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SUMMARY
We investigate the issue of model uncertainty in cross-country growth regressions using Bayesian Model
Averaging (BMA). We find that the posterior probability is spread widely among many models, suggesting
the superiority of BMA over choosing any single model. Out-of-sample predictive results support this claim.
In contrast to Levine and Renelt (1992), our results broadly support the more ‘optimistic’ conclusion of Sala-
i-Martin (1997b), namely that some variables are important regressors for explaining cross-country growth
patterns. However, care should be taken in the methodology employed. The approach proposed here is firmly
grounded in statistical theory and immediately leads to posterior and predictive inference. Copyright  2001
John Wiley & Sons, Ltd.

1. INTRODUCTION

Many empirical studies of the growth of countries attempt to identify the factors explaining the
differences in growth rates by regressing observed GDP growth on a host of country characteristics
that could possibly affect growth. This line of research was heavily influenced by Kormendi and
Meguire (1985) and Barro (1991). Excellent recent surveys of these cross-section studies and their
role in the broader context of economic growth theory are provided in Durlauf and Quah (1999)
and Temple (1999). A more specific discussion of various approaches to model uncertainty in this
context can be found in Temple (2000) and Brock and Durlauf (2000). The latter paper advocates
a decision-theoretic approach to policy-relevant empirical analysis.

In this paper we focus on cross-country growth regressions and attempt to shed further light
on the importance of such models for empirical growth research. Prompted by the proliferation of
possible explanatory variables in such regressions and the relative absence of guidance from
economic theory as to which variables to include, Levine and Renelt (1992) investigate the
‘robustness’ of the results from such linear regression models. They use a variant of the Extreme-
Bounds Analysis introduced in Leamer (1983, 1985) and conclude that very few regressors pass
the extreme-bounds test. In response to this rather negative finding, Sala-i-Martin (1997b) employs
a less severe test for the importance of explanatory variables in growth regressions, the aim being
‘to assign some level of confidence to each of the variables’1 rather than to classify them as robust

* Correspondence to: Eduardo Ley, International Monetary Fund, 700 19 Street NW, Washington DC 20431, USA.
1 For each variable, he denotes the level of confidence by CDF(0) and defines it as the maximum of the probability mass
to the left and the right of zero for a (Normal) distribution centred at the estimated value of the regression coefficient and
with the corresponding estimated variance. He deals with model uncertainty by running many different regressions and
either computing CDF(0) based on the averages of the estimated means and variances (approach 1), or redefining CDF(0)
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versus non-robust. On the basis of his methodology, Sala-i-Martin (1997b) identifies a relatively
large number of variables as important for growth regression.

Here we set out to investigate this issue in a formal statistical framework that explicitly allows
for the specification uncertainty described above. In particular, a Bayesian framework allows us
to deal with both model and parameter uncertainty in a straightforward and formal way. We
also consider an extremely large set of possible models by allowing for any subset of up to 41
regressors to be included in the model. This means we have a set of 241 D 2.2 ð 1012 (over two
trillion!) different models to deal with. Novel Markov chain Monte Carlo (MCMC) techniques are
adopted to solve this numerical problem, using the so-called Markov chain Monte Carlo Model
Composition �MC3� sampler, first used in Madigan and York (1995).

Our findings are based on the same data as those of Sala-i-Martin2 and broadly support the
more ‘optimistic’ conclusion of Sala-i-Martin (1997b), namely that some variables are important
regressors for explaining cross-country growth patterns. However, the variables we identify as
most useful for growth regression differ somewhat from his results. More importantly, we do
not advocate selecting a subset of the regressors, but we use Bayesian Model Averaging, where
all inference is averaged over models, using the corresponding posterior model probabilities as
weights. It is important to point out that our methodology allows us to go substantially further than
the previous studies, in that we provide a clear interpretation of our results and a formal statistical
basis for inference on parameters and out-of-sample prediction. Finally, let us briefly mention that
this paper is solely intended to investigate a novel methodology to tackle the issues of model
uncertainty and inference in cross-country growth regressions, based on the Normal linear model.
We do not attempt to address here the myriad other interesting topics, such as convergence of
countries, data quality or any further issues of model specification.

2. THE MODEL AND THE METHODOLOGY

Following the analyses in Levine and Renelt (1992) and Sala-i-Martin (1997b) as well as the
tradition in the growth regression literature, we will consider linear regression models where GDP
growth for n countries, grouped in a vector y , is regressed on an intercept, say ˛, and a number
of explanatory variables chosen from a set of k variables in a matrix Z of dimension n ð k.
Throughout, we assume that rank ��n : Z� D k C 1, where �n is an n-dimensional vector of 1’s,
and define ˇ as the full k-dimensional vector of regression coefficients.

