URY yes 3.42 16,172 61,290 4,756 6,665 0.0034 0.0386 0.0093 0.4741 0.0152 23,936 3,514 109,312 10,937 0.0063 1.00 0.99 1.00
USA yes 318.39 56,731 193,502 16,766 8,343 0.0073 0.0478 0.0082 0.5944 0.0067 154,690 15,805 1,410,912 41,598 0.0093 1.00 1.00 1.00
VEN yes 30.74 15,516 74,968 36,313 7,400 0.0138 0.0365 0.0055 0.4882 0.1182 28,385 15,108 62,414 7,683 0.0084 1.00 0.93 1.00

(continued on next page)
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Table H.1 (continued).
Country 𝑏1 , 𝑏2 > 0 𝐿0 𝑦0 𝑘0 𝑠0 𝑐 𝑛 𝛿1 𝛿2 𝛽 𝛾 𝑘0 𝑠0 ℎ̃0 𝑐max lim𝑡→∞

𝑐𝑡
𝑐𝑡

𝐼𝑐𝑔 𝐼𝑔𝑠 𝐼𝑊

Upper-middle income countries

AZE yes 9.54 7,665 27,445 38,001 945 0.0125 0.0687 0.0058 0.2506 0.2308 21,415 30,400 33,005 2,273 0.0000 0.99 0.80 0.91
BGR yes 7.22 7,797 17,602 10,331 949 −0.0057 0.0531 0.0151 0.5309 0.0158 14,149 10,136 340,123 4,836 0.0000 0.97 0.90 0.88
BIH yes 3.57 5,245 12,044 4,495 986 −0.0109 0.0500 0.0107 0.6711 0.0138 8,818 4,256 206,980 3,681 0.0000 0.94 0.95 0.69
BLR yes 9.47 8,064 28,800 5,935 928 0.0009 0.0465 0.0128 0.6059 0.0134 24,281 5,692 258,211 5,917 0.0036 1.00 0.94 1.00
BRA yes 204.21 11,789 28,466 24,911 1,566 0.0089 0.0468 0.0060 0.5681 0.0414 22,879 23,912 327,860 7,978 0.0096 1.00 0.97 1.00
BWA yes 2.17 7,334 23,105 16,519 963 0.0186 0.0574 0.0074 0.2780 0.0252 17,998 16,371 180,841 4,355 0.0131 1.00 1.00 1.00
CHN yes 1364.27 7,693 29,670 5,953 1,205 0.0051 0.0546 0.0072 0.5780 0.0245 23,547 5,391 127,279 5,840 0.0080 1.00 0.99 1.00
COL yes 47.79 7,712 25,682 9,618 1,260 0.0094 0.0432 0.0059 0.4696 0.0662 19,416 8,352 59,201 5,130 0.0085 1.00 0.87 1.00
CRI yes 4.76 10,180 20,186 8,596 1,480 0.0108 0.0533 0.0048 0.5877 0.0139 15,712 8,322 352,547 6,680 0.0123 1.00 1.00 1.00
DOM yes 10.41 6,037 17,984 2,931 1,003 0.0120 0.0306 0.0061 0.4535 0.0162 13,437 2,781 77,717 3,968 0.0120 1.00 1.00 1.00
ECU yes 15.90 6,299 19,748 23,419 1,174 0.0153 0.0420 0.0051 0.6670 0.1166 15,990 19,750 112,986 5,873 0.0106 0.84 1.00 1.00
GAB yes 1.88 9,188 37,977 75,725 1,163 0.0317 0.0782 0.0080 0.2754 0.2712 29,557 17,560 17,830 828 0.0035 1.00 0.94 1.00
IRQ no 35.01 6,629 14,824 69,087 904 0.0326 0.0512 0.0052 0.2963 0.4563 11,837 - - - 0.0002 - - -
JAM yes 2.86 4,712 22,442 2,432 1,202 0.0036 0.0325 0.0069 0.6059 0.0120 15,441 2,177 109,608 3,854 0.0079 1.00 0.93 1.00
JOR yes 8.81 4,020 11,027 2,150 944 0.0460 0.0368 0.0038 0.4943 0.0103 7,004 2,022 96,549 2,587 0.0301 1.00 1.00 1.00
KAZ yes 17.29 11,498 37,691 53,914 1,087 0.0147 0.0404 0.0077 0.4022 0.1842 32,177 48,671 106,271 6,553 0.0046 1.00 0.87 1.00
LBN yes 5.60 8,557 18,894 124 1,253 0.0602 0.0394 0.0046 0.4445 0.0000 14,287 123 2,476,275 5,140 0.0378 1.00 1.00 1.00
MEX yes 124.22 10,337 36,850 9,050 1,280 0.0137 0.0366 0.0048 0.3742 0.0501 29,745 8,408 62,774 6,638 0.0110 1.00 1.00 1.00
MKD yes 2.08 5,367 16,009 4,932 865 0.0008 0.0344 0.0097 0.5021 0.0300 12,111 4,624 77,501 3,553 0.0044 1.00 0.94 1.00
MNG yes 2.92 3,842 8,282 27,593 737 0.0189 0.0608 0.0063 0.4076 0.2730 5,874 19,176 28,628 1,645 0.0037 1.00 0.98 1.00

