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Abstract

We study the long-term incentives for a firm to invest in advanced production technolo-

gies, when some new technology is available but an even better technology will be available

at some unknown future date. We consider an input and an output market since the incenti-

ves in our model are given by the repercussions which the adoption of advanced technology

by a certain number of firms create on the input and the output market. Depending on the

relative size of adoption fixed costs almost all possible combinations of investment patters

may occur in the social optimum. In case of a decentralized decision we can show a analo-

gous result for the market equilibrium. Moreover we show that for input goods like oil or

ore, where the input markets are characterized by market power of the provider, there is a

greater incentive to adopt new production technologies than in case of a competitive input

market. If the input supply is fixed, which for example can be the case if we consider a regula-

tion by permits, where the regulator makes a long term commitment, the contrary is the case.

Keywords: Input-/Output Markets, technology adoption, leapfrogging, option value theory,

uncertainty, Poisson distribution, tradeable permits
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1 Introduction

t.b.w.

2 The Model

We consider a competitive industry consisting of a continuum of ex ante symmetric firms

represented by the interval [0, 1]. All firms produce a homogenous output good q. The inverse

demand function is given by P (Q), where Q is the aggregated output. We assume P ′(Q) < 0.

Furthermore we assume a homogenous input e needed in the production of each firm. For

example this can be coal, oil, iron but also worker or pollution or any kind of intermediate

good. To produce an output of q each firm faces production cost C(θ, q, e) which depend on

the amount of input e and the technology in use θ. Such kind of production cost function

can be derived from a usual production function in the following manner. Assume that there

are n other input goods xi, i = 1, . . . , n next to good we are interested in. The factor prices

are wi, i = 1, . . . , n. The firms own some production technology represented by a production

function f(xa, . . . , xn, e, θ), where θ specifies the technology and is exogenously given. Then

by fixing the output level q and the level of our input e we can derive the function C by

minxa,...,xn

n∑
i=1

wixi

subject to q = f(xa, . . . , xn, e, θ).

We make the following assumptions about the function C.

Assumption 2.1. i) For each θ and q there exists a unique laisser-faire input level

emax(θ, q), characterized by ∂C
∂e

(emax(θ, q), q, θ) = 0. For each input level e < emax(θ, q)

we have c(e, q, θ) > 0, −∂C
∂e

> 0 and ∂2C
∂e2 > 0, ∂C

∂q
> 0 , ∂2C

∂q2 > 0 and ∂2C
∂q∂e

< 0.

ii) A higher technology parameter induces ∂C
∂θ

< 0, − ∂2C
∂e∂θ

< 0 for e ≤ emax(θ, q) and

∂2C
∂q∂θ

< 0 for e ≤ emax(θ, q).

If we consider a Cobb-Douglas-type production function, it can be shown that the corre-

sponding C fulfills these assumptions.
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In the following, we will assume that there are three exogenously given technologies 0 ,a,

and b, represented by their corresponding technology parameters θ0, θa and θb with θ0 < θa <

θb. To simplify notation, we will write Ci(·, ··) instead of C(θi, ·, ··) for i = 0, a, b.

Assumption 2.2. We assume that

∑
i=0,a,b

ξi
∂2Ci

∂e2
·
∑

i=0,a,b

ξi
∂2Ci

∂q2
−

( ∑
i=0,a,b

ξi
∂2Ci

∂q∂e

)2

> 0

for all ξ0, ξa, ξb > 0, where
∑

i=0,a,b ξi = 1

In the appendix it is shown that the cost function C(θ, q, e) that can be derived from

the Cobb-Douglas type production function f(θ, xa, e) = (k(θ)xa)
αeβ, where α + β < 1,

k′(θ) > 0, fulfills all assumptions above.

Initially all firms start with technology 0, referred to as the conventional technology.

Advanced technology a is available yet and can in principle be adopted immediately. Buying

and installing this technology causes a fixed cost Fa > 0. The even better technology b,

will be available in the future with a certain probability. But its arrival time is Poisson-

distributed with exogenous arrival parameter λ. Buying and installing that technology costs

Fb > 0. Investment in one of these technologies is irreversible.

Further we denote total amount of input the industry uses by E =
∫ 1

0
e(x) dx. The

production costs and damage respectively depends on aggregate input only and is evaluated

by the function V (E) which is increasing and convex in E, i.e. V ′(E) > 0 and V ′′(E) > 0.

Finally, we will assume that both the social planner and the firms discount the future at

a constant discount rate r. Moreover we will refer to the ”first stage” as the time interval

where only technology 0 and a are available. In particular the date of first decision making

t = 0 is called the first stage. By contrast, the ”second stage” is referred to as the time

interval when the advanced technology b is available.

We denote the input level of a firm using technology i = 0, a, b at stage j = 1, 2 by ei,j

and the output level of the same firm by qi,j. To shorten the notation we will sometimes

write Ci,j instead of Ci(qi,j, ei,j) if there is no opportunity for mistakes.

Furthermore we stipulate the following manner of speaking:
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- Partial adoption of technology a means that a share 0 ≤ xa ≤ 1 of firms adopts technology

a and - in case of the social optimum - the social planner is indifferent between letting

the marginal firm invest or letting it postpone the investment or - in case of a market

equilibrium - each firm is indifferent between adopting technology a or wait for the arrival

of technology b respectively

- Partial adoption of technology b means that a share 0 ≤ x0b ≤ 1 − xa of firms, which

have not adopted technology a, adopts technology b and - in case of the social optimum -

the social planner is indifferent between letting the marginal firm invest or not or - in case

of a market equilibrium - each firm which have not adopted technology a at the first stage

is indifferent between adopting technology b or not adopting it respectively

- Partial replacement of technology a means that a share 0 ≤ xab ≤ xa of firms, which

have adopted technology a, replaces this technology by adopting also technology b and - in

case of the social optimum - the social planner is indifferent between letting the marginal

firm replace technology a or not or - in case of a market equilibrium - each firm, which

have adopted technology a in the stage before is indifferent between replacing technology

a or not replacing it respectively

- Full/No adoption of technology a means that all/none of the firms adopt technology a and

the social planner is not indifferent between letting the marginal firm invest or letting it

postpone the investment or each firm is not indifferent between adopting technology a or

wait for the arrival of technology b respectively

- Full/No adoption of technology b adoption of technology b means that all/none of the of

firms, which have not adopted technology a, do/do not adopt technology b and the social

planner is not indifferent between letting the marginal firm invest or not or each firm

which have not adopted technology a at the first stage is not indifferent between adopting

technology b or not adopting it respectively

- Full/No replacement of technology a means that all7none of the firms, which have adopted

technology a, replaces this technology by adopting also technology b and the social planner
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is not indifferent between letting the marginal firm replace technology a or not or each firm,

which have adopted technology a in the stage before is not indifferent between replacing

technology a or not replacing it respectively

3 Expected Net Present Value of an Investment Deci-

sion

In this section we provide a formula for the net present value of total cost incurred by

an economic agent who can invest twice, once immediately and a second time at a later,

uncertain date when a further technology is available. This formula is very general and does

not only refer to the model of this paper.

Lemma 3.1. Let Fa and Fb denote the fixed cost incurred when investing into technology

a or b, respectively. Further let C0, Ca and Cb denote the current values of the cost flow

resulting from not investing, investing into technology a, and investing into technology b,

respectively. While technology a is available immediately, the arrival date of technology b is

Poisson distributed with mean arrival time λ. If the agent invests immediately into technology

a and substitutes technology a by technology b as soon as it is available, the present value of

total cost is given by:

Fa +

∫ ∞

0

(∫ t

0

Ca · e−rs ds +

∫ ∞

t

Cb · e−rs ds + Fb · e−rt

)
λe−λt dt

=Fa +
1

r + λ
Ca +

λ

r + λ

(
Cb

r
+ Fb

) (1)

If the agent does not invest in technology a, but adopts technology b, as soon as that is

available, the net present value of total costs is given by

1

r + λ
C0 +

λ

r + λ
(
Cb

r
+ Fb). (2)
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4 The Social Optimum

Before considering regulation and the regulated firms’ behavior it is useful to study the so-

cially optimal investment pattern. The social planner’s problem is to maximize the expected

social value by balancing the consumers surplus against the industry’s total production costs

due to the output good and the production cost for the input. To do so he decides on all,

each firm’s input and output level at each point of time, and the shares of firms which should

either adopt technology a, technology b, or none of both. Note that social value will be con-

stant over time in the two stages before and after technology b is available. Note further that

the input and output level of a firm using technology i = 0, a in the first stage may differ

from its levels in the second stage even if the firm does not change technology.

Thus, using Lemma 3.1 the social planner maximizes

max
{qi,j ,ei,j ,xa,x0b,xab}

{ 1

λ + r
[

∫ Q1

0

P (Q̃)dQ̃ − (1 − xa)C0(q0,1, e0,1) − xaCa(qa,1, ea,1) − V (E1)]

− xaFa +
λ

λ + r
[
1

r
[

∫ Q2

0

P (Q̃)dQ̃ − (1 − xa − x0b)C0(q0,2, e0,2) − (xa − xab)Ca(qa,2, ea,2)

− (x0b + xab)Cb(qb,2, eb,2) − V (E2)] − (x0b + xab)Fb]},

(3)

subject to 1 ≤ xa + x0b xab ≤ xa, Q1 = (1 − xa)q0,1 + xaqa,1, E1 = (1 − xa)e0,1 + xaea,1,

Q2 = (1 − xa − x0b)q0,2 + (xa − xab)qa,2 + (x0b + xab)qb,2 and E2 = (1 − xa − x0b)e0,2 + (xa −

xab)ea,2 + (x0b + xab)eb,2.

In the following we will show that depending on Fa and Fb almost every possible adoption

scenario can indeed be socially optimal i.e. no adoption of one or both of the technologies or

partial adoption of one or both technologies. The only scenarios, which cannot be optimal,

are the scenarios where both partial adoption of technology b and partial replacement of

technology b occurs.

We will characterize the optimal pattern of technology adoption contingent on the size

of Fa and Fb.

For this purpose, we start backwards. 1 For a given number of firms xa which have adopted

1Of course we maximize the expected social value including both stage simultaneously but one will see

that this approach delivers much more insights into the structure of the model.
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the new technology in the first stage, we determine both the optimal number of firms x0b

which should adopt the latest technology and the optimal input levels q0,2, qa,2,and qb,2 for

each technology. Thus in the second stage the social planner’s problem can be written as:

max
{x0,x0b,xab,qi,2,ei,2}

{1

r
[

∫ Q2

0

P (Q̃)dQ̃ − x0C0(q0,2, e0,2) − (xa − xab)Ca(qa,2, ea,2)

− (x0b + xab)Cb(qb,2, eb,2) − V (E2)] + (x0b + xab)Fb},
(4)

subject to 1 = x0 + xa + x0b, Q2 = x0q0,2 + (xa − x0b)qa,2 + (x0b + xab)qb,2 and E2 =

x0e0,2 + (xa − x0b)ea,2 + (x0b + xab)eb,2.

