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Preface

Zipt’s law is one of the few quantitative reproducible regularities found
in economics. It states that, for most countries, the size distributions of city
sizes and of firms (with additional examples found in many other scientific
fields) are power laws with a specific exponent: the number of cities and of
firms with size greater than S is inversely proportional to S. Most explana-
tions start with Gibrat’s law of proportional growth but need to incorporate
additional constraints and ingredients introducing deviations from it. Here,
we present a general theoretical derivation of Zipf’s law, providing a syn-
thesis and extension of previous approaches. First, we show that combining
Gibrat’s law at all firm levels with random processes of firm’s births and
deaths yield Zipf’s law under a “balance” condition between firm growth and
their death rate. We find that Gibrat’s law of proportionate growth does not
need to be strictly satisfied. As long as the volatility of firm’s sizes increases
asymptotically proportionally to the size of the firm and that the instanta-
neous growth rate increases not faster than the volatility, the distribution
of firm sizes follows Zipf’s law. This suggests that the occurrence of very
large firms in the distribution of firm sizes described by Zipf’s law is more
a consequence of random growth than systematic returns: in particular for
large firms, volatility must dominate over the instantaneous growth rate. We
develop the theoretical framework to take into account (i) time-varying firm
creation, (ii) firm’s exit resulting from both a lack of sufficient capital and
sudden external shocks, (iii) the coupling between firm’s birth rate and the
growth of the value of the population of firms. We predict deviations from
Zipf’s law under a variety of circumstances, for instance when the balance
between the birth rate, the non-stochastic growth rate and the death rate is
not fulfilled, providing a framework for identifying the possible origin(s) of
the many reports of deviations from the pure Zipf’s law. Reciprocally, devi-
ations from Zipf’s law in a given economy provides a diagnostic, suggesting
possible policy corrections. The results obtained here are general and provide
an underpinning for understanding and quantifying Zipf’s law and the power
law distribution of sizes found in many fields.
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1. Introduction

One of the broadly accepted universal laws of complex systems, partic-
ularly relevant in social sciences and economics, is that proposed by Zipf
(1949). Zipf’s law usually refers to the fact that the probability P(s) =
Pr{S > s} that the value S of some stochastic variable, usually a size or
frequency, is greater than s, decays with the growth of s as P(s) ~ s~!. This
in turn means that the probability density functions p(s) exhibits the power
law dependence

p(s) ~ 1/s™ with m=1. (1.1)

Perhaps the distribution most studied from the perspective of Zipf’s law is
that of firm sizes, where size is proxied by sales, income, number of employees,
or total assets. Many studies have confirmed the validity of Zipf’s law for firm
sizes existing at current time ¢ and estimated with these different measures
(Simon and Bonini 1958, Ijri and Simon 1977, Sutton 1997, Axtell 2001,
Okuyama et al. 1999, Gaffeo et al. 2003, Aoyama et al. 2004, Fujiwara et
al. 2004, Fujiwara et al. 2004, Takayasu et al. 2008).

Initially formulated as a rank-frequency relationship quantifying the rel-
ative commonness of words in natural languages (Zipf 1949), Zipf himself
recognized in his book the general relevance to this law to the distribu-
tion of city sizes, among others. Many works have since shown that Zipf’s
law indeed accounts well for the distribution of city sizes (see for a review
(Gabaix 1999) and references therein), as well as firm sizes all over the world,
as just mentioned. Zipf’s law has also been found in Web access statistics and
Internet traffic characteristics (Glassman 1994, Nielsen 1997, Adamic and
Huberman 2000, Barabasi and Albert 2002) (and with deviations (Breslau et
al. 1999)), in inbound degree distributions over Web pages (Kong et al. 2008),
in weekend gross per theater for a movie (scaled by the average weekend gross
over its theatrical lifespan) (Sinha and Pan 2006), in bibliometrics, informet-
rics, scientometrics, and library science (Adamic and Huberman 2002, and
references therein) and in the distribution of incoming links to packages found
in different Linux open source software releases (Maillart et al. 2008)). Sinha
and Pan (2006) provides a rather exhaustive review of the many power laws
found in the distribution of human activities. There are also suggestions for
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Fig. 1.1. Tlustration of Zipf’s law for city sizes (upper left panel, reproduced from
Ioannides and Gabaix (2003)), for firm sizes (upper right panel, reproduced from
Axtell (2001)), for the number of Internet links pointing to some website (lower
left panel, reproduced from Adamic and Huberman (2002)) and for the number of
incoming links to packages found in different Linux open source software releases
(lower right panel, reproduced from Maillart et al. (2008)).