Whereas Levine and Renelt and Sala-i-Martin restrict the set of regressors to always contain
certain key variables and then allow for four3 other variables to be added, we shall allow for any
subset of the variables in Z to appear in the model. This results in 2k possible models, which will
thus be characterized by the selection of regressors. We denote by Mj the model with regressors
grouped in Zj, leading to

y D ˛�n C Zjˇj C ε �1�

as the average of the CDF(0)’s resulting from the various regressions (approach 2). In both cases, the averaging over
models is either done uniformly or with weights proportional to the likelihoods. See also our footnote 14 in this context.
Regressors leading to CDF(0) > 0.95 are classified as ‘significant’.
2 We thank Xavier Sala-i-Martin for making his data publicly available at his website. The data are also available at this
journal’s website.
3 Levine and Renelt (1992) consider one up to four added regressors, Sala-i-Martin (1997a,b) restricts the analysis to
exactly four extra regressors.
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where ˇj 2 <kj �0 � kj � k� groups the relevant regression coefficients and  2 <C is a scale
parameter. In line with most of the literature in this area (see e.g. Mitchell and Beauchamp, 1988,
and Raftery, Madigan and Hoeting, 1997), exclusion of a regressor means that the corresponding
element of ˇ is zero. Thus, we are always conditioning on the full set of regressors Z. Finally,
we shall assume that ε follows an n-dimensional Normal distribution with zero mean and identity
covariance matrix.

In our Bayesian framework, we need to complete the above sampling model with a prior
distribution for the parameters in Mj, namely ˛, ˇj and . In the context of model uncertainty,
it is acknowledged that the choice of this distribution can have a substantial impact on posterior
model probabilities (see e.g. Kass and Raftery, 1995, and George, 1999). Raftery et al. (1997) use
a ‘weakly-informative’ prior which is data-dependent. Here we follow Fernández, Ley and Steel
(2001) who, on the basis of theoretical results and extensive simulations, propose a ‘benchmark’
prior distribution that has little influence on posterior inference and predictive results and is, thus,
recommended for the common situation in which incorporating substantive prior information into
the analysis is not possible or desirable. In particular, they propose to use improper noninformative
priors for the parameters that are common to all models, namely ˛ and , and a g-prior structure
for ˇj. This corresponds to the product of

p�˛, � / �1 �2�

and
p�ˇjj˛, ,Mj� D f

kj
N �ˇjj0, 2�gZ0

jZj�
�1� �3�

where fq
N�wjm,V� denotes the density function of a q-dimensional Normal distribution on w with

mean m and covariance matrix V. Fernández et al. (2001) investigate many possible choices for
g in equation (3) and conclude that taking g D 1/maxfn, k2g leads to reasonable results. Finally,
the k � kj components of ˇ which do not appear in Mj are exactly equal to zero. Note that in
equation (2) we have assumed a common prior for  across the different models. This is a usual
practice in the literature (e.g. Mitchell and Beauchamp, 1988; Raftery et al., 1997) and does not
seem unreasonable since, by always conditioning on the full set of regressors,  keeps the same
meaning (namely the residual standard deviation of y given Z ) across models. The distribution
in equation (2) is the standard non-informative prior for location and scale parameters, and is the
only one that is invariant under location and scale transformations (such as induced by a change
in the units of measurement). As Fernández et al. (2001) show, the prior in equations (2) and (3)
has convenient properties (marginal likelihoods can be computed analytically) while leading to
satisfactory results from a posterior and predictive point of view.

So far, we have described the sampling and prior setting under model Mj. As already mentioned,
a key aspect of the problem is the uncertainty about the choice of regressors—i.e. model
uncertainty. This means that we also need to specify a prior distribution over the space M of
all 2k possible models:

P�Mj� D pj, j D 1, . . . , 2k, with pj > 0 and
2k∑

jD1

pj D 1 �4�

In our empirical application, we will take pj D 2�k so that we have a Uniform distribution on the
model space. This implies that the prior probability of including a regressor is 1/2, independently
of the other regressors included in the model. This is a standard choice in the absence of prior
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information but other choices—e.g. downweighing models with a large number of regressors—are
certainly possible. See Chipman (1996) for priors that allow for dependence between regressors.