First of all we characterize how the aggregated input and output levels depend on the

shares of firm that use one of the new technologies:

Lemma 4.1. Suppose that xa, x0b are given. Let Q∗
2 and E∗

2 be the corresponding socially

optimal aggregated input and output levels. Then we obtain:

1. If 0 ≤ x0b < 1 and 0 ≤ x0b < 1 − xa we get
∂E∗

2

∂x0b
< 0 and

∂Q∗
2

∂x0b
> 0 as well as

∂E∗
2

∂xa
< 0

and
∂Q∗

2

∂xa
> 0. Furthermore

∂Q∗
2

∂x0b
>

∂Q∗
2

∂xa
and

∂E∗
2

∂x0b
<

∂E∗
2

∂xa
.

2. If 0 < xa < 1 and x0b = 1 − xa we obtain
∂E∗

2

∂xa
> 0 and

∂Q∗
2

∂xa
< 0.

The following result characterizes the optimal rate of adoption of technology b given that

a share of xa has already adopted technology a.

Proposition 4.2 (Adoption pattern in the second stage). Let the share of firms xa

which have adopted technology a be given. Then there exist two interval of fixed costs

[F ∗
b(xa), F

∗
b(xa)] and [F ∗

b
, F

∗
b(xa)] of technology b such that

1. F
∗
b < F ∗

b .

2. No firm should adopt technology b for Fb ≥ F
∗
b(xa). No adoption of technology b is the

case for Fb > F
∗
b(xa).

3. For Fb ∈ [F ∗
b(xa), F

∗
b(xa)] a partial share 0 < x∗0b < 1 − xa of the (1 − xa) firms

which have not adopted technology a should adopt technology b and no firm should
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replace technology a. This share of firms as well as the optimal aggregated output Q∗
2

is decreasing in Fb while the optimal aggregated input level E∗
2 increases in Fb.

4. All (1− xa) firms using the initial technology should adopt technology b for F
∗
b(xa) ≥

Fb ≤ F ∗
b(xa). Full adoption without replacement of technology b is the case F

∗
b(xa) >

Fb > F ∗
b(xa).

5. For Fb ∈ (F ∗
b
, F

∗
b(xa)) there is full adoption of technology b and a partial share 0 <

x∗ab < xa of firms which have adopted technology a should replace it by technology b.

This share of firms as well as the optimal aggregated output Q∗
2 is decreasing in Fb

while the optimal aggregated input level E∗
2 increases in Fb.

6. All firms, irrespectively if they adopted technology a or not, should adopt technology

b for Fb ≤ F ∗
b
. For Fb < F ∗

b
full replacement is the case.

It is very intuitive that it depends on the level of Fb whether the social planner prefers

that none of the firms, some of the conventional firm, all of the conventional firms or also

some of the firms using technology a should adopt technology b. Also it is intuitive that for

very small values of Fb it is socially optimal that all firms adopt technology b irrespectively

whether they use technology 0 or technology a. Also it is intuitive that the social planner will

not choose an allocation where firms using technology a adopt technology b and other firms

still use the conventional technology 0 since a firm with conventional technology adopting

technology b always adds more surplus to the welfare then a firm using technology a.

To derive the first-stage-result, we first study how a change of xa affects the second-stage-

result.

Proposition 4.3 (Comparative static with respect to xa). Given the assumptions and

results of proposition 4.2 we obtain

1. As xa increases the lower bound F ∗
b(xa) increases while the upper bound F

∗
b(xa) decre-

ases. Both converge to a cost level F̌ ∗
b as xa goes to 1. Furthermore F

∗
b(xa) increases

in xa while F ∗
b

is independent from xa. F
∗
b(xa) tends to F

∗
b as xa goes to 0.
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2. Consider Fb such that Fb ∈ (F b(xa), F b(xa)). Then the optimal number of firms x∗0b(xa)

adopting technology b is decreasing in xa if Fb ∈ (F b(xa), F b(xa)). The effect on both,

the optimal aggregated output Q∗
2 and input E∗

2 is ambiguous in that case, but both

effects will have the same direction. i.e. E∗
2 increases (decreases) if and only if E∗

2

increases (decreases).

3. Consider Fb such that Fb ∈ (F ∗
b
, F

∗
b(xa)). Then the optimal number of firms x∗ab(xa)

replacing technology a by technology b increases proportional to xa, i.e.
x∗

ab

xa
= 1. Both

the optimal aggregated output Q∗
2 and the optimal aggregated input E∗

2 do not change

in that case.

This result is also intuitive. Given Fb, the higher xa the less is the incentive for the social

planner to let firms adopt technology b.

Now we derive the result for the first stage subject to the socially optimal decision at the

second stage:

Proposition 4.4 (Adoption pattern in the first stage). Assume the installment cost

Fb of technology b and thus the socially optimal market outcome corresponding to any xa as

being given. Then there exist an interval of fixed costs [F ∗
a(Fb), F

∗
a(Fb)] such that

1. No firm should adopt technology a for Fa ≥ F
∗
a(Fb).

2. For Fa ∈ [F ∗
a(Fb), F

∗
a(Fb)] a partial share 0 < x∗a < 1 of the firms should adopt techno-

logy a. This share of firms as well as the optimal aggregated output Q∗
1 is decreasing

in Fa while the optimal aggregated input level E∗
1 increases in Fa.

3. All firms should adopt technology a for Fa ≤ F a(Fb).

The intuition behind this result is similar to the intuition behind the corresponding result

for the second stage.

To visualize the result, we first study, of the results are affected by the a change of λ and

how the interval bounds depend on the installment costs:
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Proposition 4.5 (Comperative static). Consider Fb as being given

1. For all Fa where 0 < x∗a < 1 is the case ∂x∗
a

∂λ
< 0 follows. In case of partial adoption of

technology b
∂x∗

0b

∂λ
> 0, while in case of partial replacement

∂x∗
ab

∂λ
= −∂x∗

a

∂λ
< 0.

2. In case of partial adoption of both technologies we have
∂x∗

a+x∗
0b

∂λ
> 0. The effect of an

increase of λ on both the optimal second stage output and second stage input level

is ambiguous. But both have the same sign i.e. if the output increase also the input

increases. In case of partial adoption of technology a, full adoption of technology b and

no replacement the optimal second stage output increases while the input decreases if

λ increases. Finally if replacement of technology a is socially optimal an increase of λ

has no effect on the second stage output and input levels.

3. For Fb < F
∗
b(0) it is ∂Fa

∂Fb
> 0. Otherwise Fa is independent from Fb.

4. For F
∗
b(1) < Fb < F̌ ∗

b it is
∂F ∗

a

∂Fb
> 0. Otherwise F ∗

a is independent from Fb.

The results of this section can best be illustrated by Figure 1. Line AA′ is the locus of

all pairs (Fa, Fb) such that xa = 1, i.e. all firms should adopt technology a but the social

planner is indifferent about the last firm to adopt or to wait for the arrival of technology b.

The part IC of AA′ is increasing since a higher Fa requires a higher Fb to keep x0b equal

to zero. In the area bounded by ICHJI, xa is strictly smaller than 1, but all the remaining

firms 1 − xa adopt technology b, as soon that is available. By contrast in the area bounded

by A′CGB′, we have also na < 1 but the remaining firms do not adopt any of the new

technologies (becauseFb is too high). Therefore the curve CA′ is vertical. The curve AI is

vertical since all firms adopting technology a will replace it by technology b.

Similarly, the line BB′ represents the locus of all pairs (Fa, Fb) where no firm should

adopt technology a, but the social planner is just indifferent about having the marginal firm

to adopt technology a or not. Below the dotted line to the right of F b, the adoption cost of

technology b Fb is so low that left of the branch BH all the remaining firms 1 − xa should

adopt technology b, while to the right of BH all firms should wait for technology b. Above
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the dotted line to the right of F b, no firm should ever wait for technology b, no matter

how large Fa, because Fb is too large. In that area to the left of GB′ some firms should

adopt technology a, while to the right of GB′ none of the two technologies should ever been

adopted, because costs of both are too high. Along the branch GH always some firms should

wait for technology b. On that branch an to the right of it na is zero, while on the left na

is positive. Again GH is increasing since a higher Fb has to be compensated by a higher

Fa to leave it in-attractive for the social planner to let some firms adopt technology a. The

branch CH is the boundary where some firms adopt technology a and the remaining firms

wait for technology b. Note that a higher Fa makes technology a less attractive. Instead of

adopting technology b there are two alternatives: wait for technology b or not invest at all. In

order to wait for technology two a higher Fa requires a lower Fb. The opposite holds for CG.

Along that branch some but not all firms adopt technology a, while no firm is waiting for

technology b on and above CG. Here a higher Fa requires a higher Fb to keep it in-attractive

for the social planner to ever employ technology b.

The branch IJ is the boundary where some firms adopt technology a and none of these

firms will rpelace it by technology b on and above IJ . Here an higher Fa requires an lower

Fb to keep it in-attractive for the social planner to replace technology a since more firms

(x0b = 1 − xa!) already should adopt technology b. Finally the branch KJ is the boundary

where some firms adopt technology a and all of these firms replace it by technology b on and

below KJ . Since all firms adopt technology b the curve must be horizontal.

5 The Market Equilibrium

We now assume that the input good is provided by some firms. Thus for each demand E of

the input good the producers faced a market price w(E) charged by the supplier. We assume

asymmetric information in the following sense that these firms do not anticipate the new

technologies. They only observe the demand.

To simplify the analysis we will neglect the input-market subgame first. Since the equi-
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librium on the Input-Market depends on the number of firms using technology a and b

respectively, for each stage we consider an equilibrium input price function, in the following

denoted by wi, i = 1, 2, depending on xa at the first and xa, x0b, xab at the second stage. We

assume that more new technology always lowers the price. i.e. ∂w1

∂xa
< 0, ∂w2

∂x0b
< 0, ∂w2

∂xab
< 0

and ∂w2

∂xa
< 0 as long x0b < 1− xa. If x0b = 1− xa we assume ∂w2

∂xa
> 0. Later on we will show

that the equilibrium input-price, which we derive from a concrete market structure, fulfills

these assumptions in many situations.

