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Explaining the cross-sectional 

characteristics of asset returns is the grail of 
financial economists. Using their properties 
to devise efficient asset allocations is the 
quest of professional managers. The mean-
variance approach [Markovitz, 1952] and 
the CAPM (capital asset pricing model) 
were the first integration of these two goals 
into a fully coherent self-consistent 
framework [Treynor, 1961; Sharpe 1964;  

 

Lintner, 1965; Mossin, 1966]: because 
rational investors all choose to invest in the 
optimal tangent Markowitz portfolio, the 
expected return of each asset has to adjust at 
equilibrium, i.e., under the balance of supply 
and demand, to exhibit a risk premium that 
is simply proportional to the expected return 
of the global market portfolio, which is itself 
the tangent Markowitz portfolio. This kills 
two birds with one stone, as it provides a full 
explanation of financial returns and makes 
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portfolio managers redundant since the 
optimal investment strategy is to hold a 
mixture of the market portfolio and the risk-
free asset (supposedly a short-term US 
government bond). In practice, it is well-
known that the CAPM does not work (and 
cannot even be properly tested [Roll, 1977]), 
so that a wealth of extensions and alternative 
theories have been concerned with refining, 
extending, or generalizing altogether the 
CAPM, leading for instance to the arbitrage 
pricing theory [Ross, 1976], or to the 
phenomenological three factor model of 
Fama and French [1993] that accounts for 
size and book-to-market effect or the four  
factor model of Cahart [1997] that 
introduces the momentum effect among 
many others. The emphasis has been and 
still is on the many pricing anomalies, on the 
non-Gaussian and long memory properties 
of financial returns and on the behavioral 
bounded rationality of investors and how 
they impact the cross-sectional 
characteristics of asset returns and the art of 
investment management. 

Recently, Levy and Roll [2010] proposed a 
radically different perspective and suggested 
that the inadequacy of the CAPM could just 
result from statistical errors. Markowitz’ 
portfolio optimization requires the 
knowledge of both the expected returns and 
of the covariance matrix of the assets. It is 
well known that the optimum portfolio 
weights are very sensitive to return 
expectations, which are very difficult to 
determine. For instance, historical returns 
are bad predictors of future returns [Siegel, 
2007]. Estimating covariance matrices is a 
delicate statistical challenge that requires 
sophisticated methods (see for instance 
[Ledoit and Wolf, 2004]). It is fair to state 
that, due to the large statistical errors of the 
inputs of Markowitz’ portfolio optimization, 

its results are not reliable and should be 
considered very cautiously. This led Levy 
and Roll [2010] to turn the usual approach 
on its head and posit that the market 
portfolio is the efficient tangent Markowitz 
portfolio, i.e., it is mean-variance efficient, 
and ask how much the inputs should be 
tinkered with to allow this. Remarkably, 
they found that only minor adjustments of 
the input parameters are needed, well within 
the statistical uncertainties. They showed in 

addition that the systematic risk  of the ith 

asset derived from their procedure is 
consistent with the  calculated directly 

from CAPM. 

Here, we present a series of tests and 
applications. We apply first the Levy-Roll 
procedure to the 25 Fama-French portfolios 
sorted by sizes and book-to-market values. 
We check the consistency of the Levy-Roll 
approach by investigating how the adjusted 
stock returns of specific stocks are modified 
when varying the basket of stocks they 
belong to. We test the dynamical 
performance of the Levy-Roll procedure 
over the period from January 1992 to 
December 2009. Finally, we show how to 
exploit the method for better portfolio 
allocations.  

THE LEVY-ROLL PROCEDURE 

Levy and Roll have found that applying 
small variations on the asset expected 
returns and covariance within their 
estimation error bounds make the market 
portfolio proxy mean-variance efficient. 
Following their results, a new estimation 
procedure of these return parameters can be 
proposed. The key idea is to find the return 
parameter vector  and standard deviation 

parameter vector , which are closest to 
their sample counterparts , and at 



	
   3	
  

the same time ensure that the market proxy 
m is mean-variance efficient. Then, standard 
statistical tests are applied to qualify that 
one cannot reject at the usual confidence 
level of 95% that the obtained vectors  

and  are generated from the same 
distribution as the data. Specifically, we 
numerically solve the optimization problem 
of EXHIBIT 1. 

