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1 Introduction

The concept of intertemporal risk aversion measures the higher willingness to undergo pre-

ventive action in order to avoid a threat of harm. Formally it is a measure for the difference

between the decision maker’s preference to smooth consumption over time and over risk.

While the intertemporally additive expected utility model implicitly assumes intertemporal

risk neutrality, general recursive models like the one developed by Kreps & Porteus (1978)

or the generalized isoelastic model (Epstein & Zin 1989, Weil 1990) characterize as well

decision makers with a nontrivial intertemporal risk attitude. In this paper I show that

the assumption of risk stationarity has significantly stronger implications for intertem-

porally risk averse (or seeking) decision makers, then for maximizers of intertemporally

additive expected utility. At the same time the paper elaborates axioms that simplify the

general recursive model used to introduce the concept of intertemporal risk aversion in

Traeger (2007a).

Kreps & Porteus (1978) extend von Neumann & Morgenstern’s (1944) famous axiomatic

approach to choice under uncertainty to a multiperiod framework. For this purpose, the

authors develop the concept of temporal lotteries, where uncertainty is no longer expressed

immediately over the set of consumption paths, but formulated recursively. As they elabo-

rate, the framework allows the decision maker to exhibit a preference for the timing of un-

certainty resolution, even if the information obtained by an early resolution of uncertainty

cannot be used to alter future outcomes. Epstein & Zin (1989) show for a one commodity

setting, that this generalized framework allows to disentangle intertemporal substitutabil-

ity and risk aversion. Such a disentanglement is not possible in the intertemporally additive

expected utility model, where the Arrow-Pratt measure of relative risk aversion is confined

to the inverse of the elasticity of intertemporal substitution. In Traeger (2007a) I elabo-

rate that a particular measure for the difference between risk aversion and intertemporal

substitutability has itself an interpretation of risk aversion. I endow the concept with an

axiomatic foundation, show that it naturally extends into the multi-commodity setup and

give it the name intertemporal risk aversion.

In this paper I derive different simplifications of the general recursive representation

by introducing stationarity into the evaluation of future consumption paths. In order to

avoid implicit assumptions on the pure rate of time preference, the model features a finite

time horizon. In consequence, the standard axiom characterizing stationarity has to be

translated into a finite time horizon. To this purpose, I decompose the axiom into two parts.

The well known part of the assumption says that the mere passage of time does not affect

preferences. The other assumption, which is satisfied implicitly in the infinite horizon model

with a strictly positive discount rate, assumes that the ranking of two consumption plans

does not depend on a common outcome in the last period. While a certainty stationary

evaluation mainly makes the model coincide with the standard discount utility model on
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certain consumption paths, the risk stationary evaluation moreover restricts the functional

form of intertemporal risk aversion. Moreover I present an additional axiom relating the

evaluation of risk in different periods. While it does not correspond to a stationarity

assumption in the sense that the mere passage of time does not change preferences, it

makes uncertainty evaluation constant over time, as for example assumed in the generalized

isoelastic model.

Finally, I combine the stationarity axioms with the assumption that the decision maker

does not exhibit an intrinsic preference for an early or late resolution of uncertainty. I show

that, for a time consistent decision maker, a combination of the latter assumption with

risk stationarity, forces the pure rate of time preference to zero. A result that so far, to

the best of my knowledge, has only been argued for on the basis of moral considerations.

Observe that the demands to place more weight on the needs of future generations, i.e. a

low rate of pure time preference, and the application of the precautionary principle, i.e. an

intertemporally risk averse evaluation, are two central concerns of a sustainable develop-

ment. The analysis points out that these different aspects of evaluation are closely linked

from the theoretical point of view of time consistent decision making under uncertainty.

In addition to Traeger (2007a), which introduces the concept of intertemporal risk aver-

sion for the general non-stationary setting, there are two other accompanying papers. In

Traeger (2007d) I set out the immediate correspondence between the concept of intertem-

poral risk aversion and the willingness to undergo preventive measures in order to avoid a

threat of harm. I therefore argue that the concept formalizes an important aspect of the

precautionary principle, a principle gaining increasing significance in international treaties

and declarations. In Traeger (2007c) I elaborate the general relation between Kreps & Por-

teus’ (1978) (intrinsic) preference for the timing of uncertainty resolution and the concept

of intertemporal risk aversion. Moreover, I elaborate how, under the assumption of indif-

ference to the timing of uncertainty resolution, it is possible to disentangle atemporal (or

standard) risk aversion from intertemporal substitutability in a non-recursive framework.

The paper is structured as follows. First, section 2 reviews the general preference rep-

resentation derived in Traeger (2007a). Section 2.1 introduces uncertainty aggregation

rules and briefly reviews the von Neumann-Morgenstern axioms. Section 2.2 lays out the

intertemporal structure of the model and discusses the related axioms. And section 2.3

states the general representation theorem. Then, section 3 introduces different stationar-

ity assumptions. First, section 3.1 restricts choice over certain consumption paths to the

standard discount utility model by requiring an axiom of certainty stationarity. Subse-

quently, section 3.2 introduces an axiom that makes uncertainty aggregation invariant over

time. In particular, the resulting representation contains the model of generalized isoelastic

preferences, usually employed to disentangle (atemporal) risk aversion from intertemporal

substitutability. Third, section 3.3 works out an alternative stationarity assumption for

the evaluation of uncertainty. Analogously to the axiom for certain consumption paths it
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builds on the assumption that the mere passage of time does not change preferences and

that the ranking of two lotteries does not depend on a common certain outcome in the last

period. Section 4 characterizes intertemporal risk aversion in the derived settings. First,

section 4.1 works out a simplified axiomatic characterization for stationary preferences.

Then, section 4.2 analyzes the measures of intertemporal risk aversion in the respective

settings. Finally, section 5 adds the assumption of indifference with respect to the timing

of uncertainty evaluation. Section 5.1 states the resulting non-recursive representation for

certainty stationary decision making. Section 5.2 derives the implications of risk station-

arity for the weight given to future welfare. Section 6 concludes. All proofs are found in

the appendix. On page 38 the reader finds an overview over the notation employed in this

paper.

2 Preliminaries

2.1 Uncertainty Aggregation Rules and the

von Neumann-Morgenstern Axioms

Section 3 briefly reviews the representation and the concept of intertemporal risk aver-

sion derived in Traeger (2007a), which is the basis for later analysis. This section starts

out by introducing uncertainty aggregation rules and briefly reviewing the von Neumann-

Morgenstern axioms. Let X be a connected compact metric space. The elements x of X

are called consumption levels or, more general, outcomes. They may contain quantifica-

tions in terms of real numbers as well as more abstract characterizations, for example, of

current climate or the state of an ecosystem before and after an invasive species has been

introduced. The space of all continuous functions from outcomes into the reals is denoted

by C0(X). More generally, the space of all continuous functions from some metric space Y

into the reals is denoted by C0(Y ). An element u ∈ C0(X), u : X → IR, is called a Bernoulli

utility function.1 Define U = minx∈X u(x), U = maxx∈X u(x) and U = [U,U ] so that the

range of u is given by U .2 The set of all Borel probability measures on X is denoted by

P = ∆(X) and equipped with the Prohorov metric which gives rise to the topology of

weak convergence. The elements p ∈ P are called lotteries. I have in mind an epistemic

foundation of probabilities as worked out for example in Cox (1946,1961) or Jaynes (2003).

1A refined definition of Bernoulli utility in relation to the representation of preference relations is given
in the section (compare page 9).

2Note that compactness of X and continuity of u assure that the minimum and the maximum are
attained.
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Here probabilistic beliefs replace the notion of a binary logic. Then lotteries do not only

describe draws from an urn, but correspond to general characterizations of uncertainty

with respect to possible outcomes. For a closer discussion of this point see e.g. Traeger

(2007d). The degenerate lotteries giving weight 1 to outcome x are denoted by x ∈ P .

A lottery yielding outcome x with probability p(x) = λ and outcome x′ with probability

p(x′) = 1− λ is written as λx + (1− λ)x′ ∈ P . Note that the ‘plus’ sign between elements

of X always characterizes a lottery.3 Again more generally, the set of Borel probability

measures on any compact metric space Y is denoted by ∆(Y ). Finally, I denote with

IR+ = {z ∈ IR : z ≥ 0} and IR++ = {z ∈ IR : z > 0} the set of all positive, respectively

strictly positive, real numbers.

An uncertainty aggregation rule is defined as a functional M : P × C0(X) → IR. It

takes as input the decision maker’s perception of uncertainty, expressed by the probabil-

ity measure p, and his evaluation of certain outcomes, expressed by his Bernoulli utility

function u. For certain outcomes uncertainty aggregation rules are imposed to return the

value of Bernoulli utility, i.e. M(x, u) = u(x). The uncertainty aggregation rule generated

by the axiomatization in Traeger (2007a) is the following. For a strictly monotonic and

continuous function f : IR → IR define Mf : P × C0(X) → IR by

Mf (p, u) = f−1
[∫

X
f ◦ u dp

]

, (1)

where f ◦ u denotes the usual composition of two functions.4 The composition sign will

often be omitted. This shall not create confusion, as usual multiplication of two functions

does not appear within this model. If the probability measure would be defined directly

on the range of u, the expression in equation (1) would be known as the generalized or

f -mean. It aggregates the utility values weighted by some function f and applies the

inverse of f to normalize the resulting expression. The only difference between the mean

and the uncertainty aggregation rule is that the latter takes the Bernoulli utility function

as an explicit argument. If such a correspondence between a mean and an uncertainty

aggregation rule holds, I say that the uncertainty aggregation rule (here Mf ) is induced

by the mean (here generalized or f -mean).5

To illustrate the uncertainty aggregation rule Mf with some examples, let me consider

3As X is only assumed to be a compact metric space there is no immediate addition defined for its
elements. In case it is additionally equipped with some vector space or field structure, the vector addition
will not coincide with the “+” used here. The “+” sign used here alludes to the additivity of probabilities.

4Note that by continuity of f ◦ u and compactness of X Lesbeque’s dominated convergence theorem
(e.g. Billingsley 1995, 209) ensures integrability.

5Precisely this relation can be defined as follows. Let pu ∈ ∆(U) denote the probability measure
induced by p defined on X through the Bernoulli utility function u ∈ C0(X) on its (compact) range U .

Then an uncertainty aggregation rule M is said to be induced by a mean M : ∆(U) → IR whenever

M(p, u) = M(pu) ∀p ∈ P. Mean inducedness implies that only the probability of x is used to weigh u(x).
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the subset of lotteries having finite support, i.e. the set of all simple probability measures

P s ⊂ P on X. Then, equation (1) can be written as

Mf (p, u) = f−1

[

∑

x

p(x)f ◦ u(x)

]

.

The simplest uncertainty aggregation rule corresponds to the expected value operator, and

is obtained for f = id:

E(p, u) ≡ Ep u(x) =
∑

x

p(x)u(x) .

It is induced by the arithmetic mean. For Bernoulli utility functions with a range restricted

to U ⊆ IR+ another example of an uncertainty aggregation rule is induced by the geometric

mean and corresponds to f = ln:

G(p, u) =
∏

x

u(x)p(x) .

Both of the above uncertainty aggregation rules are, again assuming U ⊆ IR+, contained

as special cases in the following uncertainty aggregation rule achieved by f(z) = zα:

Mα(p, u) ≡ Midα

(p, u) =

[

∑

x

p(x)u(x)α

]
1
α

defined for α ∈ IR with M0(p, u) ≡ limα→0 M
α(p, u) = G(p, u) and M1(p, u) = E(p, u).6

The corresponding mean is known as power mean. In the limit, where α goes to infinity

respectively minus infinity, the uncertainty aggregation rule Mα only considers the extreme

outcomes (abandoning continuity in the probabilities): M∞(p, u) ≡ limα→∞Mα(p, u) =

maxx u(x) and M−∞(p, u) ≡ limα→−∞Mα(p, u) = minx u(x).

Moving the representation of preferences, the remainder of this section discusses the von

Neumann-Morgenstern axioms. I represent preferences over lotteries in the usual way by

a binary relation on P denoted �. For two lotteries p, p′ ∈ P the interpretation of p � p′

is that lottery p is weakly preferred with respect to lottery p′. The relation � (⊂ P × P )

is required to be reflexive.7 The asymmetric part of the relation � is denoted by ≻ and

interpreted as a strict preference. The symmetric part of the relation � is denoted by ∼ and

interpreted as indifference. Nonindifference is denoted by 6∼ and defined as 6∼≡ P ×P \ ∼.

An uncertainty aggregation rule is said to represent the preference relation � over lotteries

if

p � p′ ⇔ M(p, u) ≥ M(p′, u) for all p, p′ ∈ P (2)

and some u ∈ C0(X). It is said to represent � for u∗ ∈ C0(X) if equation (2) holds with

6The easiest way to recognize the limit for α → 0 is to note that for any α > 0 the function fα(z) = zα−1
α

is an affine transformation of f(z) = zα. However, affine transformations leave the uncertainty aggregation
rule unchanged (see Traeger 2007a). Therefore the fact that limα→0

zα−1
α

= ln(z) gives the result.

7Note that reflexivity is implied by completeness in axiom A1.
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u = u∗.

The following axioms are close relatives to the ones suggested by von Neumann & Mor-

genstern (1944) for (atemporal) choice under uncertainty.

A1 (weak order) � is transitive and complete, i.e.:

− transitive: ∀ p, p′, p′′ ∈ P : p � p′ and p′ � p′′ ⇒ p � p′′

− complete: ∀ p, p′ ∈ P : p � p′ or p′ � p

Axiom A1 assumes that the decision maker can rank all lotteries (completeness). Moreover,

if one is preferred to a second and the second is preferred to a third, then the first should

also be preferred to the third (transitivity). Note that, within a normative context of

deriving a principled approach to choice under uncertainty, A1 should be interpreted as “if

a decision maker had the capacities to rank all possible outcomes, then his ranking should

satisfy transitivity” rather than as an assumption that the decision maker has actually

worked out a ranking of all possible outcomes.

A2 (independence) ∀ p, p′, p′′ ∈ P :

p ∼ p′ ⇒ λ p + (1 − λ) p′′ ∼ λ p′ + (1 − λ) p′′ ∀ λ ∈ [0, 1]

The independence axiom states the following. Let a decision maker be indifferent between

a lottery p and another lottery p′. Now offer him two compound lotteries, which both start

out with a coin toss. In both lotteries the decision maker enters the same third lottery p′′

if head comes up. However, if tail comes up, the decision maker faces lottery p in the first

compound lottery and the lottery p′ in the second. Recalling that the decision maker is

indifferent between lotteries p and p′, the independence axiom requires the decision maker

to be indifferent between the two compound lotteries as well. More generally, the coin toss

is replaced by an arbitrary binary lottery with outcome probabilities λ and 1−λ, deciding

which p-lottery in the compound lottery is to be ‘played’.

A3 (continuity) ∀p∈P : {p′∈P : p′ � p} and {p′∈P : p � p′} are closed in P

Continuity A3 assures that infinitesimally small changes in the probabilities do not result

in finitely large changes in the evaluation. In particular continuity implies the slightly

weaker Archimedian axiom used by von Neumann & Morgenstern (1944).

2.2 Time and Temporal Lottery

Following Kreps & Porteus (1978) I extend von Neumann & Morgenstern’s (1944) atem-

poral setup to multiple periods. Time is discrete with planning horizon T ∈ IN. Individual

periods are usually denoted with time indices t, τ ∈ {1, ..., T}. The set of all certain con-

sumption paths from period t to period T is denoted by X
t = XT−t+1, where XT−t+1 denotes
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the T−t+1–fold Cartesian product of X with itself.8 A consumption path is generally writ-

ten with a calligraphic x and its period τ entry is denoted by xτ . Whenever such a notation

is unambiguous, I also label the entry xt by xt, yielding the notation x = (x1, x2, ..., xT ).

Moreover, given a consumption paths x = (xt, xt+1, ..., xT ) ∈ X
t and an outcome x ∈ X, I

define the reassembled consumption path (x−i, x) = (xt, ..., xi−1, x, xi+1, ..., xT ) ∈ X
t, as the

consumption path that coincides with x in all but the ith period, when it renders outcome x.

Introducing uncertainty to the multiperiod setup, I employ Kreps & Porteus’ (1978)

framework of temporal lotteries. Instead of the more widespread framework of atempo-

ral lotteries, corresponding to probability measures over consumption paths, this richer

framework involves a recursive description of uncertainty. At the beginning of every period

the decision maker faces uncertainty over the future, as well as over the outcome in the

respective period. In the last period the decision maker has preferences over all lotter-

ies on the space of outcomes X̃T ≡ X, which are modeled as elements of PT ≡ ∆(X).

‘Half a time step’ before, after the uncertainty in period T − 1 has resolved, the decision

maker faces pairs of certain outcomes from xT ∈ X in period T − 1 and lotteries over the

future PT . The corresponding choice space is depicted by X̃T−1 = X × PT . In general

however, before uncertainty in period T − 1 is resolved, the decision makers choice will

correspond to lotteries over the elements of X̃T−1. These are modeled as elements of the

set PT−1 ≡ ∆(X̃T−1) = ∆(X ×PT ). Period T − 1 preferences on this space are represented

by the binary relation �T−1 (⊂ PT−1 × PT−1). Note the recursive structure of the defini-

tion. The uncertainty at the beginning of period T − 1 is not modeled as a probability

distribution over the Cartesian product of outcomes in T − 1 and T . Rather, it is defined

as uncertainty over the outcome in T − 1 and the lottery faced in period T . In general,

define X̃T = X and recursively X̃t−1 = X × ∆(X̃t) for all t ∈ {2, ..., T}. Equip the set of

Borel probability measures on X̃t, denoted by Pt ≡ ∆(X̃t), with the Prohorov metric and

the space X̃t−1 with the product metric (making it compact). The elements pt of Pt are

called (period t) lotteries. Preferences in period t are defined on the set Pt and denoted by

�t (⊂ Pt × Pt). For a detailed introduction to recursive lotteries see also Kreps & Porteus

(1978). For the setting of this paper, Traeger (2007c) elaborates the relation between these

recursive lotteries and the special case where probability measures are defined directly on

consumption paths.

An uncertainty aggregation rule in period t is defined as a functional Mft : Pt×C0(X̃t) →

IR with Mft(pt, ũt) = f−1
t

∫

X̃t
dpt ft ◦ ũt(x̃t) . In order to match the widespread model

of additively separable utility over time on certain consumption paths, I introduce the

following assumption.

8There are T − t+1 periods from t to T for which consumption has to be specified. I do not distinguish
different sets of outcomes for different periods. X can be thought of as the union of all possible outcomes
perceivable in any period.
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A4 (certainty additivity/coordinate independence)

For all x, x′ ∈ X
1, x, x′ ∈ X and i ∈ {1, ..., T} it holds that

(x−i, x) �1 (x′
−i, x) ⇔ (x−i, x

′) �1 (x′
−i, x

′)

Axiom A4 requires that, whenever the outcome in some period i coincides for two con-

sumption paths, then the preference over the two paths does not depend on period i.

Axiom 4 is taken from Wakker (1988) and represents the main ingredient to allow for a

certainty additive representation of the form
∑T

t=1 uca
t (xt) for certain consumption paths.

Note that so far, the resulting functions uca
t would be allowed to vary arbitrarily over time.

In particular, tastes are even allowed to reverse between two periods.

Preferences in different periods are connected by the following consistency axiom.

A5 (time consistency) For all t ∈ {1, ..., T}:

(xt, pt+1) �t (xt, p
′
t+1) ⇔ pt+1 �t+1 p′t+1 ∀ xt ∈ X, pt+1, p

′
t+1 ∈ Pt+1 .

It is a requirement for choosing between two consumption plans in period t that yield

a degenerate lottery with a coinciding entry in the respective period. For these choice

situations, axiom 5 demands that in period t the decision maker shall prefer the plan that

gives rise to the lottery that is preferred in period t + 1. The axiom stems from Kreps &

Porteus (1978).

Finally, I assume that the decision maker faces at least three periods (T ≥ 3) and that in

every period there are at least two outcomes such that the decision maker is nonindifferent

between the two. Precisely, I assume

A0 (nonindifference) For all t ∈ {1, ..., T ≥ 3} there exist x ∈ X
1 and x ∈ X such that

(x−t, x) 6∼1 x .

The assumption T ≥ 3 is convenient to simplify the axiomatization of additive seperability

over certain consumption paths. For the case T = 2, an additional assumption known as

the Thomson condition is required (see Wakker 1988, definition 4.2 & theorem 4.3).9

Finally, I introduce the following notation regarding the codomains of the functions u

and g in the multiperiod setting. Define U t = minx∈X ut(x), U t = maxx∈X ut(x) and

Ut = [U t, U t], as well as Gt = gt(U t), Gt = gt(U t), Gt = [Gt, Gt] and ∆Gt = Gt −Gt for all

t ∈ {1, ..., T}. Moreover let Γt = (Gt, Gt).

