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Abstract

We establish two investment rules for maximal constant per capita consumption under

exogenous population growth, one in terms of total stocks and the other in terms of per capita

stocks. Both rules show the importance of the development of future population growth. The

investment rules are illustrated in the one-sector model of capital accumulation, the dhss

model of capital accumulation and resource depletion, and the Stollery–d’Autume–Schubert

model in which natural capital provides amenities. Application to recent empirical evidence

indicates that actual genuine savings might be insufficient to sustain per capita consumption,

when future population growth is combined with a large per capita consumption-wage gap.
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1 Introduction

Diminishing natural capital and an increasing population might both be obstacles to sustainable

development that seeks to keep per capita consumption non-decreasing. Natural capital is impor-

tant for maintaining a non-negative flow of resource input as well as providing needed amenity

services and biological diversity. An increasing population—while contributing to an increasing

labor stock—leads to a dilution effect: population growth requires that available consumption as

well as the stocks of reproducible and natural capital be divided among a larger number of people.

There has been an interest in investment rules that keep consumption constant at its maximal

sustainable level since the first use of the maximin criterion in the presence of resources (Solow,

1974) and the original article on Hartwick’s rule (Hartwick, 1977). A series of papers (among

others, Hartwick, 1978a,b; Dixit, Hammond, and Hoel, 1980; Withagen and Asheim, 1998; Mi-

tra, 2002; Asheim, Buchholz and Withagen, 2003; Buchholz, Dasgupta and Mitra, 2005; Mitra,

Asheim, Buchholz and Withagen, 2013) have contributed to our understanding of the connection

between Hartwick’s investment rule—keeping the value of net investments equal to zero—and

Solow sustainability—sustainable development with constant consumption. This literature shows

that following Hartwick’s investment rule leads to Solow sustainability in a variety of models and

technologies.

Much of this literature has been based on the strict assumptions that Solow (1974) and

Hartwick (1977) imposed when using the so-called Dasgupta-Heal-Solow-Stiglitz (dhss) model

to analyze constant consumption paths in the presence of resource constraints. This includes

assuming that both technology and population are constant.1

There have been contributions that incorporate exogenous population growth, including Arrow,

Dasgupta and Mäler (2003) and Asheim (2004) on indicators for non-decreasing welfare, Mitra

(1983) and Asheim, Buchholz, Hartwick, Mitra and Withagen (2007) on non-decreasing per capita

consumption in the dhss model when population growth has a quasi-arithmetic form, and Asheim,

Hartwick and Mitra (2021) on investment rules that keep per capita net national product constant.

Moreover, Dasgupta (1969, 2004, 2021) has studied the management of natural resources in the

presence of population growth in a series of important contributions.

Nevertheless, none of these contributions have obtained investment rules that yield the maximal

1There are, however, straightforward methods to restore Hartwick’s result in the presence of exogenous techno-
logical progress by including time as an additional stock.
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level of per capita consumption under exogenous population growth, except for special cases like

exponential population growth in the one-sector model and quasi-arithmetic growth in the dhss

model. This problem is non-trivial since the maximal level of per capita consumption does not

depend only on the capital dilution effect of current population growth, but also on the capital

dilution effect of future population growth. In particular, if future population growth is expected

to accelerate, then this requires a higher flow of current investment to prepare for future capital

dilution. Hence, investment rules for maximal sustainable per capita consumption must take into

account the entire expected future development of population growth.

This is not just a theoretical but also an empirical concern, given that population dynamics

in the real world are mostly non-exponential. In applied work, only simple measures of per capita

capital assets are computed across countries (e.g. World Bank, 2021), and there are very few

empirical studies that look into investment rules under population growth. By incorporating the

capital dilution effect as analyzed by Arrow, Dasgupta and Mäler (2003) and Asheim (2004),

Ferreira, Hamilton and Vincent (2008) study the correlation between per capita genuine savings

and the per capita change in consumption under population change. More recently, Yamaguchi

(2018) compares the value of the change in per capita capital assets between total utilitarianism

and dynamic average utilitarianism, the latter being defined by Dasgupta (2004) as the sum of

the discounted future utilities divided by the sum of the discounted future population.

We develop two versions of our main result in the context of a general model with multiple

capital goods. Based on Samuelson (1961) we use the present value of future changes in per capita

consumption as an indicator of non-decreasing per capita consumption. In Proposition 1 we show

how this indicator requires that current investment in total stocks must compensate for future

population growth. In Proposition 2 we develop an investment rule in terms of per capita stocks

demonstrating the importance of the future development of the population growth rate.

We assume that development is efficient but does not take a stand on the choice between a

total or average discounted utilitarian criterion. In particular, our analysis might be compatible

with an underlying total discounted utilitarian welfare criterion where dynamic welfare increases

over time even with decreasing per capita consumption, if compensated by a sufficient positive

rate of population growth. Thus, it is important to stress that our results are not concerned with

the question of whether some measure of dynamic welfare is non-decreasing (Arrow, Dasgupta and

Mäler, 2003; Asheim, 2004). Also, we are not concerned with the question of whether per capita
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productive capacity is sustainable (Asheim, Hartwick and Mitra, 2021).

We apply Propositions 1 and 2 to check whether recent investment has been sufficient to

support sustainable per capita consumption, using data on consumption and genuine savings (GS)

by the World Bank and future population prospects till 2100 by the UN. Based on Proposition

1 we find that actual investment might have fallen short of what our investment rule suggests

in some countries where population is expected to grow. Interestingly, they include both higher-

and lower-income countries, contrary to what simple measures of genuine savings typically suggest

for sustainability. The intuition is that, when population growth is expected, extra investment is

needed to sustain per capita consumption if the cost of population growth (which is related to

the consumption-wage gap) is large relative to genuine savings. This shortage in investment is

amplified when a lower discount rate is used.

We introduce the intuition behind Proposition 1 in Section 2, before—in Section 3—applying

this investment rule to the one-sector model of capital accumulation, the dhss model of capital

accumulation and resource depletion, and the Stollery–d’Autume–Schubert model in which natural

capital provides amenities.2 We establish Proposition 1 formally in the general model in Section

4 and develop the per capita version of our result as Proposition 2 in the following Section 5. We

provide an empirical application of Proposition 1 in Section 6 to see if actual investments in the

recent past have been sufficient to sustain per capita consumption. We offer concluding remarks

in the final Section 7 and discuss the applicability of Proposition 2 in an appendix.

2Hartwick and Mitra (2020) study constant consumption in the Stollery (1998) model by allowing for the rate
of growth of climate change to be proportional to a concave function of the resource extraction.
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2 Presenting the main result

Consider a one consumption good/multiple capital good model with a stationary technology, as

the one which we formally introduce in Section 4. If population and labor is constant, then it can

be shown that short-run efficiency implies

p0(t)Ċ(t) = − d

dt

(
p(t)I(t)

)
,

where C is consumption, p0 is the consumption discount factor, I = (I1, . . . , In) is the vector

of net investments and p = (p1, . . . , pn) is the vector of present-value prices for the vector of

net investments. This is the Dixit-Hammond-Hoel (1980) result, which implies that keeping con-

sumption constant is equivalent to keeping the present value of net investment constant (but not

necessarily zero). If the net investment transversality condition holds (limt→∞ p(t)I(t) = 0), then,

by integration, we obtain: ∫ ∞

t
p0(τ)Ċ(τ)dτ = p(t)I(t) .