The Bayesian paradigm now automatically deals with model uncertainty, since the posterior
distribution of any quantity of interest, say , is an average of the posterior distributions of that
quantity under each of the models with weights given by the posterior model probabilities. Thus

Pjy D
2k∑

jD1

Pjy,MjP�Mjjy� �5�

Note that, by making appropriate choices of , this formula gives the posterior distribution of
parameters such as the regression coefficients or the predictive distribution that allows to forecast
future or missing observables. The marginal posterior probability of including a certain variable
is simply the sum of the posterior probabilities of all models that contain this regressor. The
procedure described in equation (5), which is typically referred to as Bayesian Model Averaging
(BMA), immediately follows from the rules of probability theory—see e.g. Leamer (1978).

We now turn to the issue of how to compute Pjy in equation (5). The posterior distribution
of  under model Mj, Pjy,Mj , is typically of standard form (the following sections mention this
distribution for several choices of ). The additional burden due to model uncertainty is having
to compute the posterior model probabilities, which are given by

P�Mjjy� D ly�Mj�pj

2k∑
hD1

ly�Mh�ph

�6�

where ly�Mj�, the marginal likelihood of model Mj, is obtained as

ly�Mj� D
∫

p�yj˛, ˇj, ,Mj�p�˛, �p�ˇjj˛, ,Mj� d˛ dˇj d �7�

with p�yj˛, ˇj, ,Mj� the sampling model corresponding to equation (1) and p�˛, � and
p�ˇjj˛, ,Mj� the priors defined in equations (2) and (3), respectively. Fernández et al. (2001)
show that for the Bayesian model in (1)–(4) the marginal likelihood can be computed analytically.
In the somewhat simplifying case where, without loss of generality, the regressors are demeaned,
such that �0nZ D 0, and defining Xj D ��n : Zj�, y D �0ny/n and MXj D In � Xj�X0

jXj��1X0
j, they

obtain

ly�Mj� /
(

g

g C 1

)kj/2 ( 1

g C 1
y0MXjy C g

g C 1
�y � y�n�

0�y � y�n�

)��n�1�/2

�8�

Since marginal likelihoods can be computed analytically, the same holds for the posterior model
probabilities, given in equation (6), and the distribution described in equation (5).

In practice, however, computing the relevant posterior or predictive distribution through
equations (5), (6) and (8) is hampered by the very large amount of terms involved in the sums. In
our application, we have k D 41 possible regressors, and we would thus need to calculate posterior
probabilities for each of the 241 D 2.2 ð 1012 models and average the required distributions over all
these models. Exhaustive evaluation of all these terms is computationally prohibitive. Even using
fast updating schemes, such as that proposed by Smith and Kohn (1996), in combination with the
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Gray code order, computations become practically infeasible when k is larger than approximately
25 (George and McCulloch, 1997).4 In order to substantially reduce the computational effort, we
shall approximate the posterior distribution on the model space M by simulating a sample from
it, applying the MC3 methodology of Madigan and York (1995). This consists in a Metropolis
algorithm—see e.g. Tierney (1994) and Chib and Greenberg (1996)—to generate drawings through
a Markov chain on M which has the posterior model distribution as its stationary distribution.
The sampler works as follows. Given that the chain is currently at model Ms, a new model
Mj is proposed randomly through a Uniform distribution on the space containing Ms, and all
models with either one regressor more or one regressor less than Ms. The chain moves to Mj

with probability p D minf1, [ly�Mj�pj]/[ly�Ms�ps]g and remains at Ms with probability 1 � p.
Raftery et al. (1997) and Fernández et al. (2001) use MC3 methods in the context of the linear
regression model.

In the implementation of MC3, we shall take advantage of the fact that marginal likelihoods can
be computed analytically through equation (8). Thus, we shall use the chain to merely indicate
which models should be taken into account in computing the sums in equations (5) and (6)—i.e.
to identify the models with high posterior probability. For the set of models visited by the chain,
posterior probabilities will be computed through appropriate normalization of ly�Mj�pj. This idea
was called ‘window estimation’ in Clyde, Desimone and Parmigiani (1996) and was denoted by
‘Bayesian Random Search’ in Lee (1996). In addition, Fernández et al. (2001) propose to use
this as a convenient diagnostic aid for assessing the performance of the chain. A high positive
correlation between posterior model probabilities based on the empirical frequencies of visits in
the chain, on the one hand, and the exact marginal likelihoods, on the other, suggests that the chain
has reached its equilibrium distribution. Of course, the chain will not cover the entire model space
since this would require sampling all 241 models, an impossible task as we already mentioned.
Thus, the sample will not constitute, as such, a perfect replica of the posterior model distribution.
Rather, the objective of sampling methods in this context is to explore the model space in order to
capture the models with higher posterior probability (George and McCulloch, 1997). Nevertheless,
our efficient implementation (see footnote 13) allows us to cover a high percentage of the posterior
mass and, thus, to also characterize a very substantial amount of the variability inherent in the
posterior distribution.

