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Abstract
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1 Introduction

With the start of the EU emissions trading scheme in 2005, and further trading

schemes in several states and under the Kyoto Protocol ahead, it comes ap-

parent that this instrument has become one of the central means in complying

with greenhouse gas emissions obligations. At the start of each of the firm-level

trading schemes, initial allowances will be allocated to the firms, usually based

on historic emissions. Since this initial allocation of greenhouse gas allowances

to firms is primarily based on the firms’ own emissions reports, it is commonly

agreed that a thorough verification of these reports is necessary.

The problem of the verification of self-reported emissions data resembles the

one of tax evasion, where firms have to pay a tax based on their (voluntarily)

reported income. Following the approach that Chander and Wilde (1998)

have used for the characterization of optimal income tax and enforcement

schemes, I set up a principal-agent model with costly auditing, exogenously

constrained penalties, and risk neutral firms and government. Verification

schemes are introduced which consist of three elements: Firstly, allowances

are allocated on the basis of the reports of the firms via an allocation function.

Secondly, audit probabilities are determined for each firm, based as well on

the reported data. Thirdly, penalties are imposed for overstatements.

An optimal verification scheme fulfills two requirements: high verification

standards, which are in this model given by incentive compatibility, and effi-

ciency, where an efficient scheme has the property, that, for a given penalty

structure, incentive compatibility can not be achieved with less auditing. I

derive and discuss the interplay between the allocation function, audit proba-

bility and penalty structure in efficient verification schemes.

The analysis deviates from the existing literature on emissions trading,

where aspects like the comparison of emissions trading with other policy instru-
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ments or the international emissions trading scheme under the Kyoto Protocol

received much attention, like in Hahn and Hester (1989), or Montero

(2005), and others. It also does not belong to the field of compliance and

enforcement1, since firms incur no costs for reporting false data, unless they

are audited and punished. The literature on the verification of firm data in

emissions trading schemes mainly concentrates on technical or legal issues, not

on economic efficiency. In the model that I present, the introduction of penal-

ties for overstatements allows the reduction of audit costs. Too high penalties

are, however, likely to be politically not desirable, and therefore the efficiency

condition is further specified.

For the comparison with the results in the similar tax evasion model, I an-

alyze a penalty that is proportional to the difference between the true and

the reported value. Under such a penalty there are two allocation/audit-

combinations that fulfill the required standards and in addition lead to ef-

ficiency. These combinations are (i) a regressive allocation of allowances com-

bined with an audit probability that is actually decreasing in the reported pa-

rameter and given by a multiple of average allocations, and (ii) a progressive

allocation of allowances combined with an audit probability that is increasing

in the reported parameter and given by a multiple of marginal allocations.

This implies in particular, that for a proportional allocation of emission al-

lowances, which can be observed in reality, the audit probability should be the

same for all reports, i.e. there is no need to audit higher reports stronger, if

the penalty and audit probability are chosen respectively.

The corresponding result in the tax evasion model differs in two aspects.

Firstly there is only one efficient tax/audit-combination, and secondly the

1For an overview over the extensive literature on this see Heyes (2000), and Kaplow
and Shavell (1994) for a model with self-reporting of the compliance status, where the
verification is conditioned on these reports.
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audit probability in efficient schemes is determined by the marginal tax rate

and never by average taxes.

The remainder of this paper is organized as follows: In chapter 2 the basic

model is set up and the notion of efficiency is introduced. In chapter 3 I

characterize efficient verification schemes in the grandfathering process of an

emissions trading scheme. In chapter 4 I compare the results to the respective

results of the corresponding tax evasion model and in chapter 5 I conclude.

2 Analytical Framework

In the model the true emission value θ ∈ [0, θ̄] of a firm is given exogenously and

considered to be private information of the firm. Emission allowances are then

grandfathered to the firm, solely based on its own report of its emissions. The

model sets in at the point where the firm reports an emission value θ̂ ∈ [0, θ̄]

to the government. Since the firm may have incentives to report a value θ̂ 6= θ,

the government may prefer to perform costly audits and to impose penalties

for misreporting. In this principal-agent framework it is assumed that the

principal and agent are risk-neutral and that there is no commitment problem.

The government introduces a verification scheme (e(·), a(·), f(·)), which

consists of the allocation function,

e : [0, θ̄] → IR+, (1)

the audit probability, which also depends on the firm’s report θ̂,

a : [0, θ̄] → [0, 1], (2)

and the penalty function or fine, which depends on the firm’s report θ̂ as well
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as the true emission value θ,

f : [0, θ̄]× [0, θ̄] → IR+. (3)

Initial allocations of emission allowances, as well as fines, are non-negative.

All functions are assumed to be continuous, but differentiability is not required.

Thus, a firm which reports θ̂ receives an initial amount of emission allowances

e(θ̂). In addition, it will be audited with probability a(θ̂) and will then have

to pay the fine f(θ̂, θ). It is assumed, that the true parameter is discovered, if

a firm is audited2. The government, which determines the audit probability,

also pays the audit costs3.