Hence, it is a basic result that keeping consumption constant at all times implies that the value of

net investments are equal to zero, that is, Hartwick’s (1977) rule (p(t)I(t) = 0) is followed at all

times. In the one-sector model of capital accumulation, this determines the maximal sustainable

level of consumption, since with a constant capital stock, consumption equals net production. In

the Dasgupta-Heal-Solow-Stiglitz (dhss) model (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz,

1974) of capital accumulation and resource depletion, one has to maximize the constant level of

consumption subject to the initial resource stock being at least as large as the integral of resource

use in order to find the efficient constant consumption path.

The question of whether the net investment transversality condition must hold has been posed

in papers (see, e.g., Dixit, Hammond, and Hoel, 1980; Withagen and Asheim, 1998; Mitra, 2002)

which ask whether Hartwick’s rule is necessary for an efficient constant consumption path. In

short, this literature shows that constant consumption with negative net investment, leading to

limt→∞ p(t)I(t) < 0, is infeasible. Furthermore, it shows that constant consumption with positive

net investment, leading to limt→∞ p(t)I(t) > 0, is inefficient (as in the one sector model) or

infeasible (as in the DHSS model; see Buchholz, Dasgupta and Mitra, 2005). Using the one sector

model as an illustration, combining constant consumption with negative net investment means

that consumption exceeds net production. Furthermore, in order to maintain this unsustainable
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consumption level for a little longer, net investment has to become even more negative. Actually, by

the Dixit-Hammond-Hoel result, the rate of growth of the absolute value of the negative investment

has to equal the interest rate = net marginal productivity of capital. So even though the present

value of net investments is constant and consumption is constant in the short run, this consumption

level is obviously not sustainable. It all crashes when capital has been exhausted. It is like a

person living beyond his means, taking up new loans at an accelerated rate, thereby keeping up

the standard of living for some additional time. So clearly, this has nothing to do with sustainable

behavior. On the background of the general results of Mitra (2002) we assume in this paper that

an appropriate net investment transversality condition is satisfied.

Consider now the same model, but now with exogenous population growth. Then, as we show

in Section 4, short-run efficiency implies

p0(t)ċ(t)N(t)+p0(t)c(t)Ṅ(t) = p0(t)
d

dt

(
c(t)N(t)

)
= − d

dt

(
p(t)i(t)N(t) +

(∫ ∞

t
w(τ)Ṅ(τ)dτ

))
,

where N is population (and labor), c = C/N is per capita consumption, i = I/N is the vector

of per capita net investments, and w is the present value of the marginal productivity of labor.

The term
∫∞
t w(τ)Ṅ(τ)dτ can be interpreted as the contribution to current productive capacity

of future population growth. This is the Dixit-Hammond-Hoel result in the population growth

setting. Note that this only requires that technology is stationary and that the path is efficient.

The path might be the result of a total utilitarian or average utilitarian criterion. If, in this setting,

lim
t→∞

p(t)i(t)N(t) = 0 (1)

holds as a net investment transversality condition and
∫∞
t

(
p0(τ)c(τ)−w(τ)

)
Ṅ(τ)dτ exists, then,

by integration, we obtain:

∫ ∞

t
p0(τ)ċ(τ)N(τ)dτ = p(t)i(t)N(t)−

∫ ∞

t

(
p0(τ)c(τ)− w(τ)

)
Ṅ(τ)dτ . (2)

Remark. The left-hand side of eq. (2) can serve as an approximate indicator for sustainable per

capita consumption, while the right-hand side can serve as a basis for a genuine savings indicator,

as we analyze in the rest of this paper. Dasgupta (2004, eq. (A.149)) answers the question of

how to generalize the genuine savings indicator to a situation with exogenous population growth,
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when its purpose is to serve as an approximate indicator for sustainability under total discounted

utilitarianism, by considering the integral of discounted utilitarian utilities divided by the integral

of discounted population:

V ∗(t) =
V (t)

N∗(t)
=

∫∞
t e−δ(τ−t)U(c(τ))N(τ)dτ∫∞

t e−δ(τ−t)N(τ)dτ
.

As already mentioned in the introduction, this is called dynamic average utilitarianism. Arrow,

Dasgupta and Mäler (2003) provide a condition in their Theorem 3 for V ∗(t) being non-decreasing

in a setting where also capital is one-dimensional. However, based on Samuelson (1961) and in

the tradition of Arrow-Dasgupta-Mäler comprehensive accounting, it would be natural to replace

V̇ ∗(t) ≥ 0 by ∫ ∞

t
e−δ(τ−t)dU(c(τ))

dτ
N(τ)dτ ≥ 0 .

By writing p0(τ) = e−δ(τ−t)U ′(c(τ)), this expression becomes identical to the condition that we

consider. It can be shown that this condition is equivalent to V̇ ∗(t) ≥ 0 under total discounted

utilitarianism if the rate of population growth is constant, but not otherwise.

It follows from eq. (2) that keeping per capita consumption constant at all times when (1)

holds implies that the value of net investments satisfies the following rule at all times:

p(t)i(t)N(t) =

∫ ∞

t

(
p0(τ)c(τ)− w(τ)

)
Ṅ(τ)dτ . (3)

Furthermore, the converse result holds as well: Following this rule at all times implies that per

capita consumption is constant. This equivalence is the main result of this paper. Along a constant

per capita consumption path, there will be a consumption-wage gap: the present value of per

capita consumption, p0(t)c(t), will exceed the present value of the marginal productivity of labor,

w(t). This implies that with a growing population the value of net investment must be positive

to compensate for the capital dilution effect of future population growth. In this manner, the

sustainability of current per capita consumption depends not only on current population growth,

but on the entire development of future population.
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3 Illustrating the main result

The dhss model has one produced good, which serves both as reproducible capital and as material

consumption. This good is produced with a stock of reproducible capital (K), an extraction flow

(R) of input from a non-renewable and exhaustible resource, and labor (N). The production

function F : R3
+ → R+ satisfies the following two assumptions:

(F1) F is continuous, non-decreasing, concave, and homogenous of degree 1 in (K,R,N) on R3
+.

(F2) F is twice continuously differentiable in (K,R,N) on R3
++, with FK(K,R,N) > 0, FR(K,R,

N) > 0, and FN (K,R,N) > 0 for all (K,R,N) ∈ R3
++.