Upper-middle income countries

MUS yes 1.26 9,897 42,519 137 1,113 0.0018 0.0453 0.0077 0.4261 0.0000 35,379 137 4,874,670 6,629 0.0071 1.00 1.00 1.00
MYS yes 30.23 10,814 29,495 20,053 925 0.0174 0.0574 0.0048 0.3804 0.0907 25,309 18,886 79,193 6,519 0.0103 1.00 0.83 1.00
NAM yes 2.37 5,382 13,620 10,615 1,122 0.0232 0.0556 0.0078 0.5214 0.0256 9,223 10,168 206,836 3,476 0.0162 1.00 1.00 1.00
PAN yes 3.90 11,522 19,916 8,125 1,278 0.0169 0.0485 0.0050 0.2957 0.0030 16,551 8,116 806,021 7,567 0.0157 1.00 1.00 1.00
PER yes 30.97 6,199 17,515 19,892 1,125 0.0132 0.0394 0.0056 0.4603 0.0744 12,597 18,716 115,746 4,006 0.0098 1.00 0.85 1.00
PRY yes 6.55 5,935 10,190 3,630 1,124 0.0133 0.0453 0.0056 0.5649 0.0154 7,099 3,432 125,580 3,704 0.0131 1.00 1.00 1.00
ROU yes 19.91 9,900 35,742 6,736 1,028 −0.0037 0.0517 0.0128 0.4568 0.0144 30,030 6,551 207,220 6,433 0.0012 1.00 0.94 1.00
SUR yes 0.55 9,426 43,553 80,516 1,249 0.0099 0.0757 0.0072 0.4522 0.2356 37,065 67,512 129,574 5,319 0.0023 0.06 0.99 0.98
THA yes 68.42 5,647 18,691 2,414 802 0.0040 0.0627 0.0076 0.3928 0.0286 14,413 2,167 29,817 3,302 0.0066 1.00 0.99 1.00
TUN yes 11.14 4,121 10,164 4,126 794 0.0117 0.0443 0.0064 0.5021 0.0487 7,124 3,610 37,255 2,657 0.0102 1.00 0.90 1.00
TUR yes 77.03 12,021 21,197 1,655 1,067 0.0163 0.0557 0.0058 0.4276 0.0042 18,105 1,627 167,080 7,316 0.0149 1.00 1.00 1.00
ZAF yes 54.54 6,257 18,550 8,673 1,038 0.0143 0.0520 0.0105 0.5523 0.0579 14,120 7,411 70,728 4,349 0.0093 1.00 0.97 1.00

