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Abstract. Sustainable economic growth necessitates sufficient provision of en-

ergy. In view of the finiteness of fossil fuels, ensuring sustainable growth requires

the transition towards the usage of renewable resources. Past and recent work

in environmental growth theory has dealt intensively with this problem. Most of

the existing models however, tend to neglect one essential aspect of this problem.

Namely, that renewables and non-renewable resources are associated with their

own, hardly shiftable, capital stock. As a consequence, policy implications ex-

tracted from these models are based on a distorted picture about the easiness of

the transitional dynamics of resource use. The reason for this is that a homoge-

nous capital stock offers an additional degree of freedom about the substitution

away from the non-renewable resources. Resource depletion and environmental

damages can be counteracted at a large scale by simply shifting capital between

sectors. This paper takes a different approach. We develop a growth model of

an economy with two capital stocks associated with different technologies, one of

them being clean, the other one causing environmental damages. The technolo-

gies are completely embedded in the corresponding stock of physical capital. The

usage of one technology can be intensified in two ways. First, via investment in

the associated capital stock. Since we implement convex adjustment costs of in-

vestment a quick built up of the alternative capital stock becomes more expensive

in terms of forgone consumption. Second, we add a capacity utilization rate as an

exogenous variable. It is defined as the intensity with which the capital stock is

utilized. However, a higher rate of of capacity utilization causes the capital stock

to depreciate faster (endogeneous rate of depreciation). These two mechanisms are

the major drivers of our model which we use to examine the the socially optimal

use of the capital stocks and hence, the socially optimal mix of the technologies

involved.

1Department of Economics University of Kiel Olshausenstrasse 40, 24118 Kiel, Ger-
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1 Introduction

Sustainable economic growth necessitates a sufficient provision of energy. In

view of the finiteness of fossil fuels, ensuring sustainable growth requires the

transition towards the usage of renewable resources. Past and recent work in

environmental growth theory has dealt intensively with this problem. The

works by Dasgupta and Heal [4], Pezzey and Withagen [6] and Tahvonen and

Salo [7] in particular analyze the transitional dynamics away from the usage

of conventional technologies and towards the adoption of backstop technolo-

gies. Most of these models however, tend to neglect one essential aspect of

this problem. Namely, that renewable and non-renewable resources are as-

sociated with their own, hardly shiftable, capital stock. As a consequence,

policy implications extracted from these models are based on a distorted pic-

ture about the easiness of the transitional dynamics of resource use. The

reason for this is that a homogenous capital stock offers an additional degree

of freedom about the substitution away from the non-renewable resources.

Resource depletion and environmental damages can be counteracted at a

large scale by simply ”shifting capital” between sectors.

However, if we assume that installed capital is fully embodied in an ex-

isting technology, the average productivity characteristics and environmental

impact of the total capital stock will change only slowly, as new capital goods

fill the gaps left by the physical decay and scrapping of old capital goods.

If we link a capital stock in a putty-clay2 manner to a technology which

relies on a depleting resource the consequence is that the stock has to be

used up eventually, or at least underutilized and left idle.

In case the long run level of the capital stock associated with conventional

resources is less than the current one, the capital stock inevitably has to be

reduced in the transition process. In a closed economy3 such a reduction

2The advantage of using a putty-clay structure is that it implements the idea of irre-
versible investment decisions.

3We assume that it is not possible to sell part of the idle capital stock abroad.
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can occur by investing less than needed to compensate physical decay. By

analogy, if the economic environment requires a sudden change of the energy

mix, an economy characterized by a heterogeneous capital structure can not

react without severe time lags. This is due to the ex post clay nature of

investment. Installment of the desired capital stock simply takes time if one

does not want to abstain from smooth consumption patterns.