In the case where F is of the Cobb-Douglas form:

F (K,R,N) = KαRβN1−α−β where α > 0 , β > 0 , and 1− α− β > 0 , (4)

the function F also satisfies that F (0, R,N) = F (K, 0, N) = F (K,R, 0) = 0 for all (K,R,N) ∈

R3
+. In particular, the resource is essential in the sense that there is no production without

a positive flow of resource input. However, we need not make this assumption in our general

analysis of the dhss model. If (F2) is replaced by

(F2′) F is twice continuously differentiable in (K,R,N) on R3
++, with FK(K,R,N) > 0, FR(K,R,

N) = 0, and FN (K,R,N) > 0 for all (K,R,N) ∈ R3
++,

then the dhss model is reduced to the ordinary one-sector model where the resource plays no role,

and the production function can be written as F (K,N).

The model is closed by letting production be split into material consumption (M) and net

investment in reproducible capital (I = K̇) and letting resource input be drawn from the stock

(S) of the non-renewable and exhaustible resource.

Stollery (1998) and d’Autume and Schubert (2008) study a variant of the dhss model with

amenities where consumption (C) is a composite good that depends on material consumption and

the remaining stock of the resource. The model has a natural interpretation in terms of climate

change if the exhaustible resource is identified with fossil fuels. Then a large remaining resource

stock corresponds to low accumulated CO2 emissions and thus to a climate that offers high amenity

value.
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With population growth, we let per capita consumption (c = C/N) depend on per capita ma-

terial consumption (m =M/N) and the per capita resource stock (s = S/N), implying that both

material consumption and the amenity are private goods. This formulation can be made compat-

ible with the climate change interpretation if a congestion effect reduces the amenity received by

any one person when population increases. When the resource stock yields amenities the function

u : R2
+ → R+ that turns per capita material consumption and the per capita resource stock into

per capita consumption is assumed to satisfy the following two assumptions:

(u1) u is continuous, non-decreasing, concave, and homogeneous of degree 1 in (m, s) on R2
+.

(u2) u is twice continuously differentiable in (m, s) on R2
++, with um(m, s) > 0 and us(m, s) > 0

for all (m, s) ∈ R2
++.

Note that C = Nc = Nu(m, s) = Nu(M/N,S/N) = u(M,S) by the assumption that u is

homogeneous of degree 1. If (u2) is replaced by

(u2′) u is twice continuously differentiable in (m, s) on R2
++, with um(m, s) > 0 and us(m, s) = 0

for all (m, s) ∈ R2
++,

then amenities play no role and it follows from (u1) that C = Nc = Nu(m, s) = Nm =M . So in

this case, consumption C coincides with material consumption M .

Labor is throughout taken to be equal to the population (N) and assumed to be exogenously

given. We assume that N(t) is positive and a continuously differentiable function of t:

Ṅ(t) = g(t)N(t) for t ≥ 0 , N(0) = N0 > 0 , (5)

where g(t) represents the exogenous rate of population growth at time t ≥ 0.

A path from initial stocks (K0, S0) ∈ R2
+ of capital and resource is described by the functions

(C(t),M(t), I(t), R(t),K(t), S(t), N(t)), where C : [0,∞) → R+, M : [0,∞) → R+, I : [0,∞) →

R, R : [0,∞) → R+, K : [0,∞) → R+, and S : [0,∞) → R+ are continuously differentiable

functions of t satisfying, at all t ∈ [0,∞),

C(t) = u(M(t), S(t))

I(t) = K̇(t) = F (K(t), R(t), N(t))−M(t) ,
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R(t) = −Ṡ(t) ,

K(0) = K0 ,

S(0) = S0 .

Under the assumptions of (F1), (F2), (u1), and (u2), it follows from the analysis of Asheim,

Hartwick and Mitra (2021, eqs. (22) and (23)) that the Keynes-Ramsey rule becomes

− ṗ0
p0

= FK +
u̇m
um

, (6)

where the left-hand side—the rate at which the consumption discount factor p0 decreases—is the

consumption discount rate. The right-hand side simplifies to FK if (u2) is replaced by (u2′) since

then um ≡ 1. Furthermore, the condition for short-run efficiency, a modified version of Hotelling’s

no-arbitrage condition, becomes:

ḞR = FKFR − us
um

, (7)

which simplifies to ḞR = FKFR if (u2) is replaced by (u2′) (and to the trivial equation 0 = 0 if,

in addition, (F2) is replaced by (F2′)).

Illustration in the one-sector model. The one-sector model corresponds to assumptions (F1),

(F2′), (u1), and (u2′). It follows from −ṗ0/p0 = FK that the consumption discount factor develops

as follows:

p0(t) =

∫ ∞

0
e−

∫ t
0 FKdτ .

Furthermore, since production is split between consumption and net investment, p0(t) is also the

present-value price of investment. Hence, in this model, the investment rule (3) becomes:

K̇(t) =

∫ ∞

t
e−

∫ τ
t FKds(c− FN

)
Ṅdτ . (8)

We can check that following this rule actually leads to constant per capita consumption, so that

0 = ċ =
d

dt

(
C

N

)
=

1

N

(
Ċ − C

Ṅ

N

)
.
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To check this, by differentiating the investment rule (8) it follows that

K̈ = −
(
C

N
− FN

)
Ṅ + FKK̇ .

From the fact that production is split between consumption and net investment (C + K̇ =

F (K,N)), we obtain:

K̈ = FKK̇ + FN Ṅ − Ċ .

Since the two right-hand sides are equal, we have Ċ = CṄ/N and ċ = 0. The efficient constant

per capita consumption level c is found by combining the investment rule at the initial time 0 with

the following equation that must be satisfied at the initial time 0: cN(0)+K̇(0) = F (K(0), N(0)).

An interesting special case is where the right-hand side of the investment rule equals KṄ/N .

Then, by (8), net capital investment K̇ exactly compensates for the capital dilution KṄ/N that

population causes, implying that the per capita capital stock k = K/N is constant. Furthermore,

it follows from C + K̇ = F (K,N) and (F1) that c + kṄ/N = F (k, 1). Hence, since both per

capita consumption c and the per capita capital stock k are constant, we obtain that the population

growth rate Ṅ/N is constant, requiring that population growth is exponential in this case. Finally,

since it follows from (F1) that F (k, 1) = FKk+FN , we have that the term c−FN on the right-hand

side of the investment rule (8) is constant and equals (FK − Ṅ/N)k. Such a balanced growth path

is efficient if and only if c− FN = (FK − Ṅ/N)k ≥ 0.

Illustration in the dhss model. The dhss model corresponds to assumptions (F1), (F2), (u1),

and (u2′). The relative price of the flows of resource input and net investment of reproducible

capital equals FR(K(t), R(t), N(t)). Hence, in this model, the investment rule (3) becomes:

K̇(t)− FR(K(t), R(t), N(t))R(t) =

∫ ∞

t
e−

∫ τ
t FKds(c− FN

)
Ṅdτ . (9)

We can check that following this rule actually leads to constant per capita consumption. By

differentiating the investment rule it follows that

K̈ − FRṘ− FKFRR = K̈ − FRṘ− ḞRR = −
(
C

N
− FN

)
Ṅ + FK

(
K̇ − FRR

)
,

also using Hotelling’s rule (ḞR = FKFR) as a condition for short-run efficiency. From the fact that
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production is split between consumption and investment (C + K̇ = F (K,R,N)), we obtain:

K̈ = FKK̇ + FRṘ+ FN Ṅ − Ċ .