______________________________________________________________________________ 

EXHIBIT 1  

Optimization Problem 1: 

Minimize with respect to : 

 

Subject to: 

 

______________________________________________________________________________ 

In EXHIBIT 1, the function D  is 
defined as the distance between any 
parameter set  and the sample 
parameter set . The parameter α 
weights the relative impact of deviations of 
the returns versus the standard deviations 
from their sample counterparts. Scanning all 
possible values of α  from 0.1 to 0.9, we find 
that the results are robust for α  in the range 
from 0.5 to 0.75 (this last value being that 
chosen by Levy and Roll (2010)), with 
perhaps more stable results for α=0.6, the 
value corresponding to the results presented 
below.  

The constraint in the optimization problem 1 
is nothing but the mean-variance portfolio 
equation, where is the sample 

correlation matrix, is the vector of 

market proxy portfolio weights, q = , 

is the market standard deviation, is 

the market expected returns, and is the 

risk free returns.  

In order to calculate the covariance matrices, 
we apply the shrinkage method of Ledoit 
and Wolf [2003, 2004], which addresses the 
issues of singular covariance matrices 
occurring when the number of data points 
per asset (here 168 monthly returns) is 
smaller than the number of assets. 
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APPLICATION TO THE 25 FAMA-
FRENCH PORTFOLIOS 

We first investigate how this procedure 
performs on the Fama-French portfolio 
benchmarks [Fama and French, 1993]. 
Consider the 25 portfolios constructed from 
the size and book-to-market quintiles of the 
US market portfolio, as described on 
K. French [2010]’s website, based on the 
stocks in the NYSE, Amex and NASDAQ 
stock markets. These 25 portfolios are the 
canonical supporters of the three-factor 
Fama-French factor model. Is it possible that 
the Levy-Roll procedure could equally well 
explain the excess returns of these 25 
portfolios, with just the single market factor 
without the need for the two additional size 
and book-to-market factors? 

We proceed as follows. We first use the 
NYSE market. Using the data available at 
the end of June of each year t, the NYSE 
stocks are sorted by size (ME, market equity 
defined as the price times the number of 
outstanding shares) and (independently) by 
book-to-market equity (BE/ME, the ratio of 
the book value of a firm’s common stock 
(BE) to its market value). For the list of 
stocks sorted by book-to-market ratio, the 
ME of a given stock is defined as the market 
equity at the end of December of the former 
year , and the BE is the common book 
equity for the fiscal year ending in calendar 
year . The stocks of the NYSE are 
then split into 5 size quintiles and 5 book-to-
market quintiles, and the breakpoints of the 
size quintile  and of the book-to-market 

quintile  is recorded for the next step. 

Then, all stock data of the three markets 
(NYSE, Amex and NASDAQ) are included 
and split into 5 size quintiles and 5 book-to-
market quintiles by using the NYSE 

breakpoints  and . The 25 portfolios are 

then obtained as the intersections of the size 
and BE/ME quintiles. Applying the Levy-
Roll procedure described in Exhibit 1 on 
each of the 25 Fama-French portfolios, we 
obtain 25 sets , on which we apply two 
statistical tests, one for the vector , and 
one for the vector . For 23 portfolios out 
of 25, we find that all estimated expected 
stock returns are located in the 95% 
confidence interval derived from the t-value 
of the mean estimator. For the two 
remaining portfolios (Size 3 - BE/ME 2 and 
Size Big - BE/ME 2), the  estimates of 97% 
stocks are located in the 95% confidence 
interval. 