There are only a few models so far which have analyzed optimal invest-

ment with several stocks of physical capital. (Ryder [8], Pitchford[5]). Pitch-

ford [5] deals with the optimal investment into two regions of an economy. In

a dynamic growth model with two heterogeneous capital stocks, the author

investigates the optimal investment decisions and their change towards the

steady state. These and the vast majority of other standard aggregate mod-

els assume that capital depreciates at an exogenous rate; thus neglecting the

increasing user cost of capital with respect to the intensity of usage. This

causality however, is crucial for the case at hand, where we want to analyze

the dynamic interplay between using up an old and polluting capital stock

and building up a less polluting and sustainable capital stock. Especially in

a setting where we are interested in how a polluting capital stock is main-

tained and accumulated and/or used up optimally. In order to analyze the

inter- and intrasectoral tradeoffs between capacity building and capacity us-

ing which guide the economy’s transition process towards a balanced growth

equilibrium we develop a model with two production sectors that generate

a homogenous consumption good. The production processes in these two

sectors differ with respect to the technology which is used. While in one

sector the process is clean, generating output in the other sector also creates

environmental damage. The technologies are completely embedded in the

corresponding stock of physical capital. Hence, the usage of one technology

can only be intensified by investing more in the associated capital stock or

utilizing it more intensively.

Similar to Chatterjee [4] the combination of capital utilization and an en-
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dogenous depreciation rate severely affects the related sector of an economy.

Since output in a given period does not only depend on the capital stock in

place but also on the flow of capital services extracted from it, the control

over capital utilization enables firms to adjust faster to exogenous shocks or

to other changes in the economic environment. In addition, firms influence

the rate at which the installed capital stock depreciates by utilizing it only to

a certain degree. Hence, depreciation is of the wear and tear form and firms

are faced with the tradeoff between extracting extra output from a given

capital stock and the costs of overutilizing it.

The paper is organized as follows. The next section outlines the model

and stresses some important features of the transitional dynamics. Section 3

then, presents the results of some simulations which have been carried out.

Section 4 concludes.

2 The Model

Similar to Pitchford [5] there are two output sectors in the economy producing

one homogenous consumption good. Capital in its broad notion is the only

factor of production in both output sectors. The output sectors differ with

respect to the production process of the consumption good. While sector 1

is assumed to apply a clean technology, the production process in sector 2

generates pollution. In order to keep things as simple as possible, we assume

that these technologies enter the production structure of a firm via the firm’s

capital stock. We do not model the technologies explicitly, as we assume that

physical capital is the only factor of production in the economy.
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2.1 Capacity installment and utilization

Effective capital in each sector is given by the product of the installed capital

stock and the intensity with which the capital stock is utilized.

Ke
1 = κ1 ·K1 (1)

Ke
2 = κ2 ·K2 (2)

As in Chatterjee[4] we will define the rate of capital utilization κi as the

intensity with which the installed stock of capital Ki is utilized in sector

i4. Let δi(κi) be the rate of depreciation depending on κi the intensity with

which the capital stock is utilized. Therefore, in any period the instantaneous

change in the capital stocks in both sectors is given by5

K̇1 = I1 − δ1(κ1) ·K1 (3)

K̇2 = I2 − δ2(κ2) ·K2 (4)

Output in each sector is a twice differentiable function of effective capital.

Y1 = Y1(K
e
1) (5)

Y2 = Y2(K
e
2) (6)

with its derivatives satisfying f ′i > 0 and f ′′i < 0. Furthermore, we

4Alternatively we could model capacity utilization as a fraction/part of the existing
capital stock in use as in Fisher et al.[7]. Our simple approach has the advantage of
getting rid of two additional Kuhn-Tucker conditions (one for each sector). This comes in
very handy in the analysis of the optimal growth path since we can evade performing a path
connection procedure with 36 paths (In our model with four control variables we would
have 6 Kuhn-Tucker conditions). In addition, the functional form for the depreciation rate
ensures that capacity utilization will globally never be zero. (see Proposition 1)

5where we denote ẋ = ∂x
∂t
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assume that the Inada-Uzawa conditions hold, i.e.:

lim
Ke

i→∞
Y ′

i = 0, lim
Ke

i→ 0
Y ′

i = ∞, Yi(0) = 0, Yi(∞) = ∞ (7)

The total output of the economy (and hence, total production of the

homogenous good) is simply the sum of the sector-specific output levels.

f = Y1 + Y2 (8)

Total output is used for consumption and investment where C denotes the

contemporary consumption level of the economy and I is the total investment

volume in the same period.