9Also, it would be sufficient to require condition A0 only for three different periods, instead of requiring
nonindifference for all t ∈ {1, ..., T}.
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2.3 The Representation

This section states the general representation theorem for preferences satisfying the ax-

ioms of the preceding sections. Special attention is payed to different possibilities of fixing

(gauging) the evaluation function over the certain outcomes within a period. To charac-

terize these functions precisely, I define an induced preference relation on these certain one

period outcomes. For this purpose pick an arbitrary element x0 ∈ X and define for every

t ∈ {1, ..., T} and given preference relation �t the binary relations �∗
t on X by:

x �∗
t x′ ⇔ (x, x0, ..., x0) �t (x′, x0, ..., x0) ∀x, x′ ∈ X

Axiom A4 makes this expression of preference independent of the particular choice for x0.

Then, I define the set of Bernoulli utility functions corresponding to the preference relation

�t by

B�t
= {ut ∈ C0(X) : x �∗

t x′ ⇔ ut(x) ≥ ut(x
′)∀ x, x′ ∈ X}

For a given preference relation �t every Bernoulli utility function will express the decision

makers preference over period t outcomes in the sense that a higher value of ut corresponds

to a preferred choice. Obviously, with any ut ∈ B�t
, also any strictly increasing continuous

transformation is in B�t
(and vice versa). The reason for the special attention paid to

the choice of the Bernoulli utility function lies in the fact that different choices will give

rise to different forms of the representation theorem. In particular, a convenient choice of

Bernoulli utility can either render intertemporal aggregation or or uncertainty evaluation

additive. However, rendering both aggregations, over time and over uncertainty, linear is

generally not feasible. The following representation theorem holds.

Theorem 1: Let there be given a sequence of preference relations (�t)t∈{1,...,T} on (Pt)t∈{1,...,T}

satisfying A0, and a sequence of Bernoulli utility functions (ut)t∈{1,...,T} with ut ∈ B�t
.

The sequence of preference relations (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

if and only if, for all t ∈ {1, ..., T} there exist strictly increasing10 and continuous

functions ft : Ut → IR and gt : Ut → IR such that with defining

v) the normalization constants θT = 1, ϑT = 0 and for t < T

θt = ∆Gt
PT

τ=t ∆Gτ
and ϑt = Gt+1Gt−Gt+1Gt

∆Gt
and

10Alternatively the theorem can be stated replacing increasing by monotonic for (ft)t∈{1,...,T} and de-
manding that either all (gt)t∈{1,...,T} are strictly increasing or that all are strictly decreasing.
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vi) recursively the functions ũt : X̃t → IR by ũT (xT ) = u(xT ) and

ũt−1(xt−1, pt) = g−1
t−1

[

θt−1 gt−1◦ut−1(xt−1)+
θt−1

θt
gt◦M

ft(pt, ũt)+
θt−1

θt
ϑt−1

]

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p
′
t ∈ Pt .

Moreover, (ut, ft, gt)t∈{1,...,T} and (ut, f
′
t , g

′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in the

above sense, if and only if, for all t ∈ {1, ..., T} there exist constants a
f
t ∈ IR++ and

b
f
t ∈ IR such that ft = a

f
t f

′
t + b

f
t , as well as constants ag ∈ IR++ and b

g
t ∈ IR such

that gt = agg′
t + b

g
t .

A sequence of triples (ut, ft, gt)t∈{1,...,T} as above is called a representation in the sense of

theorem 1 for the set of preference relations �= (�t)t∈{1,...,T}. The representation theorem

recursively constructs an aggregate utility ũt that depends on the utility in the respective

period ut(xt), as well as the aggregate utility derived from a particular lottery pt+1 over the

future. The representation is discussed in detail in Traeger (2007a). Note that at some cost

in the freedom to normalize the function (gt)t∈{1,...,T} one can eliminate the normalization

constants ϑt (see Traeger 2007d). However in the present paper they will vanish ‘for free’

thanks to the stationarity assumption. For the purpose of this paper, just note that the

functions gt characterize intertemporal aggregation, while the functions ft characterize

uncertainty aggregation. Both are allowed to vary arbitrarily between different periods.

As shown in Traeger (2007a), a handy choice of the Bernoulli utility functions (ut)t∈{1,...,T}

can render intertemporal aggregation linear, corresponding to gt = id∀t ∈ {1, ..., T}, and

yield the representation characterized by the recursion relation

vi′) ũt−1(xt−1, pt) = θt−1ut−1(xt−1) + θt−1

θt
Mft(pt, ũt) + θt−1

θt
ϑt−1

Alternatively, one can choose Bernoulli utility in a way to render uncertainty aggregation

linear, corresponding to ft = id∀t ∈ {1, ..., T}, and yield the representation characterized

by the recursion relation

vi′′) ũt−1(xt−1, pt) = g−1
t−1

[

θt−1 gt−1 ◦ ut−1(xt−1) + θt−1

θt
gt ◦ Ept

ũt + θt−1

θt
ϑt−1

]

However, the linearization of uncertainty aggregation comes at the cost of making intertem-

poral aggregation nonlinear. Implicitly such a representational form is chosen in the related

representation of Kreps & Porteus (1978). However, as pointed out in Traeger (2007d), a

certainty additive representation is convenient for the economic interpretation. In partic-

ular, only with a normalization as in vi′) Bernoulli utility can be interpreted as welfare in

the following sense. One unit of welfare more in one period and another unit of welfare

less in another period leaves aggregate welfare unchanged. This interpretation in terms of

welfare will prove particularly convenient when the concept of intertemporal risk aversion

will be introduce in section 4. Note finally that a simultaneous linearization of uncertainty

10
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and intertemporal aggregation corresponds to the intertemporally additive expected utility

model. However, the latter only accounts for the special case of the above representation

corresponding to an intertemporally risk averse decision maker, a restriction that is by no

means implied by the above axioms.11

3 Stationarity

3.1 Certainty Stationarity

The representation reviewed in the preceding section allows time and uncertainty aggre-

gation to vary arbitrarily from period to period. In the following, I introduce different

stationarity assumptions and elaborates the corresponding implications for the represen-

tation. First, the current section develops an axiom restricting choice under certainty that

renders intertemporal aggregation and Bernoulli utility stationary. On certain consump-

tion paths, it gives rise to the common discount utility representation. For reasons set out

below I stick to a finite planning horizon. Therefore, the corresponding stationarity axiom

have to be adapted from the forms usually put forth in the literature. Precisely, I split the

axiom into two. The first part can be interpreted as the assumption that the mere passage

of time does not change preference. The second part is the assumption that the ranking of

two lotteries does not depend on a common certain outcome in the last period. The latter

assumption comes for free in an infinite time horizon with a strictly positive discount rate.

Subsequently, in section 3.2, I introduce an axiom that renders uncertainty aggregation

invariant over time. Strictly spoken, it is not a stationarity condition, but a condition

that characterizes indifference with respect to the length of risk taking. The resulting

representation contains the model of generalized isoelastic preferences, usually employed to

disentangle (atemporal) risk aversion from intertemporal substitutability. Section 3.3 works

out an alternative stationarity assumption for the evaluation of uncertainty. Analogously

to the axiom for certain consumption paths derived in the current section, it builds on

the assumptions that the ranking of two lotteries does not depend on a common certain

outcome in the last period and that the mere passage of time does not change preference

(this time over risky outcomes).

Stationarity, in the sense of the standard discount utility model is a ubiquitous assump-

tion in economic modeling, and in particular in environmental economics. However, to the

best of my knowledge, the assumption is expressed in terms of the underlying preference

relations only for models featuring an infinite time horizon. In these models, the axiomatic

11In particular note that it is therefore wrong to call the intertemporally additive expected utility model,
i. e. an evaluation of the form Ep

∑T
t=1 ut, the ‘additively (time) separable expected utility model’.
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Intertemporal Risk Aversion, Stationarity and the Rate of Discount

characterization of stationarity requires that a decision maker prefers a consumption path

x over another consumption path x
′ in the present, if and only if, he prefers a consumption

path (x0, x) over a consumption path (x0, x′) in the present (Koopmans 1960).12 Such an

axiomatization makes use of the fact that for an infinite time horizon, adding an additional

outcome does not change the length of a consumption path. Precisely, both paths x and

(x0, x), are elements of X∞ and can be compared by the same preference relation. On

the contrary, for a finite time horizon, the paths x and (x0, x) differ in length and, thus,

cannot be compared by means of the same preference relation �. The reason for keeping

the model in the finite time horizon is threefold. First, I want to avoid the assumption

of a strictly positive rate of pure time preference at the outset of the model. However,

the latter is required to apply the common techniques for analyzing infinite time horizon

settings (contraction and fix point theorems). From a normative point of view, such a posi-

tive discount rate is not without controversy and several famous economists argued against

such a rate. For example Ramsey states that such a positive rate of pure time preference is

“ethically indefensible” Ramsey (1928, 543). Second, the reasoning on stationarity carried

out in this chapter together with the reasoning on attitude with respect to the timing of

uncertainty resolution carried out in section 5, make a strong point for choosing a zero rate

of time preference for a time consistent approach to choice under uncertainty. Third, for

most planning processes and scenario evaluations there exist reasonable upper bounds for

the planning horizon.13 Finally, from a descriptive perspective, finiteness of the planning

horizon is more than likely to be satisfied. I will provide several comments with respect

to the limit of an infinite time horizon. The following axiom is applicable in a finite time

horizon setting and, there, yields the standard discount utility model for the evaluation of

certain consumption paths.

A6 (certainty stationarity) For all x, x′ ∈ X2 and all x ∈ X holds

(x, x) �1 (x′, x) ⇔ x �2 x
′ .

On the right hand side of the equivalence, the decision maker faces a comparison between x

and x
′ as consumption paths starting in period 2. On the left hand side of the equivalence,

the decision maker faces a comparison between x and x
′ as consumption paths starting in

period 1. The additional outcome x, which is commonly added to the paths x and x
′, makes

(x, x) and (x′, x) choice objects of the appropriate length, so that they can be compared in

period 1 by the preference relation �1. The important property of the axiom is that the

decision maker’s preference over the (certain) consumption paths is independent of their

12See page 13 for details.

13While such an upper bound can be in the magnitude of several decades, note that taking as upper
bound a point of time by which our sun has burned out or turned into a red giant still provides a finite
upper bound (Sackmann, Boothroyd & Kraemer 1993).
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starting point.14

I give an interpretation of axiom 6 by separating the underlying idea into two steps. As-

sume that a decision maker in period 1, planning with time horizon T , prefers consumption

plan (x, x) over plan (x′, x). Confront him in period 2 with the exact same consumption

paths (x, x) and (x′, x) (not with their continuation). Furthermore, let him plan ahead the

same amount of periods in period 2 as he does in period one, implying a time horizon T +1.

Formally, I denote these preferences of the decision maker in period 2 with time horizon

T + 1 by �2|T+1. Then, given that nothing else changes between period 1 and period 2, I

assume that the decision maker ranks (or plans to rank)15 the consumption paths in both

choice situations the same way. Requiring the latter for all consumption paths yields the

condition

(x, x) �1|T (x′, x) ⇔ (x, x) �2|T+1 (x′, x) (3)

for all x, x′ ∈ X
2 and x ∈ X. Condition (3) most clearly captures the intuition of sta-

tionarity, in the sense that the mere passage of time should not change the evaluation.

However, up to now the preference relations �·|T and �·|T+1 are unrelated. In conse-

quence, equation (3) on its own does not restrict the decision maker’s preference relations

(�t)t∈{1,...,T} = (�t|T )t∈{1,...,T} in any way. Thus, the second step in the reasoning has to

relate the preference relation �2|T+1 to the relation �2=�2|T . Both preference relations

specify how the decision maker anticipates to evaluate choice objects from period 2 into

the future. The relation �2|T specifies his ranking when planning T − 2 periods ahead

(until period T ), and the relation �2|T+1 states his ranking when he plans T − 1 periods

ahead (until period T + 1). Accepting stationarity in the sense of equation (3), axiom A6

requires the following relation between �·|T and �·|T+1:

x �2|T x
′ ⇔ (x, x) �2|T+1 (x′, x) (4)

for all x, x′ ∈ X
2 and x ∈ X. In words, if two scenarios or consumption paths are evaluated

with a time horizon of T + 1, and yield the same outcome in period T + 1, then, an

evaluation based only on a time horizon T yields the same ranking of the scenarios.

Let me point out the analogous reasoning to yield stationarity from the assumption

expressed in equation (3) for the case of an infinite planning horizon. Denote the con-

sumption paths corresponding to (x, x) and (x′, x) simply by x
∞, x′∞ ∈ X∞. Then, by

time consistency the right hand side of equation (3) is equivalent to (x, x∞) �1|T+1 (x, x′∞)

for all x
∞, x′∞ ∈ X∞ and x ∈ X. Moreover, in the infinite horizon setting, it holds

�1|T+1=�1|∞=�1|T , a relation which makes equation (4) dispensable. That way, I arrive at

14Note the difference to time consistency. The latter is a condition on consumption paths starting in
the same period that yield a common outcome in the first period. Then, the continuation of the paths in
the next period should be ranked the same way as the complete paths in the earlier period.

15Plans to rank refers to a normative interpretation of the axioms.
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the standard axiom of stationarity for the infinite planning horizon:

x
∞ �1|∞ x

′∞ ⇔ (x, x∞) �1|∞ (x, x′∞) for all x ∈ X and all x
∞, x′∞ ∈ X∞, dating

back to Koopmans (1960, 294)16. Hence, at first sight, the second assumption, correspond-

ing to equation (3), seems to come for free with an infinite time horizon. However, this

is not the case. It is a necessary assumption in the standard framework with an infinite

planning horizon that the decision maker applies a positive rate of pure time preference.

Therefore, the weight given to future consumption converges to zero. Thus, the assumption

that coinciding outcomes in the ‘last’ period of the planning horizon do not matter for the

ranking of consumption paths is implicit in the infinite horizon setting. It is the combined

result of the decision maker’s intrinsic devaluation of the future and his infinite planning

horizon.

Stationarity implies that the sets of Bernoulli utility functions coincide for different

periods. Therefore, define u ∈ B� ≡ B�1 . Preference stationarity on certain consumption

paths as formulated in axiom A6, together with the assumptions reviewed in section 2,

yields the following representation.

Theorem 2: Let there be given a sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} satisfying A0, and a Bernoulli utility function u ∈ B� with range U .

The sequence �= (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A6 (certainty stationarity)

if and only if, there exist strictly increasing and continuous functions ft : U → IR for

all t ∈ {1, ..., T} and g : U → IR as well as a discount factor β ∈ IR++, such that

with defining

v) the normalized discount weights

βt = β 1−βT−t

1−βT−t+1 for β 6= 1 and

βt = T−t
T−t+1

for β = 1 and

vi) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and

recursively

ũt−1 = g−1
[

(1 − βt−1) g ◦ u(xt−1) + βt−1 g ◦Mft(pt, ũt)
]

(5)

16Koopmans (1960) actually formulates his postulates in terms of utility functionals. However the
translation of his postulate 4 into the preference setup is immediate. His general axiomatic setting is
translated into preferences in Koopmans (1972), again with stationarity corresponding to postulate 4.
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it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p
′
t ∈ Pt.

Moreover the functions g and ft are unique up to nondegenerate positive affine trans-

formations.

Certainty stationarity implies that the same Bernoulli utility function u ∈ B� can be used

in the representation for all periods. Moreover, it makes the functions gt, characterizing

intertemporal aggregation, coincide for adjacent periods up to a (common) multiplicative

constant. This constant corresponds to the discount factor β. As shown in the proof,

a representation (u, ft, g)t∈{1,...,T} for (�t)t∈{1,...,T} in the sense of theorem 2 corresponds

to a representation (ut, ft, gt)t∈{1,...,T} = (u, ft, β
tg)t∈{1,...,T} for (�t)t∈{1,...,T} in the sense of

the general non-stationary representation of theorem 1. Expressing this relation in words,

the information characterizing intertemporal aggregation, which in the general setting is

contained in the functions gt for t ∈ {1, ..., T}, can be captured in the stationary setting

by two quantities. The first piece of information is taken up by the function g, which

now is common to all periods and describes the nonlinearity involved in intertemporal

aggregation. The second piece of information characterizes the change of the functions

gt between different periods. This change is captured in a single parameter, the discount

factor β, which describes the reduction in weight given to future outcomes.

For the limit of an infinite time horizon under the assumption β < 1, the normal-

ized discount weights βt used in the representation converge to the discount factor itself:

limT→∞ βt = β for all t. Then, the weight given to the present as opposed to the future is

constant. However, for a decision maker who plans with a finite time horizon, the weights

βt have to accommodate not only discounting, but also the weight that an individual period

receives as opposed to the remaining future. The shorter the time horizon, or the closer the

end of the time horizon, the higher must be the weight that the present period obtains as

opposed to the remaining future.17 Moreover, there exists a particular choice of Bernoulli

utility such that the function g = id and the recursive construction of aggregate utility in

equation (5) becomes additive

ũt−1(xt−1, pt) = (1 − βt−1) u(xt−1) + βt−1 M
ft(pt, ũt) .

For certain consumption paths this representation is ordinally equivalent to the widely

applied evaluation

x
t �t x

′t ⇔
T
∑

τ=t

βtu(xt
τ ) ≥

T
∑

τ=t

βtu(x′t
τ ). (6)

17In particular, at the end of the time horizon, the weight given to the future has to be zero. Note,
that this reasoning is necessary because the weights given to the present and to the future have to add up
to one in the time aggregator g−1 [(1 − βt−1) g(·) + βt−1(·)]. Otherwise the symmetric characterization of
intertemporal aggregation and uncertainty aggregation by functions gt and ft would fail.
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In difference to the intertemporal aggregation rules, the uncertainty aggregation rules are

allowed to vary arbitrarily over time. The next two sections elaborate two different as-

sumptions rendering the uncertainty aggregation rules stationary as well.

3.2 Constant Uncertainty Evaluation

In the preference framework of the preceding section, I assume stationarity in the evaluation

of certain consumption paths. The assumption implies a close relation between intertem-

poral aggregation rules in different periods. In contrast, in the representation of theorem 2

uncertainty evaluation is allowed to vary arbitrarily over time.18 It stands to reason that a

decision maker who relates his evaluation of certain consumption paths between different

periods, is also willing to relate his evaluation of uncertain consumption plans for different

periods. An example of a preference representation which relates uncertainty evaluation

between different periods is the generalized isoelastic model. It was developed indepen-

dently by Epstein & Zin (1989) and Weil (1990) to disentangle (standard) risk aversion

from intertemporal substitutability. The model has been used in many applications ranging

from asset pricing (Attanasio & Weber 1989, Svensson 1989, Epstein & Zin 1991, Nor-

mandin & St-Amour 1998, Epaulard & Pommeret 2001) over measuring the welfare cost of

volatility (Obstfeld 1994, Epaulard & Pommeret 2003b) to resource management19 (Knapp

& Olson 1996, Epaulard & Pommeret 2003a, Howitt et al. 2005) and evaluation of global

warming scenarios (Ha-Duong & Treich 2004). Here, uncertainty aggragation is commonly

characterized for all peirods by the function ft = zα ,∀ t ∈ {1, ..., T}. I will discuss the

model further below.

In order to state an axiom that implies time constant uncertainty aggregation rules, it

proves useful to introduce a special notation for constant consumption paths. Let x̄
t =

(x̄, x̄, ..., x̄) denote the certain constant consumption path that gives consumption x̄ from t

until T . Then 1
2
x̄

t + 1
2
x̄
′t ∈ Pt is the lottery in period t that randomizes with probability 1

2

between the constant consumption streams giving x̄ and x̄′. The following axiom demands

that these randomized consumption streams relate to certain consumption streams the

same way in different periods.

18Precisely, uncertainty evaluation is allowed to vary arbitrarily between different periods t and t′. By
the requirement of time consistency, uncertainty aggregation has to be fixed for a given period t and, thus,
independent of whether period t is τ or τ ′ periods into the future.

19While Knapp & Olson (1996) and Epaulard & Pommeret (2003a) solve theoretical models in order
to obtain optimal rules for resource use, Howitt, Msangi, Reynaud & Knapp (2005) try to rationalize
observed reservoir management in California, which cannot be explained by means of intertemporally
additive expected utility.
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A7 (constant risk evaluation) For all t ∈ {1, ..., T − 1} holds

1
2
x̄

t + 1
2
x̄
′ t �t x̄

′′ t ⇔ 1
2
x̄

t+1 + 1
2
x̄
′ t+1 �t+1 x̄

′′ t+1 ∀ x̄, x̄′, x̄′′ ∈ X .

The axiom can be conceived as an indifference requirement to the start and, thus, the

duration of a taken risk. In particular, for a decision maker who is indifferent between

the lottery 1
2
x̄ + 1

2
x̄′ and a certain outcome x̄′′ in period T , axiom A7 requires that he is

indifferent between the lottery 1
2
(x̄, x̄)+ 1

2
(x̄′, x̄′) and the certain consumption path (x̄′′, x̄′′)

in period T − 1 as well. Be aware that in the lotteries of axiom A7 the outcomes in

the different periods are perfectly correlated. In particular, in the above example, lottery
1
2
(x̄, x̄) + 1

2
(x̄′, x̄′) is not the same as the lottery 1

2
(x̄, 1

2
x̄ + 1

2
x̄′) + 1

2
(x̄′, 1

2
x̄ + 1

2
x̄′), which

would correspond to independent coin tosses in both periods. Adding axiom A7 to the

assumptions of theorem 2 yields the following representation.

Theorem 3: Let there be given a sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} satisfying A0, and a Bernoulli utility function u ∈ B� with range U .