5.1 The Second Stage

Consider xa as being given. First of all note that a market equilibrium where 0 ≤ x0b < 1−xa

and xab > 0 is the case cannot occur since given an output price P and input price w the

cost savings for a firm using technology 0 and adopting technology b - given an output price

P - equals

P · (qb,2 − q0,2) + C0(q0,2, e0,2) − Cb(qb,2, eb,2) + w2(e0,2 − eb,2) − Fb

while the cost saving of a firm which replaces technology a by technology b - given an output

price P - is equal to

P · (qb,2 − qa,2) + Ca(qa,2, ea,2) − Cb(qb,2, eb,2) + w2(ea,2 − eb,2) − Fb.

Obviously the first term is always greater. Thus a replacement of technology a can only by

a market outcome if all firms with conventional technology adopt technology b since these

firms will adopt technology b for larger levels of the installment cost. Thus we can distinguish

both types of equilibria.

Then for a given input price w2 a market equilibrium where partial adoption occurs, i.e.

0 < x0,b < 1 − xa is characterized by the following set of equations:

1.

P (Q2) =
∂C2

i

∂q
, i = 0, a, b. (Firms’ output rule) (5)
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2.

w2 =
∂C2

i

∂e
, i = 0, a, b. (Firms’ input rule) (6)

3.

Q2 = (1 − xa − x0b)q0,2 + xaqa,2 + x0bqb,2 (7)

4.

E2 = (1 − xa − x0b)e0,2 + xaea,2 + x0beb,2. (8)

5.

1

r
[P (Q2)(qb,2 − q0,2) − C2

b − C2
0 − w2(e0,2 − eb,2)] = Fb (Allocation rule for x0b) (9)

A market equilibrium where partial replacement occurs is characterized by the same set of

equation where only equation (9) will be replaced by

1

r
[P (Q2)(qb,2 − qa,2) − C2

b − C2
a − w2(ea,2 − eb,2)] = Fb (Allocation rule for xab) (10)

First of all we derive the ceteris paribus impact of a change of the technology allocation and

the market price on the input and the output level:

Lemma 5.1. 1. ∂Q2

∂w2
< 0 and ∂E2

∂w2
< 0 for given xa and x0b

2. ∂Q2

∂x0b
> 0 and ∂E2

∂x0b
< 0 for given xa and w2

3. ∂Q2

∂xa
> 0 and ∂E2

∂xa
< 0 if x0b < 1 − xa for given x0b and w2.

4. ∂Q2

∂xa
< 0 and ∂E2

∂xa
> 0 if x0b = 1 − xa for given x0b and w2.

5. For given xa and x0b the term P (Q2)(qb,2 − qi,2) − C2
b − C2

i − w2(ei,2 − eb,2) increases

in w2, i = 0, a.

We can derive an analogous result to the social optimum in the second stage:

Proposition 5.2. Given a share 0 ≤ xa < 1 of firms which have adopted technology a in

the first stage, we find two intervals [F b(xa), F b(xa)] and [F
b
, F b(xa)] such that the market

equilibrium contains the following technology allocation:
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1. F b(xa) < F b(xa).

2. None of the remaining (1 − xa) firms using the conventional technology adopts tech-

nology b for Fb ≥ F b(xa).

3. A partial share 0 < x0b < 1−xa of the remaining (1−xa) firms using the conventional

technology adopts technology b for Fb ∈ (F b(xa), F b(xa)). This share is decreasing in

Fb.

4. All 1−xa firms using the conventional technology adopts technology b for Fb ≤ F b(xa)).

5. None of the xa firms using technology a replaces it by technology b for Fb ≥ F b(xa).

6. A partial share of the xa firms using technology a replace it by technology a for Fb ∈

(F
b
, F b(xa)). This share is decreasing in Fb.

7. All xa firms using technology a replace it by technology b for Fb ≤ F
b
.

8. F b(xa) is decreasing in xa while F b(xa) is increasing in xa. Both tend to the same value

F̌b as xa goes to 1.

9. F b(xa) is increasing in xa while F
2

is independent from xa. F b(xa) tends to F
b

as xa

goes to 0.

Given xa and Fb the corresponding equilibrium is unique.

5.2 The First Stage

Consider Fb as being given. Thus for each xa we can derive by the result of the last section

the market equilibrium after the arrival of technology b.

Thus for a given input price w1 a market equilibrium where partial adoption of technology

a occurs, i.e. 0 < xa < 1 is characterized by the following equations:

1.

P (Q1) =
∂C1

i

∂q
, i = 0, a. (11)
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2.

ea =
∂C1

i

∂e
, i = 0, a. (12)

3.

Q1 = (1 − xa)q0,1 + xaqa,1 (13)

4.

E1 = (1 − xa)e0,1 + xaea,1. (14)

5. If the market outcome in the second stage corresponding to xa is

(a) No adoption, no replacement:

1

r
[P (Q1)(qa,1 − q0,1) − C1

a − C1
0 − w1(e0,1 − ea,1)] = Fa (15)

(b) Partial adoption, no replacement:

1

λ + r
[P (Q1)(qa,1 − q0,1) − C1

a − C1
0 − w1(e0,1 − ea,1)]

+
λ

r(λ + r)
[P (Q2)(qa,2 − q0,2) − C2

a − C2
0 − w2(e0,2 − ea,2)] = Fa

(16)

(c) Full adoption, no or partial replacement:

1

λ + r
[P (Q1)(qa,1 − q0,1) − C1

a − C1
0 − w1(e0,1 − ea,1)]

+
λ

λ + r
[
1

r
(P (Q2)(qa,2 − qb,2) − C2

a − C2
b − w2(eb,2 − ea,2)) + Fb] = Fa

(17)

(d) Full replacement:

1

λ + r
[P (Q1)(qb,1 − qa,1) − C1

a − C1
0 − w1(e0,1 − ea,1)] = Fa (18)

Proposition 5.3. Given the installment cost Fb of technology b and the results of proposition

5.2 we find an interval [F a(Fb), F a(Fb)] and such that the market equilibrium contains the

following technology allocation:

1. None of the firms adopt technology a for Fa ≥ F a(Fb).

2. A partial share 0 < xa < 1 of the firms adopt technology a for Fa ∈ (F a(Fb), F a(Fb)).

This share is decreasing in Fa.

3. All firms adopt technology a for Fa ≤ F b(Fa).
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6 Competitive input market

Now let us consider that the input market is competitive i.e. for each E we have w(E) =

V ′(E). It is easy to show that given xa, xb0 and xab the input-market equilibrium prices

w1(xa) and w2(xa, x0b, xab), which are given by the equation systems (11) - (14) and (5) - (8)

respectively, fulfill our assumptions.

Since the input price equals the marginal costs of providing the corresponding quantity,

it is intuitive that the technology allocation is the efficient one. Indeed this is the case:

Proposition 6.1. Let the installment cost Fa and Fb of technology a and technology b be

given respectively. Moreover assume that wi = V ′(E∗
i ) for both stages i = 1, 2 and all values

of xa, x0b, xab. Then market equilibrium (xa, x0b, xab, Q1, E1, Q2, E2) corresponding to Fa and

Fb is identical to the socially optimal solution (x∗a, x
∗
0b, x

∗
ab, Q

∗
1, E

∗
1 , Q

∗
2, E

∗
2) which corresponds

to this cost pair.

7 Oil and gold - Market power

On many input markets, like the market for oil, gas or different kinds of ores like gold the

supplier form an monopoly or an oligopoly. Thus the input price exceeds the marginal costs

of providing the corresponding demand. Thus we will assume that for each given input level

E the corresponding input price w(E) exceeds V ′(E). This may be the case if we assume

an monopolistic supplier of the input. While further assumptions are necessary to show that

the corresponding equilibrium input price fulfills our assumptions, for certain functional

forms this is rather easy to show. For example if C(θ, q, e) = αθ
2

(βq − e)2 + γ
2
q2, where

α(θ) > 0, β > 0, γ(θ) > 0, α′ < 0, γ′ < 0, α′′ > 0, γ′′ > 0, and if P (Q) is affine linear, this is

the case.

We can derive the following result:

Proposition 7.1 (Market Power Induces Over-Investment). Assume that w(E) >

V ′(E) for all E. Then:
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1. Let 1 ≤ xa ≤ 0 and 0 ≤ x0b ≤ 1 − xa. Consider (F ∗
a , F ∗

b ) and (Fa, Fb) be the unique

cost pair where partial adoption of both technologies is the social optimal outcome and

the market equilibrium respectively. Then Fa > F ∗
a and Fb > F ∗

b .

2. Let 1 ≤ xa ≤ 0 and 0 ≤ xab ≤ xa. Consider (F ∗
a , F ∗

b ) and (Fa, Fb) the unique cost pair

where partial adoption and partial replacement of technology a is the socially optimal

outcome and the market equilibrium respectively. Then again Fa > F ∗
a and Fb > F ∗

b .

3. Given a share 0 ≤ xa ≤ 1 for all Fb where F ∗
a and Fa exist such that for (F ∗

a , Fb) and

(Fa, Fb) partial adoption of technology a and no adoption of technology b is the socially

optimal outcome and market outcome respectively. Then F ∗
a < Fa.

4. Given a share 0 ≤ x0b ≤ 1 for all Fa where F ∗
b and Fb exist such that for (Fa, F

∗
b )

and (Fa, Fb) partial adoption of technology b and no adoption of technology a is the

socially optimal outcome and market outcome respectively. Then F ∗
b < Fb.

5. Given a share 0 ≤ xab ≤ 1 for all Fa where F ∗
b and Fb exist exist such that for (Fa, F

∗
b )

and (Fa, Fb) partial replacement of technology a and full adoption of technology a is

the socially optimal outcome and market outcome respectively. Then F ∗
b < Fb.

6. Given a share 0 ≤ xa ≤ 1 for all Fb where F ∗
a and Fa exist such that for (F ∗

a , Fb)

and (Fa, Fb) partial adoption of technology a and full adoption of technology b but

no replacement of technology a is the socially optimal outcome and market outcome

respectively. Then in general it is ambiguous whether Fa > F ∗
a , Fa = F ∗

a or Fa < F ∗
a .

The intuition behind the result is straight-forward. Since the input price is always higher

than the marginal costs, there is a greater incentive for all firms to adopt new technology

compared to the competitive situation. If partial adoption or partial replacement is the

case, this is reflected by the fact that a higher number of firms adopt both technologies.

But if the fixed costs are such that in equilibrium the marginal firm has to decide between

adopting technology a and technology b then it depends on which technology is relatively

more efficient. For example if technology b is much better than technology a but the the
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expected arrival time is also very high, it may better for the firms to choose technology a

instead of technology b if the input price increases. In contrast to this more firms will decide

to adopt technology b instead of a if the expected arrival time is rather small. Thus in this

special situation the effect of higher input prices is ambiguous.