C = f − I (9)

Total investment is distributed over the two sector-based capital stocks,

where

I = I1 + I2 (10)

2.2 Adjustment costs

Similar to Fisher et al.[7] the installment of additional capital is costly. How-

ever, in our model the adjustment costs of capital are not measured in labor

units but rather in consumption forgone. In this model we will allow for

disinvestment. Hence, capital can be converted into consumption. This is a

trivial assumption, especially since we have a capacity utilization rate. Thus,

it is always inefficient to disinvest capital. If one needs to use less of it one

simply uses less.6 Nevertheless, we are using this assumption since again,

6Even without a capacity utilization rate, disinvestment would be a rare occurrence in
this model. In the neighborhood of the steady state it is obvious that investment would
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we do not need to implement additional Kuhn-Tucker conditions. Denote

by Ai(Ii) the instantaneous adjustment costs occurring from installing addi-

tional capacity Ii in sector i. Ai(Ii) is chosen such as to satisfy

Ai(0) = 0, Ai(Ii) ≥ 0, A′
i





> 0, Ii > 0

= 0, Ii = 0

< 0, Ii < 0

A′′
i (Ii) > 0, lim

Ii→∞
A′

i = ∞, lim
Ii→−∞

A′
i = −∞, lim

Ii→ ±0
A′

i = 0. (11)

2.3 Social optimum

Consumption of the produced commodity generates utility U(C) which is a

standard CRRA function7 satisfying

UC ≥ 0, U(0) = 0, U ′ > 0, U ′′ < 0. (12)

However, in generating the consumption good, the usage of the effective

capital stock in sector 2, Ke
2 = κ2 ·K2 causes environmental damages which

are perceived by the consumers. Let D(κ2·K2) denote the disutility generated

by using the environmental bad8. We assume that D(κ2·K2) has the following

properties:

D(Ke
2) ≥ 0, D(0) = 0, D′ > 0, D′′ < 0 (13)

Total utility, as perceived by the representative individual at time t, is

simply the difference between the utility derived from consumption of the

have to be positive per definition of the steady state. Disinvestment would only occur
for the case of an initially too high polluting capital stock that has to be used. In this
example one would have to adjust the set of allowable parameter values.

7e.g.: U(C) = C1−θ

1−θ , 0 < θ < 1
8e.g.: D(Ke

2) = Ke
2
(1+ω)

1+ω , ω > 0
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homogeneous commodity and the disutility caused by the flow of pollution9

accrued due to the usage of the polluting capital stock in the production

process.

Setting up the dynamic maximization problem the objective function is

given by

J =

∫ ∞

t=0

e−ρ·t · [U(C)−D(κ2, K2)] dt (14)

subject to the following constraints

K̇1 = I1 − δ1(κ1) ·K1 (15)

K̇2 = I2 − δ2(κ2) ·K2 (16)

C = f(κ1, κ2, K1, K2)− A1(I1)− A2(I2) (17)

κ1 ≥ 0 (18)

κ2 ≥ 0 (19)

In addition, the transversality condition requires

lim
t→∞

e−ρ·t · λi ·Ki = 0 ∀ x ∈ {1, 2} (20)

The current value Hamiltonian is then given by

H = U
(
f(κ1, κ2, K1, K2)− A1(I1)− A2(I2)

)
(21)

− D(κ2, K2) + λ1 · [I1 − δ1(κ1) ·K1] + λ2 · [I2 − δ2(κ2) ·K2]

9It would have been more appropriate to model pollution as a stock variable to in-
vestigate the history effect of investment on the polluting capital stock. This is however
beyond the scope of this paper, since we are rather interested in the inter- and intrasectoral
tradeoffs between capacity building and capacity using which guide the transition process
towards the steady state. Therefore, we choose the less appropriate alternative.
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and the corresponding Lagrangian is

L = H + µ1 · κ1 + µ2 · κ2 (22)

Applying the maximum principle yields the following F.O.C.