3. POSTERIOR RESULTS

We take the same data as used and described in Sala-i-Martin (1997b), covering 140 countries, for
which average per capita GDP growth was computed over the period 1960–1992. Sala-i-Martin
starts with the model in (1) and a large set of 62 variables that could serve as regressors.5 He then

4 The largest computational burden lies on the evaluation of the marginal likelihood of each model. In the context of our
application and without use of fast updating schemes or Gray code ordering, an estimate of the average rate at which we
can compute ly�Mj� is over 36,000 per minute of CPU time (on a state-of-the-art Sun Ultra-2 with two 296MHz CPUs,
512Mb of RAM and 3.0Gb of swap space running under Solaris 2.6), which would imply that exhaustive evaluation
would approximately take 115 years. Even if fast updating algorithms and ordering schemes can be found that reduce
this by a factor k D 41 (as suggested in George and McCulloch, 1997), this is still prohibitive. In addition, storing and
manipulating the results—e.g. to compute predictive and posterior densities for regression coefficients—seems totally
unfeasible with current computing technology.
5 This set of possible regressors does not include the investment share of GDP, which was included in Levine and Renelt
(1992) as a variable always retained in the regressions. However, they comment that then the only channel through
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restricts his analysis to those models where three specific variables are always included (these are
the level of GDP, life expectancy and primary school enrollment rate, all for 1960) and, for each
of the remaining 59 variables, he adds that variable and all possible triplets of the other 58. He
finally computes6 CDF(0) for that regressor as the weighted average of the resulting CDF(0)’s to
conclude that 22 of the 59 variables are ‘significant’, in that CDF(0) is larger than 0.95. Thus, in
all he considers 455,126 different models,7 which we will denote by Ms.

We shall undertake our analysis on the basis of the following set of regressors. First, we take
the 25 variables that Sala-i-Martin (1997b) flagged as being important (his three retained variables
and the 22 variables in his Table 1, page 181). We have available n D 72 observations for all
these regressors. We then add to this set all regressors that do not entail a loss in the number of
observations. Thus, we keep n D 72 observations which allows us to expand the set of regressors
to a total of k D 41 possible variables. Z will be the 72 ð 41 design matrix corresponding to these
variables (transformed by subtracting the mean. so that �0nZ D 0), and we shall allow for any subset
of these 41 regressors, leading to a total set of 241 D 2.2 ð 1012 models under consideration in M.
Since we do not start from the full set of 62 variables, we do not cover all models in Ms. On the
other hand, since we allow for any combination of regressors, our model space is of much larger
size than Ms. Clearly, we cover the subset of Ms that corresponds to the 41 regressors considered
here. This intersection between M and Ms consists of 73,815 models and will be denoted by MI

in the sequel. In view of the fact that MI contains all models in Ms using Sala-i-Martin’s (1997b)
favoured regressors, we would certainly expect that a relatively large fraction of the posterior mass
in Ms is concentrated in MI.

To analyse these data, we use the Bayesian model in equations (1)–(4) with a Uniform prior
on model probabilities, i.e. pj D 2�k in (4). Since n < k2, we shall take g D 1/k2 in the prior in
(3). Given the size of M we would expect to need a fairly large amount of drawings of the MC3

sampler to adequately identify the high posterior probability models. We shall report results from
a run with 2 million recorded drawings after a burn-in of 1 million discarded drawings, leading
to a correlation coefficient between visit frequencies and posterior probabilities based on (8) of
0.993. The results based on a different run with 500,000 drawings after a mere 100,000 burn-
in drawings are very close indeed. In particular, the best 76 models (those with posterior mass
above 0.1%) are exactly the same in both runs. Many more runs, started from randomly drawn
points in model space and leading to virtually identical results, confirmed the good behaviour of
the sampler. More formally, we can estimate the total posterior model probability visited by the
chain following George and McCulloch (1997), by comparing visit frequencies and the aggregate
marginal likelihood for a predetermined subset of models. Basing such an estimate on the best
models visited in a short run, we estimate the model probability covered by the reported chain
to be 70%, which is quite reasonable in view of the fact that we only visit about one in every
15 million models.8

which other variables can affect growth is the efficiency of resource allocation. Sala-i-Martin (1997a) finds that including
investment share in all regressions does not critically alter the conclusions with respect to those of Sala-i-Martin (1997b).
6 Approach 2 described in his footnote 1. He comments that levels of significance found using approach 1 in footnote 1
were virtually identical. However, see our discussion at the end of this section.
7 Note that the (almost) 2 million regressions in the title of his paper result from counting each model four times, since
he distinguishes between identical models according to whether a variable is being “tested” or merely added in the triplet
(see also his footnote 3).
8 In order to put this covered probability estimate in perspective, we have to consider the trade-off between accuracy and
computing effort. If we run a longer chain of 5 million draws, after a 1 million burn-in, we visit about twice as many
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Table I. Marginal evidence of importance