In this model the penalty also consists of GHG allowances and represents

the amount of allowances that is transferred from the firm to the government.

Expected allowances for the firm are then given by initial allocations minus

expected penalties:

π(θ̂, θ) = e(θ̂)− a(θ̂)f(θ̂, θ). (4)

Since costs are lump sum and since allowances are grandfathered free of charge,

it is the objective of the firm to choose θ̂ such that expected allowances are

maximized.

The objective of the government is to construct the verification mechanism

in an optimal way, where optimality is characterized by incentive compatibility

and efficiency, and abstracts from redistributive considerations. The single

components of the mechanism are required to fulfill certain social norms, which

2In addition to the assumption that it is technically possible to observe the true emission
value, this includes the assumption that bribing does not take place.

3The placing of the burden of the actual audit costs onto the side of the government has
the advantage that the question of the appropriate audit frequency is separated from the
firms’ problem of minimizing audit costs. This modeling does not conflict with the perception
that audit costs should be paid by firms. In such a case the underlying assumption of lump
sum payments from firms to the government holds.

5



will lead to a set of feasible verification schemes which is displayed below.

The choice of the penalty function plays a crucial role in the analysis. To

start off, I consider the penalty function to be a choice variable of the planner,

subject only to slight restrictions resulting from the discussions in the political

context. It should provide neither a reward nor a fine for understating or truth-

telling, i.e. f(θ̂, θ) = 0 should hold for θ̂ ≤ θ. This implies that honest reports

are not treated differently depending on whether they are audited or not. In

addition, the penalty should “fit the crime”, i.e. the penalty function should

be bounded, and it should be nondecreasing in the degree of misreporting.

Truthful reporting will always lead to nonnegative expected allowances,

however, (4) may become negative if θ̂ > θ and the allocation function is

small, or the expected penalty high enough. Since allocations and penalties

are measured in allowances and since firms cannot give more allowances than

they receive, it is assumed that “negative allowances” can be transferred into

monetary equivalents in order to assure that the penalty is credible.

The feasibility conditions are given by:

e(0) = 0, (5)

e(·) 6≡ 0, (6)

f(θ̂, θ) = 0 ∀ θ̂ ≤ θ, (7)

f(·) nondecreasing in the degree of misreporting (8)

and bounded

A firm which reports zero emissions will not receive any allowances, which is

given by equation (5). Equation (6) simply technically rules out the possibility

of not allocating any allowances. (7) and (8) follow from above.

In addition, two technical conditions are introduced, which are necessary
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to make use of the revelation principle:

π(θ̂, 0) ≤ 0 ∀ θ̂ ∈ [0, θ̄], (9)

f(x, z) ≤ f(x, y) + f(y, z) ∀ x, y, z ∈ [0, θ̄] (10)

with x ≥ y > z.

Inequality (9) ensures, that a firm with zero emissions has no incentive to

overstate, since it does not expect to receive any allowances. Together with

a(·) ∈ [0, 1] this implies

e(θ̂) ≤ a(θ̂)f(θ̂, 0) ≤ f(θ̂, 0) ∀ θ̂ ∈ [0, θ̄]. (11)

For the specific penalty function used later on in the analysis, condition (10)

implies subadditivity of the penalty function. Thus, the penalty function has

the property that the fine for a single “large” deviation is small relative to the

fine of other combinations of “smaller” deviations that add up to the large

deviation. Such a penalty might restrain firms from splitting their plants and

making overstatements in the single reports.

The set F of feasible verification mechanisms is given by:

F = {(e, a, f) : (5) to (10) hold}. (12)

One may argue, that the problem of the allocation of the initial allowances

to firms is not a principle-agent problem, since there are many firms and since

firms know that there is an upper limit of allowances and thus act strategically

and take their rivals’ actions into consideration. Two explanations, however,

justify the choice of the principle-agent framework. The intuitive explanation

is that each firm receives an amount of greenhouse gas allowances that is
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small relative to the number of total allowances. The other is a technical

explanation. Suppose firms considered that there is a cap on allowances and

that the other firms’ decisions have an influence on how much they get and

vice versa. This would result in a rent-seeking contest where players compete

for emission allowances. It can then be shown, however, that it is optimal for

firms not to take their rivals’ actions into consideration4. The result is driven

by the fact that the penalty function f does not depend on the other firms’

actions.

In some parts of the analysis it will be necessary to consider the entire

firms in the economy. The set-up for this is as follows: In the model there are

n firms, indexed by i, which are distinguished only by their emission values.

The emission values θ are distributed over the interval [0, θ̄] according to a

common probability density function g : [0, θ̄] → IR+. The government knows

the probability distribution of the emission parameters, but not the realizations

of specific firms. If the sum over all firms’ initial allowances exceeds the cap

on overall allowances, it is assumed that they can be adjusted proportionally

via a compliance factor. Such a procedure was proposed in the context of the

EU emissions trading scheme by Harrison and Radov (2002).