8 Fixed Supply

Now assume that for some reason the input level is E is fixed over time. To give an example

for this consider emissions. In that case E may be the amount of permits issued by a regulator

who commits in the beginning that, for example for some political reasons, this number will

not be changed over time. (see e.g. Requate and Unold [2003]). V (E) may be interpreted as

the damage corresponding to the emission level E. Furthermore assume that the number of

permit E = E0 is equal to the socially optimal emission level if all firms use the conventional

technology. It is easy to verify that the corresponding equilibrium permit price - given the

number of firms adopting technology a and b respectively - fulfills our assumptions.

The following result generalize the result of Requate and Unold [2003] and Requate and

von Döllen [2007] on an input/output market model:

Proposition 8.1 (Fixed Supply Induces Under-Investment). 1. Let 1 ≤ xa ≤ 0

and 0 ≤ x0b ≤ 1 − xa. Consider (F ∗
a , F ∗

b ) and (Fa, Fb) be the unique cost pair where

partial adoption of both technologies is the social optimal outcome and the market

equilibrium respectively. Then Fa < F ∗
a and Fb < F ∗

b if and only if either xa > 0 or

x0b > 0.

2. Let 1 ≤ xa ≤ 0 and 0 ≤ xab ≤ xa. Consider (F ∗
a , F ∗

b ) and (Fa, Fb) the unique cost pair

where partial adoption and partial replacement of technology a is the socially optimal

outcome and the market equilibrium respectively. Then Fb < F ∗
b . Furthermore Fa = F ∗

a

if xa = 0 and Fa < F ∗
a otherwise.

3. Given a share 0 ≤ xa ≤ 1 for all Fb where F ∗
a and Fa exist such that for (F ∗

a , Fb) and

(Fa, Fb) partial adoption of technology a and no adoption of technology b is the socially



18

optimal outcome and market outcome respectively F ∗
a > Fa if and only if xa > 0.

4. Given a share 0 ≤ x0b ≤ 1 for all Fa where F ∗
b and Fb exist such that for (Fa, F

∗
b ) and

(Fa, Fb) partial adoption of technology b and no adoption of technology a is the socially

optimal outcome and market outcome respectively F ∗
b > Fb if and only if xa > 0.

5. Given a share 0 ≤ xab ≤ 1 for all Fa where F ∗
b and Fb exist exist such that for (Fa, F

∗
b )

and (Fa, Fb) partial replacement of technology a and full adoption of technology a is

the socially optimal outcome and market outcome respectively F ∗
b > Fb.

6. Let a share 0 ≤ xa ≤ 1 by given. Furthermore consider Fb such that F ∗
a and Fa exist

such that for (F ∗
a , Fb) and (Fa, Fb) partial adoption of technology a and full adoption

of technology b but no replacement of technology a is the socially optimal outcome

and market outcome respectively. Then in general it is ambiguous whether Fa > F ∗
a ,

Fa = F ∗
a or Fa < F ∗

a . But if xa = 0 Fa > F ∗
a . Furthermore if ∂∆ab

∂w
> 0 then Fa < F ∗

a

and if ∂∆ab

∂w
> 0 then Fa > F ∗

a .

The result is also very intuitive. Since the quantity of permits is not changed over time

the adoption of new technology induces that the input price falls below the virtual2 marginal

costs V ′(E0) which would be equal to the input price in the ’competitive’ situation, which

could be an ex post anticipation policy (see Requate and Unold [2003], Requate and von

Döllen [2007]) in our case. Thus in general the incentive to adopt new technology is lower. For

the same reasons as in the latter section the effect is ambiguous if the firms decide between

adopting technology a and technology b in equilibrium.

9 Conclusion

We study both the efficient technology allocation and the technology allocation in a decen-

tralized market equilibrium. Depending on the installment cost pair (Fa, Fb) every adoption

2Virtual since it is not justified to speak about marginal costs if the supply is fixed.
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pattern besides the pattern where both a partial number of firms which did not adopt tech-

nology a and a partial number of firms which have adopted technology a adopt technology

b, can be efficient as well as a market equilibrium. Thus if the number of firms adopting

new technology affects both the input and the output price a dynamic incentive to adopt

new technology exists. This incentive explains how an industry structure where ex ante sym-

metric firms use different kind of technologies can arise. Since the incentives to adopt new

technology decrease with the number of firms already using the new technology it also ex-

plains why at the same time firms leapfrog a technology while other firms adopt it. One the

one hand scenarios exist where the installment costs force the firms to decide whether they

adopt technology a or technology b, on the other hand scenarios exist where technology a

is only adopted to lower the production cost until technology b becomes available. Studying

different kinds of input market structures we learn that a competitive market induces the

efficient adoption pattern while in general market power induces over-investment. Further-

more we extend the results about abatement technology adoption induced by a regulation

by permits (Requate and Unold [2003], Requate and von Döllen [2007]) to an input/output

market model.

A Proofs

Proof of Lemma 4.1: Given xa and x0b and setting x0 := 1−xa−x0b the firms output and

input levels qi and ei are given by the equation system 24 and 25. The aggregated levels are

given by E =
∑

i=0,a,b xiei and Q =
∑

i=0,a,b xiqi. Therefore by differentiating these equations

with respect to x0b we get

∂2Ci

∂e2

∂ei

∂x0b

+
∂2Ci

∂q∂w

∂qi

∂x0b

+ V ′′(E)
∂E

∂x0b

= 0, i = 0, a, b (19)

P ′(Q)
∂Q

∂x0b

− ∂2Ci

∂q2

∂qi

∂x0b

− ∂2Ci

∂e∂q

∂ei

∂x0b

= 0, i = 0, 1, 2 (20)

∂Q

∂x0b

= qb − q0 +
2∑

i=0

xi
∂qi

∂x0b

(21)
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∂Q

∂x0b

= eb − e0 +
2∑

i=0

xi
∂ei

∂x0b

(22)

From the equation system 19 and 20 we get for each i = 0, a, b P ′(Q) ∂Q
∂x0b

−V ′′(E) ∂E
∂x0b

 =

 ∂2Ci

∂q2
∂2Ci

∂e∂q

∂2Ci

∂q∂e
∂2Ci

∂e2

 ∂qi

∂x0b

∂ei

∂x0b


By inversion of the matrix we get P ′(Q) ∂Q

∂x0b

−V ′′(E) ∂E
∂x0b

 ∂2Ci

∂e2 /ki −∂2Ci

∂e∂q
/ki

−∂2Ci

∂q∂e
/ki

∂2Ci

∂q2 /ki

 =

 ∂qi

∂x0b

∂ei

∂x0b


where ki :=

∂2Ci
∂e2

∂2Ci
∂e2

∂2Ci
∂q2 −

(
∂2Ci
∂q∂e

)2 . Clearly ki > 0. Thus we get

∂qi

∂x0b

=
1

ki

[P ′(Q)
∂Q

∂x0b

∂2Ci

∂e2
+ V ′′(E)

∂E

∂x0b

∂2Ci

∂q∂e
]

∂ei

∂x0b

=
−1

ki

[V ′′(E)
∂E

∂x0b

∂2Ci

∂q2
P ′(Q)

∂Q

∂x0b

∂2Ci

∂q∂e
]

Substituting these equations into equations 21 and 22 delivers

∂Q

∂x0b

=
qb − q0

1 − P ′(Q)
∑

xi

ki

∂2Ci

∂e2︸ ︷︷ ︸
:=K1

+
∂E

∂x0b

[
V ′′(e)

∑
xi

ki

∂2Ci

∂e∂q

1 − P ′(Q)
∑

xi

ki

∂2Ci

∂e2

]
︸ ︷︷ ︸

:=K2

and
∂E

∂x0b

=
eb − e0

1 + V ′′(E)
∑

xi

ki

∂2Ci

∂q2︸ ︷︷ ︸
:=K3

+
∂Q

∂x0b

[
−P ′(Q)

∑
xi

ki

∂2Ci

∂e∂q

1 + V ′′(E)
∑

xi

ki

∂2Ci

∂q2

]
︸ ︷︷ ︸

:=K4

Or shortly written ∂Q
∂x0b

= K1 + ∂E
∂x0b

K2 and ∂E
∂x0b

= K3 + ∂Q
∂x0b

K4. Thus

∂Q

∂x0b

=
K1 + K2K3

1 − K2K4

and
∂E

∂x0b

=
K3 + K4K1

1 − K2K4

Now K1 > 0, K2 < 0, K3 < 0 and K4 < 0. By assumption 2.2 1 − K2K4 > 0 follows.

Analogously we obtain
∂Q

∂xa

=
K̃1 + K2K̃3

1 − K2K4
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and
∂E

∂xa

=
K̃3 + K4K̃1

1 − K2K4

where K̃1 = qa−q0

1−P ′(Q)
∑ xi

ki

∂2Ci
∂e2

< K1 and K̃3 = ea−e0

1+V ′′(E)
∑ xi

ki

∂2Ci
∂q2

> K3. Thus the result follows.

ad 2.) : Again we can approach analogously only noticing that equations (21) and (22)

change to
∂Q

∂xa

= qa − qb + xa
∂qa

∂xa

+ (1 − xa)
∂qb

∂xa

∂Q

∂xa

= ea − eb + xa
∂ea

∂xa

+ (1 − xa)
∂eb

∂xa

This we lead us to

∂Q

∂xa

=
qa − qb

1 − P ′(Q)(xa

ka

∂2Ca

∂e2 + 1−xa

kb

∂2Cb

∂e2 )︸ ︷︷ ︸
:=K̂1

+
∂E

∂x0b

[
V ′′(E)

xa

ka

∂2Ci

∂e∂q
+ 1−xa

kb

∂2Ci

∂e∂q

1 − P ′(Q)(xa

ka

∂2Ca

∂e2 + 1−xa

kb

∂2Cb

∂e2 )

]
︸ ︷︷ ︸

:=K̂2

and

∂E

∂xa

=
ea − eb

1 + V ′′(E)(xa

ka

∂2Ca

∂q2 + 1−xa

kb

∂2Cb

∂q2 )︸ ︷︷ ︸
:=K̂3

+
∂Q

∂x0b

[
−P ′(Q)

xa

ka

∂2Ci

∂e∂q
+ 1−xa

kb

∂2Ci

∂e∂q

1 + V ′′(E)(xa

ka

∂2Ca

∂q2 + 1−xa

kb

∂2Cb

∂q2 )

]
︸ ︷︷ ︸

:=K̂4

This implies that
∂Q

∂xa

=
K̂1 + K̂2K̂3

1 − K̂2K̂4

< 0

and
∂E

∂xa

=
K̂3 + K̂4K̂1

1 − K̂2K̂4

> 0

since K̂1 < 0, K̂2 < 0, K̂3 > 0 and K̂4 < 0. q.e.d.