From these two equations, we have Ċ = CṄ/N and ċ = 0. The efficient constant per capita

consumption level is found by maximizing c subject to feasibility.

Also in this model the case where the right-hand side of the investment rule equals KṄ/N is

of interest. Then, by (9), investment K̇ in reproducible capital compensates for resource depletion

FRR and the dilution KṄ/N of reproducible capital. It now follows from C + K̇ = F (K,R,N)

and (F1) that c + FRr + kṄ/N = F (k, r, 1) = FKk + FRr + FN , where r = R/N denotes the

per capita flow of resource extraction. Hence, also in the dhss model the term c − FN on the

right-hand side of the investment rule (9) equals (FK − Ṅ/N)k. When the production function

takes on the Cobb-Douglas form (4) with α > β it follows from Asheim, Buchholz, Hartwick,

Mitra and Withagen (2007, Theorem 9) and Asheim, Hartwick and Mitra (2021, Corollary 2) that

the exogenous population growth function, N(t), must be of the following quasi-arithmetic form:

N(t) = N0 (1 + µt)φ , (10)

where the gross of population growth savings rate a = I/F (K,R,N) is a constant satisfying

α > a > β and

µ = β
[
(α− a)βKα−1

0 Sβ
0N

1−α−β
0

] 1
1−β

,

φ =
a− β

β
.

Even though the per capita stock k of reproducible capital is increasing to compensate for the

decreasing per capita flow r of resource input, the population growth rate Ṅ/N is decreasing

to make the per capita dilution kṄ/N of reproducible capital constant. Furthermore, it is a

consequence of the Cobb-Douglas form that F (k, r, 1), FKk, and FN are constant, implying that

c−FN = (FK − Ṅ/N)k is constant. Finally, this term being positive corresponds to the condition

α > a, which is the limit on population growth (through upper bounds on µ and φ) discussed by

Mitra (1983) and Asheim, Buchholz, Hartwick, Mitra and Withagen (2007).

Illustration in the Stollery–d’Autume–Schubert model. The Stollery–d’Autume–Schubert model

corresponds to assumptions (F1), (F2), (u1), and (u2). It follows from the Keynes-Ramsey rule
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(6) that the consumption discount factor develops as follows:

p0(t) =

∫ ∞

0
e
−

∫ t
0

(
FK+ u̇m

um

)
dτ
.

Furthermore, p0(t)um(M(t)/N(t), S(t)/N(t)) is the present-value price of investment and the

relative price of the flows of resource input and net investment of reproducible capital equals

FR(K(t), R(t), N(t)). Hence, in this model, the investment rule (3) becomes:

um

(
M(t)
N(t) ,

S(t)
N(t)

)
·
(
K̇(t)−FR(K(t), R(t), N(t))R(t)

)
=

∫ ∞

t
e
−

∫ τ
t

(
FK+ u̇m

um

)
ds(
u− umFN

)
Ṅdτ . (11)

We can check that following this rule actually leads to constant per capita utility by differentiating

both sides of this equation. Differentiating the left-hand side of (11) and using the Hotelling rule

(7) and the fact that K̇ = F (K,R,N)−M (so that K̈ = FKK̇ + FRṘ+ FN Ṅ − Ṁ), we get:

u̇m ·
(
K̇ − FRR

)
+ um ·

(
K̈ − FRṘ− ḞRR

)
= u̇m ·

(
K̇ − FRR

)
+ um ·

(
K̈ − FRṘ− FKFRR

)
+ usR

= u̇m ·
(
K̇ − FRR

)
+ um ·

(
FKK̇ + FN Ṅ − FKFRR

)
−
(
umṀ + usṠ

)
.

Differentiating the right-hand side of (11) yields

−
(
u− umFN

)
Ṅ +

(
FK +

u̇m
um

)
um ·

(
K̇ − FRR

)
= u̇m ·

(
K̇ − FRR

)
+ um ·

(
FKK̇ + FN Ṅ − FKFRR

)
− uṄ .

Since they are equal to each other by the investment rule, we obtain umṀ+usṠ = uṄ . This implies

that c = u(M/N,S/N) = u(M,S)/N is constant since ċ =
(
umṀ+usṠ

)
/N−u(M/N,S/N)Ṅ/N .

The efficient constant per capita consumption level is found by maximizing c subject to feasibility.

Finally, note that the investment rule (11) can be restated as

K̇(t)− FR(K(t), R(t), N(t))R(t) =

∫ ∞

t
e−

∫ τ
t FKds( u

um
− FN

)
Ṅdτ ,

by writing um(t) = um(M(t)/N(t), S(t)/N(t)) and using the fact that

um(t) = um(τ)e−
∫ τ
t

u̇m
um

ds .
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4 Analysis in a general model

We derive the investment rule (2) in a general model with multiple capital goods which has been

previously analyzed in Asheim, Hartwick and Mitra (2021, Section 3) and which in turn builds on

the framework of Asheim (2004).

Denote by K = (K1, . . . ,Kn) the non-negative vector of capital goods. This vector includes not

only the usual kinds of man-made capital stocks, but also stocks of natural resources, environmental

assets, human capital, and other durable productive assets. Corresponding to the stock of capital

of type j, Kj , there is a net investment flow: Ij = K̇j . Hence, I = (I1, . . . , In) = K̇ denotes the

vector of net investments.

The quadruple (C, I,K, N) is feasible if (C, I,K, N) ∈ Y, where Y is a convex set, with

free disposal of consumption flows. The set of feasible quadruples does not depend directly on

time. Thus, current productive capacity depends solely on the vector of capital stocks and labor.

As before, labor equals population, which is an exogenously given function satisfying (5). The

Stollery–d’Autume–Schubert model analyzed in Section 3 is a special case of this general model

by letting by letting (I1, I2) = (I,−R), (K1,K2) = (K,S) and allowing for free disposal of

consumption and net investment flows:

Y ={(C, I1, I2,K1,K2, N) ∈ R+ × R× R− × R3
+ :

there exists M ∈ R+ such that C ≤ Nu
(
M
N ,

K2
N

)
and M + I1 ≤ F (K1,−I2, N)} ,

where Y is convex since u and F are concave. In fact, Y is cone in the model of Section 3 since F

is homogeneous of degree 1, implying that the technology exhibits constant returns to scale.

Society makes decisions according to a resource allocation mechanism, C∗ : Rn+1
+ → R+ and

I∗ : Rn+1
+ → Rn, that assigns to any vector of capital stocks K and any population N a pair

(C∗(K, N), I∗(K, N)) satisfying that (C∗(K, N), I∗(K, N),K, N) is feasible. We assume that there

is a continuously differentiable function K : [0,∞) → Rn
+ being the unique solution to the dif-

ferential equations K̇(t) = I∗(K(t), N(t)) when K(0) equal the exogenously given initial stocks

K0 ∈ Rn
+. Hence, K(t) is the capital path that the resource allocation mechanism implements.