All mechanisms in F have the characteristic that firms are asked to report

their emissions parameter, so for each firm the message space coincides with

the set of possible types [0, θ̄]. Such mechanisms are called direct revelation

mechanisms. A direct revelation mechanism is said to be incentive compatible

if it is optimal for each firm to report its emission parameter truthfully. In

the context of this analysis firms will report truthfully if this maximizes their

4Eckermann and Guse (2006) provide a proof of this result
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expected allowances, i.e. if

π(θ, θ) ≥ π(θ̂, θ) ∀ θ̂, θ. (13)

The government performs costly audits in order to induce truth-telling by

the firms. I make the assumption that it is considered politically desirable

that all firms report their emissions truthfully. However, from an economic

perspective the restriction of the analysis to incentive compatible mechanisms

can only be approved if it is assured that no, possibly optimal, outcome is lost.

The tool that is usually applied to ensure this, is the revelation principle. It

states that without loss of generality the government can restrict its attention

to incentive compatible direct revelation mechanisms.

In the context I consider, the standard arguments do, however, not apply

due to requirements that originate from political considerations. I do not

foresee rewards for truthful reporting5. Feasibility conditions (5) and (7) fix

the image of the allocation- and the penalty function respectively at the point

zero and make additional conditions necessary, see appendix. From the proof

of Lemma 1 it becomes apparent, that (9) and (10) are sufficient to ensure that

without loss the analysis can be restricted to incentive compatible mechanisms

in F .

Lemma 1 Let (e, a, f) ∈ F . Then there exists an incentive compatible reve-

lation mechanism (e′, a′, f ′) ∈ F such that e′ is nondecreasing and (e′, a′, f ′)

replicates the equilibrium outcome arising from (e, a, f).

The proof is given in the appendix. Note that e nondecreasing is not an

5While in the tax evasion literature several authors establish the result that the optimal
solution requires that there should be rewards for honest reporting (see Mookherjee and
Png (1989) or Cremer and Gahvari (1996)), Boadway and Sato (2000) also point
out, that in the absence of rewards for truthful reporting there is no guarantee that the
revelation principle will apply.
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assumption, but an implication of the model.

It is assumed that firms report their emission parameter truthfully if report-

ing truthfully is optimal. Due to Lemma 1 the analysis can then be restricted

to mechanisms (e, a, f) ∈ F which satisfy:

1. e is nondecreasing:

θ̂i > θ̂j ⇒ e(θ̂i) ≥ e(θ̂j), (14)

2. incentive compatibility holds:

e(θ) ≥ e(θ̂)− a(θ̂)f(θ̂, θ) ∀ θ̂, ∀θ. (15)

Denote this subset of mechanisms with FI :

FI = {(e, a, f) : (e, a, f) ∈ F and (14) and (15) hold}. (16)

Conditions (14) and (15) imply that a(·) 6≡ 0, unless e(·) ≡ const. So, when-

ever the allocation of allowances is differentiated with respect to the emissions

of the firms (which of course is the intention), some auditing is necessary to

achieve incentive compatibility.

High verification standards, which are in this model represented by in-

centive compatibility, are one of the characteristics that an optimal verifica-

tion scheme should possess. The other feature is efficiency. Efficiency in this

model is defined for exogenously given penalty functions. An efficient verifi-

cation scheme has the characteristic, that incentive compatibility can not be

achieved with less auditing. The formal definition is given by:

For any given penalty function f , a mechanism (e, a, f) ∈ FI is efficient in
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FI if there is no other mechanism (e′, a′, f) ∈ FI with

e′(·) ≥ e(·), a′(·) ≤ a(·) and a′(·) 6= a(·). (17)

Other things being equal, smaller audit probabilities are always preferred,

as they produce lower audit costs. The idea is, that total audit costs will be

as low as possible, if they are as low as possible for every single firm.

3 Grandfathering

Incentive compatibility (15) is equivalent to

a(θ̂)f(θ̂, θ) ≥ e(θ̂)− e(θ) ∀ θ̂, ∀ θ. (18)

In order to induce truth-telling by the firms the government has to choose the

allocation function e, the penalty function f , and the audit probability a such

that for each firm the expected fine is not smaller than the “gross gain from

misreporting”, i.e. the gain the firm made if there were no penalties or if it

were not audited. Since a ≤ 1 this implies in particular that for all mechanisms

element FI it holds f(θ̂, θ) ≥ e(θ̂)− e(θ) for all θ̂ ∈ [0, θ̄]. Note that firms will

not underreport, since e is nondecreasing and f(θ̂, θ) = 0 for θ̂ < θ. In the

following the analysis therefore focuses on ensuring (15) for θ̂ > θ.