Regressors BMA Post.prob. Sala-i-Martin CDF(0)

) 1 GDP level in 1960 1.000 1.000
! 2 Fraction Confucian 0.995 1.000
) 3 Life expectancy 0.946 0.999
! 4 Equipment investment 0.942 1.000

! 5 Sub-Saharan dummy 0.757 0.997
! 6 Fraction Muslim 0.656 1.000
! 7 Rule of law 0.516 1.000
! 8 Number of Years open economy 0.502 1.000
! 9 Degree of Capitalism 0.471 0.987
! 10 Fraction Protestant 0.461 0.966
! 11 Fraction GDP in mining 0.441 0.994
! 12 Non-Equipment Investment 0.431 0.982
! 13 Latin American dummy 0.190 0.998
) 14 Primary School Enrollment, 1960 0.184 0.992
! 15 Fraction Buddhist 0.167 0.964

16 Black Market Premium 0.157 0.825
! 17 Fraction Catholic 0.110 0.963
! 18 Civil Liberties 0.100 0.997

19 Fraction Hindu 0.097 0.654
! 20 Primary exports, 1970 0.071 0.990
! 21 Political Rights 0.069 0.998
! 22 Exchange rate distortions 0.060 0.968

23 Age 0.058 0.903
! 24 War dummy 0.052 0.984

25 Size labor force 0.047 0.835
26 Fraction speaking foreign language 0.047 0.831
27 Fraction of Pop. Speaking English 0.047 0.910
28 Ethnolinguistic fractionalization 0.035 0.643

! 29 Spanish Colony dummy 0.034 0.938
! 30 SD of black-market premium 0.031 0.993

31 French Colony dummy 0.031 0.702
! 32 Absolute latitude 0.024 0.980

33 Ratio workers to population 0.024 0.766
34 Higher education enrollment 0.024 0.579
35 Population Growth 0.022 0.807
36 British Colony dummy 0.022 0.579
37 Outward Orientation 0.021 0.634
38 Fraction Jewish 0.019 0.747

! 39 Revolutions and coups 0.017 0.995
40 Public Education Share 0.016 0.580
41 Area (Scale Effect) 0.016 0.532

Let us now focus on the results obtained in a typical chain of 2 million recorded draws: 149,507
models are visited and the best model obtains a posterior probability of 1.24%. The mass is very
spread out: the best 25,219 models only cover 90% of the posterior model probability, making
BMA a necessity for meaningful inference. The 76 models with posterior probabilities over 0.1%
all have in between 6 and 12 regressors,9 which is not greatly at odds with the 7-regressor models

models, which account for an estimated 77% of the posterior mass, at the cost of more than tripling the CPU requirements.
Posterior results are virtually unaffected as all added models have very low posterior probability.
9 The Bayes factor, obtained from equation (8) as Bjs D ly�Mj�/ly�Ms�, has a built-in mechanism to avoid overfitting
through the first factor. It can easily be seen that for the values of g and n used here, having one more regressor should be
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in MS. Indeed, MI, the intersection of M and MS, is allocated 0.38% posterior probability, which
is 112,832 times the prior mass.10 So there is a small but non-negligible amount of support for the
class of models chosen by Sala-i-Martin, and the best model in MI receives a posterior probability
of 0.30%.

Marginal posterior probabilities of including each of the 41 regressors CDF(0) that were at
the basis of the findings of Sala-i-Martin (1997b). An arrow in front of a regressor identifies the
22 important regressors of Sala-i-Martin (1997b, Table 1) and regressors with double arrows are
the ones he always retained in the models. Starting with the latter three, it is clear that GDP
in 1960 and (to a lesser degree) life expectancy can indeed be retained without many problems,
but that is not the case for primary school enrollment. The 22 regressors that Sala-i-Martin flags
as important have posterior probabilities of inclusion ranging from as low as 1.7% to 100.0%.
Nevertheless, the Spearman rank correlation coefficient between CDF(0) and marginal posterior
inclusion probabilities is 0.94.