A path from initial stocks K0 ∈ Rn
+ is described by the functions (C(t), I(t),K(t), N(t)),

where C : [0,∞) → R+ and I : [0,∞) → R are determined by C(t) = C∗(K(t), N(t)) and

I(t) = I∗(K(t), N(t)) for all t ≥ 0. A path (C(t), I(t),K(t), N(t)) from initial stocks K0 ∈ Rn
+
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is called interior if C∗ : Rn+1
+ → R+ and I∗ : Rn+1

+ → Rn are continuously differentiable at all

(K′, N ′) such that (K′, N ′) = (K(t), N(t)) for some t ≥ 0. This implies that also C : [0,∞) → R+

and I : [0,∞) → Rn are continuously differentiable functions. A path (C(t), I(t),K(t), N(t)) from

initial stocks K0 ∈ Rn
+ is called competitive if

(C) for all t ≥ 0, there exist present-value prices of the flows of consumption, labor input, and

investment, p0(t), w(t), and p(t), with p(t) ≥ 0, such that (C(t), I(t),K(t), N(t)) maximizes

profits p0(t)C ′ − w(t)N ′ + p(t)I′ + ṗ(t)K′ over all (C ′, I′,K′, N ′) ∈ Y.

A competitive path is short-run efficient. By differentiating p0(t)C ′ − w(t)N ′ + p(t)I′ + ṗ(t)K′

with respect to N ′ and the components of K′ and recalling that C∗ and I∗ are continuously

differentiable at all (K(t), N(t)) along an interior path, it follows from (C) that, for all t ≥ 0,

w(t) = p0(t)
∂C∗(K(t), N(t))

∂N
+ p(t)

∂I∗(K(t), N(t))

∂N
, (12)

−ṗ(t) = p0(t)∇KC
∗(K(t), N(t)) + p(t)∇KI∗(K(t), N(t)) (13)

if a competitive path is interior. Since

∂C∗

∂N
· Ṅ +∇KC

∗ · K̇ = Ċ and
∂I∗

∂N
· Ṅ +∇KI∗ · K̇ = İ ,

we have that eqs. (12) and (13) imply that, at each t,

w(t)Ṅ(t)− ṗ(t)I(t) = p0(t)Ċ(t) + p(t)İ(t) . (14)

Since C = cN and I = iN , eq. (14) implies that

p0(t)ċ(t)N(t) = − d

dt

(
p(t)i(t)N(t)

)
−
(
c(t)− w(t)

)
Ṅ(t) .

Hence, along a short-run efficient path constant per capita consumption is equivalent to

− d

dt

(
p(t)i(t)N(t)

)
=
(
c(t)− w(t)

)
Ṅ(t) . (15)

Furthermore, as stated in the following proposition, if the net investment transversality condition

(1) is combined with competitiveness and interiority as a requirement of short-run efficiency, then

14



a path with constant per capita consumption throughout is equivalent to the investment rule (3)

holding throughout.

Proposition 1. Consider an interior and competitive path (C(t), I(t),K(t), N(t)) which satisfies

the net investment transversality condition (1) in the general model with multiple capital goods.

Then per capita consumption c(t) = C(t)/N(t) is constant at all t ∈ [0,∞) if and only if

p(t)i(t)N(t) =

∫ ∞

t

(
p0(τ)c(τ)− w(τ)

)
Ṅ(τ)dτ (3)

holds at all t ∈ [0,∞).

Proof. Let (C(t), I(t),K(t), N(t)) be an interior and competitive path which satisfies the the net

investment transversality condition (1) in the general model with multiple capital goods.

Only if. Assume that per capita consumption c(t) = C(t)/N(t) is constant at all t ∈ [0,∞).

Then eq. (15) holds at all t ∈ [0,∞) and the investment rule (3) follows through integration.

If. Assume the investment rule (3) holds at all t ∈ [0,∞). Differentiating both sides of (3)

yields eq. (15) which in turn implies that per capita consumption c(t) = C(t)/N(t) is constant.

5 Per capita investment rules

If Y is a cone—as exemplified in the Stollery–d’Autume–Schubert model of Section 3—then the

technology exhibits constant returns to scale, and the competitiveness condition (C) implies that,

for all t ≥ 0, maximized profits must be zero:

p0(t)C(t)− w(t)N(t) + p(t)I(t) + ṗ(t)K(t) = 0 , (16)

where p0(t)C(t) +p(t)I(t) is the present value of outputs, and w(t)N(t)− ṗ(t)K(t) is the present

cost of inputs, as −ṗj can be interpreted as the cost of holding one unit of capital of type j.

Under this additional assumption we derive per capita investment rules for constant per capita

consumption based on the analyses of Arrow, Dasgupta and Mäler (2003) and Asheim (2004) by

investigating conditions imposed on the development of the per capita capital vector k = K/N .

If the exogenous population development as a function of time is monotone, then we can—

following Arrow, Dasgupta and Mäler (2003)—assume that population is determined by the initial
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condition N(0) = N0 and the growth function:

Ṅ = ϕ(N) .

Let ν(N) denote the rate of population growth as a function of population size:

ν(N) =
ϕ(N)

N
.

Let ψ(t) denote the present value of population growth for per capita consumption.3 Then

ψ(t)ϕ′(N(t)) is the gain in terms of the value of population growth of increased population,

while p0(τ)c(τ) − w(τ) is the cost in terms of per capita consumption of increased population.

No-arbitrage implies that the decrease in the present-value price must equal the value of increased

population:

−ψ̇(t) = −
(
p0(τ)c(τ)− w(τ)

)
+ ψ(t)ϕ′(N(t)) .

Integration yields:

ψ(t) = − 1

ϕ(N(t))

(∫ ∞

t

(
p0c− w

)
ϕ(N)dτ

)
. (17)

Setting p(t)K̇(t) + ψ(t)Ṅ(t) = 0 corresponds to the investment rule (3) that we have already

discussed and involves invoking the net investment transversality condition (1). By using k̇(t) =

K̇(t)/N(t)− ν(N(t))k(t) we can express this investment rule in terms of per capita variables:

pK̇+ ψṄ

N
= pk̇+ ν(N) ·

(
pk+ ψ

)
= 0 . (18)

To obtain expressions for pk + ψ, note that under constant returns to scale it follows from (16)

that −d
(
pK
)
/dt = p0C − wN . By combining this equation with eq. (17) we have:

− d

dt

(
ψN

)
= −

(
ψ̇N + ψṄ

)
=
(
− (p0c− w) + ψϕ′(N)

)
N − ψν(N)N =

d

dt

(
pK
)
+ ν ′(N)NψN ,

using that ϕ′(N) = d
(
ν(N)N

)
/dt = ν ′(N)N + ν(N). Hence:

− d

dt

(
pK+ ψN

)
= ν ′(N)NψN .