Proof of Proposition 4.2 and comperative static (together) :

Ad 1.-3., adoption : Given xa at stage 2 the social planner solves

min
{x0,x0b,qi,2,wi,2,i=0,1,2}{

1

r

[∫ Q2

0

P (Q̃)dQ̃ − x0C0(q0,2, e0,2) − xaCa(qa,2, ea,2) − x0bCb(qb,2, eb,2) − V (E2)

]
− x0bFb

}
,

(23)
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subject to the constraints x0 ≥ 0, xa ≥ 0 and x0 + xa + x0b = 1 with corresponding Kuhn-

Tucker multipliers µi for non-negative constraint for xi for i = 0, b and Lagrange multiplier ν

w.r.t. x0 = 1−xa−x0b. For simplicity we write qi and ei instead of qi,2 and wi,2 for i = 0, a, b.

The first order conditions w.r.t. qi, ei, x0 and x0b are given by

∂Ci

∂w
(qi, ei) + V ′(E) = 0, i = 0, a, b (24)

P (Q) − ∂Ci

∂q
(qi, ei) = 0, i = 0, a, b (25)

1

r
(q0P (Q) − C0(q0, e0) − e0V

′(E)) − µ0 − ν = 0 (26)

and
1

r
(qbP (Q) − Cb(qb, eb) − ebV

′(E)) − Fb − µb − ν = 0 (27)

Eliminating ν yields

1

r
((qb − q0)P (Q) + C0(q0, e0) − Cb(qb, eb) + (e0 − eb)V

′(E)) − µb + µ0 = Fb (28)

Considering first the interior solutions (i.e. µ0 = µb = 0), we differentiate the equation system

24, 25 and 28 with respect to Fb . Employing the Envelope Theorem, we obtain:

∂2Ci

∂e2

∂ei

∂x0b

∂x0b

∂Fb

+
∂2Ci

∂q∂e

∂qi

∂x0b

∂x0b

∂Fb

+ V ′′(E)
∂E

∂x0b

∂x0b

∂Fb

= 0, i = 0, a, b (29)

P ′(Q)
∂Q

∂x0b

∂x0b

∂Fb

− ∂2Ci

∂q2

qi

x0b

∂x0b

∂Fb

− ∂2Ci

∂e∂q

ei

x0b

∂x0b

∂F2

= 0, i = 0, a, b (30)

and
1

r
P ′(Q)

∂Q

∂x0b

∂x0b

∂Fb

(qb − q0) +
1

r
V ′′(E)

∂E

∂x0b

∂x0b

∂Fb

(e0 − eb) = 1 (31)

Solving for ∂x0b

∂F2
yields:

∂x0b

∂F2

=
r

P ′(Q) ∂Q
∂x0b

(qb − q0) + V ′′(E) ∂E
∂x0b

(e0 − eb)
< 0

This implies ∂E
∂Fb

> 0 and ∂Q
∂Fb

> 0. We also have proven that the LHS of equation 28 decreases

in x0b. So let Q(1−xa) and E(1−xa) be the output and input levels, which correspond with

x0b = 1−xa. Then F b(xa) is given by the LHS of equation (28). For smaller installment cost
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Fb we have µb > 0 and thus x0b = 1 − xa.

Analogously F b(xa) is given by the LHS of equation (28) where Q = Q(0) and E = E(0) are

the output and input levels which correspond to x0b = 0. If Fb gets larger µ0 must follow.

4.) : Now differentiate equation (28) with respect to xa. Then we get:

1

r
P ′(Q)[

∂Q

∂x0b

∂x0b

∂xa

+
∂Q

∂xa

](qb − q0) +
1

r
V ′′(E)[

∂E

∂x0b

∂x0b

∂xa

+
∂E

∂xa

](e0 − eb) = 0 (32)

In the following we will write dQ
dxa

= ∂Q
∂x0b

∂x0b

∂xa
+ ∂Q

∂xa
and dE

dxa
= ∂E

∂x0b

∂x0b

∂xa
+ ∂E

∂xa
. Then from

equation (32) we obtain
dQ

dxa

=
(eb − e0)V

′′(E)

(qb − q0)P ′(Q)

dE

dxa

(33)

As we can see both effect will have the same sign. Equation (32) also delivers

∂x0b

∂xa

=
P ′(Q) ∂Q

∂xa
(qb − q0) + V ′′(E) ∂E

∂xa
(e0 − eb)

P ′(Q) ∂Q
∂x0b

(q0 − qb) + V ′′(E) ∂E
∂x0b

(eb − e0)
< 0

since by Lemma 4.1 also ∂Q
∂xa

> 0 and ∂E
∂xa

< 0. Now we can directly evaluate dQ
dxa

. I.e.

dQ

dxa

=
∂Q

∂x0b

∂x0b

∂xa

+
∂Q

∂xa

=
P ′(Q) ∂Q

∂xa

∂Q
∂x0b

(qb − q0) + V ′′(E) ∂E
∂xa

∂Q
∂x0b

(e0 − eb) + P ′(Q) ∂Q
∂x0b

∂Q
∂xa

(q0 − qb) + V ′′(E) ∂E
∂x0b

∂Q
∂xa

(eb − e0)

P ′(Q) ∂Q
∂x0b

(q0 − qb) + V ′′(E) ∂E
∂x0b

(eb − e0)

=
V ′′(E) ∂E

∂xa

∂Q
∂x0b

(e0 − eb) + V ′′(E) ∂E
∂x0b

∂Q
∂xa

(eb − e0)

P ′(Q) ∂Q
∂x0b

(q0 − qb) + V ′′(E) ∂E
∂x0b

(eb − e0)
T 0

F ∗
2(xa): Let Q, q

i
, ei, i = 0, a, b and E be the socially optimal levels corresponding to

x0b = 1 − xa. Then F b(xa) is given by

1

r
((q

2
− q

0
)P (Q) + C0(q0

, e0) − Cb(qb, eb) + (e0 − eb)V
′(E)) = F ∗

b(xa) (34)

If differentiate this equation by xa by applying the Envelope-Theorem and Lemma 4.1, 2.),

we get:
1

r

(
(q

b
− q

0
)P ′(Q)

∂Q

∂xa

+ (e0 − eb)V
′′(E)

∂E

∂xa

)
=

∂F ∗
b(xa)

∂xa

> 0.
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F
∗
b(xa): Let Q, qi, ei, i = 0, 1, 2 and E be the socially optimal levels corresponding to

x0b = 0. Then F
∗
b(xa) is given by

1

r
((q2 − q0)P (Q) + C0(q0, e0) − Cb(qb, e2) + (e0 − e2)V

′(E)) = F
∗
b(xa) (35)

If differentiate this equation by xa by applying the Envelope-Theorem and Lemma 4.1, 1.),

we get:

1

r

(
(q2 − q0)P

′(Q)
∂Q

∂xa

+ (e0 − e2)V
′′(E)

∂E

∂xa

)
=

∂F b(xa)

∂xa

< 0.

As xa tends to 1 the value Q and Q as well as E and E tend to the same value Qlim and Elim

respectively. Thus the LHS of the equations (34) and (35) tend to the same values. Thus

also the RHS, F ∗
b(xa) and F

∗
b(xa) must tend to the same level F̌ ∗

b .

Ad 1.-3., replacement : Given xa at stage 2 the social planner solves

min
{x0ab,xab,qi,2,ei,2,i=1,2}

{1

r
[

∫ Q2

0

P (Q̃)dQ̃−x0abCa(qa,2, ea,2)−(x0b+xab)Cb(qb,2, eb,2)−V (W : 2)]−xabFb},

(36)

subject to the constraints x0ab ≥ 0, xab ≥ 0 and x0ab + xab = xa with corresponding Kuhn-

Tucker multipliers µi for non-negative constraint for xi for i = 0ab, ab and Lagrange multiplier

ν w.r.t. x01 = x0ab + xab. For simplicity again we write qi and wi instead of qi,2 and wi,2 for

i = 0, a, b. Now the first order conditions w.r.t. xab and x0ab are given by

1

r
(qaP (Q) − Ca(qa, ea) − eaV

′(E)) − µ0ab − ν = 0 (37)

and
1

r
(qbP (Q) − Cb(qb, eb) − ebV

′(E)) − Fb − µab − ν = 0 (38)

Eliminating ν yields

1

r
((qb − qa)P (Q) + Ca(qa, ea) − Cb(qb, eb) + (ea − eb)V

′(E)) − µab + µ0ab = Fb (39)

Considering first the interior solutions (i.e. µ0ab = µqb = 0), we differentiate equation (39)

with respect to Fb . Employing the Envelope Theorem, we obtain:

1

r
P ′(Q)

∂Q

∂xab

∂xab

∂F2

(qb − qa) +
1

r
V ′′(E)

∂E

∂xab

∂xab

∂Fb

(ea − eb) = 1 (40)
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We can evaluate ∂Q
∂xab

and ∂E
∂xab

by applying Lemma 4.1, 2.) with xa = x0ab since effectively

we have a situation where each firm adopts either technology a or b and the share of firms

adopting technology 1 decreases. Thus ∂Q
∂xab

= − ∂Q
∂x0ab

> 0 and ∂E
∂xab

= − ∂E
∂x0ab

< 0. This yields

∂xab

∂Fb
< 0, ∂Q

∂Fb
< 0, ∂E

∂Fb
> 0. Analogously to the partial adoption case the existence of both,

the upper and the lower bound follows.

If we differentiate 39 with respect to xa we obtain:

1

r
P ′(Q)[

∂Q

∂xab

∂xab

∂xa

+
∂Q

∂xa

](qb − qa) +
1

r
V ′′(E)[

∂E

∂xab

∂xab

∂xa

+
∂E

∂xa

](ea − eb) = 0

Note that e.g. ∂Q
∂xa

= − ∂Q
∂xab

, since effectively an increase of xab is an increase of the total

share of firms using technology a. Thus, if mimic the approach of the partial adoption case

we evaluate xab

xa
= 1 and therefrom ∂Q

∂xab

∂xab

∂xa
+ ∂Q

∂xa
= 0 and ∂E

∂xab

∂xab

∂xa
+ ∂E

∂xa
= 0.

F ∗
b
: Since at this level all firms should adopt technology b, the correspond socially optimal

levels Q, q
i
, ei, i = 0, a, b and E do not depend on xa. Since F ∗

b
is given by

1

r
((q

b
− q

a
)P (Q) + Ca(qa

, ea) − Cb(qb, eb) + (ea − eb)V
′(E)) = F ∗

b

it also do not depend on xa.