The sequence �= (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A6 & A7 (certainty stationarity & constancy of risk evaluation)

if and only if, there exist strictly increasing and continuous functions f : U → IR and

g : U → IR as well as a discount factor β ∈ IR++, such that with defining

v) the normalized discount weights

βt = β 1−βT−t

1−βT−t+1 for β 6= 1 and

βt = T−t
T−t+1

for β = 1 and

vi) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and

recursively

ũt−1(xt−1, pt) = g−1
[

(1 − βt−1) g ◦ u(xt−1) + βt−1 g ◦Mf (pt, ũt)
]

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mf (pt, ũt) ≥ Mf (p′t, ũt) ∀ pt, p
′
t ∈ Pt.

Moreover g and f are unique up to nondegenerate positive affine transformations.

In this representation a common function f characterizes uncertainty aggregation in all

periods. Relating the representation to the general non-stationary setting, a representation
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(u, f, g) in the sense of theorem 3 corresponds to the representation (u, f, βtg) in the sense

of theorem 1. The following lemma is an immediate consequence of Traeger (2007a, lemma

4).

Lemma 1: Choose any strictly increasing and continuous functions f ∗ : IR → IR and

g∗ : IR → IR. Let the set of preference relations � satisfy the assumptions of theo-

rem 3. Then there exists a Bernoulli utility function u ∈ B�, such that uncertainty

aggregation in the representation of theorem 3 is characterized by f = f ∗|U . More-

over, it exists a Bernoulli utility functions u′ ∈ B�, such that intertemporal aggrega-

tion in the representation of theorem 3 is characterized by the function g = g∗|U .

In particular, either f ∗ or g∗ can be chosen as the identity. In general, however, the

Bernoulli utility function that makes intertemporal aggregation linear (g = id) and the

one that renders expected value (f = id) will not coincide. In the certainty additive

representation the recursive construction of the representation in theorem 3 becomes

ũt−1(xt−1, pt) = (1 − βt−1) u(xt−1) + βt−1 M
f (pt, ũt) .

In the Kreps Porteus form which is linear in uncertainty aggregation one obtains

ũt−1(xt−1, pt) = g−1 [(1 − βt−1) g ◦ u(xt−1) + βt−1 g ◦ Ept
ũt)] .

In the one commodity setting, there is another interesting choice for Bernoulli utility.

Assuming X ⊂ IR+ and nonsatiation in the interior, one can always pick u as the identity.

Then, one obtains the framework that has been developed by Epstein & Zin (1989) and

Weil (1990) in order to disentangle risk aversion from intertemporal substitutability:

ũt−1(xt−1, pt) = g−1
[

(1 − βt−1) g(xt−1) + βt−1 g ◦Mf (pt, ũt)
]

,

where ũT = u = id. In such a setting f can be interpreted as the characterization of

standard or atemporal20 risk attitude (see Epstein & Zin 1989, Traeger 2007a). In general

the concavity of f characterizes risk aversion. For a twice differentiable function f , the

Arrow-Pratt-measure of relative risk aversion correspond to RRA(x) = −f ′′(x)
f ′(x)

x. The

advantage of the Arrow-Pratt-measure of relative risk aversion as opposed to f itself, is that

it eliminates the affine indeterminacy of f that prevails by the moreover part of theorem 3.

On the other hand, the function g can be interpreted as a parametrization of intertemporal

substitutability. Both, Epstein & Zin (1989) and Weil (1990) assume that g is of the form

g(z) = zρ, rendering a constant elasticity of intertemporal substitution σ = 1
1−ρ

. Weil

(1990) moreover assumes that also risk aversion is characterized through a power function

assuming f(z) = zα, rendering constant relative risk aversion RRA = −f ′′(x)
f ′(x)

x = 1 − α.

20The wording ‘atemporal’ stems from Normandin & St-Amour (1998, 268), who point out the difference
between the ‘intertemporal’ information contained in the parametrization of intertemporal substitutability,
and the ‘atemporal’ nature of the risk attitude captured by f . In contrast, the concept of intertemporal
risk aversion that will be developed in section 4 also comprises intertemporal information on evaluation.
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For this specification the recursive construction of aggregate utility in the representation

of theorem 3 becomes

ũt−1(xt−1, pt) =

{

(1 − βt−1) xρ + βt−1

[

∫

X̃t
ũt(x̃t)

α dpt

]
ρ
α

}
1
ρ

(7)

Weil (1990) terms this framework the generalized isoelastic model. By now, it has be-

come the standard workhorse for the disentanglement of (atemporal) risk aversion from

intertemporal substitutability.21 Assuming β < 1, the standard form of the aggregator is

obtained for the limit of an infinite time horizon, where limT→∞ βt = β for all t.

In Traeger (2007a) I take the above model back into the multi-commodity world. While

the individual characterizations of atemporal risk aversion and intertemporal substitutabil-

ity are shown to depend on the particular good under observation, as well as their measure

scale, I show that the function f ◦ g−1 stays invariant.22 Section 4.2 will show that this

invariant characterizes a form of risk aversion that I will introduce axiomatically under the

name intertemporal risk aversion in section 4.1.

3.3 Risk Stationarity

The assumption on risk evaluation in the preceding section was motivated by the objective

to obtain constant uncertainty aggregation rules. In this section, I derive a representation

for risk stationary preferences. An analogous reasoning to the one carried out in section

3.1 yields a preference representation distinct from that given in theorem 3.

In section 3.1 I have motivated the axiom of certainty stationarity by splitting it up into

two assumptions. The first requirement, corresponding to equation (3), expresses that the

mere passage of time shall not change preferences. The second assumption, corresponding

to equation (4), compares two scenarios or consumption paths yielding the same outcome

in period T + 1. For such paths, it requires that the adoption of a time horizon of T + 1

and of T yield the same ranking of the two scenarios. In the following, I give an analogous

reasoning for risky scenarios. As already in axioms A9 and A7, it proves sufficient to

require risk stationarity only for ‘coin toss’ compositions of certain consumption paths, i.e.

probability a half mixtures of type 1
2
x + 1

2
x
′. Moreover, it is enough to have the decision

21Note that these formulations usually are stated in terms of a probability distribution over future
welfare, rather then over outcomes. Define the probability measure p∗t as the measure that is induced by
pt on U through the function ũt and denote the elements of U ⊂ IR by u. Then equation (7) writes as

ũt−1(xt−1, p
∗
t ) =

{

(1 − βt−1)xρ + βt−1

[∫

U
uα dp∗t

]

ρ

α

}
1

ρ

.

Moreover, among the papers cited above, Svensson (1989) translates the isoelastic model to continuous
time, which is also used in Epaulard & Pommeret (2003b) and Epaulard & Pommeret (2003a).

22One has to take care, however, of the affine transformations allowed for f and g.
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maker rank these lotteries with respect to certain alternatives. Then, the requirement

analogous to equation (3) becomes

1
2
(x, x) + 1

2
(x′, x) �t|T (x′′, x) ⇔ 1

2
(x, x) + 1

2
(x′, x) �t+1|T+1 (x′′, x) (8)

for all x, x′, x′′ ∈ X
t+1, x ∈ X and t ∈ {1, ..., T}. In words, the mere passage of time does

not change the ranking between the different scenarios. Demanding that equation 8 holds

for all periods is equivalent to the requirement that the condition holds for lotteries where

uncertainty resolves at any point in the future.23

The second step to arrive at the axiom of risk stationarity, is to connect the relations �·|T

and �·|T+1. As in section 3.1, this is achieved by requiring that scenarios whose outcomes

coincide in the last period of a finite planning horizon T +1 are ranked the same way when

applying a planning horizon of T . This statement formally translates into the equivalence

1
2
x + 1

2
x
′ �t+1|T x

′′ ⇔ 1
2
(x, x) + 1

2
(x′, x) �t+1|T+1 (x′′, x) (9)

for all x, x′, x′′ ∈ X
t+1, x ∈ X and t ∈ {1, ..., T}. As the right hand side of the requirements

in equations (8) and (9) coincides, together, the equations bring about the following axiom

for stationarity of risk attitude in a setting with a finite planning horizon.

A8 (risk stationarity) For all t ∈ {1, ..., T − 1} and x ∈ X:
1
2
(x, x) + 1

2
(x′, x) �t (x′′, x) ⇔ 1

2
x + 1

2
x
′ �t+1 x

′′ ∀ x, x′, x′′ ∈ X
t+1.

In short, the decision maker ranks lotteries of the form 1
2
x + 1

2
x
′ the same way when

they are faced in period t as when they are faced in period t + 1. When facing them in

period t, the additional outcome x at the end of the planning horizon, which coincides for

all consumption paths, does not change his ranking.

Before I come to the representation, let me briefly point out the analogous reasoning

to yield risk stationarity from the assumption expressed in equation (8) in the case of an

infinite planning horizon. Denote the consumption paths corresponding to (x, x) and (x′, x)

simply by x
∞, x′∞ ∈ X∞, yielding the notation 1

2
x
∞ + 1

2
x
′∞ for the lotteries considered in

the infinite horizon version of equation (8). Moreover, in the infinite horizon setting, it is

�1|T+1=�1|∞=�1|T . Then, by time consistency, equation (8) for t = 1 is equivalent to

1
2
x
∞ + 1

2
x
′∞ �1|∞ x

′′∞ ⇔ (x1,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x

′′∞)

for all x
∞, x′∞, x′′∞ ∈ X∞ and x1 ∈ X. Similarly for t = 2 equation (8) is equivalent to

(x1,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x

′′∞) ⇔ (x1, x2,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x2, x

′′∞)

for all x
∞, x′∞, x′′∞ ∈ X∞ and x1, x2 ∈ X. The latter statement for t = 2 can be trans-

23Thus, one can formulate the requirement as well by only considering preference in periods 1 and 2, as
done in equation (3) in section 3.1. Such a reformulation is straight forward, once it is recognized that
time consistency A4 allows to carry over all the requirements in equation (8) into the first two periods, by
adding common outcomes to the beginning of all consumption plans which start in later periods.
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formed using the corresponding statement for t = 1 into the requirement:

1
2
x
∞ + 1

2
x
′∞ �1|∞ x

′′∞ ⇔ (x1, x2,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x2, x

′′∞)

for all x
∞, x′∞, x′′∞ ∈ X∞ and x1, x2 ∈ X. By induction one obtains the general require-

ment

1
2
x
∞ + 1

2
x
′∞ �1|∞ x

′′∞ ⇔ (xt, 1
2
x
∞ + 1

2
x
′∞) �1|∞ (xt, x′′∞) (10)

for all x
∞, x′∞, x′′∞ ∈ X∞, t ∈ IN and x

t ∈ X t. A corresponding24 axiom for stationarity

of risk attitude is found in Chew & Epstein (1991, 356).

Preference stationarity for the evaluation of lotteries together with the assumptions of

section 2 yields the following representation.

Theorem 4: Let there be given a sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} satisfying A0, and a Bernoulli utility function u ∈ B� with range U .

The sequence �= (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A8 (risk stationarity)

if and only if, there exists a strictly increasing and continuous function g : U → IR

and a discount factor β ∈ IR++ as well as a function h ∈
{

exp, id, 1
exp

}

, such that

with defining the functions w̃t : X̃t → IR for t ∈ {1, ..., T} by

v) w̃T (xT ) = g ◦ u(xT ) and recursively

w̃t−1(xt−1, pt) = g ◦ u(xt−1) + β Mh(pt, w̃t) or by (11)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mh(pt, w̃t) ≥ Mh(p′t, w̃t) ∀ pt, p
′
t ∈ Pt. (12)

Moreover, if the representation employs h ∈
{

exp, 1
exp

}

, then two functions g and

g′ both represent (�t)t∈{1,...,T} in the above sense, if and only if, there exists b ∈ IR

such that g = g′ + b. In a representation employing h = id, two functions g and g′

both represent (�t)t∈{1,...,T} in the above sense, if and only if, there exist a ∈ IR++

and b ∈ IR such that g = ag′ + b.

Note that axiom A8 not only relates the functions ft characterizing uncertainty aggregation

in theorem 2 for different periods, but also implies a close relation between the functions

24In difference to the above formulation, the authors require condition (10) for all lotteries, not just for
the probability a half (‘coin toss’) combinations that I have used and which prove sufficient in my setting.
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ft and the function g characterizing intertemporal aggregation. In order to exploit this

relation, the functions w̃t and h are introduced and replace ũt and ft.
25 Note that for

h = 1
exp

the characterization of the uncertainty aggregation rule corresponds to the function

h(z) = 1
exp(z)

= exp(−z).26 In difference to the requirements of intertemporally additive

expected utility, the relation between ‘risk aversion’ and ‘intertemporal substitutability’

implied by axiom A8 leaves one degree of freedom.27 This freedom breaks the representation

up into the three classes, corresponding to h ∈
{

exp, id, 1
exp

}

. The next section elaborates

that these classes correspond to intertemporally risk seeking, intertemporally risk neutral

and intertemporally risk averse behavior.

4 Intertemporal Risk Aversion

4.1 Axiomatic Characterization of Intertemporal Risk Aversion

In Traeger (2007a) I have introduced the concept of intertemporal risk aversion in a gen-

eral framework with non-stationary preferences. This section gives a slightly simplified

axiomatic definition for decision makers that exhibit (at least certainty) stationary behav-

ior. At the end of section 3.2 I have pointed out that the assignment of atemporal risk

aversion and intertemporal substitutability to the functions g and f generally fails or at

least becomes good-dependent in the multi-commodity setting. This problem can also be

inferred from the fact that both functions depend on the choice of Bernoulli utility (see

lemma 1). In fact, Traeger (2007a) elaborates that the good- and scale-dependence of

these characterizations of intertemporal evaluation can be translated into a dependence

25I introduce a new name for the functions employed in the recursive construction of the representation in
equation (11), as they are not complete analogues to the ones used in earlier representations. Precisely, the
functions w̃t used in equation (11) relate to the functions ũt used in the earlier theorems as w̃t = 1

1−βt
g◦ũt.

This rephrasing of the recursion relation greatly simplifies the representation (see part IV of the proof).
Moreover, the function h characterizes the relation between f and g imposed by axiom A8. In section 4
the function h will be seen to be closely related to the notion of intertemporal risk aversion. The functions
ft characterizing uncertainty aggregation in the sense of the earlier representation theorems are affine
transformations of h ◦ g (the affine transformation is negative for the case where h = 1

exp
). However, the

mentioned relation between ft and g, which is used to simplify the representation, only holds for particular
choices of g within its affine indeterminedness. In consequence, in order to exploit the relation, I have to
give up part of the affine freedom for the choice of g. For this reason, in the cases where h ∈

{

exp, 1
exp

}

,
the function g is no longer free up to affine transformations, but only up to a translational constant.

26I avoid the notation h = exp−1 because h−1 is used to denote the inverse.

27Recall that in the intertemporally additive expected utility model, the coefficient of relative risk
aversion is always fixed to the inverse of the elasticity of intertemporal substitution. I put quotation
marks, as this interpretation of f and g is meaningful only in a one commodity Epstein Zin form of the
representation.
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on the choice of Bernoulli utility in the representation. Seeking for a measure of risk that

is invariant under the choice of Bernoulli utility, and thus good-independent, I derive a

concept termed intertemporal risk aversion. The following is an axiomatic characterization

of the concept for the stationary setup.

A decision maker exhibits weak intertemporal risk aversion in period t, if and only if,

the following axiom is satisfied:

A9w (weak intertemporal risk aversion) For all x̄, x ∈ X
t holds

x̄ ∼t x ⇒ x̄ �t

∑T

i=t
1

T−t+1
(x̄−i, xi).

A decision maker is said to exhibit strict intertemporal risk aversion in period t, if and

only if, the following axiom is satisfied:

A9 s (strict intertemporal risk aversion) For all x̄, x ∈ X
t holds

x̄ ∼t x ∧ ∃ τ ∈ {t, ..., T} s.th. xτ 6∼∗
τ x̄

⇒ x̄ ≻t

∑T

i=t
1

T−t+1
(x̄−i, xi).

I start with the interpretation of the strict axiom. The first part of the premise in axiom A9 s

states that a decision maker is indifferent between a constant consumption path delivering

outcome x̄ in every period and the consumption paths x. The second part of the premise

requires that the path x exhibits some variation, making at least one of the outcomes better

or worse than x̄. Without loss of generality assume that outcome xτ is strictly preferred

to outcome x̄ (i.e. xτ ≻∗
τ x̄). Then28, by the first part of the premise, there also has to

exist a period τ ′, in which the outcome xτ ′ is judged inferior to the outcome x̄. Moving

to the implication of axiom A9 s, recall that the consumption path (x̄−i, xi) denotes the

consumption path where the ith entry of x̄ is replaced with the outcome xi. Then, the lottery
∑T

i=t
1

T−t+1
(x̄−i, xi) delives a consumption path with outcomes x̄ in all but one period. In

that period, i.e. in period i, the outcome x̄ is replaced by outcome xi. The lottery draws

with equal probability the period in which the outcome is replaced.29 As seen above, some

of these outcomes xi are better than x̄, while others are worse. However, altogether the

outcomes xi that are considered superior and those that are considered inferior with respect

to x̄ balance each other, in the sense that receiving all of these outcomes with certainty

leaves the decision maker indifferent with respect to receiving x̄ in every period. The

second line of axiom A9 s demands that for consumption satisfying the above conditions,

an intertemporally risk averse decision maker should prefer the constant consumption path

x̄ with certainty over the lottery that yields with equal probability any of the consumption

28Assuming that the axioms of choice given in the section 2 prevail.

29Note that for i ∈ {t, ..., T} there are T − t + 1 different consumption paths (x−i,x
′
i), each of length

T − t + 1.
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paths (x̄−i, xi), some of which make him better off and some of which make him worse off.

The intuition for such a choice is that the decision maker might be better off in the lottery

than with the certain consumption path x̄, but he might as well be worse off. This differs

from the decision problem in the premise, where the decision maker can be certain to get

the higher outcome xτ in period τ whenever he receives the lower outcome xτ ′ in period

τ ′. In other words, the fear of receiving an outcome which is judged inferior with respect

to x̄ makes the intertemporally risk averse decision maker prefer the certain and constant

consumption path to the lottery.

The interpretation of the weaker axiom A9w is analogous, only that the consumption

path x is allowed to coincide with x̄, and the implication only requires that the lottery is

not strictly preferred to the certain and constant consumption path. If axiom A9 s (A9w)

is satisfied with ≻t (�t) replaced by ≺t (�t), the decision maker is called a strong (weak)

intertemporal risk seeker. If a decision maker’s preferences satisfy weak intertemporal risk

aversion as well as weak intertemporal risk seeking, the decision maker is called intertem-

porally risk neutral.

In the following I give an alternative interpretation of axiom A9 s, relating it to the

representation of theorem 2. For this purpose, I choose the representation where Bernoulli

utility is picked in a way to render intertemporal aggregation linear (g = id). Then, the

first part of the premise requires that for two consumption paths, x̄ and x, the (discounted)

per period utility adds up to the same aggregate utility (equation 6). The second part of

the premise requires that at least in one period the utility gained from consumption path x̄

differs from the utility gained from the outcome x̄. Then, the lottery in axiom A9 s renders

in expectation the same utility as the certain consumption path x̄. A decision maker is

defined to be strictly intertemporally risk averse when preferring the certain consumption

path x̄ over the lottery that leaves him either worse or better off, and yields the same utility

as the certain consumption path in expectation. Note that this interpretation only works

for the certainty additive choice of Bernoulli utility corresponding to g = id. As (only)

in such a certainty additive representation a utility gain of one unit (after discounting)

in some period and a utility loss of one unit (after discounting) in another period leaves

the aggregate utility unchanged, I suggest in Traeger (2007d) to identify certainty additive

Bernoulli utility with the decision maker’s welfare. Then, intertemporal risk aversion can

be interpreted as risk aversion with respect to welfare gains and losses.

4.2 Functional Characterization of Intertemporal Risk Aversion

This section characterizes intertemporal risk aversion in terms of the functional represen-

tations derived in sections 3.1 through 3.3. I start with a characterization for the certainty

stationary case in terms of representation theorem 2.
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Theorem 5: Let the sequence of triples (u, ft, g)t∈{1,...,T} represent the set of preferences

�= (�t)t∈{1,...,T} in the sense of theorem 2. Furthermore let t ∈ {1, ..., T − 1}. Then

the following assertions hold:

a) A decision maker is strictly intertemporally risk averse [seeking] in period t in the

sense of axiom A9 s, if and only if, ft ◦ g−1(z) is strictly concave [convex] in z ∈ Γt.

b) A decision maker is weakly intertemporally risk averse [seeking] in period t in the

sense of axiom A9w, if and only if, ft ◦ g−1(z) is concave [convex] in z ∈ Γt.

c) A decision maker is intertemporally risk neutral in period t, if and only if, ft◦g
−1(z)

is linear in z ∈ Γt.

Intertemporal risk attitude is described by the second order characteristics of the function

ft◦g
−1. I refer to the latter as the stationary characterization of intertemporal risk attitude.