In order to qualify the statistical significance 
of the estimated ’s, the ratio 

 is calculated. Under the 

null hypothesis that the obtained standard 
deviations are generated by the same 
distribution as the sample estimates, we 

have   , where 

n is the number of observations. For 24 
portfolios out of 25, we find that all 
estimated standard deviations are located in 
the 95% confidence interval defined above. 
For the remaining portfolio (Size 4 - BE/ME 
2), the  estimators of 97% stocks are 
found to be within the 95% confidence 
interval. From the two tests, it can be 
concluded that most of the estimated 
parameters are well within 95% confidence 
interval of the null hypothesis that these 
values could have been generated by the 
same process as the data sample. 
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EXHIBIT 2 lists the number of stocks in 
each of these 25 Fama-French like portfolios 
constructed from 949 stocks in our database 
on the year 2009. We restrict our analysis to 
the 949 stocks for which we could ascertain 
data quality and completeness (see 
Appendix A). 

Applying the Levy-Roll procedure described 
in Exhibit 1 on each of the 25 Fama-French 
portfolios, we obtain 25 sets , on 
which we apply two statistical tests, one for 
the vector , and one for the vector . For 
23 portfolios out of 25, we find that all 
estimated expected stock returns are located 
in the 95% confidence interval derived from 
the t-value of the mean estimator. For the 
two remaining portfolios (Size 3 - BE/ME 2 
and Size Big - BE/ME 2), the  estimates of 
97% stocks are located in the 95% 
confidence interval. 

In order to qualify the statistical significance 
of the estimated ’s, the ratio 

 is calculated. Under the 

null hypothesis that the obtained standard 
deviations are generated by the same 
distribution as the sample estimates, we 

have   , where 

n is the number of observations. For 24 

portfolios out of 25, we find that all 
estimated standard deviations are located in 
the 95% confidence interval defined above. 
For the remaining portfolio (Size 4 - BE/ME 
2), the  estimators of 97% stocks are 
found to be within the 95% confidence 
interval. From the two tests, it can be 
concluded that most of the estimated 
parameters are well within 95% confidence 
interval of the null hypothesis that these 
values could have been generated by the 
same process as the data sample. 

 

 

 

EXHIBIT 2 

Number of Stocks in Each of the 25 
Fama-French Portfolio 1 

Book-­‐to-­‐Market	
  Equity	
  
(BE/ME)quintile	
  

Size	
  quintile	
  

Low	
   2	
   3	
   4	
   High	
  
Small	
   54	
   33	
   55	
   58	
   204	
  
2	
   26	
   31	
   32	
   36	
   25	
  
3	
   26	
   33	
   28	
   34	
   20	
  
4	
   37	
   25	
   30	
   20	
   18	
  
Big	
   52	
   33	
   21	
   16	
   2	
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EXHIBIT 3 

The Efficient Frontiers of the four Special Asset Sets in the 25 Fama-French Portfolios 

 

Note: In each of the four panels, the solid line represents the mean-variance frontier of the set of stocks described in the text with 
sample parameters, the dash line is the mean-variance frontier of the same asset set with parameters adjusted according to the Levy-
Roll procedure, and the dotted-line corresponds to the hybrid function obtained by putting the adjusted parameters in the equation 
governing the solid line. The star denotes the market proxy with the sample parameters, and the triangle denotes the market proxy 
with the adjusted parameters. In panel (a), the Small Growth asset set is used, which contains in the 144 stocks with the two smallest 
sizes and the two smallest book-to-market values among the 25 Fama-French portfolios shown in Exhibit 2. In panel (b), the Small 
Value asset set is used, which contains the 323 stocks with the two smallest sizes and the two largest book-to-market values among the 
25 Fama-French portfolios shown in Exhibit 2. In panel (c), the Large Growth asset set is used, which contains in the 147 stocks with 
the two largest sizes and the two smallest book-to-market values among the 25 Fama-French portfolios shown in Exhibit 2. In panel 
(d), the Large Value asset set is used, which contains the 56 stocks with the two largest size and two largest book-to-market values 
among the 25 Fama-French portfolios shown in Exhibit 2. 