F
∗
b(xa): Let Q, qi, ei, i = 0, a, b and E be the socially optimal levels corresponding to

xab = 0. Then F
∗
b(xa) is given by

1

r
((qb − qa)P (Q) + Ca(q1, e1) − Cb(qb, eb) + (e1 − e2)V

′(E)) = F
∗
b(xa) (41)

If we differentiate this equation by xa by applying the Envelope-Theorem and Lemma 4.1,

2.), we get:

1

r

(
(qb − qa)P

′(Q)
∂Q

∂xa

+ (ea − eb)V
′′(E)

∂E

∂xa

)
=

∂F
∗
b(xa)

∂xa

> 0.

Obviously F
∗
b(xa) must tend to F ∗

b
as xa tends to 0. q.e.d.

proof of proposition 4.4 First note that given Fb there are six general possible sce-

narios. If Fb ≥ F
∗
b(0) for all xa no adoption of technology b will be socially optimal in the



26

second stage since F
∗
b is decreasing in xa. If Fb ≤ F ∗

b
for all xa full adoption and full re-

placement of technology b by the remaining will be socially optimal in the second stage. If

Fb ∈ [F̌ ∗, F
∗
b(0)) by proposition 4.2 there will exist an unique x̂1 ≤ 1 such that partial adop-

tion of technology b is socially optimal for xa < x̂a and no adoption is optimal for xa ≥ x̂a.

Conversely Fb ∈ (F ∗
b(0), F̌ ∗] by proposition 4.2 there will exist an unique x̂a ≤ 1 such that

partial adoption of technology b is socially optimal for xa < x̂a and at least full adoption of

technology b by the remaining firms is optimal for xa ≥ x̂a. Of course there may also exist

a unique x̂a < ˆ̂xa ≤ 1 such that partial replacement will socially optimal for xa > ˆ̂xa. If

Fb ∈ (F ∗
b
, F ∗

b(0)] there will exist 0 < ˆ̂xa < 1 such that full adoption of technology b by all

(1 − xa) firms using the conventional technology is optimal for xa < ˆ̂xa and full adoption

of technology b by all (1 − xa) firms using the conventional technology as well as partial

replacement is optimal for xa > ˆ̂xa. But since in all cases obviously E∗
b (xa) is continuous in

xa we will easily derive that also x∗a(Fa) is continuous. Figure xy visualizes these scenarios.

So let us first consider that given Fa we have an inner solution with respect to xa where

no adoption of technology b is optimal. Let x̂a as described in the first paragraph (where

x̂a = 0 is allowed and represent the case that no adoption is always optimal in the second

stage) Then in principle this is an one technology case where we can apply the proof of

proposition 4.2 for the case of xa = 0. From this we can easily derive that E1 increases in

Fa while xa decreases and that there will exist an interval F, F such that no firm will adopt

technology 1 for Fa ≥ F and less then x̂a firms will adopt technology a for Fa ≤ F .

Secondly consider the case that we have an inner solution with respect to xa where partial

adoption is the optimal outcome of the second stage. Again let x̂a be as described above.

Now the FOC with respect to xa is

0 =
1

λ + r
(P (Q1)(qa,1 − q0,1) + C1

0 − C1
a + (e0,1 − ea,1)V

′(E1))

+
λ

λ + r

1

r
(P (Q2)(qa,2 − q0,2) + C2

0 − C2
a + (e0,2 − ea,2)V

′(E2)) − Fa
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By equation 28 we can also rewrite the last equation as

0 =
1

λ + r
(P (Q1)(qa,1 − q0,1) + C1

0 − C1
a + (e0,1 − ea,1)V

′(E1))

+
λ

λ + r

[
1

r
(P (Q2)(qa,2 − qb,2) + C2

B − C2
A + (eb,2 − ea,2)V

′(E2)) + Fb

]
− Fa

(42)

First we proof that if we differentiate both equations with respect to Fa we will get

0 =
1

λ + r

(
P ′(Q1)(qa,1 − q0,1)

∂Q1

∂xa

∂xa

∂Fa

+ V ′′(E1)(e0,1 − ea,1)
∂E1

∂xa

∂xa

∂Fa

)
− 1

Thus there is no effect with respect to the second stage. To show this we differentiate the

terms in equations (42) and (42) corresponding to the second stage. Then, multiplying by

r(r + λ)/λ and using the same notation as in the proof of proposition 4.2, we obtain:

P ′(Q2)(qa,2 − q0,2)
dQ2

dxa

+ V ′′(E2)(e0,2 − ea,2)
dE2

dxa

(43)

and

P ′(Q2)(qa,2 − qb,2)
dQ2

dxa

+ V ′′(W2)(eb,2 − ea,2)
dE2

dxa

(44)

respectively. Now from equation (33) we can derive

P ′(Q2)((qa,2 − q0,2) − (qa,2 − qb,2))
dQ2

dxa

+ V ′′(E2)(e0,2 − ea,2) − (eb,2 − ea,2))
dE2

dxa

= 0.

This implies that the term (43) must be equal to the term (44). But since both terms must

have different signs this can be only the case if both are equal to zero, which proves our

claim.

Thus
∂xa

∂Fa

=
r

P ′(Q1)(qa,1 − q0,1)
∂Q1

∂xa
+ V ′′(E1)(e0,1 − ea,1)

∂E1

∂xa

We can apply Lemma 4.1 to derive that ∂Q1

∂xa
> 0 and ∂E1

∂xa
< 0 and thus ∂xa

∂Fa
< 0. This implies

∂Q1

∂Fa
< 0 and ∂E1

∂Fa
> 0 and analogously to the proof of proposition 4.2 we can derive the

existence of an interval [F, F such that Fa > F induces no adoption of technology a and

Fa < F induces that a share xa > x̂a of firms adopt technology 1 and either no Fb > F̌2 or

all Fb < F̌b remaining firms with conventional technology adopt technology b.
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Thirdly consider that we have an inner solution with respect to xa where full adoption

of technology b by the remaining firms is the optimal outcome of the second stage. Let x̂a

andˆ̂xa be as described above. Now the FOC with respect to xa is

0 =
1

λ + r
(P (Q1)(qa,1 − q0,1) + C1

0 − C1
a + (e0,1 − ea,1)V

′(E1))

+
λ

λ + r

(
1

r
(P (Q2)(qa,2 − qb,2) + C2

b − C2
a + (eb,2 − ea,2)V

′(E2)) + Fb

)
− F1

If we differentiate this equation with respect to Fa we get

1 =
1

λ + r

(
P ′(Q1)(qa,1 − q0,1)

∂Q1

∂xa

∂xa

∂Fa

+ V ′′(E1)(e0,1 − ea,1)
∂E1

∂xa

∂xa

∂Fa

)
+

λ

λ + r

1

r

(
P ′(Q2)(qa,2 − qb,2)

∂Q2

∂xa

∂xa

∂Fa

+ V ′′(E2)(eb,2 − ea,2)
∂E2

∂xa

∂xa

∂Fa

)
Thus

∂xa

∂Fa

=
λ + r

P ′(Q1)(qa,1 − q0,1)
∂Q1

∂xa
+ V ′′(E1)(e0,1 − ea,1)

∂E1

∂xa
+ λ

r

(
P ′(Q2)(qa,2 − qb,2)

∂Q2

∂xa
+ V ′′(E2)(eb,2 − ea,2)

∂E2

∂xa

)
Now if we apply Lemma 4.1 to derive that ∂Q1

∂xa
> 0, ∂E1

∂xa
< 0, ∂Q2

∂xa
< 0 and ∂E2

∂xa
> 0 and

thus we get ∂xa

∂Fa
< 0. From this all other claims follow, especially the existence of an interval

[F, F ] such that Fa > F induces either no adoption of technology a (if Fb ≤ F b) or partial

adoption of technology a by a share xa < x̂a of firms (if Fb > F b)). For Fa < F a share

xa > ˆ̂xa (note that ˆ̂xa = 1 is allowed) of firms adopt technology 1 and all remaining firms

with conventional technology adopt technology b while a partial share of firms will replace

technology a.

Fourth consider that we have an inner solution with respect to xa where full adoption of

technology 2 by the remaining firms as well as partial replacement is the optimal outcome

of the second stage. Letˆ̂xa be as described above. Now the FOC with respect to xa is

0 =
1

λ + r
(P (Q1)(qa,1 − q0,1) + C1

0 − C1
a + (e0,1 − ea,1)V

′(E1))

+
λ

λ + r

(
1

r
(P (Q2)(qa,2 − qb,2) + C2

b − C2
a + (eb,2 − ea,2)V

′(R2)) + Fb
=0

)
− Fa

If we differentiate this equation with respect to Fa we get

1 =
1

λ + r

(
P ′(Q1)(qa,1 − q0,1)

∂Q1

∂xa

∂xa

∂Fa

+ V ′′(E1)(e0,1 − ea,1)
∂E1

∂xa

∂xa

∂Fa

)
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since by proposition 4.2 Q2 and E2 do not depend on xa. Thus straight-forwardly ∂xa

∂Fa
< 0

and therefrom all other claims follow. Analogously to the cases before the existence of an

interval [F, F ] follows such that by proposition 4.2 Fa > F induces that xa < ˆ̂xa while for

Fa < F all firms adopt technology a.

The fifth case is the case where we have an inner solution with respect to xa where full

replacement of technology b by the remaining firms is the optimal outcome of the second

stage. The corresponding

0 =
1

λ + r
(P (Q1)(qa,1 − q0,1) + C1

0 − C1
a + (e0,1 − ea,1)V

′(E1)) − Fa (45)

In principle the calculation is analogous to the calculations in the former cases. q.e.d.

proof of proposition 4.5: ad 1): Case 1: Partial adoption of both technologies The

pair (x∗a, x
∗
0b) is determined by the equations (28) and (42). Since x∗0b only depends indirectly

via x∗a on λ we only differentiate the second equation with respect to λ. This yields:

0 =
−1

(λ + r)2

P (Q1∗)(q∗a,1 − q∗0,1) + C1
0 − C1

a + (e∗0,1 − e∗a,1)V
′(E∗

1)︸ ︷︷ ︸
:=FSTP


+

1

λ + r

[
P ′(Q∗

1)(q
∗
a,1 − q∗0,1)

∂Q∗
1

∂xa

∂x∗a
∂λ

+ (e∗0,1 − e∗a,1)V
′′(E∗

1)
∂E∗

1

∂xa

∂x∗a
∂λ

]

+
1

(λ + r)2

P (Q∗
2)(q

∗
a,2 − q∗0,1) + C2

0 − C2
a + (e∗0,2 − e∗a,2)V

′(E∗
2)︸ ︷︷ ︸

SSTP


+

λ

λ + r

1

r

[
P ′(Q∗

2)(q
∗
a,2 − q∗0,2)

(
∂Q2∗

∂xa

+
∂Q∗

2

∂x0b

∂x∗0b

∂xa

)
∂x∗a
∂λ

]
+

λ

λ + r

1

r

[
(e∗0,2 − e∗a,2)V

′′(E∗
2)

(
∂E∗

2

∂xa

+
∂E∗

2

∂x0b

∂x∗0b

∂xa

)
∂x∗a
∂λ

]
By the proof of proposition 4.4 the last two parts of this formula sum up to 0. So set

k := P ′(Q∗
1)(q

∗
a,1 − q1∗0)

∂Q∗
1

∂xa
+ (e∗0,1 − e∗a,1)V

′′(E∗
1)

∂E∗
1

∂xa
< 0. Then ∂x∗

a

∂λ
= [FSTP−SSTP ]

(λ+r)k
. Differen-

tiating SSTP with respect to x0b yields P ′(Q∗
2)(q

∗
a,2 − q∗0,1)

∂Q∗
2

∂x0b
+ (e∗0,2 − e∗a,2)V

′′(E∗
2)

∂E∗
2

∂x0b
< 0.