Note that the function ft◦g
−1 is concave if and only if the function ft◦g

−1
t (z) = ft◦g

−1(β−tz)

is concave. As elaborated in Traeger (2007a), the latter characterizes intertemporal risk

aversion in the general non-stationary representation of theorem 1. In the certainty sta-

tionary setting of representation theorem 2, the functions ft are allowed to vary arbitrarily

over time. Therefore, the decision maker’s intertemporal risk attitude may also differ ar-

bitrarily between different periods. This feature changes for the representations worked

out in sections 3.2 and 3.3. Concerning the representation of theorem 3, observe that it

corresponds to the special case of theorem 2, where uncertainty aggregation is constant

over time, i.e. ft = f ∀ t ∈ {1, ..., T}. In consequence, theorem 5 applies with ftg
−1 = fg−1

independent of the period. Thus, the decision maker is either intertemporally risk averse,

risk neutral or risk seeking in all periods. The same is true for a decision maker whose

preferences satisfy risk stationarity and can be represented by theorem 4. Infer from the

proof of theorem 4 that h in the representation of theorem 4 corresponds to an affine

transformation of ft ◦ g−1. Therefore, the decision maker is intertemporally risk averse,

risk neutral or risk seeking depending on whether h is respectively 1
exp

, id or exp.30

In order to derive quantitative characterizations of risk attitude, I follow Traeger (2007a)

and define for a twice differentiable function ft ◦g−1
t : Γt → IR the measures of relative and

absolute intertemporal risk aversion as the functions :

RIRAt : Γt → IR

RIRAt(z) = −

(

ft ◦ g−1
t

)′′
(z)

(

ft ◦ g−1
t

)′
(z)

z , (13)

30Note again that in the case where h = 1
exp

, h is a negative affine transformation of ft ◦g−1, making the

latter concave (see footnote 25). Also note that intertemporal risk attitude going along with preferences
that satisfy axiom A8 can be observed better in corollary 1 following below.
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and

AIRAt : Γt → IR

AIRAt(z) = −

(

ft ◦ g−1
t

)′′
(z)

(

ft ◦ g−1
t

)′
(z)

. (14)

However, due to the affine freedom in the representations of theorems 2 to 4, these quan-

tities are not well defined, yet. As I elaborate in detail in Traeger (2007a), the standard

(Arrow-Pratt) measures of absolute and relative atemporal risk aversion are not well de-

fined, unless a cardinal scale for the measurement of the consumption commodity has been

fixed. Similarly, the measures of absolute and relative intertemporal risk aversion are not

well defined, unless a cardinal scale for the measurement of the intertemporal consumption

consumption trade of has been fixed. This is best understood in the perspective given at

the end of the preceding section. Here certainty additive Bernoulli utility, which specifies

the intertemporal trade off for consumption, has been given the interpretation of the deci-

sion maker’s welfare. Then, intertemporal risk aversion can be interpreted as risk aversion

with respect to welfare gains and losses. However, the (certainty additive) Bernoulli util-

ity function is only defined up to affine transformations.31 In consequence, to render the

measure of absolute intertemporal risk aversion unique, the unit of welfare has to be fixed.

Similarly, to render the measure of relative intertemporal risk aversion unique, the zero

level of welfare has to be fixed. This intuitive reasoning which is elaborated in more detail

in Traeger (2007a) is verified by the upcoming lemma. Before stating the latter, I have to

decide for which period I fix the scale for the intertemporal trade off measure which I refer

to as welfare. I adopt the convention to fix the measure scale always for the first period.

In consequence, fixing range(uca
1 ) = W ∗ implies that the range for later periods is fixed to

range(uca
t ) = βt−1range(uca

1 ) = βt−1W ∗. Note that for different representation, which are

not linear in intertemporal aggregation, the relevant intertemporal trade off measure that

has to be fixed in scale is characterized by the function g ◦ u.

Lemma 2: Let there be given a sequence of preference relations �= (�t)t∈{1,...,T}

satisfying axioms A1-A3, A4, A5 and A6 or A8. In addition, choose

i) a number w
∗ ∈ IR++,

ii) an outcome xzero ∈ X or

iii) a nondegenerate closed interval W ∗ ⊂ IR.

Then, for representations in the sense of theorems 2 or 3 with twice differentiable

functions ft ◦ g−1 and for representations in the sense of theorem 4, which

31Recall that the functions g characterizing intertemporal aggregation were only unique up to affine
transformations in any of the stated representations. Choosing Bernoulli utility in a way to make in-
tertemporal aggregation linear, thus, still leaves an affine freedom to the choice of the certainty additive
Bernoulli utility function. This reasoning is carried out rigorously in Traeger (2007a).
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a) satisfy ∆G = w
∗, the risk measures AIRAt

b) satisfy g ◦ u(xzero) = 0, the risk measures RIRAt

c) satisfy ∆G = w
∗ and g ◦ u(xzero) = 0, the risk measures AIRAt and RIRAt

d) satisfy G = W ∗, the risk measures AIRAt and RIRAt

are determined uniquely and independent of the choice of the Bernoulli utility func-

tion.

Independence of Bernoulli utility implies that, once the corresponding welfare information

has been fixed, the measures RIRAt and AIRAt are determined uniquely, independent

of the choice of Bernoulli utility in the corresponding representation theorem and, thus,

independent of any other information on goods or measure scales. In assertion a) the

required welfare information is obtained from fixing the unit of measurement, by prescribing

a numerical value to the difference in welfare between the best and the worst outcome, i.e.

uca
1 (xmax)−uca

1 (xmin) = g◦u(xmax)−g◦u(xmin) = G−G = w
∗. Such a partial specification

of the measure scale for welfare makes the measures of absolute intertemporal risk aversion

unique. Assertion b) fixes the ‘zero welfare level’, by choosing an outcome that shall

correspond to zero welfare. The information is enough to render the measures of relative

intertemporal risk aversion unique. Assertion c) fixes the welfare unit and the zero welfare

level together. This step completely eliminates the freedom in the choice of measure scale

for welfare. In consequence, both measures of intertemporal risk aversion are determined

uniquely. Assertion d) offers an alternative way to eliminate the indeterminacy of the

measure scale for welfare, by specifying the range of the function g and, thus, the welfare

levels corresponding to the best and the worst outcomes. The latter approach is taken in

the subsequent corollaries.

For preferences satisfying risk stationarity as formulated in axiom A8, it is worthwhile

to take a closer look at the representations that fix the degree of freedom in the measure

scale for welfare. For this purpose define the uncertainty aggregation rule Mexpξ

for the

case ξ = 0 by limit, yielding32

Mexp0

(pt, w̃t) ≡ lim
ξ→0

Mexpξ

(pt, w̃t) = lim
ξ→0

1

ξ
ln
[ ∫

dpt exp(ξw̃t)
]

= Ept
w̃t .

The limit is a simple application of l’Hospital’s rule, as shown in the proof of corollary 1.

Choosing Bernoulli utility in the representation of theorem 4 in a way to yield g = id and

fixing the range of the intertemporal trade off measure, which for g = id corresponds to

the range of u, one obtains the following representation.

Corollary 1 (g = id+−gauge) : Choose a nondegenerate closed interval W ∗ ⊂ IR. A

sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfying A0 satisfies

32Note that the characterization of the uncertainty aggregation rule by f = expξ is equivalent to f(z) =
exp(ξ z).
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i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A8 (risk stationarity)

if and only if, there exists a continuous and surjective function u : X → W ∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining the functions

v) w̃t : X̃t → IR for t ∈ {1, ..., T} by w̃T (xT ) = uca(xT ) and recursively

w̃t−1(xt−1, pt) = uca(xt−1) + β Mexpξ

(pt, w̃t) (15)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mexpξ

(p′t, w̃t) ≥ Mexpξ

(p′t, w̃t) ∀ pt, p
′
t ∈ Pt. (16)

Moreover, the function u is determined uniquely. With the convention that g1 =

g, the uniquely defined measures of intertemporal risk aversion are calculated to

AIRAt = − ξ

βt−1(1−βt)
and RIRAt = − ξ

βt−1(1−βt)
id.

Fixing the welfare range eliminates the affine freedom of g, here corresponding to the

freedom of u (g = id−gauge). In the representation of theorem 4, part of this freedom

was employed to carry information over the relation between the functions g and ft. Fix-

ing g and its range exogenously, this information gives rise to the new parameter ξ. It

parametrizes intertemporal risk aversion and corresponds to a degree of freedom between

the function g, characterizing intertemporal aggregation, and the functions ft, characteriz-

ing uncertainty aggregation. In the particular case where ξ = 0, the coefficient of relative

atemporal risk aversion (defined in a one commodity setting) is confined to the inverse of

the intertemporal elasticity of substitution and intertemporal risk neutrality prevails. In

this case, equations (15) and (16) recursively define the intertemporally additive expected

utility framework.

The representation in theorem 4 features three different representations corresponding

to h ∈
{

1
exp

, id, exp
}

that appear to be disconnected. Corollary 1 shows how the coef-

ficient of absolute intertemporal risk aversion, which is proportional to ξ, connects these

classes continuously, allowing for a wide range of intertemporal risk attitude. Moreover,

axiom A8 implies that the coefficient of absolute intertemporal risk aversion is constant in

the utlity levels respectively outcomes. However, the coefficient of absolute intertemporal

risk aversion is not constant over time. In the discussion of theorem 5, it had already

been observed that for risk stationary representations in the sense of axiom A7 only the

expression ft ◦ g−1, which I referred to as the stationary characterization of intertemporal

risk aversion, stays constant over time. The general characterization ft ◦ g−1
t picks up the

discount rate from gt = βt−1g. The same happens for risk stationarity in the sense of
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axiom A8. The interpretation is as follows. The function ft ◦ g−1 characterizes intertem-

poral risk aversion in period t with respect to a welfare scale that is fixed in period t to

range(g) = range(uca) = W ∗. One could formulate this characterization as a measurement

in terms of a ‘current value measure scale for welfare’. With respect to such a constant

‘current value measure scale’, the characterizing functions of intertemporal risk aversion are

constant over time.33 In contrast, the measures AIRAt and RIRAt are defined with respect

to the characterizing functions ft ◦ g−1
t . Fixing range(g1) = range(g) = range(uca) = W ∗,

implies that range(gt) = βt−1range(g) = βt−1W ∗. Thus, in these measures intertemporal

risk aversion is measured with respect to a ‘present value measure scale for welfare’ and

discounting shrinks the range of welfare that serves as basis for the measurement of in-

tertemporal risk aversion in period t. Then, as the range of the welfare measure scale (in

present value) becomes smaller and smaller over time due to discounting, the coefficient of

intertemporal risk aversion has to increase (in absolute terms) in order to keep up a sta-

tionary aversion to risk. Therefore, the coefficients of intertemporal risk aversion AIRAt

and RIRAt include the factor βt in the denominator.

Moreover, risk stationarity implies another dependence of absolute intertemporal risk

aversion on time. In the denominator of AIRAt appears as well the time-dependent nor-

malized discount factor βt. Recall that the latter takes account of the relative weight

given to a single period as opposed to the remaining future, a weight changing over time

when a finite planning horizon is approached. For a representation satisfying risk sta-

tionarity in the sense of axiom A8, this change of weight enters into the characterization

of intertemporal risk aversion. It implies that the stationary part of intertemporal risk

aversion, characterized by ft ◦ g−1, slowly decreases over time as the term 1− βt increases

to unity for the last period. Leaving this term unconsidered, yields a representation in

the sense of theorem 3, satisfying axiom A7. In other words, disregarding the adjustment

of intertemporal risk aversion by the change of weight that the remaining future obtains

as opposed to the present period, in a setting with a finite planning horizon, makes the

corresponding decision maker indifferent to the length of risk taking (axiom A7). For an

infinite time horizon this weight is obviously constant, precisely it holds (1−βt) = (1−β),

and a representation in the (limiting) sense of theorem 4 also is a representation in the

(limiting) sense of theorem 3.34

Alternatively to corollary 1, the representation can also be stated in the Kreps and

Porteus form, where uncertainty aggregation is rendered linear. A corresponding corollary

is stated in appendix A. Similarly, in order to relate to the generalized isoelastic model,

33Except for the normalization factor 1
1−βt

in the case of risk stationarity in the sense of axiom A8. This
term will be discussed further below.

34Note that a constant term (1 − β) can be absorbed into the parameter ξ and makes no difference for
the comparison between different classes of representations.
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one can render uncertainty aggregation in equation (16) isoelastic. If this is done for

risk stationary preferences, the corresponding intertemporal aggregation turns out to be

multiplicative (see appendix A). In consequence, for a one-commodity setting, the only

overlap between the generalized isoelastic model and the risk stationary model is obtained

for an intertemporal elasticity of zero. Interpreting once more certainty additive Bernoulli

utlity as welfare, this setting corresponds to a logarithmic welfare function. The latter is

an assumption frequently put forth in certainty additive macroeconomic models.

5 Timing Indifference and the Rate of

Pure Time Preference

5.1 Indifference to the Timing of Risk Resolution

A particular feature of the recursive utility models employed in the preceding sections, is

that they allow for an intrinsic preference for early or late resolution of uncertainty. This

preference is intrinsic in the sense that a decision maker can strictly prefer an early reso-

lution of uncertainty, even if the information obtained from the early resolution is known

not to affect his plans and, thus, his future outcomes. In Traeger (2007b) I analyze the

relation between intertemporal risk aversion and such a preference for the timing of un-

certainty resolution. Assuming indifference to the timing of uncertainty resolution implies

that the evaluation of uncertainty can be reduced to the evaluation of atemporal lotteries

expressing uncertainty as probability measures on consumption paths. In particular, from

a normative point of view, such an indifference can be motivated by the fact that a decision

maker who has a strict preference for early of late resolution of uncertainty is willing to

give up welfare for pre-drawing or postponing information of which he knows that it has no

effect on his future behavior or payoffs. In this section I analyze the effects of adding such

an indifference assumption to the setting laid out so far. The according axiom is stated as

follows.

A10 (indifference to the timing of risk resolution)

For all t ∈ {1, ..., T − 1}, xt ∈ X, pt+1, p
′
t+1 ∈ Pt+1 and λ ∈ [0, 1] it holds

λ(xt, pt+1) + (1 − λ)(xt, p
′
t+1) ∼t (xt, λpt+1 + (1 − λ)p′t+1).

In words, a decision maker who is indifferent to the timing of risk resolution in the sense of

axiom A10, does not distinguish between a lottery where the uncertainty about the future

faced in period t + 1 - described by lottery pt+1 versus lottery p′t+1 - resolves in period t

(lottery on the left) or in period t + 1 (lottery on the right). Here, the uncertainty about
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the future faced in period t + 1 is described by the probability mixture λ and 1 − λ.

Under indifference to the timing of risk resolution the preference representation only

makes use of the atemporal lotteries pxt , p′xt ∈ ∆(Xt) that are defined non-recursively over

consumption paths. In Traeger (2007b) I show how these probability measures can be

derived from their recursive counterparts pt, p
′
t ∈ Pt. This relation, however, is only needed

to axiomatize the representation within the more general setting. For an application of

the representation theorem below, it is sufficient to describe the uncertain future directly

by the measures pxt ∈ ∆(Xt). The following representation analyzes the consequences of

certainty stationarity in such a non-recursive setting. I state the representation in the

certainty additive form, where it coincides with the standard discount utility evaluation on

certain consumption paths. Moreover I immediately fix the measure scale of the intertem-

poral trade-off (to the exogenously given interval W ∗) in order to render the measures of

intertemporal risk aversion unique.

Theorem 6 (g = id+−gauge, certainty stationary) : Choose a nondegenerate

closed interval W ∗ ⊂ IR++. A sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} satisfying A0, satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A6 & A10 (certainty stationarity & timing indifference)

if and only if, there exists a continuous and surjective function uca : X → W ∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining

v) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T
∑

τ=t

βτ−1uca(xt
τ )

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt .

Moreover, the function u is determined uniquely, as are the measures of intertemporal

risk aversion AIRAt = − ξ

1−βt
and RIRAt = − ξ

1−βt
id.

In view of the axioms note that, in the above setting, a result by Chew & Epstein (1989,

110) would allow to replace the independence axiom A3 by a collection of weaker as-

sumptions. The representation evaluates outcomes in all periods by means of a common,

certainty additive Bernoulli utility function u which, once more, I will identify with the

decision maker’s welfare. Overall evaluation of a particular consumption path is performed
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by taking the discounted sum of per period welfare. To evaluate an uncertain future,

the decision maker weights the aggregate welfare of the possible consumption paths with

their respective probabilities, and applies the uncertainty aggregation rule Mexpξ

, which

is parametrized (up to a normalization factor) by the coefficient of absolute intertemporal

risk seeking, i.e. the negative of absolute intertemporal risk aversion. For the limit of an

infinite time horizon, the normalization constant 1 − βt (depicting the relative weight of

an individual period as opposed to the remaining future) becomes constant over time. In

consequence, also the coefficient of intertemporal risk aversion limT→∞ AIRAt = − ξ

1−β
be-

comes constant. For a finite time horizon, however, as the end of the planning horizon is

approached, the decreasing length of the welfare paths under consideration goes along with

a coefficient of absolute intertemporal risk aversion AIRAt that decreases over time to −ξ

for the last period. Note that, in accordance with the convention underlying lemma 2, the

measure scale for welfare has been fixed to W ∗ in period 1, implying ranges βt−1W ∗ for

welfare measurement in later periods. In particular, theorem 6 shows that it is possible to

disentangle atemporal risk aversion from intertemporal substitutability without assuming

an intrinsic preference for early or late resolution of uncertainty. For details see Traeger

(2007b). In addition, the model is compatible with the widespread discount utility model

for the evaluation of individual consumption paths.

5.2 Implications for Discounting

In the preceding section I have shown that the requirement of indifference to the timing of

uncertainty resolution is compatible with strict intertemporal risk aversion and a discount

utility evaluation of certain consumption paths. This section analyzes the consequences of

merging the assumption of indifference to the timing of uncertainty resolution with that

of risk stationarity formulated in axiom A8.

In theorem 6, I have described how certainty stationarity determines the time develop-

ment of intertemporal risk aversion for a decision maker who has no intrinsic preference

for early or late resolution of uncertainty. The coefficient of absolute intertemporal risk

aversion was seen to be constant in welfare and to adapt to the length of the planning

horizon lying ahead of the decision maker. It was calculated to AIRAt = − ξ

1−βt
. Simi-

larly, the assumption of risk stationarity formulated in axiom A8 gives rise to a coefficient

of absolute intertemporal risk aversion that is constant in welfare. Moreover, the respec-

tive representation stated in corollary 1 exhibits the same adaption of the coefficients of

intertemporal risk aversion to the length of the remaining planning horizon through the

factor 1
1−βt

. However, in contrast to the representation of the preceding section, for a de-

cision maker who complies with risk stationarity, the coefficient of absolute intertemporal

risk aversion also depends on the discount factor βt. As I elaborated have elaborated in
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section 3.3, under the assumption of axiom A8 only the functions ft◦g−1 stay constant over

time (up to the normalization by 1
1−βt

). These functions, to which I have referred as the

stationary characterization of intertemporal risk attitude, measure intertemporal risk aver-

sion with respect to a ‘current value measure scale for welfare’. In contrast, the coefficient

AIRAt expresses intertemporal risk aversion with respect to the ‘present value measure

scale for welfare’. That is, if the measure scale for period 1 is fixed to range(uca
1 ) = W ∗,

then the measure scale of welfare in period t shrinks down to the range(uca
t ) = βt−1W ∗.

But then, as the range of welfare measurement (in present value) becomes smaller and

smaller over time due to discounting, the coefficient of intertemporal risk aversion has to

increase in order to keep up a stationary aversion to risk. However, this is not allowed by

axiom A10. If indifference to the timing of uncertainty resolution should prevail, the latter

requires intertemporal risk aversion to be constant over time (up to the normalization by
1

1−βt
). Otherwise, a decision maker would be willing to give up welfare in order to have

uncertainty resolved in the period with the lowest intertemporal risk aversion, even if the

information obtained is known to be of no use.

In consequence, risk stationary devaluation of the future, which implies by axiom A8 a

decreasing coefficient of absolute intertemporal risk aversion, is not compatible with the

demand of axiom A10, i.e. the lack of an intrinsic preference of uncertainty resolution.

Precisely, there is only one situation where such a devaluation of the future is compatible

with both axioms. For a decision maker who is intertemporally risk neutral, the assump-

tion of risk stationarity has no more bite than the assumption of certainty stationarity.

Here, the coefficient AIRAt = 0 for all t ∈ {1, ..., T} is constant over time and, thus, the

intertemporally additive expected utility model trivially satisfies the requirements implied

by both axioms. However, for a nontrivial model of intertemporally risk averse decision

making, the following result obtains.