 

 

 

 

 

 

 

 

EXHIBIT 3 shows the mean-variance 
frontiers obtained for four asset sets among 
the 25 Fama-French portfolios, which are 
typical of the obtained results. One can 
observe a very large change in the shape and 
values of the mean-variance frontiers when 
going from the sample versions to the ones 
with parameters adjusted with the Levy-Roll 
procedure. In particular, we find a 
systematic large reduction of the expected 
returns for given risk levels, making the 
adjusted values look more conservative and 
reasonable. A good feature of these results is 
that the expected return and standard 
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deviation of the market proxy remains 
practically unchanged when using the 
adjusted compared with the sample 
parameters. The rejection of the CAPM 
when using the sample parameters is seen by 
the fact that the market portfolio is far from 
the efficient frontier. In contrast, by 
construction, it lies on the mean-variance 
efficient frontier obtained with the adjusted 
parameters. Nonetheless, we have to observe 
that the CAPM alone is not enough to 
explain the risk-return tradeoff of the entire 
set of assets since the estimated risk-return 
couple of the mean-variance efficient 
portfolio that proxies the market portfolio 
significantly varies from one set of assets to 
the other. Therefore, even after adjustment, 
one single mean-variance efficient portfolio 
does not make vanish the size and book-to-
market effect. Besides, based on the sample 
risk-return estimates for the set of small cap-
value assets, investments in this style appear 
to be much more profitable than investments 
in the large cap-growth stocks at any risk 
level (see figures 3-b and 3c, solid line). 
However, using the adjusted risk-return 
parameters, the situation changes and the 
small-value stocks does not seem to 
outperform the large-growth stocks anymore 
(see figures 3-b and 3c, dashed line). This 
result challenges the conventional wisdom. 

 

CONSISTENCY OF THE LEVY-ROLL 
METHOD 

A natural concern is that the adjusted 
parameters found from the optimization 

problem 1 of Exhibit 1 may be specific to 
the selected set of stocks. When using a 
second set of stocks, it may be surmised that 
the adjusted parameters found for a given 
stock that is common to both sets and that 
solve the optimization problem 1 for this 
new set will be in general different from 
those obtained with the first set. If this 
would be the case, the Levy-Roll procedure 
would not reveal any insight on the cross-
sectional properties of the universe of stocks. 
It would be just a mathematical exercise, 
where the optimization program of problem 
1 leads to a kind of “over-fitting”. 

Levy and Roll [2010] partially addressed 
this issue by showing that the domains of 
compatibility found for different sets of 
stocks do not change too much when 
varying the number of assets in the 
optimization procedure.  By domain of 
compatibility is meant the domain in the 
space 	
   of solutions of problem 1 in 

Exhibit 1 such that 95% or more of the 
stocks have their parameters located in the 
95% confidence intervals of their sample 
counterparts. Levy and Roll [2010] tested 
the stability of the domains of compatibility 
for the more constrained Problem 2 
described in Exhibit 4, which adds to 
Problem 1 the conditions that the return and 
variance of the market portfolio are fixed to 
the pre-specified values .

___________________________________________________________________________ 

EXHIBIT 4 

Optimization Problem 2: 

Minimize with respect to :  
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Subject to: 

(i)  

(ii)  

(iii) . 

______________________________________________________________________________ 

While encouraging, Levy and Roll’s 
compatibility tests do not address the crucial 
question of the stability of the adjusted 
parameters for individual stocks, when they 
are included in different proxies of the 
market portfolios, with different other stock 
constituents and with different numbers of 
stocks. Indeed, it could be possible that two 
sets with different numbers of stocks have 
good overlapping compatible domain in the 
set of solutions  , but may contain 

common stocks whose corresponding 
adjusted return parameters strongly differ. If 
this is the case, the Levy-Roll procedure 
would not reveal any insight on the cross-
sectional properties of the universe of stocks 
and would just be a mathematical exercise, 
as already mentioned. It is thus essential to 
check that the adjusted parameters for the 
individual stocks are robust and genuinely 
uniquely associated with each stock. 