Of course, this is only a small part of the information provided by BMA, which really provides
a joint posterior distribution of all possible 41 regression coefficients, consisting of both discrete
(at zero, when a regressor is excluded) and continuous parts. Among other things, it will provide
information on which combinations of regressors are likely to occur, avoiding models with highly
collinear regressors. For example, Civil liberties and Political rights are the two variables with the
highest pairwise correlation in the sample: it is 0.96. Thus, it is quite likely that if one of these
variables is included in a model, the other will not be needed, as it captures more or less the same
information. Indeed, the posterior probability of including both these variables is 0.1%, which is
much smaller than the product of the marginal inclusion probabilities (about 0.7%).

Thus, the marginal importance of regressors derived from our methodology does not lead to
the same results as found in Sala-i-Martin (1997b), but the results are not too dissimilar either.
However, there are a number of crucial differences. First, BMA addresses the issue of probabilities
of models, not just of individual regressors, and thus provides a much richer type of information
than simply that indicated by Table I. In addition, an important difference is that we have a
coherent statistical framework in which inference can be based on all models, averaged with their
posterior probabilities. So there is no need for us to choose a particular model or discard any of
the regressors. As we shall see in the next section, using BMA rather than choosing one particular
model is quite beneficial for prediction. In contrast, there is no formal inferential or modelling
recipe attached to the conclusions in Sala-i-Martin. Does one adopt a model with all important
regressors included at the same time or with a subset of four of those? If model averaging is the
implicit message, it is unclear how to implement this outside the Bayesian paradigm.

Figure 1 graphically presents the marginal posterior distribution of some regression coefficients.
A gauge on top of the graphs indicates (in black) the posterior probability of inclusion of the
corresponding regressor (thus revealing the same information as in Table I). The density in
each of the graphs describes the posterior distribution of the regression coefficient given that
the corresponding variable is included in the regression. Each of these densities is itself a mixture
as in equation (5) over the Student-t posteriors for each model that includes that particular
regressor. A dashed vertical line indicates the averaged point estimate presented in Table I of

offset by a decrease in the sum of squared residuals of about 10% in order to have a unitary Bayes factor. For asymptotic
links between our Bayes factors and various classical model selection criteria, see Fernández et al. (2001).
10 For comparison, the posterior probability of the best 73,815 models (the same number of models as in MI) multiplies
the corresponding prior probability by about 29.5 million.
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Figure 1. Posterior densities of selected coefficients
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Sala-i-Martin (1997a,b). Two vertical dotted lines indicate a classical 90% confidence interval
using the averaged variance of Sala-i-Martin (1997a,b), allowing for an informal comparison
with his findings. The first two coefficients graphed in Figure 1 indicate the marginal effects
on growth of two key variables: the initial level of GDP, and investment in equipment. The
former was associated with conditional convergence of countries by Barro and Sala-i-Martin
(1992), but this view was later challenged (Durlauf and Quah, 1999). In any case, it is widely
accepted to be of theoretical and empirical importance and was one of the few regressors that
Levine and Renelt (1992) found to be robust. The importance of Equipment investment was
stressed in DeLong and Summers (1991). Whereas the inclusion of both variables receives
strong support from BMA and Sala-i-Martin’s classical analysis, the actual marginal inference
on the regression coefficients is rather different, as can be judged from Figure 1. The next
row of plots corresponds to two variables (Standard deviation of black market premium and
Revolutions and coups) that are each included in Sala-i-Martin’s analysis (with CDF(0) ½ 0.993),
yet receive very low posterior probability of inclusion in our BMA analysis (3.1% and 1.7%,
respectively). For the Standard deviation of the black market premium the confidence interval
suggests much smaller spread than the (model averaged) posterior distribution. For Revolutions
and coups we find that, in addition, the posterior mode is also quite far from the averaged
classical point estimates. The same combination of differences in both spread and location is
present for the next two coefficients: Absolute latitude and Spanish colony, which are both
identified as important regressors in Sala-i-Martin, but get less than 3.5% posterior inclusion
probability. The next two coefficients are illustrative of the opposite situation. The regressors
Fraction Hindu and Black market premium are excluded in Sala-i-Martin (1997b), but BMA
results indicate these are relatively important variables. Finally, Non-Equipment investment and
Fraction Catholic are identified as important by Sala-i-Martin and also receive substantial posterior
probability of inclusion in BMA. However, whereas the confidence interval accords reasonably
well with the posterior results from BMA for Non-Equipment investment, it is quite different for
Fraction Catholic: the second mode (with opposite sign!) is not at all picked up by the classical
analysis.