∂L

∂I1

= 0 ⇒ U ′ · A′
1 = λ1 (23)

∂L

∂I2

= 0 ⇒ U ′ · A′
2 = λ2 (24)

∂L

∂κ1

= 0 ⇒ U ′ · f ′κ1
− λ1 · δ′1 ·K1 + µ1 = 0 (25)

∂L

∂κ2

= 0 ⇒ U ′ · f ′κ2
−D′

κ2
− λ2 · δ′2 ·K2 + µ2 = 0 (26)

∂L

∂K1

= λ1 · ρ− λ̇1 ⇒ U ′ · f ′K1
− λ1 · δ1 = λ1 · ρ− λ̇1 (27)

∂L

∂K2

= λ2 · ρ− λ̇2 ⇒ U ′ · f ′K2
−D′

K2 − λ2 · δ2 = λ2 · ρ− λ̇2 (28)

The necessary Kuhn Tucker conditions are

κ1 ≥ 0, µ1 ≥ 0, κ1 · µ = 0 (29)

κ2 ≥ 0, µ2 ≥ 0, κ2 · µ = 0 (30)

In the next step we want to show that the complementary slackness

conditions in conditions (25) and (26) imply that µ1 and µ2 are both zero.

Proposition 1. The system described by (23)-(30) has a singular solution.

Proof. We show that ∀t ∈ {0,∞} µi = 0 and hence, κi > 0. First, consider

κ1. We have to show that if starting from κ1 = 0, welfare at time t can be

increased by setting κi > 0.
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From (25) we have ∂L
∂κ1

= U ′ · f ′κ1
− λ1 · δ′1 · K1 + µ1. Since by equations

(7) and (11) limκ1→ 0 f ′i = ∞, limκ1→ 0 δ′i = 0, and µ1 ≥ 0 it follows that

limκ1→ 0
∂L
∂κ1

= ∞. We can apply the same approach to κ2:

From (26) we have ∂L
∂κ2

= U ′ · f ′κ2
−λ2 · δ′2 ·K2−D′

κ2
+µ2. Since by equations

(7), (11) and (13) limκ2→ 0 f ′2 = ∞, limκ2→ 0 δ′2 = 0, limκ2→ 0 D′
κ2

= 0 and

µ2 ≥ 0 it follows that limκ2→ 0
∂L
∂κ2

= ∞

Proposition 1 states that it is always welfare improving to utilize capital

because the marginal welfare gains for the first unit of capital intensity are

infinite. This line of reasoning holds even for the case with a polluting capital

stock because the marginal polution of the first unit of capital is nil.

2.4 Intersectoral tradeoffs

This sections purpose is to derive an equation which captures the link between

optimal capital installment in the two sectors. Dividing equation (24) by (23),

differentiating w.r.t. time and using (25) and (26) we can eliminate the co-

state variables. Reformulating, we obtain the following optimality condition

(see Appendix X for a derivation):

A′′
2 · İ2

A′
2

− A′′
1 · İ1

A′
1

= (δ1 − δ2) +
f ′K1

· U ′
f

A′
1 · U ′

A

− f ′K2
· U ′

f

A′
2 · UA

+
D′

K2

A′
2 · U ′

A

We can w.l.o.g. assume that U ′
f = U ′

A. The condition above reduces to:

A′′
2 · İ2

A′
2

− A′′
1 · İ1

A′
1

= (δ1 − δ2) +
f ′K1

A′
1

−
(

f ′K2

A′
2

− D′
K2

A′
2 · U ′

A

)
(31)

The LHS of equation (31) is the difference in the growth rates of the

marginal adjustment costs. The RHS consists of two parts. The first term

is the difference in the depreciation rates. The second term is the difference
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between the adjusted marginal social products in the two sectors.

...to be completed...

2.5 Intrasectoral tradeoffs

Within a sector of our model economy there exists the tradeoff between

capital usage and capital build up, which translates into the optimal choice

of κi and Ii. Proposition 1 has established that capital will always be utilized

to some positive degree. Regarding the investment decision we can make the

following claim:

Proposition 2. There will be no disinvestment in any sector

Proof. We show that ∀t ∈ {0,∞}, Ii ≥ 0. Let us first consider sector 1

and assume that I1 ≤ 0. Because of equation (11) A′
1 ≤ 0 and equation

(23) would imply that λ1 < 0. From equation (25) we would obtain that

κ1 < 0 which violates equation (29) and proposition 1. The same line of

reasoning can be applied to sector 2. We assume that I2 ≤ 0. Because of

equation (11) A′
2 ≤ 0 and equation (24) would imply that λ2 < 0. From

equation (26) we would obtain that U ′ · f ′κ2
−D′

κ2
< 0. Since, the economy

will never utilize capital such that the marginal social product (in utility

terms) of capital utilization is negative, it must hold that κ2 ≤ 0 which in

turn violates equation (30) and proposition 1.