A firm which reports a value θ̂ may thus truly have any emissions value

θ < θ̂. With respect to the audit probability that guarantees incentive com-

patibility, (15) implies

a(θ̂) ≥ sup
θ<θ̂

e(θ̂)− e(θ)

f(θ̂, θ)
∀ θ̂. (19)

11



For any given pair of allocation and penalty functions, the audit probability

for a reported type θ̂ has to be large enough to outweigh the potential expected

gain for any true type θ < θ̂. (19) states that this is achieved by setting the

audit probability for any report at least equal to the largest possible ratio of

gross gain to penalty for an overstatement. It then holds:

Proposition 1 Let (e, a, f) ∈ FI be efficient in FI . The audit probability is

given by

a(θ̂) = sup
θ<θ̂

e(θ̂)− e(θ)

f(θ̂, θ)
∀ θ̂. (20)

The proof is given in the appendix. The result is intuitive: as stated above,

the audit probability has to be large enough to induce incentive compatibility

for any possible type θ < θ̂. However, an audit probability that is higher than

this minimal necessary one is inefficiently high, in the sense that incentive

compatibility can already be achieved with less auditing and therefore less

audit costs. Efficiency can therefore only be achieved if equality holds in (19).

Proposition 1 makes the strong interrelation apparent that the three func-

tions have in an efficient verification scheme. Not surprisingly is the audit

probability lower for a higher penalty. This reflects the well known result that

enforcement costs are kept at the minimum, if penalties for misreporting are

increased as far as possible and thus the probability of costly auditing is as

small as possible (Becker (1968)). The schemes I consider are therefore

necessarily second-best. They result from the assumption that too high penal-

ties are likely to be politically not desirable. In addition there might be small

unintentional errors by the firm. The current political regulations foresee no

explicit punishment.

For the further analysis a proportional penalty is used, which is given by

fprop(θ̂, θ) = max{0, γ(θ̂ − θ)}. (21)
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The idea behind such a penalty structure is that higher absolute deviations

from the true emissions value should be penalized stronger, independent of

whether the true emissions value is high or low. Proportional penalties lead

to expected allowances of

πprop(θ̂, θ) =





e(θ̂)− a(θ̂)γ[θ̂ − θ] if θ̂ > θ

e(θ̂) if θ̂ ≤ θ,
(22)

From Proposition 1 it follows that the audit probability of an efficient verifi-

cation scheme (e, a, fprop) ∈ FI is given by

a(θ̂) = sup
θ<θ̂

e(θ̂)− e(θ)

θ̂ − θ

1

γ
∀ θ̂. (23)

If more is known about the structure of the allocation function, the audit

probability can be further specified:

Proposition 2 Let (e, a, fprop) ∈ FI be an efficient mechanism in FI .

1. For concave allocation functions e, the audit probability a is nonincreas-

ing in the reported parameter and given by

a(θ̂) =
e(θ̂)

θ̂γ
. (24)

2. For convex functions e, it is nondecreasing and given by

a(θ̂) =
1

γ
D−e(θ̂), (25)

where D− denotes the left-hand derivative.

3. In particular for linear allocation functions e, the audit probability a is
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constant. Let e(θ̂) = λθ̂, λ ∈ IR+, then

a(θ̂) =
λ

γ
. (26)

The proof is given in the appendix. As expected, a stronger penalty (i.e.

a higher γ) leads to a lower audit probability. The interplay between ini-

tial allocations and audit probabilities depends on the form of the allocation

function.

A concave allocation function describes a regressive allocation of allowances.

The at first sight most striking result is surely that in an efficient verification

scheme the audit probability is nonincreasing (strictly decreasing in the case of

a strictly concave allocation function) in the reported parameter. This means

that companies which present higher emission reports are less likely to be au-

dited, which seems to contradict the aim of detecting large deviations. One

has to consider, however, that the penalty and allocation function were cho-

sen in a way that firms have incentives to announce their true values. This

implies that a higher report does not stand for a bigger false report, but for a

higher true value. Reporting a bigger false report than the true value is too

costly for the firms, since additional gains from overstating are outweighed by

larger penalties. Auditing higher reports with a higher probability would then

mean that those reports were audited with a probability that is higher than

necessary for achieving incentive compatibility, which, of course, can not be

efficient.

Equation (24) shows that the audit probability, thought of as a decimal

number, should then be given by a multiple of average allocations, where the

multiplier is determined by the strength of the penalty function. Consider
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exemplary the case that γ = 1, i.e. the penalty function is given by

fprop(θ̂, θ) = max{0, (θ̂ − θ)}. (27)

In this case the audit probability should equal average allocations. If, for

example a firm reports the emission value θ̂ = 1000 and allowances are allo-

cated such that e(1000) = 900, the respective firm should be audited with a

probability of 90%.