applications to other physical and biological, sociological and financial market
processes. For instance, using data from gene expression databases on various
organisms and tissues, including yeast, nematodes, human normal and cancer
tissues, and embryonic stem cells, Furusawa and Kaneko (2003) found that
the abundances of expressed genes obey Zipf’s law. See the list of references in
http://linkage.rockefeller.edu/wli/zipf/index_ru.html. Figure 1.1
illustrates several cases where Zipf’s law holds for different fields of social
and natural sciences.

We should point out that there are some dissenting notes. For instance,
several works have suggested that, for the distribution of firm’s sizes, the
lognormal distribution may actually be a better model than Zipf’s law
(Stanley et al. 1995, Cabral and Mata 2003, Kaizoji et al. 2006, Duchin and
Levy 2008, Schwarzkopf and Farmer 2008). The issue is confounding because
often the authors are not always speaking of the same thing. Stanley et al.
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(1995)’s result has now been understood as due to an incomplete database,
missing most of the small firms and hence biasing the distribution downward
towards the lognormal shape for small firms (Axtell 2001). Axtell (2001) has
shown that firm’ sizes measured by the number of employees, by the total
sales or by the economic capital (debt + equity) are all consistently obeying
Zipf’s law. From an economic view point, it can indeed be expected that these
three firm characteristics are globally proportional to each other in a same
industry branch, or for a same business model, so that if Zipf’s law holds for
one of them, it should hold for the others. On the other hand, equity provides
only a part of the economic capital of a firm, which depends on the financing
strategies chosen by the firm, in addition to the impact of the stock market
fluctuations. It is not clear that the financing strategies are stationary as a
function of time, except perhaps for mature firms with no more any innova-
tion or M&A (mergers and acquisitions) for which the financial structure of
the firm (its debt/equity ratio) may be approximately constant. Therefore,
the fact that Zipf’s law may not be the best model for the distribution of
equity sizes (Duchin and Levy 2008) is not surprising. Another issue is the
possible slow convergence of the distribution to its expected asymptotic long-
time shape (Schwarzkopf and Farmer 2008). Difference between countries due
to the presence of specific financial constraints may be also an issue (Cabral
and Mata 2003).

Kitov (2009) points out that the significant differences in the evolution
of firm size distribution for various industries in the United States puts im-
portant constraints on the modelling of firm growth. This line of thought
opens the road toward linking asset pricing models, investment strategies
and firm growth processes. In this spirit, Malevergne and Sornette (2007)
have discovered a new endogenous pricing factor resulting from the heavy-
tailed distribution of firm sizes, which has empirically a similar explanatory
power as the phenomenological Fama-French three-factor model (Fama and
French 1993, Fama and French 1995).