The intuition behind proposition 2 seems trivial. In terms of efficiency,

disinvestment makes only sense if the capital stock needs to be decreased

faster than by economic decay with zero gross investment. However, since

we have included into our model κi, the capacity utilization rate, we have an

additional channel by which we can steer how much capital is being used in

the production process.
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2.5.1 Sector 1

From the optimality conditions (23) and (25) we can derive an optimal rule

for the tradeoff between the two control variables in sector 1. It is given by:

f ′κ1
= A′

1 · δ′1 ·K1 (32)

The LHS of equation (32) is the marginal product (marginal social prod-

uct) of capacity intensity. The RHS of (32) describes the marginal costs of

expanding capacity by one extra unit. This is due to the fact that the new

capital stock needs to be maintained. If e.g. due to technological progress the

marginal product of capacity intensity increases, then it will be accompanied

by either a higher investment volume, larger capital stock, higher capacity

or any combination of these effects. Because of the properties of f , δ and A

the LHS is strictly convex, and the RHS is strictly concave. Hence, for each

level of capacity intensity there is exactly one optimal volume of investment.

2.5.2 Sector 2

We can conduct a similar analysis for sector 2. From the optimality condi-

tions (24) and (26) we can derive an optimal rule for the tradeoff between

the two control variables in sector 2. It is given by:

f ′κ2
− D′

κ2

U ′ = A′
2 · δ′2 ·K2 (33)

The only difference to sector 1 is the LHS. Because of the disutility from

pollution due to the capital usage, the marginal product of capacity intensity

is larger than its marginal social product which is the LHS of (33). It is

equated to the marginal costs of expanding capacity by one extra unit. If e.g.

the marginal disutility from pollution rises the RHS term becomes smaller.
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To keep equation (33) in balance κ2 can be decreased or we could lower the

investment volume I2 which in turn will slowly lower the capital stock K2.

2.6 Transition dynamics and steady state analysis

The next step is to eliminate the co-state variables from equations (34)-(39)

to obtain the equations of motion for our four controls and two states10 (See

Appendix X for a derivation)

İ1 =
U ′

A · A′
1

U ′′
A · A′

1 + U ′
A · A′′

1

·
(

δ1 + ρ− U ′
f · f ′K1

U ′
A · A′

1

)
(34)

İ2 =
U ′

A · A′
2

U ′′
A · A′

2 + U ′
A · A′′

2

·
(

δ2 + ρ− U ′
f · f ′K2

U ′
A · A′

2

+
D′

K2

U ′
A · A′

2

)
(35)

κ̇1 =
(δ1 + ρ) · (U ′

f · f ′κ1)− U ′
f · f ′κ1 · δ′1 ·K1 +

U ′f ·f ′κ1·K̇1

K1

U ′′
f · f ′κ1 + U ′

f · f ′′κ1 −
U ′f ·f ′κ1·δ′′1

δ′1

(36)

κ̇2 =
(U ′

f · f ′κ2 −D′
κ2) · (δ2 + ρ)− (δ′2 ·K2)(U

′
f · f ′κ2 + D′

K2)
U ′′f ·f ′κ2+U ′f ·f ′′κ2−D′′κ2−δ′′2 K2(U ′f ·f ′κ2−D′κ2)

δ′2·K2

+
K̇2 · δ′2 · (U ′

f · f ′κ2 −D′
κ2)

U ′′
f · f ′κ2 + U ′

f · f ′′κ2 −D′′
κ2 − δ′′2K2(U ′

f · f ′κ2 −D′
κ2)

(37)

K̇1 = I1 − δ1(κ1) ·K1 (38)

K̇2 = I2 − δ2(κ2) ·K2 (39)

We define the balanced growth equilibrium as a path along which all con-

trol and stock variables grow at zero growth rate. From equations (27)-(32)

10We can also solve the system in a different way. Combining equation (23) and (27) we

obtain Ċ = − U ′
U ′′ · [

f ′K1
A′1

− ρ− δ1− A′′1 ·İ1
A′1

] Assuming that A′1 = 1, A′′1 = 0 and δ1 = δ we can
reproduce the standard Ramsey type equation for the change in consumption. Similarly

we can combine equation (24) and (28) to obtain Ċ = − U ′
U ′′ · [

f ′K2
A′2

− ρ− δ2− A′′2 ·İ2
A′2

− D′K2
U ′·A′2 ]

which for A′2 = 1, A′′2 = 0 and δ2 = δ reproduces the standard result of a neoclassical
model with pollution. Since we are interested in the paths of investments we rather solve
the system for the direct control variables.
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we can establish conditions which hold in the balanced growth equilibrium.