Generally, averaged point estimates are often not too far from the posterior modes resulting from
BMA, but most classical confidence intervals are far narrower than their posterior counterparts, thus
severely underestimating uncertainty. This is not surprising in view of the fact that Sala-i-Martin’s
confidence intervals are based on the averaged variances (formula (5) in Sala-i-Martin, 1997b),
which amounts to neglecting the (weighted) variance of point estimates across models. This also
explains why CDF(0) using approach 1 (as defined in footnote 1 and presented in Sala-i-Martin,
1997a) is virtually always larger than with approach 2.

4. PREDICTIVE RESULTS

An important quality of a model is that it can provide useful forecasts. In addition, such a
predictive exercise immediately provides a benchmark for evaluating the model’s adequacy. We
consider predicting the observable yf given the corresponding values of the regressors, grouped in
a k-dimensional vector zf (which has been transformed in the same way as Z —i.e. by subtracting
the average of the original regressors over the n observations on which posterior inference is
based—in order to assign the same interpretation to the regression coefficients in posterior and
predictive analysis).
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Prediction naturally fits in the Bayesian paradigm as all parameters can be integrated out,
formally taking parameter uncertainty into account. If we also wish to deal with model uncertainty,
BMA as in equation (5) provides us with the formal mechanism, and we can characterize the
out-of-sample predictive distribution of yf by

p�yfjy� D
2k∑

jD1

fS

(
yf
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where fS�xj', b, a� denotes the p.d.f. of a univariate Student-t distribution with ' degrees of
freedom, location b (the mean if ' > 1) and precision a (with variance '/fa�' � 2�g provided
' > 2) evaluated at x. In addition, zf,j groups the j elements of zf corresponding to the regressors
in Mj, ˇŁ
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jZj��1Z0
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We shall now split the sample into n observations on which we base our posterior inference
and q observations which we retain in order to check the predictive accuracy of the model. As
a formal criterion, we shall use the log predictive score (LPS ), introduced by Good (1952). It is
a strictly proper scoring rule, in the sense that it induces the forecaster to be honest in divulging
his predictive distribution. For f D n C 1, . . . , n C q—i.e. for each country in the prediction
sample—we base our measure on the predictive density evaluated in these retained observations
ynC1, . . . , ynCq, namely:

LPS D �1

q

nCq∑
fDnC1

lnp�yfjy� �11�

The smaller LPS is, the better the model does in forecasting the prediction sample. Interpreting
values for LPS can perhaps be facilitated by considering that in the case of i.i.d. sampling, LPS
approximates an integral that equals the sum of the Kullback–Leibler divergence between the
actual sampling density and the predictive density in equation (9) and the entropy of the sampling
distribution (Fernández et al., 2001). So LPS captures uncertainty due to a lack of fit plus the
inherent sampling uncertainty, and does not distinguish between these two. Here we are necessarily
faced with a different zf for every forecasted observation (corresponding to a specific country), so
we are not strictly in the context of observations that are generated by the same distribution. Still,
we think the above interpretation may shed some light on the calibration and comparison of LPS
values. If, for the sake of argument, we assume that we fit the sampling distribution perfectly, then
LPS approximates entropy alone. In the context of a Normal sampling model with fixed standard
deviation Ł, this latter entropy can then be translated into a value for Ł, using the fact that entropy
equals ln�Ł

p
2+e�. Thus, a known Normal sampling distribution with fixed Ł would induce the

same inherent predictive uncertainty as measured by LPS , if we choose Ł D exp�LPS�/
p

2+e.
Of course, as a direct consequence, a difference in LPS of, say, 0.1, corresponds to about a 10%
difference in values for Ł.

We shall use LPS to compare four different regression strategies: the BMA approach, leading to
equation (9), the best model—i.e. the one with the highest posterior probability—in M, the best
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574 C. FERNÁNDEZ, E. LEY AND M. F. J. STEEL

Table II. Predictive Performance

Number of times LPS

Best Worst Beaten by null Min Mean Max

BMA 9 0 2 �3.470 �2.977 �2.408
Best model in M 0 8 12 �3.370 �2.316 �1.268
Best model in MI 8 0 4 �3.460 �2.838 �1.341
Full model 3 8 12 �3.266 �2.261 �0.940
Null model 0 4 . . . �2.850 �2.560 �1.853

model in MI, and the full model with all k regressors. As a benchmark for the importance of growth
regression, we also include LPS for the ‘null model’, i.e. the model with only the intercept where no
individual country characteristics are used. We would expect this model to reproduce the marginal
growth distribution (without conditioning on regressors) pretty well. As the sample standard
deviation of growth is 0.01813, we could then roughly expect LPS values for the null model
around the entropy value corresponding to Ł D 0.01813, which is �2.591. For the regression
models, we would hope that they predict better, since they use the information in the regressors,
and this should ideally be reflected in a smaller LPS or a conditional Ł value under 0.01813.

