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Linear models

* AR, MA, ARMA,ARIMA,...

p _ 9 _
(1 -y mjL’) (1—L)*X; = (1 +> QJ-L-J) g

1=1 1=1

Y B(i, t)r,

i<t

¢ linear trends B(r t)

e linear correlation

e cxtrapolations work as long as there 1s not a change of
trend, of regime ?




Low dimensional chaos
* Local vs global prediction methods

e Parameter estimations 1n the presence of noise
—leads to inconsistent MLE

—confluence analysis

* Local vs global prediction

S;i=X;Tn,
Xiw1=F(x;,a)=1 ax?

V. Pisarenko and D. Sornette, On Statistical Methods of Parameter Estimation 0
for Deterministically Chaotic Time-Series, Phys. Rev. E 69, 036122 (2004) ?

e Most systems are NOT low dimensional!
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e Large scale ‘‘coherent structures”




Bilinear stochastic models
r(t) =e(t) + be(t — l)e(t — 2)

e(t) 1s1.1.d. with std = s

The simplest case of the class of “Volterra discrete series™
x(t) = Hile(t)] + Hale(t)] + Hzle(t)] + - - - + Hyle(?)]

—+00 —+00
Hyle; x| = Z e Z hn(jt, ..., jl’l)el‘—jl e Cr—j -
j]ZO jn=0

e/ero linear correlation at all lags
eNon-zero three-point correlation function

E[r(t — 2)r(t — Dr(t)] = bs>

=) (some) NONLINEAR predictability!

D. Sornette and V.F. Pisarenko, Properties of a simple bilinear stochastic model: estimation and predictability, Physica D 237 (4), 429-445 (2008)




Bilinear stochastic models
r(t) =e(t) + be(t — l)e(t — 2)

e(t) 1s 1.1.d. with std = s

Problems: (1) estimation of b and s; (i1) derive e(t), e(t-1),... from r(t), r(t-1)...

ew) =rw)+beu—le(u—-2):; u=12,...,

where b’ = —b.

a: a>0u=1,2;
Impulse response to: ~ r(u) = 7 £1,2

|€(Ll)| — |b|F(Lt)aF(l..{)+l — a(|b|a)F(”)

I'k) = (1/vV/5)[(1 +v5)/21F — (1/v/5)[(1 — V/5)/21F

Conclusions: (1) explosive exp(exp) sensitivity on initial conditions for a|b[>1
(i1) the probability for a stable inversion depends on the length of the realization
(not warranted with certainty: strong sample to sample fluctuations)




Hierarchical complexity

e (Jow-dimensional) chaos
e Spatio-temporal chaos
e Turbulence

 Complex systems




IMPOSSIBILITY THEOREM

Algorithmic complexity theory: most complex
systems have been proved to be computationally
irreducible, 1.e. the only way to decide about their
evolution 1is to actually let them evolve 1n time.

The future time evolution of most complex systems
appears inherently unpredictable.




A new kind of Science?

Stephen Wolfram (Mathematica)




Lesson from bottom-up hierarchical grouping
Computational Irreducibility and the Predictability of Complex Physical Systems

256 nearest neighbor 1D cellular automata (Wolfram)
Class 3 b > Class 1
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FIG. 1. Examples of coarse-graining transitions. (a) and (b)
show coarse-graining rule 146 by rule 128. (a) shows results of
running rule 146. The top line is the initial condition and time
progress from top to bottom. (b) shows the results of running
rule 128 with the coarse-grained initial condition from (a).
(c¢) and (d) show coarse-graining rule 105 by rule 150. (c) shows
rule 105 and (d) shows rule 150.

C(f4"a(0)) = f5C(a(0)).

Namely, running the original CA for Tt time steps and
then coarse graining is equivalent to coarse graining the
initial condition and then running the modified CA ¢ time
steps. The constant 7' is a time scale associated with the

coarse graining.
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FIG. 2. Coarse-graining transitions within the family of 256
elementary CA. Only transitions with a cell block size N = 2,
3, and 4 are shown. An arrow indicates that the origin rules can
be coarse grained by the target rules and may correspond to
several choices of N and P.