3The following analysis is based on Asheim (2004, Section 7), which in turn builds on results in Arrow, Dasgupta
& Mäler (2003). The symbol ψ as used here corresponds to ψ̃ in Asheim (2004).
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By integrating and imposing a capital value transversality condition, it follows that:

p(t)K(t) + ψ(t)N(t) =

∫ ∞

t
ν ′(N)NψNdτ

and, by dividing through by N(t), we obtain a first expression for pk+ ψ:

p(t)k(t) + ψ(t) =
1

N(t)

(∫ ∞

t
ν ′(N)ψN2dτ

)
. (19)

By differentiating this equation we can obtain a second expression for pk + ψ, again using that

ϕ′(N) = d
(
ν(N)N

)
/dt = ν ′(N)N + ν(N):

− d

dt

(
pk+ ψ

)
= ν ′(N)ψN + ν(N)

(
pk+ ψ) = −ν ′(N)pK+ ϕ′(N)

(
pk+ ψ

)
.

By integrating and imposing a per capita capital value transversality condition, we obtain:

p(t)k(t) + ψ(t) = − 1

ϕ(N(t))

(∫ ∞

t
ν ′(N)pKϕ(N)dτ

)
. (20)

The results on per capita investment rules for constant per capita consumption are summarized

in the following proposition.

Proposition 2. Consider an interior and competitive path (C(t), I(t),K(t), N(t)) which satisfies

the net investment transversality condition (1) as well as capital value transversality conditions in

total and per capita terms, in the general model with multiple capital goods where the technology

exhibits constant returns to scale. Then per capita consumption c(t) = C(t)/N(t) is constant at

all t ∈ [0,∞) if and only if the following per capita investment rule holds at all t ∈ [0,∞):

p(t)k̇(t) = −ν(N(t)) ·
(
p(t)k(t) + ψ(t)

)
,

where

p(t)k(t) + ψ(t) =
1

N(t)

(∫ ∞

t
ν ′(N)ψN2dτ

)
= − 1

ϕ(N(t))

(∫ ∞

t
ν ′(N)pKϕ(N)dτ

)
.

If population growth is exponential, so that ν(N) is constant and ν ′(N) = 0, this simplifies to:

p(t)k̇(t) = 0 .

Following this investment rule in the one-sector model leads to a balanced growth path, where the
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per capita capital stock is held constant, as we have already discussed in Section 3. In the dhss

model, exponential population growth cannot be combined with non-decreasing and positive per

capita consumption. As we have discussed in Section 3 based on the analysis in Asheim, Buchholz,

Hartwick, Mitra and Withagen (2007) and Asheim, Hartwick and Mitra (2021), quasi-arithmetic

growth can be combined with constant per capita consumption leading to the investment rule

K̇ − FRR = KṄ/N . By using k̇ = K̇/N − kṄ/N , this investment rule has the following per

capita form:
k̇ − FRr = 0 .

Since −r = −R/S = Ṡ/N = ṡ+ sṄ/N > ṡ with positive population growth, this implies that

k̇ + FRṡ = −ν(N)FRs < 0 ,

where straightforward calculations imply that

Ṅ

N
= ν(N) = φµ

(
N0

N

) 1
φ

in the case where population growth is governed by the quasi-arithmetic growth function (10). We

see that the deviation from keeping the value of the changes of per capita capital stocks equal to

zero is consistent with our results. The reason is that, with quasi-arithmetic growth where

ν ′(N) = − 1
φ · ν(N)

N
< 0 ,

the investment rule of Proposition 2 expressed in terms of per capita variables implies that

p(t)k̇(t) < 0. In this manner the investment rule in terms of per capita variables is illustrated by

the special models considered in Section 3, provided that constant returns to scale are imposed.

6 Empirical application

We provide an empirical application of our theoretical results. We start by rewriting the investment

rules in Propositions 1 and 2. The right-hand side of Proposition 1 provides a requirement for

the value of per capita investments in terms of the difference between the present value of future

additional consumption needed to sustain per capita consumption and the contribution to current

productive capacity of future population growth. Per capita consumption c(t) is constant at all
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t ∈ [0,∞) if and only if:

p(t)i(t) =
1

N(t)

∫ ∞

t

(
p0(τ)c(τ)− w(τ)

)
Ṅ(τ)dτ

at all t ∈ [0,∞). The right-hand side of Proposition 2 provides a requirement for the value of per

capita capital accumulation that depends on whether future population growth accelerates or not.

Per capita consumption c(t) is constant at all t ∈ [0,∞) if and only if:

p(t)k̇(t) =
1

N(t)

∫ ∞

t
ν ′(N)pKϕ(N)dτ ,

at all t ∈ [0,∞).

In either proposition, empirical application requires population prospects for the entire future.

Note that Proposition 1 allows for any development of population as a function of time, while

Proposition 2 requires that population growth remain positive or negative. In Proposition 2, a

problem arises if a country experiences a demographic change from positive to negative population

growth. Such a cross-cutting case, as well as the underlying population dynamics being dependent

on time, is not allowed in a time-invariant Markovian population function on which Proposition 2

builds, as introduced by Arrow, Dasgupta and Mäler (2003). Hence, in the following we concentrate

on Proposition 1 and relegate further analysis of Proposition 2 to Appendix A.

6.1 Data and assumptions

Since prices p, p0, and w are given in present-value terms, the consumption discount rate, −ṗ0/p0

plays an important role. The consumption discount rate equals the marginal productivity of

capital—the rental price of a unit of K—which we assume to be constant at 4% in the base case.

This is a departure from the time-varying discount rate FK that supports efficient paths. To

compensate, as well as to check sensitivity, we also consider discount rates equal to 1% and 7%.

The current monetary value of the change in capital assets has been referred to as genuine

savings (GS) or adjusted net savings by the World Bank. We use the recent 10–year average of

GS (for 2008–2017) for various combinations of produced, natural, and human capital stocks, with

or without the damage from CO2 and particulate matter (PM) emissions. For the models we

have seen in the previous sections, the dhss model contains produced and (nonrenewable) natural

capital, while Stollery-d’Autume-Schubert model also includes the natural capital amenity value

of not letting CO2 and PM be emitted. To obtain GS in per capita form p(t)i(t), we simply divide
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GS by the number of population at t reported in the UN’s World Population Prospects 2019.

Population prospects from 2021–2100 for the middle fertility scenario, also from the UN’s

World Population Prospects 2019, is used to derive future population change Ṅ on the right-hand

side of Proposition 1. Population is assumed to be constant from 2100 on.

Per capita consumption is taken from final consumption expenditure contained in the World

Development Indicators database by the World Bank, divided by population. For the treatment

of the real wage, which equals marginal labor productivity in a competitive market, we follow

Yamaguchi (2014) to use the labor income share of output in the macroeconomy reported by

International Labour Organization (ILO). Proposition 1 looks at the consumption-wage gap in

per capita terms, which in the empirical analysis is assumed to be unchanged in the future; that

is, c(τ)−w(τ)/p0(τ) is constant in the integral. The constancy of the consumption-wage gap may

be empirically rationalized, as we are centrally interested in sustainable per capita consumption,

while the labor income share is known to be relatively stable across time as one of the stylized

facts by Kaldor (1957).4 Moreover, as we discussed in Section 3, the constant consumption-wage

gap is consistent with a special case of a balanced growth path of the one-sector model.