Figure 1 below displays a concave and nondecreasing allocation function e,

corresponding to a regressive allocation of allowances. γ is assumed to be 1,

therefore the audit probability is equal to the average allocation of allowances,

as shown in (24). In the figure it is given by the slope of the straight line

through (0,0) and (θ̂i, e(θ̂i)). It can easily be seen that a higher reported value

(e.g. θ̂2 instead of θ̂1) leads to a lower audit probability.

-

6

@@I

@@I

slope: e(θ̂1)

θ̂1
= a(θ̂1)

slope: e(θ̂2)

θ̂2
= a(θ̂2)

θ̂i

e(θ̂i)

e

e(θ̂1)

θ̂1

e(θ̂2)

θ̂2

Figure 1: Regressive allocation of allowances

If the penalty is stronger than the difference between the reported and the

true value, i.e. if γ > 1, the audit probability will be accordingly lower. Given
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the numerical example from above, a penalty factor of γ = 10 would reduce

the audit probability that is necessary to induce incentive compatibility to 9%.

A simple insertion of a penalty factor γ < 1 seems to lead to contradic-

tions in the above numerical example at first sight: a factor of γ = 1/2, for

example, would lead to an audit probability of 180%, which is of course not

possible. This example points up the significance of feasibility condition (9),

which requires incentive compatibility for firms with no emissions (θ = 0) and

implies (11). For proportional penalties the latter is given by

e(θ̂) ≤ a(θ̂)γθ̂ ≤ γθ̂ ∀ θ̂ ∈ [0, θ̄]. (28)

It can immediately be seen that in the numerical example above e(1000) =

900 6≤ 1
2
1000 = 500, thus such a verification scheme is not feasible.

It is interesting to note that a higher initial allocation of allowances should

be combined with higher penalties.

A convex allocation function, on the other hand, describes a progressive

allocation of emission allowances. Efficiency then implies the reverse effect on

audit intensity: a plant which reports higher values will be audited with a

higher probability. Equation (25) shows that the audit probability should be

given by a multiple of the left-hand derivative, and of the derivative where

it exists. The multiplier is again determined by the strength of the penalty

function. The relationship between a convex allocation function and the audit

probability in an efficient verification scheme is illustrated in Figure 2.

The displayed allocation function is differentiable, therefore the audit prob-

ability for report θ̂ is given by the first derivative of e in θ̂, multiplied with

1
γ
. It is easily seen, that the audit probability is increasing in the reported

parameter. Exemplary it is shown to be higher for the report θ̂2 than for the

lower report θ̂1.
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@@I slope: d

dθ̂
e(θ̂2) = a(θ̂2)γ

e(θ̂1)

θ̂1

e(θ̂2)

θ̂2

Figure 2: Progressive allocation of allowances

Reformulating (25) and using a ∈ [0, 1] yields

D−e(θ̂) = γa(θ̂) ≤ γ. (29)

This condition makes clear that only those mechanisms can be efficient, which

have an allocation function with a first (left-hand) derivative smaller than

or equal to γ. The smaller the penalty the smaller the slope of the alloca-

tion function, and vice versa. However, the restriction is even stronger. The

incentive compatibility condition (15) can for convex allocation functions be

reformulated to

a(θ̂) ≥ sup
θ<θ̂

e(θ̂)− e(θ)

γ(θ̂ − θ)
=

1

γ
D−e(θ̂), (30)

which is also equivalent to γ ≥ D−e(θ̂) for all θ̂. Thus, mechanisms with

an allocation function that has a slope larger than γ for any value θ̂ ∈ [0, θ̄]

can not be incentive compatible. Looking at this from the other side, the

formula simply states that for any given allocation function the penalty has to

be chosen accordingly, in order to guarantee incentive compatibility.

The allocation schedule that is most popular in reality, is a proportional
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allocation of allowances. Such an allocation is described by a linear allocation

function. Result (26) makes clear that the audit probability of an efficient

verification scheme with proportional allocations and penalties is the same

for all reports. Furthermore, the audit probability is not equal to one, as in

the schemes that can be observed in reality, but dependent on the allocation

and penalty factor. If, for example, e(θ̂) = 0.9θ̂ for all θ̂ and γ = 1, the

audit probability is 90% for all firms. Not surprisingly, it is increasing in the

allocation factor and decreasing in the penalty factor. Figure 3 displays an

exemplary allocation function e(θ̂) = λθ̂ with λ < 1.

-

6

θ̂

e(θ̂), a(θ̂)

#
#

#
#

#
#

#
#

#
#

#
#

#
#

##
e(θ̂) = λθ̂

a(θ̂) = λ
γ

Figure 3: Proportional allocation of allowances

The results depend, of course, on the underlying penalty function.

4 Comparison with Tax Evasion

The reporting and verification of firm data in the grandfathering process of an

emissions trading scheme displays strong parallels to the tax evasion problem.

Not surprisingly many of the results in the two fields have similar structures.