Employing Census 2000 data to create the most extensive and thorough
investigation to date of the distribution of city sizes in the U.S.A, Eeckhout
(2004) reported that the empirical distribution follows a lognormal distri-
bution rather than Zipf’s law. Reanalyzed this data, Levy (2008) confirms
that the lognormal distribution indeed provides an excellent fit to the em-
pirical data for 99.4% of the size range. However, for the top 0.6% of largest
cities, the empirical distribution is dramatically different from the lognor-
mal, and follows a power law. Levy notes that, while this top part of the
distribution involves only 0.6% of the cities, it is extremely important as it
accounts for more than 30% of the sample population. This type of hybrid
lognormal-power-law distribution will find a natural explanation in the frame-
work that we develop in the following chapters, and in particular in Chapter
6. The debate is however not closed as Eeckhout (2008) argues that the de-
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viations from the lognormal model identified visually by Levy (2008) can be
expected from the confidence bands generated by the Lilliefors test with five
percent significance level. The problem however is that Eeckhout (2008)’s
argument is based on a very weak test: the Lilliefors test, an adaptation of
Kolmogorov-Smirnov test, is inadequate to identify deviations that occur in
the tail, since its statistics is constructed from the maximum discrepancy be-
tween the lognormal and the empirical distribution. Anderson-Darling tests,
for instance, are more adapted to the problem of distinguishing distributions
in their tails (Malevergne et al. 2005, Malevergne and Sornette 2006). In a
forthcoming paper, Malevergne et al. (2009) develop a more powerful test
specifically designed to compare the lognormal family to the power law fam-
ily, which confirms quantitatively the intuition of Levy (2008). In order to
address the issues associated with the definition of a city (administrative or
geographic), Rozenfeld et al. (2009) employ a recently proposed clustering
algorithm Rozenfeld et al. (2008) to construct cities from the bottom-up,
without administrative data, but by using geographical proximity. They find
that Zipf’s law holds for cities above 10’000 inhabitants in the US, and above
1’000 inhabitants in the UK.

Among the many more or less successful explanations proposed to un-
derstand the origin of Zipf’s law, one of the most promising seems to be
the explanation by Gabaix (1999) and Ioannides and Gabaix (2003) for-
mulated in the context of the distribution of city sizes, based on Gibrat’s
law. Gabaix (1999) assumed that each city exhibits a stochastic growth rate
distributed independently from its present size. Gibrat’s law for city growth
(together with some deviations of Gibrat’s law for small sizes), normalized
to the whole population of a given country, then leads to distributions of
city sizes very close to Zipf’s law. In general terms, Gibrat’s law amounts to
assume a stochastic multiplicative process. Such processes are found in many
economic as well as natural systems (Sornette 2006, and references therein).
As a recent illustration, Clauset and Erwin (2006) explain in this way (with
the inclusion of a mechanism involving size-dependent long-term extinction
risks) the evolution and distribution of biological species body sizes.

However, the derivation of Zipf’s law from the pure Gibrat’s rule suffer
from a few problems. First, the exact scale-independent Gibrat’s law leads
to a log-normal distribution of sizes, which is not a power law and only
slowly converges to a power law in the limit of large log-variance (and some
other conditions), becoming at the same time more and more degenerate.
Some additional assumptions are therefore needed in order to produce the
stable non-degenerate Zipf’s law. In particular, Gabaix (1999) assumed that,
for cities of small sizes, there are some exogenous factors preventing further
decaying of their population (see also (Levy and Solomon 1996, Malcai et
al. 1999)). More appropriate to social and economic phenomena is to allow
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for eliminating cities or firms as they reach a small size. An example is the
transition from city to rank of village as the size goes below some threshold.

More generally, it is important to take into account the continuous pro-
cess with births and deaths, which plays a central role at time scales as
short as a few years. This is in contrast with Gabaix’s approach for instance
based on the supposition, simplifying considerably the theoretical modeling,
that all cities originate at the same instant ¢y, and then only grow stochasti-
cally, obeying the balanced Gibrat’s law mentioned above. This supposition
is clearly falsified by empirical evidence, as discussed later in the book.

A goal of this book is to demonstrate that birth as well as death processes
are especially important to understand the economic foundation of Zipf’s
law and its robustness. Yamasaki et al. (2006) have shown that a model of
proportional growth of the existing firms in the presence of a steady influx of
new firms leads to Zipf’s law truncated by an exponential taper, without the
need to modify Gibrat’s law for small sizes. The exponential cut-off results
from the finite life of the economy. Our general analysis encompasses these
results and put them in a larger perspective. Expressed in the context of
an economy of firms, we will consider two different mechanisms for the exit
of a firm: (i) when the firm total asset value becomes smaller than a given
minimum threshold (which can vary with time and with countries) and (ii)
when an exogenous shock occurs, modeling for instance operational risks,
independently of the size of the firm. Of course, these two mechanisms have
their counterparts in the different fields of application where Zipf’s law is
discussed.