Finally, we have to restrict our analysis to the current investment in 2008–2017, although

Propositions 1 and 2 suggest that our investment rules be applied to all the time periods t in

[0,∞). Data sources and assumptions are summarized in Table 1.

Table 1: Data sources

Data Description Source
c final consumption expenditure divided by population WDI
w labour share of GDP (wages & social protection transfers) per population ILOSTAT and WDI
i adjusted net savings (GS) divided by population WDI
k per capita produced, human, and natural capital, and net foreign assets World Bank (2021)
K produced, human, natural capital, and net foreign assets World Bank (2021)
N total population for 1971–2020 World Population Prospects 2019
N total population for 2021–2100, Medium fertility variant World Population Prospects 2019

Note: The unit for c, w and i is constant 2015 USD, and the unit for k and K is in constant 2018 USD. WDI stands
for World Development Indicators. Adjusted net savings is calculated as GS = net national savings + educational
expenditure - energy depletion - mineral depletion - CO2 damage - PM damage.

4We should also note that the labor income share is known to be on the decline in recent decades in many
parts of the world (Karabarbounis and Neiman, 2014). In addition, the labor income share tends to be lower in
lower-income countries, where self employment is more common. Given all this, our assumed constancy of the
consumption-wage gap might tend to be under/over-estimates in high/lower-income countries.

20



6.2 Results

Table 2 and Figure 1 show required investment as stipulated by Proposition 1, as opposed to actual

genuine savings per population averaged over the period 2008–2017 in select countries. In Table

2, the second to fifth columns show actual genuine savings divided by population for combinations

of investment in capital assets, starting from only produced and natural capital, incrementally

incorporating human capital and CO2 and PM damage. The last column shows the levels of

required investment according to Proposition 1.

We first note that genuine savings have been recently positive for all the studied countries,

if we use the measure inclusive of all capital assets (see the fifth “ALL” column). There are a

few exceptions, depending on which capital assets are captured by GS. Even if we look at the

value of per capita investments in only produced and natural capital—in correspondence with the

dhss model—only Kenya and the United Kingdom have not experienced sustainable development,

according to the conventional interpretation of GS.

In view of Proposition 1 to sustain per capita consumption, however, this optimistic tendency

is overturned: actual per capita investments are less than required in countries where population

growth is expected to be high in the future and the consumption-wage gap is large vis-à-vis per

capita GS. In the three sub-Saharan countries, Nigeria, Kenya, and South Africa, per capita GS

(in its most enhanced form) do not meet the investment that is required for sustainable per capita

consumption. Also, our results show that just because population is expected to increase does

not mean per capita GS is insufficient to support per capita consumption, as in Botswana, Brazil,

Indonesia, and India. Moreover, if population is forecast to decrease, required investment even

turns negative, as in China, Germany, Japan, and Russia.

Although discounting does not play as critical a role as in dynamic average utilitarianism

(Yamaguchi, 2018), it still changes the absolute value of required investment. Table 3 and Figure

2 show sensitivity analysis with regard to discounting. Changing the discount rate from 4% to 7%

lowers the bar of required investment for most countries, except where population is expected to

decline, as in Brazil, China, Germany, Japan, and Russia.

The lower discounting case might be more plausible and interesting in our particular context,

because with per capita consumption unchanged, the consumption discount rate would be reduced

to the pure rate of time preference (i.e., the utility discount rate) in the Ramsey formula. The

discount rate set at 1% presents a sterner result than the 4% case, as expected. On top of the
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Table 2: Actual and required per capita genuine savings

Actual Required
K&S H X ALL Prop.1

Australia 2,093 2,630 -531 4,192 2,503
Botswana 962 572 -110 1,424 710
Brazil 580 486 -78 988 105
Canada 1,564 2,056 -463 3,156 1,339
Chile 550 559 -151 958 116
China 1,946 120 -268 1,797 -4
Ecuador 430 218 -102 547 396
France 1,519 1,909 -172 3,256 149
Germany 3,671 1,835 -293 5,214 -85
Indonesia 296 90 -77 309 138
India 307 43 -69 282 33
Japan 777 1,022 -269 1,530 -809
Nigeria 147 20 -101 66 496
Kenya -32 64 -26 7 374
Norway 10,398 4,808 -265 14,941 2,052
Russia 699 330 -325 703 -79
Saudi Arabia 3,585 1,446 -608 4,422 1,945
United States 808 2,549 -591 2,766 1,579
United Kingdom -1,061 2,264 -246 957 838
South Africa 7 315 -283 39 418

Note: Unit: constant 2015 USD. In this table, K&S, and H stand for produced, natural, and
human capital, respectively, while X means the inclusion of CO2 and particulate matter (PM)
damage. Thus, ALL corresponds to net national savings plus educational expenditure minus
energy and mineral depletion minus CO2 and PM damage.
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Figure 1: Actual and required per capita genuine savings

Note: Unit: constant 2015 USD. The bars show the value of per capita investments in produced
and natural (K&S), and human capital (H), and CO2 and PM damage (X). The dots represent
the total genuine savings per person (ALL), and the required genuine savings per person suggested
by Prop.1.
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Table 3: Actual and required per capita genuine savings: sensitivity analysis

Actual Required by Prop.1
ALL 1% 4% 7%

Australia 4,192 5,408 2,503 1,566
Botswana 1,424 1,269 710 474
Brazil 988 -68 105 114
Canada 3,156 2,891 1,339 845
Chile 958 6 116 113
China 1,797 -31 -4 2
Ecuador 547 621 396 278
France 3,256 118 149 130
Germany 5,214 -312 -85 -11
Indonesia 309 183 138 104
India 282 32 33 27
Japan 1,530 -1,929 -809 -450
Nigeria 66 1,196 496 281
Kenya 7 749 374 234
Norway 14,941 4,254 2,052 1,302
Russia 703 -181 -79 -41
Saudi Arabia 4,422 2,473 1,945 1,489
United States 2,766 3,215 1,579 1,013
United Kingdom 957 1,461 838 589
South Africa 39 658 418 296

Note: Unit: constant 2015 USD. “ALL” means per capita GS inclusive of produced, natural, and
human capital, as well as CO2 and PM damage.

three sub-Saharan countries with insufficient GS in view of Proposition 1 with 4% discounting,

Australia, the United States, and the United Kingdom join the club of insufficient investors. This

surprising result about the high-income countries can be interpreted as: if a relatively large portion

of (already high) per capita consumption is financed by non-labor income, then it is necessary to

save more for the future, as an additional population is expected to require more in consumption

than it contributes to labor.
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ALL 1% 4% 7%

Figure 2: Actual and required per capita genuine savings: sensitivity analysis

Note: Unit: constant 2015 USD. The bars show the actual value of per capita GS. The dots
represent required per capita GS under different discount rates: round shape (1%), square shape
(4%), and triangle shape (7%). Norway’s actual per capita GS is over 8,000 USD. See Table 3.
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7 Concluding remarks

Propositions 1 and 2 lay two different foundations for an empirical strategy for estimating the

maximal per capita consumption in real economies with population growth. Proposition 1 provides

a requirement for the value of per capita investments in terms of the difference between the

present value of future additional consumption needed to sustain per capita consumption and the

contribution to current productive capacity of future population growth. Proposition 2 provides

a requirement for the value of per capita capital accumulation that depends on whether future

population growth accelerates or not. In both cases, the sustainability of current per capita

consumption depends also on the development of future population growth. With afterthought,

this makes sense. Our empirical application to recent genuine savings and consumption data

raises some concerns about sustaining per capita consumption when future population growth is

combined with a large per capita consumption-wage gap. Despite serious data challenges, we hope

that our forward-looking exercise, utilizing future population prospects, might provide a useful

indication of the requirements for genuine savings needed to sustain per capita consumption.