The partition of the sample into the inference and the prediction sample is done randomly,
by assigning observations to the inference sample with probability 0.75. The results of twenty
different partitions are summarized in Table II. Besides numerical summaries of the LPS values,
we also indicate how often the model is beaten by the trivial null model, and how often the model
performs best and worst. The following key characteristics emerge: the null model performs in a
fairly conservative fashion and its mean LPS is very close to what we expected on the basis of the
sample standard deviation. The full model and the best model in M are beaten by the benchmark
null model in over half the cases, and clearly perform worst of the regression models. The best
model in MI does quite a bit better and generally improves a lot on the null model, but can
sometimes lead to very bad predictions (the maximum value of LPS corresponds to Ł D 0.0633,
3.5 times that of the sample). In contrast, the BMA approach never leads us far astray: it is only
beaten by the null model twice and the largest value of LPS corresponds to Ł D 0.0218 (and this
occurs in a case where it actually outperforms all other models by a large margin). It performs
best most frequently and the best prediction it produced corresponds to Ł D 0.0075 which is only
about 40% of the sample standard deviation. The mean LPS value for the BMA model corresponds
to Ł D 0.0123, i.e. a reduction of the sample standard deviation by about a third.

The fact that BMA does so much better than simply taking the best model is compelling
evidence supporting the use of formal model averaging rather than the selection of any given
model. Interestingly, the best model in MI does better than the best model in M (which contains
MI). This underlines that the highest posterior probability on the basis of the inference sample
does not necessarily lead to the best predictions in the prediction sample. In addition, MI is
restricted to those models that include the three regressors always retained by Sala-i-Martin on
theory grounds. This extra information (although not always supported by the data) may help in
predicting.11

11 Of course, this relative success of the best model in MI has no immediate bearing on the predictive performance of a
classical analysis.
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In summary, the use of regression models with BMA results in a considerable predictive
improvement over the null model, thus clearly suggesting that growth regression is not a futile
exercise, although care should be taken in the methodology adopted.

5. DISCUSSION

The value of growth regression in cross-country analysis has been illustrated in the predictive
exercise in the previous section. We agree with Sala-i-Martin (1997b) that some regressors can be
identified as useful explanatory variables for growth in a linear regression model, but we advocate
a formal treatment of model (and parameter) uncertainty. In our methodology the marginal impor-
tance of an explanatory variable does not necessarily imply anything about the size or sign of the
regression coefficient in a set of models, but is based entirely on the posterior probabilities of mod-
els containing that regressor. In addition, we go one step further and provide a practical and theoret-
ically sound method for inference, both posterior and predictive, using Bayesian Model Averaging
(BMA). From the huge spread of the posterior mass in model space and the predictive advantage
of BMA, it is clear that model averaging is recommended when dealing with growth regression.

Our Bayesian paradigm provides us with a formal framework to implement this model averaging,
and recent Markov chain Monte Carlo (MCMC) methods are shown to be very powerful indeed.
Despite the huge model space (with 2.2 trillion models), we obtain very reliable results without
an inordinate amount of computational effort.12

The analysis in Sala-i-Martin (1997b) is not Bayesian and thus no formal model averaging can
occur, even though he considers weighing with the integrated likelihood.13 In addition, the latter
analysis evaluates all models and is thus necessarily restricted to a rather small set of models,
MS, which seems not to receive that much empirical support from the data. Even though we find
a roughly similar set of variables that can be classified as ‘important’ for growth regressions, a
crucial additional advantage is that our results are immediately interpretable in terms of model
probabilities and all inference can easily be conducted in a purely formal fashion by BMA. It is
not clear to us what to make of the recommendations in Sala-i-Martin (1997b): should the applied
researcher use all the regressors identified as important or mix over the corresponding models in
MS? However, the latter would have to be without proper theoretical foundation or guidance if a
classical statistical framework is adopted.

In our view, the treatment of a very large model set, such as M, in a theoretically sound and
empirically practical fashion requires BMA and MCMC methods. In addition, this methodology
provides a clear and precise interpretation of the results, and immediately leads to posterior and
predictive inference.
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