The following chapters are built on the realistic description of the behav-
ior of the asset value of firms (which is more dynamic than the formation
of cities), according to which the births of firms occur according to a ran-
dom point process characterized by some intensity v(t). Jointly, one should
take into account the well-documented evidence that firms die, for instance
when their size go under some low asset value level. It turns out that taking
into account the random flow of firm births and deaths, in combination with
Gibrat’s law, leads to the pure and non-degenerate Zipf’s law under a balance
condition, without the need for the rather artificial modification of Zipf’s law
for small sizes [We note that the fact that deviation of Gibrat’s law has been
documented for small firms is another issue, as the documented deviations
do not necessarily obey the assumptions needed in Gabaix’s derivation.] As
a bonus, the approach in terms of the dynamics of birth-death together with
stochastic growth, that we develop here, leads to specific predictions of the
conditions under which deviations from Zipf’s law occur, which help ratio-
nalize the empirical evidence documented in the literature. The conditions
involve either deviations from Gibrat’s law in the stochastic growth process of
firms or the existence of an unbalanced growth or decay of the birth intensity
v(t) of new firms, as we explain in details below.

Gabaix’ model
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In the theory developed in the following chapters, we also take into ac-
count that the intensity of firm’s births may increase exponentially, that the
sizes of entrant firms and the minimum viable size may grow exponentially
with time with additional random fluctuations, hence generalizing Blank and
Solomon (2000). Putting all elements and results of our analyses together,
we conclude that the explanation for the generic empirical evidence that the
exponent m is close to 1 (Zipf’s law) is likely due to the weak dependence
of m on the different parameters of the problem. This renders unnecessary
the question for why the parameters would combine to obey exactly the bal-
ance condition. The closeness of the exponent m to 1 for a large range of
parameters is quantified for instance in figures 7.5 and 8.1.

For transparency of derivations and for convenience of analytic calcula-
tions, we use a continuous version of Gibrat’s law, allowing us to benefit
from the properties of the Wiener process and the mathematical framework
of Kolmogorov’s diffusion equations. We unearth new properties associated
with the stochastic behavior of firm assets. We show that the death of firms
at some low value level as well as the possibility of significant deviations from
Gibrat’s law do not affect the asymptotic validity of Zipf’s law in the limit of
large firm sizes. By analyzing a large class of diffusion processes modeling the
behavior of firm assets with growth rates very different from Gibrat’s condi-
tion, we find general conditions for the validity of Zipf’s law. Specifically, we
have discovered stochastic growth models with non-Gibrat properties, lead-
ing to Zipf’s and related power laws for the current density of firm’s asset
values.

Our book does not cover the more economically based theories, in the
spirit for instance of Lucas (1978), which developed a theory of size distri-
bution of business firms based on an underlying distribution of managerial
talents and the competitive process of allocation of productive factors. Simi-
larly, we do not expand on the general equilibrium model of the distribution
of firm sizes proposed by Luttmer (2007), in terms of primitives such as entry
and fixed costs, and the ease with which entrant firms can imitate incumbent
firms. Let us also mention Rossi-Hansberg and Wright (2007a) which develops
a general equilibrium theory of economic growth in an urban environment. In
this theory, variation in the urban structure through the growth, birth, and
death of cities is the margin that eliminates local increasing returns to yield
constant returns to scale in the aggregate. They show that scale-independent
growth for a finite number of industries, combined with an empirically-based
form of entry and exit and a lower bound for establishment sizes that con-
verges to zero, is sufficient to generate an invariant distribution that satisfies
Zipf’s law. Rossi-Hansberg and Wright (2007b) present a theory of the es-
tablishment size dynamics based on the accumulation of industry-specific
human capital that simultaneously rationalizes the economy-wide facts on
establishment growth rates, exit rates, and size distributions. Using a sim-
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ple model of market share dynamics with boundedly rational consumers and
firms interacting with each other, Yanagita and Onozaki (2008) find that,
in an oligopolistic phase associated with intermediate greediness of agents,
the market-share distribution of firms follows Zipf’s law and the growth-rate
distribution of firms follows Gibrat’s law.