The models we have considered have exogenous population growth. Hence, no issues of popu-

lation ethics are involved. Also, with an infinite horizon and a population that is non-decreasing

or does not decrease too fast, total (i.e., current and future) population is infinite and will re-

main so, when the length of life is finite. Hence, the total population does not change over time.

The total discounted utilitarian criterion trades off consumption for some individual now with

consumption for some individual in the future, but where the utility of the future individual is

discounted. This might make more sense than using an average discounted utilitarian criterion

where the weight of the utility of a future individual is further reduced by dividing by the greater

temporal population at that point in time. However, such arguments for total discounted utili-

tarianism do not contradict that we might be interested in the question of whether current per

capita consumption can be sustained indefinitely. Hence, we believe that the investment rules we

discuss in our paper are also of interest under a total discounted utilitarian criterion. The rules—if

used at one point in time—are generalizations of the genuine savings indicator as an indicator of

sustainability, while the rules—if imposed at all future times—are generalizations of Hartwick’s

rule as a characterization of the maximal constant per capita consumption path. The question

of whether dynamic welfare increases over time (as posed by Arrow, Dasgupta and Mäler, 2003;

Asheim, 2004) concerns whether population growth can compensate for decreasing per capita con-
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sumption, which is different from—as we do here—establishing investment rules for non-decreasing

per capita consumption.

Finally, we note that the investment rules considered in this paper do not rely on an assumption

of a constant utility discount rate as in the case where the underlying welfare criterion is total

utilitarian. Rather, it is sufficient that the path considered is efficient and thus price supported.

This minimum requirement also justifies the application of our theoretical results to population

estimates in suboptimal economies in the real world.

A Some empirics for Proposition 2

Proposition 2 describes the investment rule as the value of the change in per capita capital assets

being equal to a portion of the value of capital assets in the future in case of non-exponential

population growth. For the right-hand side of Proposition 2, we use the sum of the value of

produced, natural, human, and net foreign capital reported by the World Bank (2021). For the

left-hand side, two strategies might be considered. One strategy is to rely on the relationship

k̇ = i−kṄ/N where GS divided by population is used for i and the value of capital assets is used

for k. The other strategy is to use the value of the change in per capita capital assets directly in

k̇. We only report the results according to the first methodology, although in principle, the same

set of capital assets should be recorded on both sides of the equation.5

Proposition 2 also requires that individual time-invariant Markovian population growth func-

tions be estimated to compute the extra investment. In the notation of Arrow, Dasgupta and

Mäler (2003), we assume a simple logistic curve for the population growth function:

Ṅ = ϕ(N) = ν(N)N = AN(N∗ −N) ,

where N∗ denotes a stable steady-state level of population. A > 0 is sometimes called the intrinsic

growth rate in the bioeconomics literature. The derivative of the rate of population growth simply

becomes ν ′(N) = −A < 0.

5In theory, genuine savings and the monetary value of the change in capital assets are identical when there
is no population change. In practical accounting, they have slightly different categories, as GS is an extension
of conventional national accounting in its spirit. For instance, the change in agricultural land is not considered
in genuine savings, while carbon emissions do not enter capital accounting. See World Bank (2021) for details.
Moreover, within the second methodology, as it turns out, investment required by Proposition 2 is typically negative,
due to the specification of ν(N), so using different classes of capital assets do not change our qualitative results,
unless net foreign assets become largely negative.
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Using the past population in 1971-2020 as well as medium fertility forecasts for population

in 2021-2100, we approximate parameters of population growth function for individual countries.

Parameters and coefficients of determination (of somewhat varying degree) are reported in Table

4 below. The coefficients of determination (R2) tend to be higher in emerging economies and the

U.S., and lower in western Europe and Japan.

Table 4: Population growth functions estimates for the medium fertility case

Country A× 109 R2 N∗ N(2020)

Australia 0.398 0.343 51,778 25,500
Botswana 8.988 0.841 4,355 2,352
Brazil 0.193 0.371 217,693 212,559
Canada 0.280 0.428 67,267 37,742
Chile 2.015 0.437 19,622 19,116
China 0.015 0.082 1,368,494 1,439,324
Ecuador 1.591 0.859 25,682 17,643
France 0.471 0.602 67,627 65,274
Germany -0.150 0.034 81,985 83,784
Indonesia 0.126 0.822 338,516 273,524
India 0.028 0.634 1,606,036 1,380,004
Japan -0.174 0.185 124,183 126,476
Nigeria 0.035 0.997 926,092 206,140
Kenya 0.291 0.976 134,266 53,771
Norway 1.154 0.275 10,840 5,421
Russia -0.057 0.016 142,391 145,934
Saudi Arabia 1.388 0.788 44,734 34,814
Unites States of America 0.045 0.798 468,058 331,003
United Kingdom 0.133 0.120 88,751 67,886
Venezuela 1.294 0.469 36,902 28,436
South Africa 0.497 0.896 81,922 59,309

Note: Unit: thousands of population for N∗ and N(2020).

As mentioned, a tricky but realistic scenario is the population growth turning from positive to

negative, which is experienced or expected in many countries, but which is not consistent with a

time-invariant Markovian population growth function. Thus, we focus on those countries where

such cross-cutting change is not expected for some time in the future and the goodness of fit is

high (R2 > .75).6 This reduces our sample to only eight countries.

As Figure 3 shows, the right-hand side of Proposition 2 (indicated by square dots) is negative

6If there were no cross-cutting cases from positive to negative growth, and if the dynamics were not time-
dependent, then a negative population growth could have also been achieved by assuming N > N∗.
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Figure 3: Actual and required change in the value of per capita capital stocks for Proposition 2

Note: Unit: USD. The bars show the actual value of the change in per capita capital stocks (i.e.,
per capita GS net of per capita capital stocks multiplied by population change). The dots represent
required value of the change in per capita capital stocks. In computing per capita capital stocks,
produced, human, and natural capital by World Bank (2021) are included.

for all these countries. This is due to the fact that in most countries population growth rate is

estimated to decrease as population increases (i.e., ν ′(N) < 0). Nonetheless, actual investment in

terms of the change in per capita capital stocks (indicated by bars) has been insufficient in view

of Proposition 2, with the only exception of Botswana. Indeed, the magnitude of the effect of

population deceleration turns out to be non-negligible in most of these countries.
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