Theorem 7: A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfying

axiom A0, satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A9 s (strict intertemporal risk aversion)

v) A8 (risk stationarity II)

vi) A10 (timing indifference)

if and only if, there exists a representation in the sense of theorem 6 with ξ < 0 and

β = 1.
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In words, a decision maker who accepts the above axioms does not discount the future

due to an intrinsic timing preference. However, he does devaluate uncertain welfare in

the sense of the certainty additive Bernoulli utility uca. In consequence, if uncertainty

increases over time, future welfare gains less weight than current welfare. The remainder

of this paragraph renders the latter intuition precise. For this purpose let px1 ∈ ∆(X1) be

a product measure px1 = IPx1
1 ⊗ ... ⊗ IPxT

T with IPxτ

τ ∈ ∆(X) and τ ∈ {1, ..., T}, so that the

outcomes in different periods are independently distributed. Assume that expected welfare

is the same in all periods, i.e. EIPxτ
τ

uca(xτ ) = u
∗ ∈ U = W ∗ ∀ τ ∈ {1, ..., T}. To define

what it means that uncertainty over welfare is increasing over time, I employ Rothschild &

Stiglitz’s (1970) definition of increasing risk. The authors define a random variable to be

riskier than another, if the corresponding probability distribution has more weight on the

tails.35 In particular, this condition is satisfied for a mean preserving spread. Now, consider

the probability distributions IPu
τ over U that are induced by the measures IPxτ

τ through the

certainty additive Bernoulli utility function uca. Then, uncertainty of welfare increases over

time, if IPu
t has more weight in the tails than IPu

t′ for all t, t′ ∈ {1, ..., T} satisfying t > t′.36

For such an uncertainty specification it follows from theorem 2 in Rothschild & Stiglitz

(1970, 237) that the certainty equivalent of welfare in period t is lower than the certainty

equivalent of welfare in period t′. As the expected welfare is the same in both periods,

the difference in weights exhibits some resemblance to discounting. Note, in particular,

that the intertemporally additive expected utility model does not allow for intertemporal

risk aversion and, thus, not for risk aversion on welfare and the reasoning I carried out

above. Therefore, the only possibility it permits to capture a difference in the weighting

of expected welfare is by introducing a positive rate of pure time preference.

To my knowledge, the only consideration in the literature which is concerned with a

relation between discounting and stationarity that is somewhat comparable to the one

derived in theorem 7, is due to Epstein (1992, 16). Motivating models of recursive utility,

he points out a contradiction between a disentanglement of risk aversion and intertemporal

substitutability in a non-recursive model on the one hand, and the positiveness of the

discount rate on the other. He concludes that a disentanglement is not possible, at least

in a stationary setting. The preceding section has elaborated how such a disentanglement

is possible in a non-stationary and in a certainty stationary setting. Theorem 7 confirms

Epstein’s (1992, 16) assertion, but with a very different interpretation. Having analyzed

the reasons and consequences of an intrinsic timing preference in Traeger (2007b), I suggest

that a non-recursive evaluation can be a desirable normative characterisitic (axiom A10).

35An equivalent characterization is that the riskier random variable can be obtained from the less risky
random variable by adding some noise. For a formal definition compare footnote 36.

36Formally let Pt denote the cumulative distribution function characterizing the measure IPu
t for t ∈

{1, ..., T}. Pt is said to have more weight in the tales than Pt′ , if
∫u

U
Pt(y) − Pt′(y) dy ≥ 0 ∀u ∈ [U,U ].
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In that case, a risk stationary decision maker in the sense of axiom A8 has to accept

that he does not have the freedom to devaluate the future for sheer impatience, without

violating any of the other axioms. Furthermore, theorem 7 together with theorem 6 show

that, for a decision maker with a finite planning horizon, it is well possible to disentangle

atemporal risk aversion from intertemporal substitutability, without violating any of the

axioms. Moreover, also in the limit of an infinite planning horizon, a factor β = 1 does not

necessarily imply that aggregate welfare diverges. Due to intertemporal risk aversion, an

increase in uncertainty over time can still yield a finite evaluation of scenarios.37 Naturally,

instead of accepting the consequences of theorem 7, the underlying axioms can be dropped.

Since Chew & Epstein (1989, 110) have shown that under the assumption of axiom A10

the independence axiom can be replaced by a collection of much weaker axioms, it is not a

promising candidate to give up in order to avoid the implication of a zero rate of pure time

preference. However, one could abandon risk stationarity and allow for an (anticipated)

change of preference over time.

I close by pointing out an important application of the modeling framework derived in

this section. In relation to climate change, Nordhaus’ (1993,1994) integrated assessment

model for climate change and its critical discussions and alternative assessments have

shown the importance of carefully quantifying the social discount rate for the derivation

of an optimal greenhouse gas abatement path (see e.g. Toth 1995, Plambeck, Hope &

Anderson 1997). In particular, Plambeck et al. (1997, 85) point out that a reduction of the

pure rate of time preference from 3%, as assumed by Nordhaus (1993), to 0% (corresponding

to β = 1), would result in an optimal abatement path that cuts emissions by 50% from the

baseline to the year 2100, as opposed to 10% in the assessment of Nordhaus (1993). To the

best of my knowledge, so far a zero rate of pure time preference has only been argued for

in terms of moral consideration. Theorem 7 states formal axioms dealing with consistency

aspects of evaluation under uncertainty, and shows that their acceptance alone suffices

to call for a zero rate of pure time preference. In difference to the evaluations used in

current climate models, however, the representation implied by theorem 7 goes along with

an intertemporally risk averse decision maker. Therefore, uncertainty has a higher cost

than in the above climate models, which apply the intertemporally risk neutral standard

model when they consider uncertainty at all.38 In consequence, an evaluation of global

climate change under the assumptions of theorem 7, implies an additional preference for

scenarios that give rise to a less uncertain future. Since uncertainty is likely to increase

37Note however, that increasing uncertainty can also make the evaluation functional converge to zero.
Preliminary analysis shows that convergence to finite non-zero evaluation are knife-edge in the assumptions
on the probability distributions and their evolvement over time.

38With the exception of the stylized simulation by Ha-Duong & Treich (2004) that features two possible
damage states in a generalized isoelastic framework.
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in the perturbation of the climate system, which increases with the amount of greenhouse

gas emissions, a first conjecture is that the additional effect caused by intertemporal risk

aversion in an evaluation in the sense of theorem 7, yields an even higher abatement

recommendation than the one pointed out by Plambeck et al. (1997, 85). A closer analysis

of this aspect constitutes an interesting area of future research.

6 Conclusions

The paper has imposed different stationarity assumptions on a general recursive evaluation

framework featuring nontrivial intertemporal risk aversion and a finite planning horizon.

The axioms offer an alternative to the standard stationarity axioms that rely on an infinite

time horizon and a positive rate of pure time preference. Certainty stationarity has been

characterized and shown to imply the standard discount utility model on certain consump-

tion paths. To this purpose, the standard stationarity assumption has been decomposed

into two more basic assumptions. The first of which sololey states that the mere passage

of time does not affect preferences. The second assumes that the ranking of two different

consumption paths does not depend on a common outcome in the last period. I put forth

an axiom implying constancy of the functions characterizing (atemporal) uncertainty ag-

gregation. The resulting representation includes the generalized isoelastic model, However,

the corresponding axiom does not express the idea that the mere passage of time should not

affect preference orderings. A careful translation of the latter assumption to the evaluation

of risky outcomes, implies that constancy of atemporal risk attitude is only supported for

an infinite time horizon. For a finite planning horizon, the corresponding axiom no longer

admits the whole class of generalized isoelastic evaluation rules. Moreover, for risk station-

ary preferences, the measure of absolute intertemporal risk aversion has been shown to be

characterized by a single parameter, to be constant in welfare, and to increases over time.

I have refined the model by assuming indifference to the timing of uncertainty resolution.

The corresponding axiom is only required to hold for situations, where the information

resulting from an early resolution of uncertainty cannot be used to alter outcomes. As a

result, evaluation can be expressed non-recursively over consumption paths and uncertainty

can be modeled by means of probability distributions over consumption paths instead of

the more general temporal lotteries. I have shown that in such a framework, a stationary

evaluation over risky outcomes implies a zero rate of pure time preference. Precisely,

a devaluation of the future for reasons of pure time preference is only possible for an

intertemporally risk neutral decision maker, where the axiom of risk stationarity has no

additional bite. When uncertainty is increasing over time, also an intertemporally risk

averse decision maker values (expected) future welfare less than current welfare.

From a normative perspective, the modeling framework suggests that a decision maker,
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Notation

who accepts the assumption that were shown to result in a zero rate of pure time preference,

has to attach a high weight to the long-run in model-based scenario evaluations. While

the certain future is treated equal to the present, the uncertain future gains the more

importance, the more the decision maker can know about it. In this connection, note

that the idea of precaution and, thus, intertemporal risk averse evaluation of the future is

often put forth in the sustainability debate. Moreover, in the same context, the current

generation is expected to sustain living conditions for future generations that somehow

resemble their own. Usually, the latter condition is directly translated into a requirement

concerning the discount rate. However, as the current paper points out, translating the

condition simply into the requirement of stationarity, i.e. a similarity between todays needs

and future needs, already can be sufficient to yield a strong implication for the choice of

the discount rate when combined with the concept of precaution. As a corresponding

application of the derived representational framework I suggested a reevaluation of climate

change, deducing a first conjecture with regard to the qualitative effects. Finally, the paper

offers an alternative framework to disentangle atemporal risk aversion from intertemporal

substitutability. Rather than imposing isoelastic evaluation on intertemporal trade-offs and

risk, it motivates a constant coefficient of intertemporal risk aversion. From a descriptive

perspective, a comparison of the models ability to explain observed phenomena has to be

contrasted with that of the generalized isoelastic model.
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Notation

Symbol Explanation Page

� weak preference relation 5

≻ strong preference relation 5

∼ indifference relation 5

�t preference relation in period t on Pt 7

�∗
t derived preference relation over period t outcomes in X 9

�|X restriction of � to the set of certain consumption paths

≡ defining equality

A A = {a : IR → IR : a(z) = a z + b , a, b ∈ IR, a 6= 0},

group of affine transformations

A
+

A
+ = {a+ : IR → IR : a

+(z) = a z + b , a, b ∈ IR, a > 0}

AIRAt measure of absolute intertemporal risk aversion in period t 26

B� B� ≡ B�1 , stationary setting 14

B�t
set of Bernoulli utility functions, non-stationary setting

B�t
= {ut ∈ C0(X) : x �∗

t x′ ⇔ ut(x) ≥ ut(x
′)∀ x, x′ ∈ X} 9

C0(X) space of all continuous functions from X to IR 3

∆(Y ) space of Borel probability measures on Y 3

∆Gt ∆Gt = Gt − Gt 8

exp exponential function

fg−1 f ◦ g−1, composition

Gt Gt = gt(U t) 8

Gt Gt = gt(U t) 8

Gt Gt = [Gt, Gt] 8

Γt Γt = (Gt, Gt) 8

id identity

λx + (1 − λ)x′ lottery over outcomes x and x′ with respective

probabilities λ and 1 − λ, λx + (1 − λ)x′ ∈ P 4

ln natural logarithm

Mf uncertainty aggregation rule,

Mf : ∆(Y ) × C0(Y ) → IR with Mf (p, u) = f−1
[∫

Y
f ◦ u dp

]

,

f : IR → IR strictly monotonic and continuous 4

Mα shorthand for Midα

(p, u) =
[∫

Y
uαdp

]
1
α 5

M0 shorthand for limα→0 M
α(p, u) = exp

[∫

Y
ln(u) dp

]

5

Mft uncertainty aggregation rule in period t 7
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Symbol Explanation Page

P space of Borel probability measures on X 3

p uncertain outcomes or lotteries, p ∈ P 3

Pt general choice space in period t 7

pt period t lottery, pt ∈ Pt 7

IR+ IR+ = {z ∈ IR : z ≥ 0} 4

IR++ IR++ = {z ∈ IR : z > 0} 4

range range of a function

RIRAt measure of relative intertemporal risk aversion in period t 25

RRA Arrow-Pratt-measure of relative risk aversion 18

θt normalization constant, non-stationary representation 9

ϑt normalization constant, non-stationary representation 9

u Bernoulli utility function, u ∈ C0(X) 3, 9

U minx∈X u(x) 3

U maxx∈X u(x) 3

U range(u) = [U,U ] 3

U t minx∈X ut(x) 8

U t maxx∈X ut(x) 8

Ut [U t, U t] = range(ut) 8

uca certainty additive Bernoulli utility function,

also interpreted as the decision maker’s welfare

X connected compact metric space of outcomes 3

x consumption levels or (certain) outcomes, x ∈ X 3

X
t space of consumption paths starting in period t 6

x consumption path 7

x
t consumption path from period t to period T , x

t ∈ X
t 7

x
t
τ period τ entry of consumption path x

t 7

(x−i, x
′
i) (xt, ..., xi−1, x

′
i, xi+1, ..., xT ) ∈ X

τ 7

X̃t degenerate choice space in period t 7

x̃t degenerate period t lottery 7

Y connected compact metric space, used for general definitions
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A Additional Specifications of the Risk Stationary

Represenation

An alternative representation of risk stationary preferences that fixes the measures of in-

tertemporal risk aversion uniquely is the following.

Corollary 2 (f = id+-gauge) : Choose a nondegenerate closed interval U∗ ⊂ IR++. A

sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfying A0 satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A8 (risk stationarity)

if and only if, there exists a continuous and surjective function u : X → U∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that defining the functions

v) ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and recursively

- for ξ > 0: ũt−1(xt−1, pt) = u(xt−1)
ξ
(

Ept
ũt

)β
and

- for ξ = 0: ũt−1(xt−1, pt) = ln u(xt−1) + β Ept
ũt and

- for ξ < 0: ũt−1(xt−1, pt) = −u(xt−1)
ξ
(

− Ept
ũt

)β

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Ept
ũt ≥ Ep′t

ũt ∀ pt, p
′
t ∈ Pt .

Moreover, the function u is determined uniquely. With the convention that g1 = g,39

the uniquely defined measures of intertemporal risk aversion are calculated to AIRAt =

− ξ

βt−1(1−βt)
and RIRAt = − ξ

βt−1(1−βt)
id.

Here, uncertainty is evaluated by taking the expected value. However, this comes at the

cost of a nonlinear aggregation of Bernoulli utlity over time. In the above representation,

the functions ũt are the same as those used in representation theorem 1.

Observe the particular nonlinear form for intertemporal aggregation that arises when

uncertainty aggregation is required to be linear. For decision makers that are not in-

tertemporally risk neutral, it is ‘almost multiplicative’. But it depends on the exponent ξ.

Translating the exponent ξ back into the uncertainty aggregation rule and establishing a

purely multiplicative intertemporal aggregation yields the following representation.

39This notation relates to the underlying representing triples in the sense of theorem 1. In corollary 2
the assumption implies that the measure scale of welfare is fixed for the first period to range(uwelf

1 ) =
range(g ◦ u) = lnU∗. See also the discussion below and the first remark in the proof of corollary 2.
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Corollary 3 (isoelastic uncertainty evaluation): Choose a nondegenerate closed in-

terval U∗ ⊂ IR++. A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T}

satisfying A0 satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1 (certainty additivity)

iii) A5 (time consistency)

iv) A8 (risk stationarity)

if and only if, there exists a continuous and surjective function u : X → U∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that defining the functions

v) ṽt : X̃t → IR for t ∈ {1, ..., T} by ṽT (xT ) = u(xT ) and recursively

ṽt−1(xt−1, pt) = u(xt−1)
(

Mα=ξ(pt, ṽt)
)β

(17)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mα=ξ(p′t, ṽt) ≥ Mα=ξ(p′t, ṽt) ∀ pt, p
′
t ∈ Pt.

Moreover, the function u is determined uniquely. With the convention that g1 = g,40

the uniquely defined measures of intertemporal risk aversion are calculated to AIRAt =

− ξ

βt−1(1−βt)
and RIRAt = − ξ

βt−1(1−βt)
id.

Note, that the recursive construction (17) of the representation for ξ = 0 is equivalent to the

intertemporally additive expected utility setting. The above representation is particularly

interesting, because it points out a special case that closely relates to the generalized

isoelastic framework analyzed in section 3.2. In the one commodity setting and for u = id

the following recursive characterization of the decision maker’s evaluation is obtained:

ṽt−1(xt−1, pt) = xt−1

(

Mα=ξ(pt, ṽt)
)β

. (18)

It corresponds to an intertemporal elasticity of substitution of unity (ρ = 0) and uses

the isoelastic uncertainty aggregation rule Mα. Adopting once more the interpretation

of certainty additive Bernoulli utility as welfare, the case ρ = 0, i.e. g = ln, corresponds

to logarithmic welfare, which is a widespread assumption in macroeconomics and popular

also in environmental economic modeling. It is the only specification for which risk sta-

tionarity in the sense of axiom A8 allows an isoelastic uncertainty aggregation.41 Observe

40See footnote 39.

41In order to render ft a power function, intertemporal risk aversion has to be of the form
ft ◦ g−1 =

(

g−1
)α

. This expression can only be proportional to expξ, characterizing up to proportionality
intertemporal risk aversion in the representation of theorem 4, if g−1 is proportional to exp. But then g

has to be proportional to ln which corresponds to the case ρ = 0.
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that the setting (18) only coincides with the (corresponding special case of the) isoelastic

representation of section 3.2 for an infinite planning horizon. As pointed out on page 29,

the representations in the sense of theorems 3 and 4 differ in the way they take account of

the approaching end of the planning horizon. More precisely, only the representation based

on axiom A8 incorporates the change in weight that the present receives as opposed to the

remaining future ‘which shortens over time’. In contrast, axiom A7 characterizes what it

needs to make atemporal uncertainty aggregation constant in a setting with a finite time

horizon. This condition can be expressed as a form of indifference to the length of risk

taking.

B Proofs for Section 3

Remark: I apologize for that fact that some of the references to theorems and equations

in the accompanying papers Traeger (2007a) and Traeger (2007b) produce ?? and have not

yet been revised.

Proof of theorem 1: See Traeger (2007a).

Proof of theorem 2: The proof is divided into four parts. Axioms A1-A3, A4 and

A5 assure the existence of a representation in the sense of theorem 1. In the first part I

show that axiom A6 allows to pick the same Bernoulli utility for all periods. In the second

part I work out a relation between the functions gt in different periods that has to hold in

such a representation by axiomA6. Part three calculates the corresponding normalization

constants and brings about the representation stated in the theorem. Finally, part four

proves the necessity of the axioms.

Part I (“⇒”): I show that axiom A6 implies that there exists a strictly monotonic and

continuous transformation st such ut−1 = st◦ut for any t ∈ {1, .., T}. To this end, translate

axiom A6 into the representation of theorem 1 using equation (??).

(x2, x0) �1 (x′2, x0) ⇔ x
2 �2 x

′2

; ũ1

(

(x2, x0)
)

≥ ũ1

(

(x′2, x0)
)

⇔ ũ1(x
2) ≥ ũ1(x

′2)

; g−1
1

(

θ1

T
∑

τ=2

gτ−1 ◦ uτ−1(x
2
τ ) + gT ◦ uT (x0) + ξ1

)

≥ g−1
1

(

θ1

T
∑

τ=2

gτ−1 ◦ uτ−1(x
′2
τ−1) + gT ◦ uT (x0) + ξ1

)

⇔ g−1
2

(

θ2

T
∑

τ=2

gτ ◦ uτ (x
2
τ ) + ξ2

)

≥ g−1
2

(

θ2

T
∑

τ=2

gτ ◦ uτ (x
′2
τ ) + ξ2

)
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Considering in particular the consumption paths x
2, x′2 satisfying x

2
τ = x

′2
τ ∀ τ 6= t yields

; gt−1 ◦ ut−1(x
2
t ) ≥ gt−1 ◦ ut−1(x

′2
t ) ⇔ gt ◦ ut(x

2
t ) ≥ gt ◦ ut(x

′2
t )

; ut−1(x
2
t ) ≥ ut−1(x

′2
t ) ⇔ ut(x

2
t ) ≥ ut(x

′2
t )

for all x
2
t = x

′2
t ∈ X. Therefore, as in the proof of proposition ??, it has to exist a

strictly monotonic and continuous transformation st such that ut−1 = st ◦ut. But then, by

induction it is B�1 = B�2 = ... = B�T
≡ B� and I can pick a common Bernoulli utility

function u ∈ B� for all periods.

Part II (“⇒”): In this part, I derive an affine relation between the functions gt in different

periods. To this end, I translate axiom A6 into the particular representation in the sense

of theorem 1, which applies the same Bernoulli utility function u for all periods. Using

again equation (??) I obtain the condition

T
∑

τ=2

gτ−1 ◦ uτ−1(x
2
τ ) +������

gT ◦ uT (x0) ≥
T
∑

τ=2

gτ−1 ◦ uτ−1(x
′2
τ−1) +������

gT ◦ uT (x0)

⇔
T
∑

τ=2

gτ ◦ uτ (x
2
τ ) ≥

T
∑

τ=2

gτ ◦ uτ (x
′2
τ )

for all x
2, x′2 ∈ X

2. The above equivalence implies that both,
∑T

τ=2 gτ ◦ uτ (x
2
τ ) and

∑T

τ=2 gτ−1 ◦uτ−1(x
2
τ ), are representations for �2 |X2 . In consequence, by the moreover part

of theorem 1 there exist a ∈ IR++ and bt ∈ IR, t ∈ {1, ..., T − 1}, such that gt = agt+1 + bt

for all t ∈ {1, ..., T − 1}.42 Use the freedom in the uniqueness of (gt)t∈{1,...,T} to define

g̃t = gt −
∑T−1

τ=t aτ−tbτ for t ∈ {1, ...T − 1} without loosing the representative character

of the sequence (u, ft, g̃t)t∈{1,...,T} for (�t)t∈{1,...,T}. Observe that g̃t = gt −
∑T−1

τ=t aτ−tbτ =

agt+1 + bt − bt − a
∑T−1

τ=t+1 aτ−tbτ = ag̃t+1. Set g = aT−1g̃T . Moreover let β = a−1. Then

the sequence of triples (u, ft, a
T−tg̃T ) = (u, ft, β

t−T βT−1g) = (u, ft, β
t−1g) for t ∈ {1, ..., T}

represents (�t)t∈{1,...,T} in the sense of theorem 1.