(continued on next page)
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Table H.1 (continued).
Country 𝑏1 , 𝑏2 > 0 𝐿0 𝑦0 𝑘0 𝑠0 𝑐 𝑛 𝛿1 𝛿2 𝛽 𝛾 𝑘0 𝑠0 ℎ̃0 𝑐max lim𝑡→∞

𝑐𝑡
𝑐𝑡

𝐼𝑐𝑔 𝐼𝑔𝑠 𝐼𝑊

Lower-middle income countries

ARM yes 2.91 4,181 13,305 5,222 584 0.0044 0.0296 0.0097 0.5797 0.0339 10,673 4,905 83,768 2,950 0.0061 1.00 0.89 1.00
BOL yes 10.56 2,963 6,903 9,924 575 0.0154 0.0609 0.0074 0.4724 0.1127 4,795 8,629 36,155 1,883 0.0084 1.00 0.94 1.00
CIV yes 22.53 1,528 4,409 3,402 598 0.0254 0.0378 0.0129 0.3319 0.0618 1,481 3,023 16,250 900 0.0114 1.00 0.92 1.00
CMR yes 22.24 1,558 3,509 5,591 572 0.0266 0.0514 0.0106 0.5027 0.0798 1,454 4,666 29,387 977 0.0135 1.00 0.95 1.00
EGY yes 91.81 3,249 4,537 5,210 392 0.0221 0.0695 0.0060 0.3537 0.0866 3,576 4,944 20,183 1,853 0.0115 1.00 0.87 1.00
GEO yes 3.72 4,398 15,764 2,504 590 0.0005 0.0377 0.0132 0.4335 0.0083 12,536 2,455 128,122 2,879 0.0033 1.00 1.00 1.00
GTM yes 15.92 3,600 8,743 3,689 601 0.0208 0.0459 0.0049 0.4164 0.0315 6,380 3,516 46,407 2,223 0.0156 1.00 1.00 1.00
HND yes 8.81 2,059 6,153 4,591 617 0.0173 0.0560 0.0048 0.5965 0.0271 3,675 4,280 94,048 1,532 0.0149 1.00 0.99 1.00
IDN yes 255.13 3,375 13,738 4,823 406 0.0122 0.0369 0.0071 0.4638 0.0516 11,318 4,495 40,365 2,307 0.0098 1.00 0.90 1.00
IND yes 1293.86 1,557 4,722 1,276 341 0.0119 0.0574 0.0073 0.5163 0.0281 3,176 1,124 20,613 1,041 0.0109 1.00 0.97 1.00
KEN yes 46.02 1,316 3,007 1,202 565 0.0264 0.0528 0.0060 0.6384 0.0277 1,254 900 20,729 968 0.0187 1.00 1.00 1.00
KGZ yes 5.84 1,227 5,130 2,583 468 0.0201 0.0363 0.0061 0.5278 0.0738 2,523 1,832 13,097 922 0.0131 1.00 0.94 1.00
LAO yes 6.58 1,929 3,005 14,887 432 0.0125 0.0624 0.0069 0.3976 0.1220 1,834 14,243 46,404 1,109 0.0063 1.00 0.82 1.00
LKA yes 20.78 3,732 9,309 971 418 0.0093 0.0374 0.0067 0.3104 0.0011 7,750 969 279,360 2,493 0.0112 1.00 1.00 1.00
MAR yes 34.32 3,133 11,492 5,245 520 0.0145 0.0520 0.0052 0.4974 0.0206 8,699 5,080 122,453 2,139 0.0135 1.00 1.00 1.00
MDA yes 3.56 2,477 12,630 415 549 −0.0006 0.0309 0.0114 0.5713 0.0036 9,000 381 59,749 1,909 0.0039 1.00 1.00 1.00
MRT yes 4.06 1,264 2,381 10,270 423 0.0294 0.0613 0.0081 0.4542 0.3103 1,310 1,051 1,539 360 0.0062 1.00 1.00 1.00
NGA yes 176.46 3,114 3,531 8,423 660 0.0266 0.0496 0.0131 0.4888 0.1032 2,175 7,326 34,692 1,718 0.0112 1.00 0.95 1.00