These are given by:

İ1 = 0 ⇒ δ1 + ρ =
U ′

f · f ′K1

U ′
A · A′

1

(40)

İ2 = 0 ⇒ δ2 + ρ =
U ′

f · f ′K2

U ′
A · A′

1

+
D′

K2

U ′
A · A′

1

(41)

κ̇1 = 0 ⇒ (δ1 · ρ) · f ′κ1 = f ′κ1 · δ1 ·K1 − f ′κ1 · K̇1

K1

(42)

κ̇2 = 0 ⇒ (δ2 · ρ) ·
(

f ′κ2 −
D′

κ2

U ′
f

)
= (δ2 ·K2)

(
f ′κ2 +

D′
K2

U ′
f

)
−

K̇2

(
f ′κ2 − D′κ2

U ′f

)

K2

(43)

K̇1 = 0 ⇒ I1 = δ1 ·K1 (44)

K̇2 = 0 ⇒ I2 = δ2 ·K2 (45)

In order to analyze the balanced growth equilibrium and its stability prop-

erties we have to implement functional forms for the endogenous variables of

the model.

These functional forms are:
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U(C) =
C1−θ

1− θ
(46)

D(Ke
2) =

Ke
2
1+ω

1 + ω
(47)

f(κ1, κ2, K1, K2) = (κ1 ·K1)
β1 + (κ2 ·K2)

β2 (48)

δ1(κ1) = δ̄1 + κγ1

1 (49)

δ2(κ2) = δ̄2 + κγ2

2 (50)

A1(I1) = Iα1
1 (51)

A2(I2) = Iα2
2 (52)

Using equations (46)-(52) we can apply conditions (40)-(45) to solve for

the steady state values of I1, I2, κ1, κ2, K1, K2 which are denoted by Ĩ1, Ĩ2,

κ̃1, κ̃2, K̃1, K̃2 respectively.(see Appendix A2 for a derivation)

...to be completed...

3 Simulations

In order to make the analysis less complicated, the model has not been cal-

ibrated. Instead, it has been simulated by using arbitrary values for the

parameters as well as arbitrary data for the exogenous variables and lagged

endogenous variables. We intend to conduct more extensive research to find

out about the working of the model in other regions of the parameter space.

Our aim now, however, is to illustrate the qualitative behavior of the model

and to find out by means of an experiment how the different channels within

the structure of the model affect the choice of the control variables.
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3.1 The base run

Table 1 depicts the parameter values that have been chosen for the simula-

tion of the base run.

Parameter Value Parameter Value

α1 2 α2 2
β1 .5 β2 .8
γ1 2 γ2 2
δ̄1 .01 δ̄2 .01
θ 3 ω .02

K0
1 1 K0

2 5

Table 1: Parameter Values Base run

Using the parameter values outlined above, we have obtained the devel-

opment over time of a number of important variables relative to their initial

values. These are displayed in Figure 1.

The first thing one should observe is the monotonic behavior of the two

capital stocks over time. While K1 is increasing steadily over the simulation

period we observe the opposite for K2, the capital stock associated with the

polluting technology. This behavior over time displays that the while K1 is

initially below its steady state value, K2 is far above its steady state value.

K1 is initially only of about one fifth of its steady state value. This

huge difference has to be overcome which explains the high initial volumes

of I1. Also, since for low levels of the capital stock, high utilization is rel-

atively inexpensive we observe a quite high utilization rate as compared to

the steady state. Along the adjustment path towards the steady state K1

increases rapidly up to around t=40 and slows down thereafter. The utiliza-

tion of the capital stock decreases sharply due to the high maintenance cost

of rising levels of the installed and operating capital stock. The direction of

the essential variables in sector 2 is different. The capital stock is initially
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Figure 1: K0
1 = 1 and K0

2 = 5

far above its steady state level. As already laid out in chapter 2, investment

levels are close to zero when the related capital stock is far above its steady

state value11. In this phase the economy is effectively eating up its capital

11The magnitude of increase in I2 over the simulation period might be misleading since
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stock.