Note 1: Expressing the triples with respect to g̃τ instead of g yields the equivalent rep-

resentation triples (u, ft, β
t−τ g̃τ )t∈{1,...,T} and in particular for τ = T the representation

(u, ft, β
t−T g̃T )t∈{1,...,T}.

Part III (“⇒”): Calculating the corresponding normalization constants for the repre-

senting tuples derived in the previous step, yields the representation stated in the theo-

rem. In the usual convention denote ∆Gt = Gt − Gt and G = [G,G] = [g(minx∈X u(x)),

42Here it is g′t = gt+1. Note that it is immediate from the proof of the moreover part in theorem 1 that
coincidence of the representations (only) on the certain outcome paths is enough to assure the uniqueness
result for (gt)t ∈ {1, ..., T}.
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g(maxx∈X u(x))] and find

θt =
∆Gt

∑T

τ=t ∆Gτ

=
βt∆G

∑T

τ=t β
τ∆G

=
1

1 + β + β2 + ... + βT−t
=

1 − β

1 − βT−t+1
for β 6= 1,

θt =
∆Gt

∑T

τ=t ∆Gτ

=
∆G

∑T

τ=t ∆G
=

∆G

(T − t + 1)∆G
=

1

T − t + 1
for β = 1 and

ϑt =
Gt+1Gt − Gt+1Gt

∆Gt

=
βt+1GβtG − βt+1G βtG

βt∆G
= 0.

Using equation (??) it is straight forward to calculate the aggregate intertemporal utility

functions. In the case β 6= 1 they are

ũt(·, ·) = g̃−1
t

[

θtg̃t ◦ u(·) + (1 − θt)
∆G̃t

∆G̃t+1

(

g̃t+1 ◦M
ft+1(·, ũt+1) + 0

)}]

= g−1
[

β−t+1
{

θtβ
t−1g ◦ u(·) + (1 − θt)β

−1
(

βtg ◦Mft+1(·, ũt+1)
)}]

= g−1
[

θtg ◦ u(·) + (1 − θt)g ◦Mft+1(·, ũt+1)
]

.

Defining βt = 1 − θt = 1 − 1−β

1−βT−t+1 = 1−βT−t+1−1+β

1−βT−t+1 = β 1−βT−t

1−βT−t+1 gives the representation

stated in the theorem. For β = 1 find

ũt(·, ·) = g−1
[ 1

T − t + 1
g ◦ u(·) + (1 −

1

T − t + 1
)g ◦Mft+1(·, ũt+1)

]

and define βt = 1 − θt = 1 − 1
T−t+1

= T−t+1−1
T−t+1

= T−t
T−t+1

to get the stated representation.

Note 2: For the evaluation of certain consumption paths equation (??) together with

ϑt = 0 and hence ξt = 0 yields:

ũt(x
t) = g̃−1

t

[

θt

T
∑

τ=t

g̃τ ◦ uτ (x
t
τ )
]

= g−1
[

(1 − βt)
T
∑

τ=t

βτ−tg ◦ u(xt
τ )
]

. (19)

Part IV (“⇐”): Axioms A1-A5 follow immediately from “⇐” of theorem 1. To see that

axiom A6 holds, take a look at equation (19) and note that g−1 and the x0 term cancel in

the representation of A6 (for any x0).

Moreover part: The moreover part is an immediate consequence of the moreover part of

theorem 1. 2

Proof of theorem 3: “⇒”: Axioms A1-A6 assure the existence of a representation in

the sense of theorem 2. Axiom A7 implies furthermore that the uncertainty aggregation

rules in different periods can be characterized by the same function. Using equation (19)
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to translate axiom A7 into the representation of theorem 2 yields for the first expression

1

2
x̄

t +
1

2
x̄
′ t �t x̄

′′ t

⇔ f−1
t

[

1

2
ft ◦ ũt(x̄

t) +
1

2
ft ◦ ũt(x̄

′ t)

]

≥ ũt(x̄
′′ t)

⇔ f−1
t

[1

2
ft ◦ g−1

[

(1 − βt)
∑T

τ=t β
τ−tg ◦ u(x̄)

]

+
1

2
ft ◦ g−1

[

(1 − βt)
∑T

τ=t β
τ−tg ◦ u(x̄′)

]

]

≥ g−1
[

(1 − βt)
∑T

τ=t β
τ−tg ◦ u(x̄′′)

]

⇔ f−1
t

[1

2
ft ◦ g−1

[ 1 − β

1 − βT−t+1

1 − βT−t+1

1 − β
g ◦u(x̄)

]

+
1

2
ft ◦ g−1

[ 1 − β

1 − βT−t+1

1 − βT−t+1

1 − β
g ◦ u(x̄′)

]

]

≥ g−1
[ 1 − β

1 − βT−t+1

1 − βT−t+1

1 − β
g ◦ u(x̄′′)

]

⇔ f−1
t

[1

2
ft ◦ u(x̄) +

1

2
ft ◦ u(x̄′)

]

≥ u(x̄′′) ,

and analogously for the second expression

1

2
x̄

t+1 +
1

2
x̄
′ t+1 �t+1 x̄

′′ t+1

⇔ f−1
t+1

[

1

2
ft+1 ◦ ũt+1(x̄

t+1) +
1

2
ft+1 ◦ ũt+1(x̄

′ t+1)

]

≥ ũt+1(x̄
′′ t+1)

⇔ f−1
t+1

[1

2
ft+1 ◦ u(x̄) +

1

2
ft+1 ◦ u(x̄′)

]

≥ u(x̄′′) .

For all x̄, x̄′ ∈ X there is an outcome x̄′′ ∈ X such that the above relations hold with

equality (compare proof of theorem ??). This fact implies that the following equality has

to hold for all x̄, x̄′ ∈ X:

f−1
t

[1

2
ft ◦ u(x̄) +

1

2
ft ◦ u(x̄′)

]

= f−1
t+1

[1

2
ft+1 ◦ u(x̄) +

1

2
ft+1 ◦ u(x̄′)

]

⇔ ft+1f
−1
t

[1

2
ftu(x̄) +

1

2
ftu(x̄′)

]

=
1

2
ft+1 f−1

t ft u(x̄) +
1

2
ft+1 f−1

t ft u(x̄′) .

Defining ht = ft+1 ◦ f−1
t and the interval Ft = ft(U), this condition translates into the

equation

ht

(

1

2
y +

1

2
y′

)

=
1

2
ht (y) +

1

2
ht (y′) ∀y, y′ ∈ Ft .

Therefore ht has to be linear on Ft (Hardy, Littlewood & Polya 1964, refinement of theorem

83 on p.74). Hence the expression ft+1 ◦ f−1
t is linear on ft(U) implying that there exists
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at ∈ A such that with z = f−1
t (y) ∈ U it is

ft+1f
−1
t (y) = a

−1
t y

⇔ f−1
t (y) = f−1

t+1a
−1
t y

⇔ ft(z) = atft+1(z) .

By the fact that ft and ft+1 are both increasing it follows that at has to be positive affine,

i.e. at ∈ A
+. But as each ft in the representation is determined only up to positive affine

transformations, setting ft = ft+1 = f still yields a representation of �t∈{1,...,T}.

“⇐”: Axioms A1-A5 follow immediately from “⇐” of theorem 1. As seen in the first part

of the proof, for constant consumption paths it is ũt(x̄
t) = u(x̄)∀t ∈ {1, ..., T}. Therefore

axiom A7 is seen to hold by observing that for all x̄, x̄′, x̄′′ ∈ X:

1

2
x̄

t +
1

2
x̄
′ t �t x̄

′′ t

⇔ f−1

[

1

2
f ◦ ũt(x̄

t) +
1

2
f ◦ ũt(x̄

′ t)

]

≥ ũt(x̄
′′ t)

⇔ f−1

[

1

2
f ◦ ũt+1(x̄

t+1) +
1

2
f ◦ ũt+1(x̄

′ t+1)

]

≥ ũt+1(x̄
′′ t+1)

⇔
1

2
x̄

t+1 +
1

2
x̄
′ t+1 �t+1 x̄

′′ t+1 .

Moreover part: The moreover part is an immediate consequence of the moreover part of

theorem 1. 2

Proof of lemma 1: Except for admitting decreasing functions f and g, when changing

“increasing” into “monotonic” in theorem 3, the statements are special cases of lemma

??, corollary ?? and corollary ??. The decreasing functions come in the same way as in

the proofs for chapter ??, by noting that Maf = Mf and analogously Nag = N g for all

a ∈ A. Therefore, if the triple (u, f, g) represents �t∈{1,...,T} in the sense of theorem 3, then

so do the triples (u,−f, g) and (u, f,−g), if f and g are admitted to be decreasing in the

representation. 2

Proof of theorem 4: The proof is divided into five parts. First, I translate axiom A8

into the representation of theorem 2. This step yields a requirement for the representing

functions ft and g that is solved in the second part under the assumption of differentiability

of ft ◦ g−1. The third part shows that the derived solution has to hold as well without

assuming differentiability. Part four translates the solution into the representation stated

in the theorem. Finally, part five proofs the necessity of the axioms for the representation.

Part I (“⇒”): First note that axiom A8 implies axiom A6 by choosing x = x
′. Therefore
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a representation in terms of theorem 2 has to exist. In order to translate A8 for t ∈

{1, ..., T − 1} into the latter representation, note that by definition of x as an element of

X
t+1, the period τ entry of the consumption path (x, x0) ∈ X

t corresponds to (x, x0)τ = xτ+1

for τ ∈ {t, ..., T − 1}. Then, using equation (19), the left hand side of the equivalence in

axiom A8 translates into
1

2
(x, x0) +

1

2
(x′, x0) �t (x′′, x0)

⇔ f−1
t

{1

2
ftg

−1
[

(1 − βt)
∑T−1

τ=t βτ−tgu(xτ+1) + (1 − βt)β
T−tgu(x0)

]

+
1

2
ftg

−1
[

(1 − βt)
∑T−1

τ=t βτ−tgu(x′
τ+1) + (1 − βt)β

T−tgu(x0)
]}

≥ g−1
[

(1 − βt)
∑T−1

τ=t βτ−tgu(x′′
τ+1) + (1 − βt)β

T−tgu(x0)
]

⇔ gf−1
t

{1

2
ftg

−1
[

(1 − βt)
∑T

τ=t+1 βτ−(t+1)gu(xτ ) + (1 − βt)β
T−tgu(x0)

]

+
1

2
ftg

−1
[

(1 − βt)
∑T

τ=t+1 βτ−(t+1)gu(x′
τ ) + (1 − βt)β

T−tgu(x0)
]}

≥
[

(1 − βt)
∑T

τ=t+1 βτ−(t+1)gu(x′′
τ ) + (1 − βt)β

T−tgu(x0)
]

.

Define the sum S =
∑T

τ=t+1 βτ−(t+1)gu(xτ ) and similarly S ′ =
∑T

τ=t+1 βτ−(t+1)gu(x′
τ ) and

S ′′ =
∑T

τ=t+1 βτ−(t+1)gu(x′′
τ ) as well as A = (1 − βt)β

T−tgu(x0). Then, varying the con-

sumption paths x, x′ and x
′′ in X

t+1, goes along with varying S, S ′ and S ′′ in the interval

[1−βT−t

1−β
G, 1−βT−t

1−β
G]. Similarly, as x0 is varied in X, the value A takes on any number in the

interval [(1− βt)β
T−t G, (1− βt)β

T−t G] . In the introduced notation, the above inequality

corresponding to the left hand side of the equivalence in axiom A8 writes as

gf−1
t

{1

2
ftg

−1
[

(1 − βt)S + A
]

+
1

2
ftg

−1
[

(1 − βt)S
′ + A

]}

−A ≥(1 − βt)S
′′. (20)

In the same notation the right hand side of the equivalence in axiom A8 translates into

gf−1
t+1

{1

2
ft+1g

−1
[

(1 − βt+1)S
]

+
1

2
ft+1g

−1
[

(1 − βt+1)S
′
]}

≥(1 − βt+1)S
′′. (21)

As derived in the proof of theorem 1 (induction hypothesis H??), for every lottery pt+1 ∈

Pt+1 there exists a certain consumption path as certainty equivalent. In consequence, for

any x, x′ ∈ X
t+1, there exists a certainty equivalent x

′′ ∈ X
t+1 for the lottery 1

2
x+ 1

2
x
′ ∈ Pt+1,

such that equation (21) holds with equality. Then, by axiom A8 also equation (20) has to

hold with equality. Equating the two equations by S ′′ yields the requirement

gf−1
t

{1

2
ftg

−1
[

(1 − βt)S + A
]

+
1

2
ftg

−1
[

(1 − βt)S
′ + A

]}

− A (22)

=
(1 − βt)

(1 − βt+1)
gf−1

t+1

{1

2
ft+1g

−1
[

(1 − βt+1)S
]

+
1

2
ft+1g

−1
[

(1 − βt+1)S
′
]}
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for all S, S ′ ∈ [1−βT−t

1−β
G, 1−βT−t

1−β
G] and A ∈ [(1 − βt)β

T−t G, (1 − βt)β
T−t G].

Part II (“⇒”): In this part, I establish the general solution to equation (22), under the

assumption that ht = ft ◦ g−1 is differentiable for all t ∈ {1, ..., T}. First, observe that the

right hand side of equation (22) is independent of A.43 Thus, the left hand side has to be

constant in A. Taking the first derivative with respect to A, the latter requirement yields

∂

∂A
h−1

t

{1

2
ht [ (1 − βt)S + A] +

1

2
ht [ (1 − βt)S

′ + A]
}

− A = 0

⇔ h−1
t

′
{1

2
ht [ (1 − βt)S + A] +

1

2
ht [ (1 − βt)S

′ + A]
}

·

{1

2
h′

t [ (1 − βt)S + A] +
1

2
h′

t [ (1 − βt)S
′ + A]

}

= 1

⇔
1

2
h′

t [ (1 − βt)S + A] +
1

2
h′

t [ (1 − βt)S
′ + A]

= h′
t

{

h−1
[1

2
ht [ (1 − βt)S + A] +

1

2
ht [ (1 − βt)S

′ + A]
]}

,

where the prime at the function ht (and only the one at the function ht) denotes a derivative.

Defining y = ht [(1 − βt)S + A] and y′ = ht [(1 − βt)S
′ + A], both in Ft =

(

ft(U), ft(U)
)

,

the latter equation becomes

1

2
h′

th
−1
t (y) +

1

2
h′

th
−1
t (y′) = h′

th
−1
t

(

1

2
y +

1

2
y′

)

.

By Hardy et al. (1964, refinement of theorem 83 on p.74) it follows that the composition

h′
th

−1 has to be linear. Therefore, I obtain the following differential equation for ht, where

at, bt ∈ IR and z = h−1
t (y) ∈ Γt = (G,G):

h′
th

−1
t (y) = aty + bt ∀y ∈ Ft

⇔ h′
t(z) = atht(z) + bt ∀z ∈ Γt. (23)

For at = 0 the solution to h′
t(z) = bt is obviously ht(z) = bt z + kt with kt ∈ IR. I will

come back to this solution below (case 2). In the meanwhile (case 1), assume at 6= 0∀t ∈

{1, ..., T}.

Case 1, at 6= 0∀t ∈ {1, ..., T}:

First the differential equation (23) is solved using variation of the constant. Solving the

43Note that a functional equation that corresponds to the requirement that the left hand side of equation
(22) is independent of A is solved in a different way by Aczél (1966, 153) by relating it to a Cauchy equation.
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homogeneous differential equation for period t yields
∫

1
ht

dht =
∫

at dz

⇔ ln ht = atz + c̃t with c̃t ∈ IR

⇔ ht(z) = ct exp(atz) with ct = exp(c̃t) ∈ IR++.

Taking the integration constant ct as a function of z renders the ansatz

ht(z) = ct(z) exp(atz) for the inhomogeneous equation:

h′
t(z) = atht(z) + bt

⇒ c′t(z) exp(atz) + ct(z) at exp(atz) = at ct(z) exp(atz) + bt

⇒ c′t(z) exp(atz) = bt

⇒
∫

dct =
∫

bt exp(−atz)dz

⇒ ct(z) = −
bt

at

exp(−atz) + kt with kt ∈ IR.

Therefore ht(z) = [− bt

at
exp(−atz) + k] exp(atz) = − bt

at
+ kt exp(atz) with kt ∈ IR is the

general solution to equation (23) with at, bt ∈ IR, at 6= 0. Note, however, that it is also

known by theorem 2 that ht has to be strictly increasing. Thus, whenever for at > 0 it has

to hold as well kt > 0 and for at < 0 it has to hold as well kt < 0. Furthermore denote

dt = − bt

at
∈ IR, and determine the inverse of ht to be h−1

t (y) = 1
at

ln
[

−dt+y

kt

]

.44

Second, I substitute the solution for ht and ht+1 back into equation (22) to find for the

left hand side

h−1
t

{1

2
ht

[

(1 − βt)S + A
]

+
1

2
ht

[

(1 − βt)S
′ + A

]}

− A

=
1

at

ln

[

1

kt

{

− dt+
1

2
dt +

1

2
kt exp

[

at{ (1 − βt)S + A}
]

+
1

2
dt +

1

2
kt exp

[

at{ (1 − βt)S
′ + A}

]}

]

− A

=
1

at

ln
[1

2
exp

[

at{ (1 − βt)S + A}
]

+
1

2
exp

[

at{ (1 − βt)S
′ + A}

]]

− A

=
1

at

ln
[1

2
exp

[

at (1 − βt)S
]

+
1

2
exp

[

at (1 − βt)S
′
]]

,

= ln
[1

2
exp(S)at (1−βt) +

1

2
exp(S ′)at (1−βt)

]
1
at

,

44Note that the relation holds also holds kt < 0. Then the nominator inside the logarithm −dt + y =
kt exp(atz) is negative as well.
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and analogously for the right hand side

(1 − βt)

(1 − βt+1)
h−1

t+1

{1

2
ht+1

[

(1 − βt+1)S
]

+
1

2
ht+1

[

(1 − βt+1)S
′
]}

=
(1 − βt)

(1 − βt+1)

1

at+1

ln
[1

2
exp

[

at+1 (1 − βt+1)S
]

+
1

2
exp

[

at+1 (1 − βt+1)S
′
]]

= ln
[1

2
exp(S)at+1 (1−βt+1) +

1

2
exp(S ′)at+1 (1−βt+1)

]

(1−βt)
at+1(1−βt+1)

. (24)

Therefore, equation (22) requires that for a continuum of values S and S ′ it has to hold
[1

2
exp(S)at (1−βt) +

1

2
exp(S ′)at (1−βt)

]
1

at(1−βt)

=
[1

2
exp(S)at+1 (1−βt+1) +

1

2
exp(S ′)at+1 (1−βt+1)

]
1

at+1(1−βt+1)
.

Necessary and sufficient for this equality is the condition at(1− βt) = at+1(1− βt+1) ≡ ξ.45

As at ∈ IR\{0} and 1 − βt 6= 0 for all t ∈ {1, ..., T}, there exists a solution if and only if

ξ ∈ IR\{0}. Summarizing, in the case that at 6= 0 for all t ∈ {1, ..., T}, equation (22) implies

that there exists ξ ∈ IR\{0} such that for every t it is ht(z) = ft◦g−1(z) = dt+kt exp( ξ

1−βt
z)

with dt, kt ∈ IR, kt 6= 0. In addition for ξ > 0 it has to hold kt > 0 and for ξ < 0 it has to

hold kt < 0.

Case 2, ∃ t ∈ {1, ..., T} with at = 0:

The solution to equation (23) for at = 0 is ht(z) = bt z + kt with kt ∈ IR. By theorem 2

it is known that ht has to be strictly increasing. Thus, the constant bt has to be strictly

positive. But then, the constants bt and kt correspond to positive affine transformations of

ft, which are known not to affect the representation. Therefore, wlog I can set bt = 1 and

kt = 0. Then ht is the identity and the left hand side of equation (22) becomes

gf−1
t

{1

2
ftg

−1
[

(1 − βt)S + A
]

+
1

2
ftg

−1
[

(1 − βt)S
′ + A

]}

− A

=
1

2

[

(1 − βt)S + A
]

+
1

2

[

(1 − βt)S
′ + A

]

− A =
1

2
(1 − βt)

[

S + S ′
]

. (25)

Let me first consider the case where at+1 6= 0. Then, equation (24) gives the right hand

side of equation (22). Define s = exp(S) and s′ = exp(S ′) and find that equation (22)

45For the necessity see for example Hardy et al. (1964, 26).
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yields the following condition:

�����(1 − βt)
[1

2
S+

1

2
S ′
]

= ln
[1

2
exp(S)at+1 (1−βt+1)+

1

2
exp(S ′)at+1 (1−βt+1)

] ���(1−βt)
at+1(1−βt+1)

⇔
[1

2
ln s+

1

2
ln s′

]

= ln
[1

2
sat+1 (1−βt+1) +

1

2
sat+1 (1−βt+1)

]
1

at+1(1−βt+1)

⇔ s
1
2 s′

1
2 =

[1

2
sat+1 (1−βt+1) +

1

2
sat+1 (1−βt+1)

]
1

at+1(1−βt+1)

for a continuum of s and s′. However, the above equality does not hold for at+1(1−βt+1) 6= 0

(Hardy et al. 1964, 15,26). As it is 1 − βt 6= 0, this fact implies a contradiction to the

assumption that at+1 6= 0. Evaluating equation (22) for period t − 1 the same reasoning

brings about a contradiction to the assumption at−1 6= 0. Therefore, if at = 0 for some t it

necessarily follows that at = 0 for all t ∈ {1, ...T}.