However, they also reveal important differences.
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Chander and Wilde (1998), for example, analyze the interplay be-

tween optimal tax rates, audit probabilities and penalties for misreporting in

a principal-agent model with a structure similar to the one of this analysis. In

their notation the ”penalty” is really a ”post-audit payment”, i.e. the payment

after the audit has occurred and after the true income has been discovered.

Let y denote income, x reported income, t(·) the tax function and ft(·) the

penalty function. Under the penalty

ft(x, y) = t(x) + max{0, y − x} for all x and y (31)

the taxpayer will have to pay the tax t(x) and all of the underreported income.

This penalty structure is comparable to the proportional penalty fprop(θ̂, θ) =

max{0, γ(θ̂− θ)} in my model, since this leads to a post-audit allocation with

the same structure: e(θ̂) + max{0, γ(θ − θ̂)}, due to

πprop(θ̂, θ) = e(θ̂)− a(θ̂) max{0, γ(θ̂ − θ)} (32)

= (1− a(θ̂))e(θ̂) + a(θ̂)(e(θ̂)−max{0, γ(θ̂ − θ)}). (33)

The difference is in the interpretation: (31) determines a value that firms

have to pay, whereas the parallel in the emissions trading model determines

a value that firms receive. In the following I use the notation x, y, t(·) to

indicate the tax evasion model, and θ̂, θ, e(·) to refer to the emissions trading

model. Chander and Wilde (1998) find, that efficiency is given only if

the tax function t is concave and nondecreasing and if the audit probability

is nonincreasing. In particular the audit probability is determined by the

marginal tax rate. These results differ from the results in the emissions trading

model in two aspects.
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Remark 1 The audit probability p(x) of an efficient tax scheme with a concave

tax function is given by

p(x) = D+t(x), (34)

the right-hand derivative of the tax function, whereas the audit probability of

an efficient verification scheme with a concave allocation function is given by

a(θ̂) =
e(θ̂)

γθ̂
, (35)

a multiple of average and not marginal allocations.

This difference is due to the fact that in the tax evasion context firms have

an incentive to understate their income, whereas in the grandfathering context

they have an incentive to overstate their emissions. Technically this leads to

p(x) = sup
y>x

t(y)− t(x)

y − x
(36)

versus

a(θ̂) = sup
θ<θ̂

e(θ̂)− e(θ)

γ(θ̂ − θ)
. (37)

Remark 2 In the tax evasion context a mechanism is efficient only if t is

concave, whereas in the grandfathering context there is no such restriction for

the allocation function.

This results also from the different direction of misreporting. Figure 4

presents an intuition for the effect of the direction of misreporting on audit

efficiency.
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Figure 4: Efficiency in the tax evasion model

For any efficient (t, p, ft), equation (36) holds. For t convex the supremum

is attained at y = ȳ and thus

p(x) =
t(ȳ)− t(x)

ȳ − x
. (38)

Now a linear function t′ through the points (0, t(0)) and (ȳ, t(ȳ)) can be con-

structed. Being a linear combination of two points of a convex function, t′

is bigger than t, with t′ > t for t strictly convex. With regard to the audit

probability it holds

p′(x) =
t(ȳ)

ȳ
<

t(ȳ)− t(x)

ȳ − x
= p(x), (39)

since t(ȳ)
ȳ

> t(x)
x

for t strictly convex. Thus there is no efficient (t, p, ft) with t

convex.

For any efficient (e, a, fprop) on the other hand, equation (37) holds, the

supremum is attained at θ = θ̂ with a(θ̂) = D−e(θ̂) and no function e′ can be

found with e′ ≥ e, a′ ≤ a and e′ 6= e or a′ 6= a.
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Chander and Wilde (1998) analyze a second more general penalty

structure with

f(x, y) = y for x 6= y, (40)

i.e. if the firm is found to have misreported it will have to pay all of its

income. In the emissions trading context such a penalty would be comparable

to a penalty that takes away all of the allowances that the firm would have

received otherwise and leaves it with zero allowances:

fzero(θ̂, θ) =





e(θ̂) if θ̂ > θ

0 if θ̂ ≤ θ
, (41)

leading to post-audit allowances of zero in case of an overstatement, and of

e(θ̂) in case of θ̂ ≤ θ. Incentive compatibility requires e(θ) ≥ e(θ̂) − a(θ̂)e(θ̂)

for all θ̂ > θ and audit efficiency implies (cf. Proposition 1) that

a(θ̂) = sup
θ<θ̂

(1− e(θ)

e(θ̂)
) = 1 ∀ θ̂, (42)

because the supremum is attained at θ = 0 for all θ̂. Although the penalty

seems to be very strict, it has to be combined with full verification in order

to achieve incentive compatibility. It can easily be seen that this is due to

firms with a small θ-value. For these firms the penalty is after all not very

strong and if the audit probability were low it would be worthwhile to overstate

to a great extend. This result is different from the result in the tax evasion

model, where Chander and Wilde (1998) find that the marginal payment

rates determine the audit probabilities and thus efficient schemes may involve

random or deterministic auditing. The difference in the results is again due to

the different directions of misreporting.
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5 Conclusion