Note the slight and short change in the curvature for Ke
2 at about t=70.

...to be completed...

3.2 Different initial values

This sections objective is to analyze the dynamics of K1 and K2 towards the

steady state for different initial values. Figure 2 displays the adjustment of

the capital stocks in the K1-K2 space.

0 2 4 6 8 10
0

1
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4

5

6

K
1

K
2

Figure 2: Different initial values for K1 and K2

the figures depict the behavior of variables relative to their initial levels. Investment in
sector 2 starts at a zero level and eventually it is still significantly low in the steady state
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As can be seen from figure 2 the common steady state is given by (5.742,

0.805). We have deliberately chosen initial values from different directions

around the steady state. These are besides the base run (1, 5) also (2, 2); (2,

6); (10, 0.2) (10, 5). We observe a monotonic movement towards the steady

state in all cases. Consider the initial point (10, 5). The capital allocation is

to the north-east of the steady state implying that both capital stocks need

to be

...to be completed...

It is obvious that we cannot put all control and state variables into one

plot. We can however combine the time path of K1, K2 and consumption

into one figure to show how consumption (and thus total investment) adjusts

to the steady state if we choose different initial values for the two capital

stocks. Figure 3 displays this adjustment in the K1-K2-C space.

...to be completed...
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Figure 3: capital stocks and consumption

3.3 Exogenous shocks

In this section we describe the behavior of some model variables due to

some exogenous shocks. The procedure is as follows. We run the base run

simulation up to period t=50 to omit any possible initial value problems and

implement the shock which persists until the end of the simulation period

(t=150). Figure 4 displays the results of the scenario in which the usage

of the polluting capital stock has an increasing adverse impact on welfare.

More specifically: we double the perceived disutility from the effective usage

of the installed capital stock in sector 2.

...to be completed...
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Figure 4: pollution more severe - % deviations from base run

4 Conclusion

Within a growth setting we have analyzed the dynamics of an economy in

its transition process towards the steady state. The economy operates two

sector-specific capital stocks which embody different technologies. While the

usage of capital in one sector has no externality, the production process in

the other sector causes environmental damage. In addition we have included

a capital utilization rate. Thus, the economy must choose the intensity with

which the installed stocks of capital are utilized. In this manner it is possi-

ble to extract more volume of capital than what is available. This comes in
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very handy when capital shortages have to be overcome. However, it does

not come at no cost. The depreciation rate of capital has been endogenized

such that capital depreciates at an increasing rate with the intensity of its

usage. The characteristics of this model as laid out analytically and numer-

ically provide some useful insights that should be considered in the debate

about the transition towards more use of environmentally friendly energy

technologies. The combination of heterogeneous capital, endogenous depre-

ciation and capital intensity is in our view essential for extracting qualitative

and quantitative implications for policy makers about the easiness of a tech-

nology switch. If the economic environment requires a sudden change of the

energy mix, an economy driven by our model structure can not react without

severe time lags, due to the ex post clay nature of investment. Installment

of the desired capital stock simply takes time if one does not want to abstain

from smooth consumption patterns.
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5 Appendix

A Derivation of the equation of motion

The first order conditions (1.1)-(2.2) are rewritten as follows: Differentiating

(1.2) w.r.t time and rearranging (See appendix A) we

λ1 = U ′ · A′
1 (53)

λ2 = U ′ · A′
2 (54)

U ′ · f ′κ1
= λ1 · δ′1 ·K1 + µ1 (55)

U ′ · f ′κ1
= λ2 · δ′2 ·K2 −D′

κ2
+ µ2 (56)

λ̇1 = λ1 · (δ1 + ρ)− U ′ · f ′K1
(57)

λ̇2 = λ2 · (δ2 + ρ)− U ′ · f ′K2
+ D′

K2 (58)

(59)

...to be completed
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