Since FSTP = SSSP for x∗0b = 0 it is FSTP − SSTP > 0 for x∗0b > 0. Thus ∂x∗
a

∂λ
< 0.

Case 2: Full adoption of technology 2 and no replacement If we differentiate equation (45)
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with respect to λ we get:

0 =
1

(λ + r)2
(P (Q∗

2)(q
∗
a,2 − q∗b,2) + C2

b − C2
a + (e∗b,2 − e∗a,2)V

′(E∗
2) + rFb︸ ︷︷ ︸

:=SSTP

)

− 1

(λ + r)2
(P (Q1∗)(q∗a,1 − q∗0,1) + C1

0 − C1
a + (e∗0,1 − e∗a,1)V

′(E∗
1)︸ ︷︷ ︸

:=FSTP

)

+
1

λ + r

[
P ′(Q∗

1)(q
∗
a,1 − q∗0,1)

∂Q∗
1

∂xa

∂x∗a
∂λ

+ V ′′(E∗
1)(e

∗
0,1 − e∗a,1)

∂W ∗
1

∂xa

∂x∗1
∂λ

]
+

λ

r(λ + r)

[
P ′(Q∗

2)(q
∗
a,2 − q∗b,2)

∂Q∗
2

∂xa

∂x∗a
∂λ

+ V ′′(E∗
2)(w

∗
b,2 − w∗

a,2)
∂W ∗

2

∂xa

∂x∗2
∂λ

]
Define

k :=P ′(Q∗
1)(q

∗
a,1 − q∗0,1)

∂Q∗
1

∂xa

+ V ′′(E∗
1)(e

∗
0,1 − e∗a,1)

∂W :∗1
∂xa

+
λ

r

[
P ′(Q∗

2)(q
∗
a,2 − q∗b,2)

∂Q∗
2

∂xa

+ V ′′(E∗
2)(e

∗
b,2 − e∗a,2)

∂E∗
2

∂xa

]
< 0

Now ∂x∗
a

∂λ
= FSTP−SSTP

(λ+r)k
hence we need to show that FSTP − SSTP > 0. Then

FSTP − SSTP

= P (Q∗
1)(q

∗
a,1 − q∗0,1) + C1

0 − C1
a + (e∗0,1 − e∗a,1)V

′(E∗
1)

− [P (Q∗
2)(q

∗
a,1 − q∗0,1) + C2

0 − C2
a + (e∗0,2 − e∗a,2)V

′(E∗
2)]

+ P (Q∗
2)(q

∗
b,1 − q∗0,1) + C2

0 − C2
b + (e∗0,2 − e∗b,2)V

′(E∗
2) − rFb

The difference between the terms in the second and the third line is positive by reason of

the same argument as in the former case. The third line is positive since full adoption is the

relevant market outcome.

Case 3: Partial Replacement If we differentiate equation (45) with respect to λ we get:

0 =
1

(λ + r)2
(SSTP − FSTP )

+
1

λ + r

[
P ′(Q∗

1)(q
∗
a,1 − q∗0,1)

∂Q∗
1

∂xa

∂x∗a
∂λ

+ V ′′(E∗
1)(e

∗
0,1 − e∗a,1)

∂E∗
1

∂xa

∂x∗a
∂λ

]
,

where SSTP and FSTP are given as in the former case. Now again

∂x∗a
∂λ

=
FSTP − SSTP

(λ + r)
[
P ′(Q∗

1)(q
∗
a,1 − q∗0,1)

∂Q∗
1

∂xa
+ V ′′(E∗

1)(e
∗
0,1 − e∗a,1)

∂E∗
1

∂xa

] .
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Analogously to the former case we can show that FSTP − SSTP > 0 which induces the

result.

Case 4: Full Replacement straight-forward!

ad 2.): Fa: Case 1: Partial adoption:

0 =
1

λ + r
(P (Q1

∗
)(q∗a,1 − q∗0,1) + C1

0 − C1
a + (e∗0,1 − w∗

a,1)V
′(E1

∗
))

+
λ

λ + r

1

r
(P (Q∗

2)(q
∗
a,2 − q∗0,2) + C2

0 − C2
a + (e∗0,2 − e∗a,2)V

′(E∗
2)) − F

∗
a

Differentiating this equation with respect to Fb yields

∂F
∗
1

∂Fb

=
λ

λ + r

1

r

[
P ′(Q∗

2)(q
∗
a,2 − q∗0,2)

∂Q∗
2

∂Fb

+ (e∗0,2 − e∗a,2)V
′′(E∗

2)
∂E∗

2

∂Fb

]
> 0

Case 2: full adoption/replacement: Differentiating the corresponding FOC with respect to

Fb yields
∂F

∗
1

∂Fb

=
λ

λ + r
> 0

ad 3.): Fa: Case 1: Full adoption:

0 =
1

λ + r
(P (Q1

∗
)(q∗a,1 − q∗0,1) + C1

0 − C1
a + (e∗0,1 − w∗

a,1)V
′(E1

∗
))

+
λ

λ + r

[
1

r
(P (Q∗

2)(q
∗
a,2 − q∗b,2) + C2

b − C2
a + (e∗b,2 − e∗a,2)V

′(E∗
2)) + Fb

]
− F

∗
1

Differentiating this equation with respect to Fb yields

∂F ∗
1

∂Fb

=
λ

λ + r
> 0

Case 2: partial replacement: Differentiating equation (45) with respect to Fb yields

∂F
∗
1

∂Fb

= 0

Case 3: full replacement: Differentiating the corresponding FOC with respect to Fb yields

∂F
∗
1

∂Fb

= 0

proof of Lemma 5.1 In principle the proof is analogous to the proof of Lemma 4.1. If

we differentiate the equation system (5) and (6) we get for a given i = 0, a, b and setting
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x0 = 1 − xa wherever it makes sense: P ′(Q)∂Q
∂w

−1

 =

 ∂2Ci

∂q2
∂2Ci

∂e∂q

∂2Ci

∂q∂e
∂2Ci

∂e2

 ∂qi

∂w

∂ei

∂w


From this analogously to the proof of Lemma 4.1 we derive

∂qi

∂w
=

1

ki

[P ′(Q)
∂Q

∂w

∂2Ci

∂e2
+

∂2Ci

∂q∂e
]

∂ei

∂w
=

−1

ki

[
∂2Ci

∂q2
+ P ′(Q)

∂Q

∂w

∂2Ci

∂q∂e
]

where ki is given as in the proof of Lemma 4.1. Substituting both to equation 7 and 8

respectively delivers for given and fixed x0b:

∂Q

∂w
=

∑
xi

ki

∂2Ci

∂q∂e

1 − P ′(Q)
∑

xi

ki

∂2Ci

∂e2

< 0

and therefrom

∂E

∂w
= −

∑ xi

ki

[
P ′(Q)

∂Q

∂w

∂2Ci

∂q∂e
+

∂2Ci

∂q2

]

=

P ′(Q)

[∑
xi

ki

∂2Ci

∂q2

∑
xi

ki

∂2Ci

∂e2 −
(∑

xi

ki

∂2Ci

∂q∂e

)2
]
−
∑

xi

ki

∂2Ci

∂q2

1 − P ′(Q)
∑

xi

ki

∂2Ci

∂e2

Thus ∂E
∂w

< 0 by assumption 2.2.

Next we derive ∂E
∂x0b

and ∂Q
∂x0b

for given and fixed w. In that case we have P ′(Q) ∂Q
∂x0b

0

 =

 ∂2Ci

∂q2
∂2Ci

∂e∂q

∂2Ci

∂q∂e
∂2Ci

∂e2

 ∂qi

∂x0b

∂ei

∂x0b


from which we can straight-forwardly derive

∂Q

∂x0b

=
qb − q0

1 − P ′(Q)
∑

xi

ki

∂2Ci

∂e2

> 0

and
∂E

∂x0b

= eb − e0 − P ′(Q)
∂Q

∂x0b

∑ xi

ki

∂2Ci

∂q∂e
< 0.
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The impact of an change of xa for x0b < 1 − xa can be derived analogously. If x0b = 1 − xa

we analogously to the former calculation can derive that

∂Q

∂xa

=
qa − qb

1 − P ′(Q)(xa

ka

∂2Ca

∂e2 + 1−xa

k0b

∂2Cb

∂e2 ))
< 0

Moreover simply

∂E

∂xa

= ea − eb − P ′(Q)
∂Q

∂xa

[
xa

ka

∂2Ca

∂q∂e
+

1 − xa

k0b

∂2Cb

∂q∂e

]
> 0.