The book is organized as follows. Chapter 2 presents the continuous ver-
sion of Gibrat’s law and some peculiarities of the stochastic behavior of the
geometric Brownian motion of firm’s asset values, resulting from Gibrat’s
law.

Chapter 3 describes the proposed model for the current density of firm’s
asset values, taking into account the random flow of the birth of firms. We
show that, if some natural balance condition holds, while the intensity of
firms is independent of time (v = const), then the exact Zipf’s law holds
true.

Amazingly, despite the relevance of Gibrat’s law and the corresponding
geometric Brownian motion in a wide range of physical, biological, sociologi-
cal and other applications, many researchers do not make use of many of the
interesting properties exhibited by realizations of the geometric Brownian
motion, in order to derive detailed explanations of Zipf’s and related power
laws. Thus, in chapter 4, we gather little-known information concerning the
statistical properties of realizations of the geometric Brownian motion, which
play a significant role for the understanding of the roots and conditions of
the validity of Zipf’s law.

Chapter 5 discusses in detail the influence on the validity of Zipf’s law
of the occurrence of the death of firms when their value falls below some
low level. In chapter 6, we derive an equation for the steady-state density
of firm asset values, which enables us to explore in detail the consequences
of deviations from Gibrat’s law at moderate asset values on the validity of
Zipf’s law at higher asset values.

Chapter 7 is devoted to discussing the conditions for the existence of Zipf’s
law and the circumstances under which deviations from it occur, when taking
into account the possibility for sudden death of firms occurring even for large
sizes. Chapter 8 provides the most general treatment taking into account time
dependence of birth rates, sizes at birth, and minimum firm sizes. Chapters 7
and 8 show that, with all these additional ingredients, Zipf’s law holds if a
generalized balance condition is valid. In particular, we discuss the robustness
of Zipf’s law to variations of the mean birth rate and of the rate of growth
of the mean asset value of particular firms. Moreover, we find that Zipf’s law
is “attracting” the power laws found in absence of the strict validity of the
balance condition: as the volatility of the growth of firms increases, the power
law distribution of firm’s sizes becomes closer to Zipf’s law, and the later is



16 1. Introduction

obtained asymptotically for very large volatilities for all values of the other
parameters.

All previous chapters have emphasized the dynamics of the statistical
average of various firm properties in the limit where the number of firms in
the economy grows without bounds. Chapter 9 asks if the results described
in previous chapters can be used for the description of a single realization
of a finite economy, an issue of great importance for the application of our
theory to empirical data. For this, we derive the statistics of the number of
firms, the fluctuation characteristics of the size of the global economy and the
size of fluctuations decorating the asymptotic Zipf’s law for finite economies.
We provide a simple estimation of the expected statistical deviations from
Zipf’s law and its range of validity for realistic parameters. This provides a
benchmark for assessing the range of validity of Zipf’s law in empirical data.

Chapter 10 concludes first by stressing the importance of the balance
conditions for Zipf’s law to hold. Then, we provide the nucleus of what could
be a more complete mathematical theory of firm sires, based on taking into
account in addition the mergers between firms as well as it symmetric, the
creation of spin-off firms from parents which outsource a part of their existing
business as separate units. These economic events can be modeled by using
the mathematics of coagulation-fragmentation processes, which are briefly
described here in the context of the dynamics of firms. We provide only a
preliminary introduction to encourage future works to tackle these complex
and rich issues.

For clarity, consistence of language and conciseness, we will discuss the
origin and conditions of the validity of Zipf’s law using the terminology of
financial markets and referring to the density of the firm’s asset values. We use
firms at the entities whose size distributions are to be explained. It should be
noted, however, that most of the relations discussed in this book, especially
the intimate connection between Zipf’s and Gilbrat’s laws, underlie Zipf’s
law in diverse scientific areas. The same models and variations thereof can
be straightforwardly applied to any of the other domains of application.
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