This is done using the methodology 
explained in Appendix B. It consists in 
calculating the adjusted parameters of the 
common stocks in the two different asset 
sets. Then the two market portfolio proxies 
constructed on the common stocks with their 

estimators derived from the different asset 
sets are compared to decide whether the two 
estimators are compatible. Specifically, we 
compare the compatible domains in the 
parameter space (return, standard deviation) 
of the market portfolio proxies and define 
their intersection as the common domain. 
The results presented in Appendix B show 
that the common domains remain large, 
even when the number of stocks is varied a 
lot. This supports the concept that the Levy-
Roll procedure is able to determine genuine 
hidden properties of the underlying assets.  

 

DYNAMIC STABILITY  

The previous series of tests have 
demonstrated the robustness and consistency 
of the Levy-Roll procedure with respect to 
variations of stock basket compositions. 
What about time consistency? This question 
is all the more acute, given the backward 
looking and unstable nature of the mean-
variance efficient frontier as a function of 
time.  
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We use the 949 stocks from our cleaned 
Bloomberg database data from January 1992 
to December 2009, organized in 16 rolling 
windows of three-year duration with yearly 
time step. The Levy-Roll procedure is 
applied to each of the sixteen 3-year-long 
windows to determine their corresponding 
adjusted parameters (  and ). EXHIBIT 
5 summarizes the goodness of fit for each of 
the 16 time windows, using the two 
statistical tests on the vectors  and  
described previously. Specifically, the 
column for  reports the percentage of the 
assets whose estimators are located in the 
95% confidence interval of the empirical . 
The column  gives the percentage of assets 
whose estimators are located in the 95% 
confidence interval of the empirical . 
Twelve out of the sixteen three-year period 
confirm that the adjusted cross-sectional 
returns are fully compatible with the 
hypothesis that the market portfolio is mean-
variant efficient.  

 

EXHIBIT 5 

The Goodness of the Parameters for the 
Portfolio in Different time periods 

period	
   μ	
   σ	
   period	
   μ	
   Σ	
  
1992-­‐1994	
  93.89%	
   100%	
   2000-­‐2002	
  98.84%	
   100%	
  

1993-­‐1995	
  94.84%	
   100%	
   2001-­‐2003	
  98.10%	
   100%	
  

1994-­‐1996	
  94.63%	
   100%	
   2002-­‐2004	
  22.87%	
   1.05%	
  

1995-­‐1997	
  16.75%	
   0%	
   2003-­‐2005	
   100%	
   0%	
  

1996-­‐1998	
  96.94%	
   100%	
   2004-­‐2006	
  98.63%	
   0%	
  

1997-­‐1999	
  96.52%	
   100%	
   2005-­‐2007	
  93.47%	
   100%	
  

1998-­‐2000	
  95.26%	
  99.58%	
  2006-­‐2008	
  97.79%	
  99.79%	
  

1999-­‐2001	
  98.84%	
  99.89%	
  2007-­‐2009	
  99.79%	
   100%	
  

 

For the four windows 1995-1997, 2002-
2004, 2003-2005 and 2004-2006, the Levy-
Roll procedure is rejected. Interestingly, 

they correspond to two periods (1995-1999 
and 2003-2006) that have been documented 
to be primary examples of financial bubbles. 
Diagnosing bubbles in real time remains the 
ultimate challenge of the profession. 
However, following the logic that the Levy-
Roll procedure indeed provides real hidden 
properties of the underlying assets, we 
propose that its rejection provides a novel 
tool to detect anomalous market regimes, 
such as bubbles.  