Lower-middle income countries

NIC yes 6.01 1,923 6,882 6,763 481 0.0114 0.0397 0.0048 0.5526 0.0442 4,545 6,401 80,100 1,416 0.0112 1.00 0.93 1.00
PHL yes 100.10 3,445 7,318 1,788 503 0.0163 0.0489 0.0065 0.3565 0.0317 5,579 1,694 19,031 2,115 0.0125 1.00 1.00 1.00
SEN yes 14.55 1,333 3,068 1,840 560 0.0297 0.0453 0.0063 0.4045 0.0375 928 1,639 17,676 802 0.0186 1.00 1.00 1.00
SWZ yes 1.30 3,388 18,359 1,112 500 0.0184 0.0470 0.0102 0.6121 0.0355 15,319 626 10,798 741 0.0125 0.57 0.98 1.00
TJK yes 8.36 1,366 29,601 2,407 505 0.0224 0.0237 0.0052 0.4635 0.0186 18,279 2,074 51,747 1,320 0.0173 0.23 1.00 1.00
UKR yes 45.27 2,914 23,756 5,972 439 −0.0048 0.0281 0.0147 0.5584 0.0566 19,718 5,376 52,992 2,580 0.0000 0.00 0.85 0.00

Low-income countries

BDI yes 9.89 273 415 219 247 0.0299 0.0384 0.0113 0.6062 0.1703 −119 −1,259 −4,482 28 0.0118 0.00 0.00 0.00
BFA yes 17.59 683 1,599 2,394 308 0.0296 0.0596 0.0091 0.5730 0.1698 710 412 1,391 276 0.0122 1.00 1.00 1.00
CAF yes 4.52 379 2,374 9,271 437 0.0035 0.0299 0.0145 0.1643 0.1236 −2,068 8,742 11,621 233 0.0000 0.00 0.00 0.00
GIN yes 11.81 719 1,069 2,451 296 0.0230 0.0600 0.0099 0.4835 0.1712 337 1,094 3,091 351 0.0083 1.00 0.98 1.00
MOZ yes 27.21 616 95 1,752 399 0.0290 0.0624 0.0107 0.4148 0.1356 −34 1,543 4,719 294 0.0107 0.00 0.00 0.00
NER yes 19.15 422 2,088 2,701 329 0.0384 0.0363 0.0102 0.4322 0.1377 −317 727 2,283 256 0.0147 0.00 0.00 0.00
RWA yes 11.35 691 1,320 751 299 0.0250 0.0457 0.0063 0.7410 0.0640 683 283 3,282 387 0.0166 1.00 1.00 1.00
SLE yes 7.08 692 769 2,991 289 0.0224 0.0784 0.0134 0.5450 0.3646 470 −5,314 −7,945 95 0.0027 0.00 0.00 0.00
TCD yes 13.57 982 1,006 5,390 342 0.0326 0.0635 0.0135 0.4524 0.2005 365 2,944 6,642 491 0.0089 1.00 0.99 1.00
TZA yes 52.23 941 2,684 3,112 281 0.0311 0.0450 0.0073 0.4980 0.0622 1,459 2,778 22,232 615 0.0178 1.00 0.96 1.00
ZWE yes 15.41 1,145 1,675 3,763 396 0.0234 0.0357 0.0089 0.5507 0.0700 702 3,347 26,338 681 0.0137 1.00 0.94 1.00