In the case at = 0 for all t ∈ {1, ..., T} use (25) to see that equation (22) simplifies to

the tautology

1

2

[

(1 − βt)S+A
]

+
1

2

[

(1 − βt)S
′+A

]

−A =
(1 − βt)

(1 − βt+1)

1

2

[

(1 − βt+1)S + (1 − βt+1)S
′
]

⇔
1

2
(1 − βt)

[

S + S ′
]

=
1

2
(1 − βt)

[

S + S ′
]

,

which implies no further restrictions on the functional form of ht.

Part III (“⇒”): In this part I show that the solution to equation (22) derived in part

two has to hold as well if only continuity of ht = ft ◦ g−1 is assumed.46 Other than

differentiability, the latter is assured by theorem 2. Assume that some continuous function

ht satisfies equation (22). Expecting that the general solution will be of the form derived

in part two, I define for all t ∈ {t, ..., T} the continuous functions rt : IR → IR by rt(y) =

ht [(1 − βt) ln(y)] ⇔ ht(z) = rt ◦ exp( 1
1−βt

z). Then the left hand side of equation (22)

becomes

h−1
t

{1

2
ht

[

(1 − βt)S + A
]

+
1

2
ht

[

(1 − βt)S
′ + A

]}

− A

= (1 − βt) ln ◦ r−1
t

{1

2
rt ◦ exp

[ 1

1 − βt

{ (1 − βt)S + A}
]

+
1

2
rt ◦ exp

[ 1

1 − βt

{ (1 − βt)S
′ + A}

]}

− A

= (1 − βt) ln ◦ r−1
t

{1

2
rt ◦ exp

[

S +
A

1 − βt

]

+
1

2
rt ◦ exp

[

S ′ +
A

1 − βt

]}

− A

46I.e. there are no further continuous solutions to equation (23).
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and with defining s = exp [S], s′ = exp [S ′] and a = exp
[

A
1−βt

]

the relation writes as

= (1 − βt) ln ◦ r−1
t

{1

2
rt (s a) +

1

2
rt (s′ a)

}

− (1 − βt) ln a

= (1 − βt) ln

[

1

a
r−1
t

{1

2
rt (s a) +

1

2
rt (s′ a)

}

]

.

Analogously, the right hand side of equation (22) becomes

(1 − βt)

(1 − βt+1)
· (1 − βt+1) ln

[

r−1
t+1

{1

2
rt+1 (s) +

1

2
rt+1 (s′)

}

]

.

Using these expressions equation (22) translates into the requirement

1

a
r−1
t

{1

2
rt (s a) +

1

2
rt (s′ a)

}

= r−1
t+1

{1

2
rt+1 (s) +

1

2
rt+1 (s′)

}

for a continuum of values s, s′ and a. First of all, this relation implies that the left hand

side has to be constant in a for all values of s and s′. By Hardy et al. (1964, 66,68) it

follows that rt has to be either an affine transformation of rt(z) = zξt for some ξt ∈ IR\{0}

or an affine transformation of ln. I will associate the latter case with ξ = 0. In the first

case equation (22) becomes

1

�a

{1

2
(s�a)ξt +

1

2
(s′�a)

ξt

}
1
ξt =

{1

2
(s)ξt+1 +

1

2
(s′)

ξt+1

}
1

ξt+1 (26)

which implies ξt = ξt+1 ≡ ξ for all t ∈ {1, ..., T − 1} (Hardy et al. 1964, 26). The case

where rt = ln corresponds to taking the limit ξt → 0 in (26), and the same reasoning on ξt

and ξt+1 holds true, i.e if some rt is an affine transformation of ln then all have to be an

affine transformation of ln.

In consequence, the following solutions of equation (22) for ht are possible. In the case

ξ ∈ IR\{0} I find for all t ∈ {1, ..., T − 1}

h∗
t (z) = kt

(

exp(
1

1 − βt

z)

)ξ

+ dt = kt exp(
ξ

1 − βt

z) + dt , (27)

with dt, kt ∈ IR and, in order to assure strict increasingness of h∗
t (z), kt ξ > 0. In the case

ξ = 0 I find for all t ∈ {1, ..., T − 1}

h∗
t (z) = b̃t ln

(

exp(
1

1 − βt

z)

)

+ dt = b̃t

1

1 − βt

z + dt ,

with b̃t, dt ∈ IR and, in order to assure strict increasingness of h∗
t (z), b̃t ξ > 0. With

b̃t = bt

1−βt
this solution is seen to correspond to case two in part two. Thus, giving up

the differentiability assumption for ftg
−1 yields no further solutions to equation (22), than

those already found in part two.

Part IV (“⇒”): In part four I substitute the relations found in parts two and three for

ht = ft ◦ g−1 back into the representation of �= (�t)t∈{1,...,T} in the sense of theorem 2. I
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start with the case ft ◦ g−1(y) = dt + kt exp( ξ

1−βt
y) with dt, kt ∈ IR and kt ξ > 0. Taking g

as given, the function ft follow as

ft ◦ g−1(y) = dt + kt exp(
ξ

1 − βt

y)

⇔ ft(·) = dt + kt exp(
ξ

1 − βt

g(·)) .

Then the functions ũt in the representation of theorem 2 become

ũt(xt, pt+1)= g−1
{

(1 − βt) g ◦ u(xt) + βt g ◦ f−1
t+1

[

∫

dp
(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

]}

= g−1
{

(1 − βt) g ◦ u(xt) + βt
1−βt+1

ξ
ln
[

1
kt+1

{

−dt+1 +
∫

dp
(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

}]}

.

Define the functions w̃t = 1
1−βt

g ◦ ũt. Due to the relation between g and ft, imposed by

axiom A8, a recursive formulation employing these strictly monotonic transformation of

the functions ũt, largely simplifies the representation.

w̃T (xT ) = gu(xT ) and

w̃t−1(xt−1, pt) =
1

1 − βt−1

g ◦ ũt−1(xt−1, pt)

= gu(xt−1) + βt−1

ξ

1−βt

(1−βt−1)
ln
[

1
kt

{

− dt +
∫

dp
(xt,pt+1)
t ftũt

}]

.

Using the relation 1−βt+1

1−βt
= 1−βT−t+1

1−βT−(t+1)+1 = ββ−1
t further yields

w̃t−1(xt−1, pt) = gu(xt−1) + β

ξ
ln
[

1
kt

{

− dt +
∫

dp
(xt,pt+1)
t ftg

−1 gũt

}]

= gu(xt−1) + β

ξ
ln
[

1
kt

{

− dt +
∫

dp
(xt,pt+1)
t dt + kt exp

(

ξ

1−βt
·

(1 − βt)w̃t

)}]

= gu(xt−1) + β

ξ
ln
[

∫

dp
(xt,pt+1)
t exp

(

ξw̃t

)]

(28)

= gu(xt−1) + βMexpξ

(pt, w̃t) , (29)

where the uncertainty aggregation rule is characterized by the function r(z) = exp(ξz) =

exp(z)ξ. Expression (29) will be used for the g+ − gauge of the representation in corollary

1, where the range of g has been fixed. Here however, the parameter ξ can be absorbed

into the function g. To this end, define w̃∗
t = |ξ| w̃t, g∗ = |ξ| g and sgn(ξ) as the sign of ξ.
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Then line (28) yields

w̃∗
t−1(xt−1, pt) = |ξ| gu(xt−1) + |ξ|

ξ
β ln

[

∫

dp
(xt,pt+1)
t exp

(

ξw̃t

)]

= g∗u(xt−1) + sgn(ξ) β ln
[

∫

dp
(xt,pt+1)
t exp

(

sgn(ξ) w̃∗
t

)]

= g∗u(xt−1) + βMexpsgn(ξ)

(pt, w̃
∗
t ) . (30)

Expression (30) yields equation (11) for the cases f ∈ {exp, 1
exp

}. To obtain the representing

equation (12) first observe that

Mft(pt, ũt) = f−1
t

[

∫

dp
(xt,pt+1)
t ft ◦ ũt

]

= f−1
t

[

∫

dp
(xt,pt+1)
t ftg

−1
(

(1 − βt) w̃t

)]

= f−1
t

[

∫

dp
(xt,pt+1)
t dt + kt exp

(

ξ

1−βt
(1 − βt) w̃t

)]

= f−1
t

[

∫

dp
(xt,pt+1)
t dt + kt exp

(

sgn(ξ) w̃∗
t

)]

.

Then, recalling that sgn(kt) = sgn(ξ), find that the strictly increasing transformation

Mf (pt, w̃
∗
t ) = ln

[

sgn(ξ)
∫

dp
(xt,pt+1)
t exp

(

sgn(ξ) w̃∗
t

)]

= Mexpsgn(ξ)
(

pt, w̃
∗
t

)

.

yields the expression representing the preferences in equation (12).

In the remaining case it is ft ◦ g−1(y) = bt z + kt with bt, kt ∈ IR and bt > 0. Taking g as

and, thus, ft = bt z + kt an analogous reasoning to the one carried out above yields

ũt(xt, pt+1)= g−1
{

(1 − βt) g ◦ u(xt) + βt g ◦ f−1
t+1

[

∫

dp
(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

]}

= g−1
{

(1 − βt)g ◦ u(xt)+βt

[

1
bt+1

{

−kt+1+
∫

dp
(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

}]}

.

And defining the functions

w̃T (xT ) = gu(xT ) and

w̃t−1(xt−1, pt) =
1

1 − βt−1

g ◦ ũt−1(xt−1, pt)

= gu(xt−1) + βt−1

(1−βt−1)

[

1
bt

{

− kt +
∫

dp
(xt,pt+1)
t ftũt

}]

= gu(xt−1) + βt−1

(1−βt−1)

[

1
bt

{

− kt +
∫

dp
(xt,pt+1)
t bt(1 − βt)w̃t + kt

}]

= gu(xt−1) + β
[

∫

dp
(xt,pt+1)
t w̃t

]

,

where the latter expression corresponds to the recursion (11) stated in the theorem for the
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cases f = id. The representing equation (12) follows from

Mft(pt, ũt) = f−1
t

[

∫

dp
(xt,pt+1)
t ft ◦ ũt

]

= f−1
t

[

∫

dp
(xt,pt+1)
t ftg

−1
(

(1 − βt) w̃t

)]

= f−1
t

[

∫

dp
(xt,pt+1)
t kt + bt(1 − βt) w̃t

]

which is a strictly increasing transformation of

Mf (pt, w̃t) = Ept
w̃t = Mid(pt, w̃t) .

Part V (“⇐”): As shown above, the representation is a special case of theorem 2. There-

fore axioms A1-A5 follow immediately from “⇐” of theorem 2. The following calculation

shows that axiom A8 is satisfied as well. Hereto note that for certain consumption paths

x ∈ X
t it is w̃t(x) =

∑T

τ=t β
τ−tg ◦u(xτ ). For the case h = exp define k = 1 and for the case

h = 1
exp

define k = −1. Then, for h ∈ {exp, 1
exp

} and for all t ∈ {1, ..., T − 1}, x0 ∈ X and

x, x′, x′′ ∈ X
t+1 it holds

1

2
(x, x0) +

1

2
(x′, x0) �t (x′′, x0)

⇔ k ln

(

1
2
exp

[

k
∑T−1

τ=t βτ−tg ◦ u(xτ+1)
]

exp
[

k βT g ◦ u(x0)
]

+1
2
exp

[

k
∑T−1

τ=t βτ−tg ◦ u(x′
τ+1)

]

exp
[

k βT g ◦ u(x0)
]

)

≥
∑T−1

τ=t βτ−tg ◦ u(x′′
τ+1) + βT g ◦ u(x0)

⇔ k ln

(

1
2
exp

[

k
∑T

τ=t+1 βτ−(t+1)g ◦ u(xτ )
]

+ 1
2
exp

[

k
∑T

τ=t+1 βτ−(t+1)g ◦ u(x′
τ )
]

)

≥
∑T

τ=t+1 βτ−(t+1)g ◦ u(x′′
τ )

⇔
1

2
ṽt+1(x) +

1

2
ṽt+1(x

′) ≥ ṽt+1(x
′′)

⇔
1

2
x +

1

2
x
′ �t+1 x

′′ .

The case h = id makes both sides of the above inequalities linear in the term βT g ◦ u(x0),

so that it cancels as well and A8 is satisfied.

Moreover part: “⇒”: Assume that g and g′ both represent the sequence of preference

relations �= (�t)t∈{1,...,T} (the prime in g′ does not indicate a derivative!). By the repre-

sentation of �= (�t)t∈{1,...,T} on certain paths, the freedom of g is limited to positive affine

transformations as in theorem 2, i.e. it have to exist a, b ∈ IR, a > 0 such that g = ag′ + b.

However, the dependence of ft on g destroys part of this freedom when considering choice
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over lotteries.47 Precisely, find that the function w̃′
T corresponding to the choice g′ is

w̃′
T (xT ) = g′ ◦ u(xT ) = a g ◦ u(xT ) + b

Define again k = 1 for the case h = exp and k = −1 for the case h = 1
exp

. Then, for

the case h ∈ {exp, 1
exp

}, the fact that w̃T (xT ) as well as w̃′
T (xT ) are to represent the same

preferences over period T lotteries implies

k
∫

dpT exp(k w̃T ) ≥ k
∫

dpT exp(k w̃T )

⇔ k ln
[ ∫

dpT exp(k w̃T )
]

≥ k ln
[ ∫

dpT exp(k w̃T )
]

⇔ Mh(pT , w̃T ) ≥ Mh(p′T , w̃T )

⇔ pT �t p′T

⇔ Mh(pT , w̃′
T ) ≥ Mh(p′T , w̃′

T )

⇔ k ln
[ ∫

dpT exp(k w̃′
T )
]

≥ k ln
[ ∫

dpT exp(k w̃′
T )
]

⇔ k
∫

dpT exp(k w̃′
T ) ≥ k

∫

dpT exp(k w̃′
T )

for all pt, p
′
t ∈ Pt. In consequence there have to exist constants c, d ∈ IR, c > 0 such that

exp(k w̃T ) = c exp(k w̃′
T ) + d

= c exp(k a w̃′
T + kb) + d

= c exp(kb) exp(k w̃′
T )a + d .

Thus, defining the constant c̃ = c exp(kb) and the variable z = exp(k w̃′
T (xt)) the relation

z = c̃za + d

has to hold for all z ∈ [exp(G), exp(G)]. The relation can only be satisfied if the right hand

side is linear and, thus, a = 1. In consequence, if g and g′ both represent the preferences

�= (�t)t∈{1,...,T}, it has to exist b ∈ IR such that g = g′ + b.

For the case h = id, corresponding to a maximizer of intertemporally additive expected

utility, the above reasoning yields no further restrictions on the constants a or b. In that

case, if g and g′ both represent the preferences �= (�t)t∈{1,...,T} all that can be claimed is

the existence a, b ∈ IR, a > 0, such that g = ag′ + b.

“⇐”: For the case h ∈ {exp, 1
exp

}, let g = g′ + b and g be part of a representation of

�= (�t)t∈{1,...,T}. Define as before k = 1 for the case h = exp and k = −1 for the case

h = 1
exp

. I claim that for every t ∈ {1, ..., T} it exists γt ∈ IR such that w̃′
t = w̃t + γt. The

47Without the dependence of f on g an affine transformation a of g cancels out. However, when f

depends on g as in the representation of theorem 4, at the same time f−1 → af−1, corresponding to an
affine transformation of the inverse of f . Such a transformation is, in general, not compatible with the
freedom in the choice of the representing functions.
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proof is by backwards induction. For t = T it holds

w̃′
T (xT ) = g′ ◦ u(xT ) = g ◦ u(xT ) + b = w̃T (xT ) + γT

with γT = b. The induction step from t to t − 1 works as follows:

w̃′
t−1(xt−1, pt) = g′u(xt−1) + βMexpk

(pt, w̃
′
t)

= gu(xt−1) + b + k β ln
[

∫

dp
(xt,pt+1)
t exp

(

kw̃t + kγt

)]

= gu(xt−1) + b + k β ln
[

exp(kγt)
∫

dp
(xt,pt+1)
t exp

(

kγtw̃t

)]

= gu(xt−1) + k β ln
[

∫

dp
(xt,pt+1)
t exp

(

kγtw̃t

)]

+ b + βγt

= w̃t−1(xt−1, pt) + γt−1, +βγt

with γt−1 = b + βγt. Next I show, that such an additive constant in w̃t cancels out in the

representing equation (12):

Mh(pt, w̃
′
t) ≥ Mh(p′t, w̃

′
t)

⇔ Mh(pt, w̃t + γt) ≥ Mh(p′t, w̃t + γt)

⇔ k ln
[ ∫

dpt exp(k w̃t + γt)
]

≥ k ln
[ ∫

dpt exp(k w̃t + γt)
]

⇔ k ln
[ ∫

dpt exp(k w̃t)
]

≥ k ln
[ ∫

dpt exp(k w̃t)
]

⇔ Mh(pt, w̃t) ≥ Mh(p′t, w̃t) .

Thus, if g represents preferences �= (�t)t∈{1,...,T} in the sense of theorem 4 with h ∈

{exp, 1
exp

}, then so does g′ = g + b.

In the case h = id, let g = ag′ + b and g be part of a representation of �= (�t)t∈{1,...,T}

in the sense of theorem 4. I claim that for every t ∈ {1, ..., T} it exists γt ∈ IR such that

w̃′
t = aw̃t + γt. Proof is by backwards induction. For t = T it holds

w̃′
T (xT ) = g′ ◦ u(xT ) = ag ◦ u(xT ) + b = aṽT (xT ) + γT ,

with γT = b. The induction step from t to t − 1 is as follows:

w̃′
t−1(xt−1, pt) = g′ ◦ u(xt−1) + βEpt

w̃′
t(xt, pt+1)

= a g ◦ u(xt−1) + b + βEpt
a w̃t(xt, pt+1) + β γt

= a w̃t−1(xt−1, pt) + b + β γt .

Setting γt−1 = b + γt closes the induction step. But then, the representation in equation

(12) stays unchanged:

Ept
w̃′

t ≥ Ep′t
w̃′

t ⇔ Ept
a w̃t + γt ≥ Ep′t

a w̃t + γt ⇔ Ept
w̃t ≥ Ep′t

w̃t .

2
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C Proofs for Section 4

Proof of theorem 5: The proof resembles that of theorem ??. Part one translates

axiom A9 s into the representation of theorem 2. Then I show in the second part that the

equation derived in the first locally implies concavity of ft ◦ g−1. Part three extends this

result to concavity on the entire set Γt. The necessity of axiom A9 s is implied by theorem

??. The difference to the proof of theorem ??, i.e. the stronger prerequisite in axiom A9 s,

mainly affects the first step in part two. Subsequently the proof follows that of theorem

?? and the reader is referred to the latter.

Part I (“⇒”): In this part I translate axiom A9 s into the representation of theorem 2. I

start with the first line, i.e the premise, and use equation (19) to find

x̄
t ∼t x

t

⇒ g−1
[

(1 − βt)
T
∑

τ=t

βτ−tu(x̄)
]

= g−1
[

(1 − βt)
T
∑

τ=t

βτ−tu(xt
τ )
]

. (31)

The existence of τ ∈ {t, ..., T} such that [xt
τ ] 6∼τ [x̄] translates into

u(xt
τ ) 6= u(x̄) for some τ ∈ {t, ..., T}. (32)

The second line of axiom A9 s becomes

x̄
t ≻T

∑T

i=t
1

T−t+1
(x̄t

−i, x
t
i).

⇒ g−1
[

(1 − βt)
∑T

τ=t β
τ−tu(x̄)

]

> f−1
t

[

∑T

i=t
1

T−t+1
ftg

−1
[

(1 − βt)
∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]]

⇒ ftg
−1
[

(1 − βt)
∑T

τ=t β
τ−tu(x̄)

]

>
∑T

i=t
1

T−t+1
ftg

−1
[

(1 − βt)
∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]

.

58



Proofs for Section 4

Using equation (31) the left hand side can be transformed as follows:

ftg
−1
[

T−t
T−t+1

[

(1 − βt)
∑T

τ=t β
τ−tu(x̄)

]

+ 1
T−t+1

[

(1 − βt)
∑T

τ=t β
τ−tu(xt

τ )
]]

>
∑T

i=t
1

T−t+1
ftg

−1
[

(1 − βt)
∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]

⇒ ftg
−1
[

1
T−t+1

[

(1 − βt)
∑T

i=t

∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]]

>
∑T

i=t
1

T−t+1
ftg

−1
[

(1 − βt)
∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]

⇒ ftg
−1
[

∑T

i=t
1

T−t+1

[

(1 − βt)
∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]]

(33)

>
∑T

i=t
1

T−t+1
ftg

−1
[

(1 − βt)
∑T

τ=t β
τ−tu

(

(x̄t
−i, x

t
i)τ

)

]

.