The Levy-Roll procedure also allows us to 
construct ex-ante portfolios and study their 
performance. Specifically, we consider the 
minimum standard deviation portfolio and 
the tangent portfolio (i.e., whose point 
within the mean-variance plot is on the line 
tangent to the efficient frontier that 
intersects the ordinate at the risk free rate 
value). Their vectors of asset weights are 
given respectively by 

 (1) 

where Ω is the adjusted covariance matrix of 
the 949 stocks of our Bloomberg database. 
Their ex-ante annual returns  and  

are given by 

,               (2) 

where  and  are the 
two row vectors of the weights calculated at 
the end of year , and  is the 
column vector of annual returns of all the 
stocks in the portfolio realized at the end of 
year . 
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EXHIBIT 6 

Annual Returns and Cumulative Returns 
of the Ex-Ante Portfolios 

 

Panel A: Annual Returns of the Ex-Ante minimum 
standard deviation portfolio and of the tangent 
portfolio with both sample parameters and adjusted 
parameters. The dashed line with triangles plots the 
yearly returns of the tangent portfolio with sample 
parameters, while the solid line with triangles plots the 
yearly return of the tangent portfolio with adjusted 
parameters. The dashed line with circles plots the 
yearly returns the minimum standard deviation 
portfolio with sample parameters. The solid line with 
circles plots the returns of the minimum standard 
deviation portfolio with adjusted parameters. The 
crosses show the returns of the buy-and-hold strategy, 
i.e., to the portfolio of the 949 stocks.  

 

 

Panel B: Cumulative Returns of the Ex-Ante 
minimum standard deviation and tangent portfolios, 
with the symbols as in panel A. The crosses show the 
cumulative returns of the buy-and-hold strategy, i.e., 
to the portfolio of the 949 stocks. 

 

 

 

 

EXHIBIT 6 compares the yearly returns 
(panel A) and cumulative returns (panel B) 
of the minimum standard deviation portfolio 
and of the tangent portfolio, with stock 
weights and returns determined either from 
the sample parameters or from their Levy-
Roll adjusted values. EXHIBIT 7 lists the 
corresponding yearly returns for these four 
portfolios. One can see that the two 
portfolios with Levy-Roll adjusted values 
have the nice quality of being significantly 
less volatile and with more consistent 
positive returns than the optimal portfolios 
determined with the sample parameters. This 
supports further the notion that the Levy-
Roll procedure extracts genuine and usable 
cross-sectional properties of the stock 
returns. 

EXHIBIT 7 

Table of the Annual Returns of the Ex-
Ante Portfolios shown in Exhibit 6 

year Rtgt,sam Rtgt,adj Rmin,sam Rmin,adj 
1995 0.479 0.525 0.522 0.53 
1996 1.617 0.252 0.164 0.16 
1997 1.33 0.362 0.368 0.36 
1998 0.172 0.641 0.04 0.6 
1999 -0.295 -0.203 -0.224 -0.2 
2000 -0.642 0.118 0.112 0.11 
2001 1.52 0.207 0.211 0.21 
2002 -0.16 0.067 0.074 0.07 
2003 0.21 0.232 0.232 0.23 
2004 0.364 0.211 0.213 0.21 
2005 0.189 0.119 0.008 0.13 

2006 0.174 0.305 0.095 0.25 
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2007 1.185 0.242 0.008 0.12 
2008 -0.412 -0.277 -0.288 -0.3 
2009 -3.126 -0.09 -0.146 -0.1 

Note: Rtgt,sam denotes the tangent portfolio return calculated 
with the sample parameters, Rtgt,adj denotes the tangent 
portfolio return calculated with the adjusted parameters, 
Rmin,sam denotes the minimum variance portfolio return 
calculated with the sample parameters, and Rmin,adj denotes 
the minimum variance portfolio return calculated with the 
adjusted parameters. 

 

DYNAMICAL LEVY-ROLL 
OPTIMIZATION FOR SMALL 
PORTFOLIOS 

If the Levy-Roll approach truly reveals 
useful information on the cross-sectional 
properties of stocks, this should translate 
into improved portfolio selections. Here, we 
test this proposition on the basket formed by 
the 20 largest stocks by capitalization at the 
beginning of each period among all stocks in 
the CRSP database. We assume a monthly 
reallocation, based on the Levy-Roll  
procedure applied on the realized stock 
returns of the preceding five years.  The data 
cover the period from January 1995 to 
December 2008, which correspond to one 
hundred and five monthly reallocations.  
The adjusted parameters (  and ) are 
estimated for each asset in each of the 105 
5-year period and two portfolios are formed 
at the beginning of each month, with 
weights given by expression (1) now applied 
to the 20 largest stocks. The ex-ante annual 
returns  of the minimum variance 

portfolio and  of the tangent portfolio 

are determined with expression (2) with both 
sample and adjusted parameters for 
comparison. Their values known at the 
beginning of each month determine the 
trading strategy. If the predicted return is 
smaller than the risk free rate, the capital is 
invested on the risk free asset. If the 

predicted return is larger than the risk free 
rate, the capital is allocated to the portfolio 
with weights on each stock according to 
expression (1). 