The allocation of the initial allowances is one of the important elements of

an emissions trading scheme. Grandfathering, which is the commonly applied

procedure, makes strict verification necessary. The question is how strict the

verification procedure should be, since it usually imposes costs on the one who

verifies the information. For the general setup of this analysis the Becker-

solution holds. Under more specific penalties, which are proportional to and

increasing in the degree of misreporting and therefore hit large deviations

stronger, it is the form of the allocation function that drives the results. For

a regressive allocation of initial allowances, for example, the efficient audit

probability is shown to be nonincreasing in the reported emissions value and

it is determined by average allocations, whereas the audit probability is the

same for all reports, if allowances are allocated proportionally.

Although the structure of the model used for this analysis parallels the

structure of principal-agent models in the tax evasion context, the results differ

with respect to the number of efficient allocation (respectively tax) and audit -

combinations, as well as the form of each variety. These differences are driven

by the fact that in one case firms have an incentive to overstate, and in the

other case to understate their private data.

Appendix

Proof of Lemma 1:

Without conditions (5) and (7) it is easily seen that the revelation prin-

ciple holds: if the mechanism (e(·), a(·), f(·)) results in an optimal report

α(θ) for an emission value θ, the mechanism given by (e′(θ̂), a′(θ̂), f ′(θ̂, θ)) :=

(e(α(θ̂)), a(α(θ̂)), f(α(θ̂), θ)) has an optimal report which is equal to the true
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value θ. The payoffs to both the government and the firm are unaffected

by this change, since a′(θ) = a(α(θ)) and π′(θ, θ) = e′(θ) − a′(θ)f ′(θ, θ) =

e(α(θ)) − a(α(θ))f(α(θ), θ) = π(α(θ), θ). However, the penalty function of

the new mechanism would possibly be positive even for truth-telling firms,

f ′(θ, θ) := f(α(θ), θ) ≥ 0, since (e(·), a(·), f(·)) is not incentive compatible and

α(θ) ≥ θ. Since this does not seem to be politically desirable in the current con-

text it is ruled out by feasibility condition (7). Similar arguments apply to fea-

sibility condition (5): e′(0) = e(α(0)) need not necessarily be zero. This shows

that the mechanism (e′(θ̂), a′(θ̂), f ′(θ̂, θ)) := (e(α(θ̂)), a(α(θ̂)), f(α(θ̂), θ)) can

not be used to prove the revelation principle in this setting. A different mech-

anism is therefore put up:

Let (e, a, f) ∈ F . Define (e′, a′, f ′) from (e, a, f) as follows:

e′(θ̂) := e
(
α(θ̂)

)
− a

(
α(θ̂)

)
f

(
α(θ̂), θ̂

)
= π(α(θ̂), θ̂),

a′(θ̂) := a
(
α(θ̂)

)
,

f ′(θ̂, θ) := f(θ̂, θ),

where α(θ), (α(θ) ≥ θ), is an optimal signal for a firm of type θ under the

mechanism (e, a, f). Note that the penalty function is exactly the same in

both mechanisms.

(a) Show that (e′, a′, f ′) ∈ F : e : [0, θ̄] → IR+ holds, since it equals the expected

allocation for a firm of type θ under the mechanism (e, a, f) if it pronounces

α(θ). This is not smaller than 0, since e(θ̂) ≥ 0 for all θ̂ and the firm can secure

itself a punishment of 0 if it pronounces the true type θ. As α(θ) is an optimal

signal it holds e′(θ) ≥ 0. e′(0) = 0 since π(α(0), 0) = 0 due to condition

(9), π(θ̂, 0) ≤ 0, and the optimality of α(·). e(·) 6≡ 0 induces π(α(θ̂), θ̂) 6≡ 0

and therefore e′(·) 6≡ 0. The argument is again that α(·) is an optimal signal
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and therefore π(α(θ̂), θ̂) ≥ e(θ̂) has to hold. π′(θ̂, 0) = e′(θ̂) − a′(θ̂)f ′(θ̂, 0) =

π(α(θ̂), 0) − a(α(θ̂))f(θ̂, 0) ≤ 0, since π(α(θ̂), 0) ≤ 0 and a(α(θ̂))f(θ̂, 0) ≥ 0.

In addition 0 ≤ a′(θ̂) ≤ 1 and the conditions regarding f(·) carry over to f ′(·)
and thus (e′, a′, f ′) ∈ F .

(b) Show that e′(·) is nondecreasing: Let θ1 > θ2, show that e′(θ1) ≥ e′(θ2):

e′(θ2) = e(α(θ2))− a(α(θ2))f(α(θ2), θ2) ≤ e(α(θ2))− a(α(θ2))f(α(θ2), θ1)

≤ e(α(θ1))− a(α(θ1))f(α(θ1), θ1) = e′(θ1).