Define the function z̃ : X
t → Γt by z̃(xt) = (1 − βt)

∑T

τ=t β
τ−tu (xt

τ ). Restricting the

domain to those consumption paths that satisfy condition (32) the function is onto
(

(1 −

βt)
∑T

τ=t G , (1 − βt)
∑T

τ=t G
)

=
(

G , G
)

= Γt. In particular define zi = z̃
(

(xt
−ix

′t
i )
)

. In

this notation equation (33) becomes

ftg
−1
(

∑T

i=t
1

T−t+1
zi

)

>
∑T

i=t
1

T−t+1
ftg

−1(zi). (34)

If equation (34) had to hold for all zi ∈ Γt it would be a straight forward condition for strict

convexity of ft◦g−1. However axiom A9 s does not immediately imply that the equation has

to be met for every choice (zi)i∈{t,...,T}, zi ∈ Γt. Only for combination (zi)i∈{t,...,T} stemming

from consumption paths (x̄t
−i, x

t
i) for which x

t ∈ X
t and x̄ ∈ X satisfy the premise of axiom

A9 s. In what follows I proceed to show that this restricted demand is enough to imply

strict convexity of of ft ◦ g−1 on Γt.

Part II (“⇒”): Let zo ∈ Γt. In this part I show that for every such zo there exists an

open neighborhood Nzo ⊂ Γt such that equation (34) implies strict concavity of ft ◦ g−1 on

Nzo .

In the first step I define a certain consumption path x̄
t with x̄ ∈ X such that z̃(x̄t) = zo.

The fact zo ∈ Γt is equivalent to G < zo < G. By connectedness of X and continuity

of g ◦ u there exists an outcome xo ∈ u−1 [g−1 (zo)] such that zo = u ◦ g(xo). Define

x
ot = x̄

ot = (xo, ..., xo) and find that z̃(xot) = z0. Note that the difference between

the stationary and the non-stationary setting is that only in the stationary setting it is

guaranteed that any zo ∈ Γt can be attained by evaluating a constant consumption path.

From step two on the proof (including Part III) follows exactly the one laid out for

theorem ?? on page ?? with Go
τ = zo for all τ ∈ {t, ..., T} and ǫ = min{zo − G,G − zo}.

Part IV (“⇐”): “⇐” is implied by theorem ?? for x
t = x̄

t. 2

Proof of lemma 2: The lemma is an immediate consequence of lemma ?? with the
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convention g1 ◦ u1 = g ◦ u. Then, the representing triples (u, ft, g)t∈{1,...,T} in the sense of

theorems 2 correspond to the representing triples (ut = u, ft, gt = βt−1g)t∈{1,...,T} in the

sense of theorem 1. Therefore, imposing the unit, the zero level or the range of g ◦ u

determines the according values for gt ◦ ut in the sense of theorem 1 for all periods. Thus,

the statements in a), b), c) and d) in lemma ?? imply the assertions a), b), c) and d) in

lemma 2. As theorems 3 and 4 are special cases of theorem 2, the reasoning holds true as

well for representations in the sense of theorems 3 and 4. 2

Proof of corollary 1: To the most part, the g+−gauge of the representation in theorem

4 has already been derived in the proof of the latter theorem.

“⇒”: Before absorbing the parameter ξ into the function g in the proof of theorem 4, the

recursive construction of w̃t for the case corresponding to h ∈
{

exp, 1
exp

}

was given by

equation (29), which states

w̃t−1(xt−1, pt) = gu(xt−1) + βMexpξ

(pt, w̃t) .

Simply defining the new utility function u∗ = g ◦u yields the g = id-gauge. Once the range

of u∗, i.e. g, is fixed, a transformation absorbing the free parameter ξ into the function g,

i.e. u∗, as carried out to arrive at the final representation stated in theorem 4, is no longer

possible.

The representing equation (16) is obtained as follows. The representation that is known

to hold by theorem 1 for the specifications of theorem 4 is

Mft(pt, ũt) = f−1
t

[

∫

dp
(xt,pt+1)
t ft ◦ ũt

]

= f−1
t

[

∫

dp
(xt,pt+1)
t ftg

−1
(

(1 − βt) w̃t

)]

= f−1
t

[

∫

dp
(xt,pt+1)
t dt + kt exp

(

ξ w̃t

)]

.

But, recalling that kt ξ > 0, the latter expression is easily recognized as a strictly increasing

transformation of

Mexpξ

(pt, w̃t) =
1

ξ
ln
[

∫

dp
(xt,pt+1)
t exp

(

ξ w̃t

)]

.

Therefore, also Mexpξ

(pt, w̃t) represents the preferences �= (�t)t∈{1,...,T}.

For the case corresponding to h = id in the representation of theorem 4, the proof of the

latter theorem has derived the following representation

w̃T (xT ) = gu(xT ) and

w̃t−1(xt−1, pt) = gu(xt−1) + βEpt
w̃t ,
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with

pt �t p′t ⇔ Ept
w̃t ≥ Ep′t

w̃t .

Thus, with the definition Mexp0

(pt, w̃t) = Ept
w̃t, the claimed representation also holds for

ξ = 0.

Finally, observe that, as stated in the text, the above definition of Mexp0

corresponds to

the limit ξ → 0. To see this, simply apply l’Hospital’s rule:

Mexp0

(pt, w̃t) ≡ lim
ξ→0

Mexpξ

(pt, w̃t)

= lim
ξ→0

ln
[ ∫

dpt exp(ξw̃t)
]

ξ

= lim
ξ→0

∂
∂ξ

ln
[ ∫

dpt exp(ξw̃t)
]

∂
∂ξ

ξ

= lim
ξ→0

∫

dptw̃t exp(ξw̃t)
∫

dpt exp(ξw̃t)

=

∫

dptw̃t

1
= Ept

w̃t .

“⇐”: Implied by theorem 4.

Moreover part: By lemma 2 the function g ◦u in theorem 4 is uniquely determined, once

its range has been fixed. As seen above, the representing utility function in the corollary

corresponds to the function u∗ = g ◦ u. Thus, fixing its range determines the function

uniquely. Moreover lemma 2 implies that the measures of intertemporal risk aversion are

determined uniquely.

Equation (14) defines the measure of absolute intertemporal risk aversion in period t as

the function

AIRAt(z) = −

(

ft ◦ g−1
t

)′′
(z)

(

ft ◦ g−1
t

)′
(z)

.

As derived in the proof of theorem 4, the case ξ 6= 0 corresponds to ft◦g
−1 = kt exp( ξ

1−βt
z)+

dt, with dt, kt ∈ IR and kt ξ > 0 (compare 27). Then, with g1 = g and gt = βt−1g, the
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measure of absolute intertemporal risk aversion is calculated to

AIRAt(z) = −
d2

dz2 ft ◦ g−1(β−t+1z)
d
dz

ft ◦ g−1(β−t+1z)
= −

d2

dz2 kt exp
(

ξ

1−βt
β−t+1z

)

+ dt

d
dz

kt exp
(

ξ

1−βt
β−t+1z

)

+ dt

= −

(

ξ

1−βt
β−t+1

)2

exp
(

ξ

1−βt
β−t+1z

)

ξ

1−βt
β−t+1 exp

(

ξ

1−βt
β−t+1z

) = −
ξ

βt−1(1 − βt)
,

yielding the constant coefficient of absolute intertemporal risk aversion −ξ

βt−1(1−βt)
. In the

case ξ = 0 it as

AIRAt(z) = −
d2

dz2 ft ◦ g−1(β−t+1z)
d
dz

ft ◦ g−1(β−t+1z)
= −

d2

dz2 bt z + kt

d
dz

bt z + kt

= 0 ,

coinciding with the general expression AIRAt(z) = − ξ

βt−1(1−βt)
.

The measure of relative intertemporal risk aversion in period t is defined in equation (13)

as the function

RIRAt(z) = −

(

ft ◦ g−1
t

)′′
(z)

(

ft ◦ g−1
t

)′
(z)

z .

In consequence it holds RIRAt(z) = AIRAt(z) · z, yielding RIRAt = − ξ

βt−1(1−βt)
id. 2

Proof of corollary 2: The proof is divided into two parts. The first part derives a

representation triple in the sense of theorem 1, in which the functions ft correspond to the

identity, and which satisfies the requirements of corollary 2. The second part works out

the corresponding representation as stated in the corollary. The necessity of the axioms is

immediate by theorem 4.

Part I: First, observe that corollary 1 with Bernoulli utility u∗ implies, with the definition

u = exp(u∗) ⇔ u∗ = ln u, the representation for the case ξ = 0 (h = id in theorem 4). The

logarithm is introduced because the representation for the case ξ 6= 0 fixes the measure

scale for welfare to ln u∗, as it will be observed in the remark at the end of this part of the

proof. In the following, I work out the proof for the case where

ht(z) = ft ◦ g−1(z) = kt exp(
ξ

1 − βt

z) + dt ,

with dt, kt ∈ IR and kt ξ > 0, corresponding to equation (27) and case two of the proof of

theorem 4. As I want to gauge the functions ft to identity, I have to allow the functions gt

to vary over time. Therefore, I express the preferences �= (�t)t∈{1,...,T} in a representation

in the sense of theorem 1. Recall, that a certainty stationary representation, as the one

above, corresponds to a representation (u, ft, β
t−1g) in the sense of theorem 1. I take the
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functions ft as given. Then, the requirement (27) for ftg
−1 restated above implies

gt = βt−1g = βt−1 1 − βt

ξ
ln

(

1

kt

(ft − dt)

)

.

In consequence, the sequence of triples
(

u , ft , gt = βt−1 1 − βt

ξ
ln

(

1

kt

(ft − dt)

))

t∈{1,...,T}

represents the preferences described in theorem 4, in the sense of the non-stationary rep-

resentation theorem 1. By gauge lemma ?? it is known that the same preferences are

represented by the sequence of triples
(

u′
t = ft ◦ u , f ′

t = ft ◦ f−1
t , g′

t = βt−1 1 − βt

ξ
ln

(

1

kt

(ft ◦ f−1
t − dt)

))

t∈{1,...,T}

=

(

u′
t = ft ◦ u , f ′

t = id , g′
t = βt−1 1 − βt

ξ
ln

(

1

kt

( id − dt)

))

t∈{1,...,T}

. (35)

As desired, uncertainty aggregation corresponding to the above representation is linear.

However, observe that

u′
t = ft ◦ u = kt exp(

ξ

1 − βt

g ◦ u) + dt .

The relation implies that it is impossible to fix u′
t to a given range independent of ξ.48

Therefore, define the functions

u∗
t =

(

1

kt

(u′
t − dt)

)

1−βt
ξ

= exp(
ξ

1 − βt

g ◦ u)
1−βt

ξ = exp(g ◦ u) (36)

Then u∗ = u∗
t is independent of ξ and moreover constant in time. Note also, that u∗

t is

always positive. Using this definition, the representing triples (35) write as
(

ktu
∗

ξ
1−βt + dt , id , βt−1 1 − βt

ξ
ln

(

1

kt

( id − dt)

))

t∈{1,...,T}

.

Finally, the moreover part of corollary ?? allows to eliminate the constants kt and dt from

the above triples, up to the sign of kt (choose a
+
t = 1

kt
( id − dt) and note that ft = id). I

obtain the representing sequence of triples
(

u′′
t = sgn(ξ) u∗

ξ
1−βt , f ′′

t = id , g′′
t = βt−1 1 − βt

ξ
ln
(

sgn(ξ) id
)

)

t∈{1,...,T}

. (37)

The function u∗ in expression (37) corresponds to the utility function u stated in corollary

2. For preference representations in theorem 4, Bernoulli utility lies in the class u : X → IR.

By equation (36), the latter class for u corresponds to functions u∗ lying in the class of

48Or from a different perspective, g′t ◦ u′
t = βt−1 1−βt

ξ
ln
(

1
kt

(u′
t − dt)

)

depends on ξ. Thus fixing the

range of u′
t as is, would not allow for a common measure scale for welfare.
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continuous functions from X into the positive real numbers, i.e. u∗ ∈ {u∗ : X → IR++}.

Remark: The requirement of corollary 2 that u, i.e. u∗ in the representing triples above,

is onto the interval U∗ corresponds to setting the range for the measurement of welfare in

period t to the range of

g′′
t ◦ u′′

t = βt−1 1 − βt

ξ
ln
(

u∗
ξ

1−βt

)

= βt−1 ln (u∗) (38)

and, thus, g1 ◦ u1 = ln u∗.

Part II: In the following I calculate the representation expressed by the sequence of triples

in (37). Let U∗ =
[

U∗, U
∗
]

. Then, observe that ∆G′′
t = βt ln U

∗

U∗ and ϑ′
t = 0. Thus, with

the same definition for βt = 1 − θ′′t as in theorem 2 (compare page 44), it holds

ũt−1(xt−1, pt) = g′′−1
t−1

[

θ′′t−1 g′′
t−1 ◦ u′′

t−1(xt−1) + (1 − θ′′t−1)
∆G′′

t−1

∆G′′
t

g′′
t ◦Mf ′′

t (pt, ũt)

]

= g′′−1
t−1

[

(1 − βt−1) g′′
t−1 ◦ u′′

t−1(xt−1) + βt−1 β−1 g′′
t ◦Mf ′′

t (pt, ũt)
]

= sgn(ξ) exp
( ξ

βt−2(1 − βt−1)

[

(1 − βt−1) βt−2 1 − βt−1

ξ
ln
(

sgn(ξ) ·

sgn(ξ) u∗(xt−1)
ξ

1−βt−1

)

+ βt−1 βt−2 1 − βt

ξ
ln
(

sgn(ξ) Ept
ũt

)

])

= sgn(ξ) exp
(

ln
(

u∗(xt−1)
ξ
)

)

exp

(

βt−1
1 − βt

1 − βt−1

ln
(

sgn(ξ) Ept
ũt

)

)

= sgn(ξ) u∗(xt−1)
ξ
(

sgn(ξ) Ept
ũt

)β
. (39)

Where I have used the relation 1−βt

1−βt−1
= ββ−1

t−1 to arrive at the last line. Distinguishing the

two cases where sgn(ξ) > 0 and sgn(ξ) < 0, equation (39) corresponds to the representation

stated in the theorem.

Moreover part: Equation (38) in the remark shows that the demand of u∗, corresponding

to u in the corollary, being onto the given interval U∗ fixes also the range for the measure-

ment of welfare g′′ ◦ u′′
t . Therefore, the moreover part follows as in corollary 1. 2

Proof of corollary 3: The representation is a simple transformation of corollary 2.

“⇒”: For ξ 6= 0 define ṽt : X̃t → IR for t ∈ {1, ..., T} by ṽt = (sgn(ξ) ũt)
1
ξ , where ũt defines

the recursive construction of the representation in corollary 2. Then it is

ṽt−1(xt−1, pt) = u(xt−1)
(

Ept
sgn(ξ) ũt

)
β
ξ

= u(xt−1)
(

Ept
ṽ

ξ
t

)
β
ξ

= u(xt−1)
(

Mα=ξ(pt, ṽt)
)β

,
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yielding the stated construction of ṽt. Then the representation of corollary 2 translates

into

pt �t p′t

⇔ Ept
ũt ≥ Ep′t

ũt

⇔ sgn(ξ) Ept
sgn(ξ) ũt ≥ sgn(ξ) Ep′t

sgn(ξ) ũt

⇔ sgn(ξ) Ept
ṽ

ξ
t ≥ sgn(ξ) Ep′t

ṽ
ξ
t

⇔
(

Ept
ṽ

ξ
t

)ξ

≥
(

Ep′t
ṽ

ξ
t

)ξ

⇔ Mα=ξ(p′t, ṽt) ≥ Mα=ξ(p′t, ṽt)

for all pt, p
′
t ∈ Pt.

For the case ξ = 0 the stated representation corresponds to

M0(pt, ṽt) = exp
( ∫

dpt ln ṽt

)

= exp
( ∫

dpt ln
[

u(xt)
(

exp
[

Ept
ln(ṽt+1)

])β])

= exp
( ∫

dpt ln u(xt) + β
[

Ept
ln(ṽt+1)

])

Define u∗ = ln u and ṽ∗
t = ln ṽt. Then the representation is ordinally equivalent to

∫

dptu
∗(xt) + β

[

Ept
ln(ṽt+1)

]

For the case ξ = 0 the stated representation corresponds to

ṽt−1(xt−1, pt) = u(xt−1)
(

exp
[

Ept
ln(ṽt)

])β

= u(xt−1) exp
[

Ept
β ln(ṽt)

]

.

Defining ṽ∗
t = ln ṽt and u∗ = ln u ⇔ u = exp u∗ yields the representation

ṽ∗
t−1(xt−1, pt) = ln

(

exp[u∗(xt−1)] exp
[

Ept
βṽ∗

t

])

= u∗(xt−1) + Ept
β ṽ∗

t .

But the latter construction of aggregate welfare, corresponds to that of corollary 1 for

preferences corresponding to ξ = 0 (intertemporally additive expected utility). Moreover,
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the uncertainty evaluation

M0(pt, ṽt) = exp
( ∫

dpt ln ṽt

)

= exp
( ∫

dpt ṽ∗
t

)

is a strictly increasing transformation of Ept
ṽ∗

t . Therefore, the representation for the case

ξ = 0 is equivalent to the formulation in corollary 1.

“⇐”: Immediate consequence of corollary 2.

Moreover part: Is implied by the moreover part of corollary 2. Again, the measure scale

for welfare is fixed for the first period to the range lnU∗. 2

D Proofs for Section 5

Proof of theorem 6: “⇒”: Adding certainty stationarity to the assumptions of theo-

rem ?? implies, as shown in the proof of theorem 2, that Bernoulli utility can be picked

identical in all periods. Moreover, in that case it exist β ∈ IR++ and g : X → IR such that

the functions gt can be chosen as gt = βt−1g. Then, in the representation of theorem ??,

the construction of aggregate utility simplifies to the form

ũt(x
t) =

T
∑

τ=t

gτ ◦ uτ (x
t
τ ) =

T
∑

τ=t

βτ−1g ◦ u(xt
τ ) ≡

T
∑

τ=t

βτ−1u∗(xt
τ ) ,

where the simple redefinition of Bernoulli utility as u∗(xt
τ ) = g◦u(xt

τ ) yields the g = id−gauge.

Moreover, in the formulation of the theorem, the range of welfare u∗(xt
τ ) = g ◦ u(xt

τ ), i.e.

u in the notation of the theorem, is fixed exogenously. Therefore, as in corollary ??, the

parameter ξ in equation (??) stemming from the relation

ht(z) = gt ◦ f−1
t (z) = at exp(

ξ

1 − βt

z) + bt

cannot be absorbed by the function u∗. In consequence, for the case ξ 6= 0, the represen-

tation (??) prevails, just as for the g+−gauge in corollary ??. Also as in the previous g+−

corollaries 1 and ??, it is found that the case ξ = 0 is covered by the representation using

the uncertainty aggregation rule Mexp0

(pxt , ũt) = E
pxt

ũt.

“⇐”: Implied by theorems 2 and ??.

Moreover part: By lemma 2, the choice of the range of u = u1 = g1 ◦ u1 as W ∗ fixes the

measure scale of welfare for all periods. Therefore, corollary ?? covers the moreover part

with θt = 1 − βt (see proof of theorem 6). 2

Proof of theorem 7: The assertion follows immediately from comparing the functions
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characterizing intertemporal risk aversion in the representations of theorem 4 and theorem

6. These imply that the two representations can only coincide for the case where β = 1.

“⇒”: Preferences satisfying the stated axioms have to be representable in the sense of

theorems 4 and 6.49 Choose a nondegenerate closed interval W ∗ ⊂ IR++ and require that

u = uwelf is onto W ∗. Then, due to risk stationarity, by corollary 1 there have to exist ξ and

β such that the functions ft ◦ gt characterizing intertemporal risk aversion are specified by

the coefficients AIRAt = − ξ

βt−1(1−βt)
. Analogously, due to timing indifference, by theorem

6 there have to exist ξ′ and β′ such that the functions ft ◦ gt characterizing intertemporal

risk aversion are specified by the coefficients AIRAt = − ξ′

1−β′

t
.

Both representations, that of corollary 1 and that of theorem 6, are special cases of the

certainty stationary representation in theorem 2. For given preferences �

= (�t)t∈{1,...,T}, coincidence of the representations on certain consumption paths implies

that β = β′. In consequence, it also holds that βt = β′
t. As the measure scale for wel-

fare is fixed to W ∗ in the first period, lemma 2 states that the characterizations AIRAt

of intertemporal risk aversion are unique for all t ∈ {1, ..., T}. Therefore, comparison of

the measures of intertemporal risk aversion for period one implies that ξ = ξ′. Then, the

requirement that furthermore AIRAt
!
= − ξ

βt−1(1−βt)

!
= − ξ

(1−βt)
for all t > 1, cannot be sat-

isfied unless β = 1 or ξ = 0. However, the requirement of strict intertemporal risk aversion

as formulated in axiom A9 s implies implies ξ < 0. Therefore it has to hold that β = 1.

“⇐”: Except for axiom A9 s all of the stated axioms are implied by theorems 4 and 6.

Axiom A9 s is implied by theorem 5, case a). 2

49Recall that axiom A8 implies certainty stationarity as described in axiom A6.
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