Note: Calibration values and results as explained in Section 4.5. Parameters 𝜌 = 0.03, 𝜂 = 2 and 𝐵 = 0.05 uniformly calibrated for all countries. All nominal quantities in 2014 US$ per capita except population 𝐿0 for 2014 in mln.
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where we focus on the case 𝜎 < 1. For 𝜎 = 1, we arrive back at
he production technology (2). The Hamiltonian associated with the
resent problem, the first order and the transversality conditions read
xactly as in Section 3.1. Proceeding as in Appendix A, shows that
2,𝑡 and 𝜆3,𝑡 behave as in case 𝜎 = 1; 𝜆2,𝑡 = 𝜆2,0𝑒−(𝐵−𝛿2)𝑡 and 𝜆3,𝑡 =
𝜆3,0. 𝜆1,𝑡, however, develops differently. Following the same steps as in
Appendix A gives
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(67)

To the best of our knowledge, the differential Eq. (67) does not al-
low for an explicit solution. We are therefore restricted to analyze
the steady-state of the economy characterized by a constant

̇𝜆1,𝑡
𝜆1,𝑡

that
rovides a constant interest rate. (67) allows for this if 𝜆1,𝑡 grows at

he same rate as
(

𝜆2,𝑡
𝐵
𝐿𝑡

)
𝛽

1−𝛼 . This implies �̇�1,𝑡
𝜆1,𝑡

= 𝛽
1−𝛼 (𝐵 − 𝛿2 + 𝑛) which

equals the steady-state net interest as can be seen from (8).
As the net interest rate governs the behavior of excess consumption,

similar to (18) and depending on whether 𝛽
1−𝛼 (𝐵− 𝛿2 + 𝑛) − 𝜌 ⪋ 0, three

ases for steady-state consumption emerge. The corresponding growth
ate of excess consumption is 1

𝜂
𝛽(𝐵−𝛿2+𝑛)−(1−𝛼)𝜌

1−𝛼 which is identical to the
ase 𝜎 = 1 in the main text.

Also with 𝜎 < 1, the existence of a solution is not always guaranteed.
ext, we derive the conditions corresponding to (22) and (23) for 𝜎 ≠ 1.
valuating the accumulation Eq. (3) at a constant per capita stock of
hysical capital in steady-state gives

1,𝑡 =
[

𝑘𝑡 −
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or a solution 𝜆∗1,𝑡 to exist, we need

𝑡 >
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− (𝛿1 + 𝑛)

)−1
𝑐

which is identical to the existence condition (22) for 𝑡 = 0, 𝜁∗ = 0 and
𝜎 = 1. If 𝜎 < 1, this existence condition becomes more stringent and
the economy requires more physical capital to guarantee minimum sub-
sistence consumption. The equivalence to the existence condition (23)
can be obtained by computing per capita production that is sufficient
to cover subsistence consumption and physical capital depreciation.
This quantity needs then to be compared with the implied resource
requirements. The former is given by
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,

which is obtained from solving the accumulation Eq. (3) evaluated at
�̇�𝑡 = 0 and 𝑐𝑡 = 𝑐 for 𝑦𝑡. The resource requirement for �̄� is 𝑅𝑡 =

𝜆1,𝑡
𝜆3,0

𝛾�̄�𝐿𝑡.
Consequently, the implied requirement for the resource stock is
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3,0
1−𝛼 (𝐵 − 𝛿2 + 𝑛) − 𝑛
and hence in per capita terms and final output equivalents

̃̄𝑡 = 𝛾
�̄�

𝛽
1−𝛼 (𝐵 − 𝛿2 + 𝑛) − 𝑛
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To guarantee minimum subsistence consumption, we need �̃�𝑡 > ̃̄𝑠𝑡.
For 𝜎 = 1, this resembles the existence condition (23) at 𝑡 = 0 and
𝜁∗ = 0.45 Once again, the existing condition gets more stringent and
𝜎 < 1 requires a higher initial resource endowment compared with
𝜎 = 1.

Appendix H

See Table H.1.
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