To see why this holds note that due to θ1 > θ2 and f nondecreasing in

the degree of misreporting it holds that f(α(θ2), θ2) ≥ f(α(θ2), θ1) for both

α(θ2) > θ1 and α(θ2) ≤ θ1. In addition α(θ1) is optimal for θ1 and therefore

the second inequality holds.

(c) Show that (e′, a′, f ′) is incentive compatible: The mechanism is incen-

tive compatible if expected allowances are maximized for reporting the true

emissions value, i.e. if π′(θ, θ) ≥ π′(θ̂, θ) ∀ θ̂, θ ∈ [0, θ̄]. This is equivalent to

e′(θ) ≥ e′(θ̂)−a′(θ̂)f ′(θ̂, θ) ∀ θ̂, θ ∈ [0, θ̄]. However, since f ′(θ̂, θ) = f(θ̂, θ) = 0

for all θ̂ ≤ θ and since e is nondecreasing as shown above, no firm will have

an incentive to report a parameter θ̂ < θ. It is therefore now sufficient to

show that e′(θ) ≥ e′(θ̂) − a′(θ̂)f ′(θ̂, θ) for all θ̂ > θ. Let therefore θ̂ > θ, then

e′(θ) ≥ e′(θ̂)− a′(θ̂)f ′(θ̂, θ) is equivalent to

e(α(θ))− a(α(θ))f(α(θ), θ) ≥ e(α(θ̂))− a(α(θ̂))f(α(θ̂), θ̂)− a(α(θ̂))f(θ̂, θ)

= e(α(θ̂))− a(α(θ̂))[f(α(θ̂), θ̂) + f(θ̂, θ)].

In order to show that this holds, the fact that α(θ) is an optimal signal for a firm

with emission parameter θ, and condition (10), f(α(θ̂), θ) ≤ f(α(θ̂), θ̂)+f(θ̂, θ),
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are used:

e(α(θ))− a(α(θ))f(α(θ), θ) ≥ e(α(θ̂))− a(α(θ̂))f(α(θ̂), θ)

≥ e(α(θ̂))− a(α(θ̂))[f(α(θ̂), θ̂) + f(θ̂, θ)].

(d) Show that (e′, a′, f ′) replicates the equilibrium outcome arising from (e, a, f):

The outcome for the government is audit it has to perform and therefore given

by the audit probability. This is the same under the two mechanisms from

the definition of a′(θ̂). The outcome for the firm is the amount of expected

allowances. This is the same under the two mechanisms since π(α(θ), θ) =

e(α(θ)) − a(α(θ))f(α(θ), θ) = e′(θ) = e′(θ) − a′(θ)f ′(θ, θ) = π′(θ, θ), due to

f ′(θ, θ) = 0. The amount of allowances that the firm expects to receive under

the new mechanism (e′, a′, f ′) when it tells the truth equals just the amount of

allowances that it expected to receive under the old mechanism (e, a, f) and

the announcement of the optimal (i.e. expected allowances maximizing) report

α(θ).

Proof of Proposition 1: Let (e, a, f) ∈ FI be efficient in FI . Since the

mechanism is incentive compatible, (19) holds:

a(θ̂) ≥ sup
θ<θ̂

e(θ̂)− e(θ)

f(θ̂, θ)
∀ θ̂.

If the incentive constraint is not binding, i.e. if there exist some θ̂ with

a(θ̂) > sup
θ<θ̂

e(θ̂)− e(θ)

f(θ̂, θ)
,

the inequality still holds, and therefore incentive compatibility is still provided,

if the audit probability a(θ̂) is reduced, while e(·) and f(·) are not changed.

26



However, this contradicts the assumption that (e, a, f) is efficient in FI and

therefore a(θ̂) = supθ<θ̂
e(θ̂)−e(θ)

f(θ̂,θ)
for all θ̂ has to hold.

Proof of Proposition 2: a(θ̂) = supθ<θ̂
e(θ̂)−e(θ)

θ̂−θ
simply gives the slope of

the secant through the points (θ, e(θ)) and (θ̂, e(θ̂)).

For e concave and θ̂ ∈ [0, θ̄] the slope through (θ, e(θ)) and (θ̂, e(θ̂)) with θ < θ̂,

θ ∈ [0, θ̄], is steepest if θ = 0. The supremum is therefore attained at θ = 0

and (24) holds due to e(0) = 0. a(θ̂) = e(θ̂)

θ̂γ
is a multiple of average allocations.

Since e is concave the average allocations, and therefore a, are nonincreasing

in θ̂.

If e is convex the supremum is attained at θ = θ̂. a(θ̂) is given by a multiple

of the left-hand derivative, and of the derivative where it exists. e is convex,

therefore D−e is nondecreasing in the reported parameter and it holds that a

is nondecreasing.

The linear case follows immediately.
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