EXHIBIT 8 

Average realized annual returns and 
cumulative returns of the tangential and 
minimum variance portfolio with both 
sample parameters and adjusted 
parameters. 

	
   Rmarket	
   Rtgt,sam	
   Rtgt,adj	
   Rmin,sam	
   Rmin,adj	
  

µ -­‐0,06	
   -­‐0,06	
   0,06	
   -­‐0,13	
   -­‐0,03	
  

σ 3,98	
   10,91	
   4,20	
   3,15	
   3,27	
  

min	
   -­‐11,68	
   -­‐46,46	
   -­‐12,05	
   -­‐12,04	
   -­‐12,07	
  

max	
   11,31	
   49,97	
   17,76	
   6,45	
   6,44	
  

 

Panel A: Average realized Annual Returns in % of the 
5 Different Portfolios 

	
  

Panel B: Realized Cumulative Returns of the 5 
Different Portfolios 

Note: The diamonds plots the return of the tangent portfolio 
with sample parameters, the circles plots the return of the 
tangent portfolio with adjusted parameters, the pentagram 
plot the minimum standard deviation portfolio with the 
sample parameters, the triangles plots the minimum standard 
deviation portfolio returns with adjusted parameters, and the 
squares plots the return of the value weighted portfolio as the 
bench mark . 

EXHIBIT 8 shows the realized annual return 
of the tangential and minimum variance 
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portfolio with both sample parameters and 
adjusted parameters, compared with the 
performance of the value weighted portfolio. 
Even for such a small basket of assets, one 
can observe that the portfolios with the 
Levy-Roll adjusted parameters are by far the 
least volatile and exhibit the best overall 
performance over the whole period. 

 

CONCLUSION 

We have presented a series of evidences 
suggesting that it is possible to infer more 
robust, consistent and useful cross-sectional 
properties of arbitrary baskets of stocks from 
a simple procedure proposed recently by 
Levy and Roll [2010]. Indeed, insisting that 
the market portfolio is mean-variance 
efficient is found to (i) explain the cross-
sectional returns of the 25 Fama-French 
portfolios sorted by size and book-to-market 
values without the need for the two 
additional Fama-French factors, (ii) be 
consistent in extracting genuine, robust and 
idiosyncratic hidden properties of each stock 
return, independently of the basket of stocks, 
(iii) be dynamically robust over most studied 
time periods, (iv) and constitute a new 
method for optimal asset allocation with less 
volatile and larger realized returns. It thus 
seems that, not only the CAPM is not dead. 
On the contrary, insisting on its existence 
reveals novel cross-sectional properties of 
stocks that can be exploited operationally. 

 

ENDNOTES 

1The sum of the number of assets in 
each row (column) is different from one row 
(column) to the other due to the method 
retained to calculate the breakpoints of the 
size distribution of stocks. The quintiles are 
estimated on the basis of the stocks listed on 

the NYSE only, as in Fama and French 
approach. The breakpoints are then applied 
to the stocks listed on the AMEX, the 
NASDAQ and the NYSE. 

2There are many problems and faults 
in the Bloomberg database. All stocks with 
missing data are removed from our database. 
About 3171 stocks remain after data 
cleaning, among which 949 stocks cover the 
period from July 1991 to June 2009. 

3In our database, about 2335 out of 
6546 stocks cover the period from January 
1995 to December 2008. 

	
   4Since the 1-month Treasury Bill 
rate is not available on the website, we have 
to use 3-month Treasury Bill rate instead.  