Now by the Envelope Theorem

∂∆20

∂w2

= P ′(Q2)(qb,2 − q0,2)
∂Q2

∂w2

+ (e0,2 − eb,2) > 0.

q.e.d.

proof of proposition 5.2 ad 2.) -4.) : First of all let us consider that all equations

are fulfilled with 0 < x0b < 1− xa. Differentiating the corresponding equations and applying

Lemma 5.1 we obtain:

r = P ′(Q2)(qb,2 − q0,2)[
∂Q2

∂w2

∂22

∂x0b

+
∂Q2

∂x0b

]
∂x0b

∂Fb

+ (e0,2 − eb,2)
∂w2

∂x0b

∂x0b

∂Fb

Therefrom we get

∂x0b

∂Fb

=
r

P ′(Q2)(qb,2 − q0,2)[
∂Q2

∂w2

∂w2

∂x0b
+ ∂Q2

∂x0b
] + (e0,2 − eb,2)

∂w2

∂x0b

By our assumptions and Lemma 5.1 ∂x0b

∂Fb
< 0 follows. Furthermore we have shown that the

LHS of equation (9) increases in x0b. Thus any greater x0b would induce that the cost benefits

by the new technology would be smaller then the costs - and therefore some firms would

prefer not to invest - while any smaller x0b would induce that the cost benefits exceeds the

costs Fb - and therefore more firms want to invest. Thus the solution of the equation system,

if it exists, is the unique equilibrium. Following the same logic only no adoption is the unique

equilibrium if the LHS of equation (9) is smaller then Fb for all 0 ≤ x0b ≤ 1 − xa. If the if

the LHS of equation (9) is larger then Fb for all x0b we have to check whether full adoption,

partial replacement or full replacement is the (unique) solution.
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Furthermore as a result of the former arguments all market outcomes where 0 < x0b < 1−xa

correspond to an Fb are contained in the interval [F b(xa), F b(xa)], where F b(xa) and F b(xa)

are determined by the equation system (5), (6), (7), (8) and (9) given x0b = 0 and x0b = 1−xa

respectively.

ad 5.) -7.) : The proof is analogous to the one in the former case.

ad 1.). Since in both cases, Fb = F b(xa) and Fb = F b(xa) we have x0b = 1 − xa and

xab = 0, we will have the same equilibrium output price P and equilibrium input price w.

From the equations (10) and (9) then obviously follows that F b(xa) > F b(xa).

ad 8.): Denote with Q2, q
b,2

, eb,2, i = 0, a, b and w2 the output and input levels and

the input price which corresponds to x0b := 1 − xa. As mentioned above F b(xa) is given by

equation (9) corresponding to this values. If we differentiate this equation with respect to xa

and apply Lemma we get

∂F b(xa)

∂xa

= P ′(Q2)(qb,2
− q

0,2
)[

∂Q2

∂w

∂w2

∂xa

+
∂Q2

∂xa

] + (e0,2 − eb,2)
∂w2

∂xa

.

Since Q
2

corresponds to x0b = 1−xa by Lemma 5.1 and our assumptions we get
∂F b(xa)

∂xa
> 0.

Analogously we can derive ∂F b(xa)
∂xa

< 0. For analogous reason as in the social optimal case

both levels tend to the same value as xa tends to 1.

ad 9.): With analogous calculations as above we can also derive

∂F 2(xa)

∂xa

= P ′(Q
2
)(q

b,2
− q

a,2
)[

∂Q
2

∂w

∂w2

∂xa

+
∂Q

2

∂xa

] + (ea,2 − eb,2)
∂w2

∂xa

> 0.

Since for Fb = F
b
all firms use technology 2 the ex post market equilibrium does not depend

on the share of firms which have adopted technology a. Thus an change in xa will not affect

these values and therefore also not F
b
. Obviously F b(0) = F

b
since for Fb = F b(0) also all

firms use technology b.q.e.d.

proof of proposition 5.3 Substituting V ′(E∗
i ) by wi and V ′′(E∗

i )
∂E∗

i

∂xj
by ∂wi

∂xj
(i = a, b,

j = a, b, ab) we can apply the arguments and calculations proof of proposition 4.4. If for



35

example the market solution consists 1 > xa > 0 and 1 − xa > x0b > 0 by applying these

arguments we show that if the share of firms exceeds xa the cost savings which corresponds

to the adoption technology a is smaller then Fa. Thus less firms want to adopt technology a.

Vice versa if a smaller share of firms adopt technology a there is still an incentive for firms

to adopt technology a. Analogously we can argue in all other cases.

proof of proposition 6.1 If we compare the FOC’s which determine the socially optimal

allocation with the relevant equation system determining the market solution we see that for

w1 = V ′(E∗
1), w2 = V ′(E∗

2), xa = x∗a, x0b = x∗0b and xab = x∗ab we are in a market equilibrium.

Since this is unique given Fa and Fbthe proof is completed. q.e.d.

Proof of Proposition 7.1: ad 1) : let xa and x0b be given. Consider Fa, Fb and F ∗
a , F ∗

b

to be the corresponding cost pairs. Then Fa and Fb fulfill the equation pair (9) and (16).

Both w1 and w2 are greater than the marginal costs of the corresponding input levels. Since

given xa and x0b a decrease of the input price increases the input level and thus the marginal

costs, the marginal cost at the socially optimal input level are higher than the marginal

costs but lower than the input price in the market equilibrium. Since for given xa and x0b by

Lemma 5.1 ∆20 decreases in the input price. This implies F ∗
b < Fb since ∆20|ρ2=V ′(E∗

2 ) = F ∗
b .

Furthermore in the market equilibrium we have

1

λ + r
[P (Q1)(qa,1 − q0,1) − C1

0 − C1
a − w1(e0,1 − ea,1)]

+
λ

r(λ + r)
[P (Q2)(qa,1 − q0,1) − C2

0 − C2
a − w2(e0,2 − ea,2)] = Fa

Since both, the part of the RHS which corresponds to the first stage and the one correspon-

ding to the second stage gets smaller if we fill in the socially optimal marginal cost instead

of the equilibrium input price, Fa < F ∗
a has to hold.

An analogous argumentation holds in case of 2) - 5) taking the relevant cost difference

in each case. It is easy to see that in case of scenario 6) this argumentation cannot be

applied.q.e.d.

proof of proposition 8.1 : In principle the proof is based on the fact that the FOC’s of

the social planner and the equation which determines the equilibrium share are basically the
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same equation which where only the marginal cost of the aggregated input appears instead

of the input price. Thus we have only to check whether the equilibrium input price is smaller

equal or larger than the socially optimal marginal input costs.

Case 1: partial adoption of both technologies

The social optimal allocation is characterized by

1

r
((q∗b,2 − q∗0,2)P (Q∗

2) + C2
0 − C2

b + (e∗0,2 − e∗b,2)V
′(E∗

2)) = F ∗
b

and

1

λ + r
((q∗a,1 − q∗0,1)P (Q∗

1) + C1
0 − C1

b + (e∗0,1 − e∗a,1)V
′(E∗

1))

+
λ

λ + r

1

r
((q∗a,2 − q∗0,2)P (Q∗

2) + C2
0 − C2

b + (e∗0,2 − e∗a,2)V
′(E∗

2)) = F ∗
a

If xa > 0 then obviously w1 < V ′(e0) where w1 is the market equilibrium input price.

Furthermore since w1 is the input market clearing price and E∗
1 < e0 also w1 < V ′(E∗

1) since

otherwise the demand would be smaller than or equal to E∗
1 . Analogously xa > 0 or x0b > 0

implies w2 < V ′(E∗
2). Thus by Lemma 5.1 implies

1

r
((qb,2 − q0,2)P (Q2) + C2

0 − C2
b + (e0,2 − eb,2)w2 < F ∗

b

if either xa > 0 or x0b > 0. Thus Fb < F ∗
b . Analogously if either xa > 0 or x0b > 0 then

1

λ + r
((qa,1 − q0,1)P (Q1) + C1

0 − C1
a + (e0,1 − ea,1)w1

+
λ

λ + r

1

r
((q∗a,2 − q∗0,2)P (Q∗

2) + C2
0 − C2

b + (e∗0,2 − e∗a,2)w2 < F ∗
a ,

and thus Fa < F ∗
a .

Case 2: partial adoption and replacement technology a

1

r
((q∗b,2 − q∗a,2)P (Q∗

2) + C2
a − C2

b + (e∗a,2 − e∗b,2)V
′(E∗

2)) = F ∗
b

and
1

λ + r
((q∗a,1 − q∗0,1)P (Q∗

1) + C1
0 − C1

a + (e∗0,1 − e∗a,1)V
′(E∗

1)) = F ∗
a

For all 1 ≥ xa ≥ 0 and xa ≥ xab ≥ 0 we will have E∗
2 > e0 since always 1−xa firms will adopt

technology 2 at the second stage. For the same reasons as in the case before w2 < V ′(E∗
2)
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follows and thus Fb < F ∗
b . At the first stage E∗

1 < e0 if and only if xa > 0 thus Fa < F ∗
a if

xa > 0 and Fa = F ∗
a if xa = 0.

Case 3: partial adoption of technology a, no adoption of technology 2

The arguments are analogous to the ones in the former cases.

Case 4: partial adoption of technology b, no adoption of technology aAs above!

Case 5: partial adoption of technology a, full adoption of technology b, no replacement

xa = 0:

In this case w1 = V ′(e0) and Q∗
1 = Q1 since E∗

1 = e0 while w2 < V ′(E∗
2). Since

1

λ + r
((q∗a,1 − q∗0,1)P (Q1∗) + C1

0 − C1
a + (e∗0,1 − w∗

a,1)V
′(e0))

+
λ

λ + r

[
1

r
((q∗a,2 − q∗b,2)P (Q∗

2) + C2
b − C2

a + (e∗b,2 − e∗a,2)V
′(E∗

2)) + Fb

]
= F ∗

a

we get

1

λ + r
((qa,1 − q0,1)P (Q1) + C1

0 − C1
a + (e0,1 − ea,1)V

′(e0))

+
λ

λ + r

[
1

r
((qa,2 − qb,2)P (Q2) + C2

b − C2
a + (eb,2 − ea,2)w2 + Fb

]
> F ∗

a

since the second stage part increases as ρ2 decreases. Tuus Fa > F ∗
a . xa = 1:

In this case w1 = w2 > V ′(E∗
1) = W ′(E∗

2) and E∗
1 = E∗

2 < e0. Since

∆12(xa, x0b, V
′(E∗

1))) =
1

λ + r
((q∗a,1 − q∗0,1)P (Q∗

1) + C1
0 − C1

a + (e∗0,1 − e∗a,1)V
′(E∗

1))

+
λ

λ + r

[
1

r
((q∗a,2 − q∗b,2)P (Q∗

2) + C2
b − C2

a + (e∗b,2 − e∗q,2)V
′(E∗

1)) + Fb

]
= F ∗

a

and

∆12(xa, x0b, e1) =
1

λ + r
((qa,1 − q0,1)P (Q1) + C1

0 − C1
a + (e0,1 − ea,1)w1

+
λ

λ + r

[
1

r
((qa,2 − qb,2)P (Q2) + C2

b − C2
a + (eb,2 − ea,2)w1 + Fb

]
= Fa

we will have Fa > F ∗
a if ∂∆12

∂w
< 0 and Fa > F ∗

a if ∂∆12

∂w
> 0. Otherwise it is ambiguous.q.e.d
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C Figures

Figure 1. Socially optimal allocation with respect to (Fa, Fb)