5The sample parameters in the 
whole paper are referred to the naïve 
average returns and standard deviations. 

6The adjusted parameters in the 
whole paper are referred to the returns and 
standard deviations that are estimated from 
the Levy-Roll procedure. 

7The market proxy in the whole 
paper is referred to value weighted market 
portfolio. 
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APPENDIX A: DATA INFORMATION 

In this paper, two different databases are 
used, the Bloomberg database, and the 
CRSP database.  

Bloomberg database. In order to construct 
the 25 Fama-French portfolios, the book 
value is needed for each firm. Since the 
book value cannot be found in the CRSP 
database, we use the data from Bloomberg 
instead. The data includes the stocks 
obtained from the NYSE, Amex and 
NASDAQ. Selecting the stocks that have a 
complete monthly return time series from 
July 1991 to June 2009, and after data 
cleaning, we are left with the 949 stocks 
used in the analysis presented in this paper.2 

CRSP database. In the forward looking 
testing part of the paper, the book value is 
no longer needed. This allows us to use the 
more reliable data base – the Center for 
Research in Security Prices (CRSP) data 
base. The stocks of our sample data are still 
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chosen as part of the NYSE, Amex and 
NASDAQ over the period from January 
1995 to December 2008.3 

Risk free data. Though the whole paper, the 
3-month Treasury Bill rate is chosen as the 
risk free rate.4 The data is released by the 
Board of Governors of the Federal Reserve 
System, which can be retrieved from 
http://www.federalreserve.gov/. 

 

APPENDIX B: TECHNICAL DETAILS 
FOR THE COMPATIBILITY 
ANALYSIS 

Here we will give the technical details of the 
compatibility test of the method mentioned 
in the former text. Before that, we first give 
some definitions for the asset that we will 
use in the following test. We define  

as a stock set, which contains  stocks 
with the highest market value (price times 
shares outstanding) from the observing 
sample. By definition, , 

when . Considering , we define 

 as its compatibility domain, which 
can be calculated by using Optimization 
Problem 2 given in Exhibit 4, and  and 

 are the associated estimated parameter 

vector for the market portfolio proxy in the 
compatibility field of set . 

Given the set , we define 
 as the compatibility 

domain of the set that are composed of the 
first  largest assets in set .   

 is calculated by using 

 and , where  and 

 are the subspace of  and 

 associated with the first  assets. 

For , we define . 

To test the compatibility of the adjusted 
estimators, two different sets are built, using 
the CRSP database. First, we determine the 
intersection of  and of 

for a fixed n. Second, we 
calculated the intersection of  with all 
the sets .  This is 
performed for , and  

from 0 to  for each given . Panel 
A of EXHIBIT 9 illustrates the compatibility 
field of the asset set . The filled 

circles indicate the proxy  that is 

consistent with the mean-variance efficiency 
of the proxy portfolio and with the sample 
parameters. Panel 9 of EXHIBIT 9 gives the 
dependences of the domain areas, such as 
the one represented in panel A, 
corresponding to the two types of 
intersections as a function of n. The circles 
show the dependence of the domain 
area  as a 

function of n. The black triangles show the 
dependence of the domain area 

, for , 

and .  

Panel B of EXHIBIT 9 shows that  

remains remarkably stable with very little 
decrease for a large range of n. The more 
stringent test is of course provided by the 
dependence of , which without 

surprise decays with increasing n, but does 
not seem to shrink to the null set. 
Surprisingly,  remains quite large, 

even plateauing for n>>N, supporting the 
concept that the Levy-Roll procedure is able 
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to determine genuine hidden properties of 
the underlying assets. We have carried these 
tests for sets  with 

 and find the same 
positive consistent results.  

 

 

EXHIBIT 9 

Compatibility Test for the Levy-Roll 
Procedure 

 

Panel A: The Compatible Domain of .  The 

triangle corresponds to the parameters of the market 
portfolio proxy. 

 

Panel B: The Intersection of the Compatible domains 
with different size 

 