N-block approach with N=2, 3 or 4
Coarse-graining rule 110: CIR => Cl

Navot Israeli and Nigel Goldenfeld PhysRevLett.92.074105

I

200, 236




Complexity vs simplicity of gas law

e Extraordinary complexity of the 10° trajectories of
molecules 1n this room (maximum complexity and
unpredictability)

e Contrast with “ideal gas law” pV =nRT

or even Van der Waals equation

Physics works and 1s not hampered by

computational irreducibility because we only ask
for answers at some coarse-grained level. "
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The Black Swan syndrome
VS

Dragons and PREDICTION




Black Swan Uncertainty
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The Black Swan: The Impact of the Highly Improbable, by Nassim Nicholas Taleb courtesy P. Taylor




Self-organized criticality

107
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Cumulative number of earthquakes
o

6 | 7 s
Magnitude (/1)
Earthquakes Cannot Be Predicted

Robert J. Geller, David D. Jackson, Yan Y. Kagan, Francesco Mulargia
Turcotte (1999) Science 275, 1616-1617 (1997)
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Flux (#/m”2/year)

Heavy tails in pdf of earthquakes Heavy tails in pdf of seismic rates

SCEC, 1985-2003, m22, grid of 5x5 km, time step=1 day

1000, \: ' ' ' ' ) (Saichev and Sornette, 2005)
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Heavy tails in pdf of forest fires
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Fig. 2. Noncumulative frequency-area distributions for actual forest fires and wildfires in the United
States and Australia: (A) 4284 fires on U.S. Fish and Wildlife Service lands (1986—1995) (9), (B) 120 fires
in the western United States (1150-1960) (70), (C) 164 fires in Alaskan boreal forests (1990-1991)
(77), and (D) 298 fires in the ACT (1926—1991) (72). For each data set, the noncumulative number of
fires per year (—dN/dA;) with area (A;) is given as a function of A, (73). In each case, a reasonably
good correlation over many decades of A, is obtained by using the power-law relation (Eq. 1) with «
= 1.31 to 1.49; —« is the slope of the best-fit line in log-log space and is shown for each data set.

Malamud et al., Science 281 (1998)

Heavy tails in pdf of Solar flares

(Newman, 2005)
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Heavy tails in pdf of Hurricane losses

Damage values for top 30 damaging hurricanes
normalized to 1995 dollars by inflation, personal
property increases and coastal county population change

—
& 10°
2 <E *yM1
= Y = MO*X
(@) N
o S~ MO 57911
Lo i o M1 | -0.80871
N ~9
o | -~ © R| 0.97899
- 6~8\o
: Q
o 10| ©\~8?1-8-880
g C
() i
o
© i
S
A 1000 s s PR
1 10

RANK

Heavy tails in pdf of rain events

Peters et al. (2002)
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City sizes (Zipf’s law)
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7 Firm sizes (Zipf’s law)
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Fig. 2. Tail cumulative distribution function of
U.S. firm sizes, by receipts in dollars. Data are
for 1997 from the U.S. Census Bureau, tabulat-
ed in bins whose width increases in powers of
10. The solid line is the OLS regression line
through the data and has slope of 0.994 (SE =
0.064; adjusted R? = 0.976).

Heavy-tail of
stock financial

OUTLIE! returns OUTLIERS

Heavy-tail of movie sales
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Heavy-tail of pdf of book sales
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Heavy-tail of pdf of terrorist intensity

Johnson et al. (2006)

Heavy-tail of pdf of health care costs

Rupper et al. (2002)

Heavy-tail of pdf of war sizes

Levy (1983); Turcotte (1999)
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Heavy-tail of cdf of cyber risks

b=0.7

ID Thefts

Heavy-tail of YouTube view counts
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Dragons and PREDICTION




Beyond power laws: six examples of “Dragons™
Financial economics: Outliers and dragons in the distribution of
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipt
distribution of French city sizes.

Material science: failure and rupture processes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent
velocity fluctuations.

Brain medicine: Epileptic seizures

Geophysics: Gutenberg-Richter law and characteristic

earthquakes. 5




Crashes as ““Black swans”’?

Traditional emphasis on
Daily returns do not reveal
any anomalous events

(  “Black swans”

22




Better risk measure: drawdowns

-




“Dragons’ of financial risks

A. Johansen and D. Sornette, Stock market crashes are outliers,
European Physical Journal B 1, 141-143 (1998)

A.Johansen and D. Sornette, Large Stock Market Price Drawdowns Are Outliers,
Journal of Risk 4(2), 69-110, Winter 2001/02

N (DD) = Aexp (- (|DD|/x)?).




“Dragons” of financial risks

(require special mechanism and may be more predictable)

LogP]l

Dow Jones Industrial Average Cut-off u  Quantile z In (Ly) In(L;) T Proba
3% 87% 0.916,0.940 4890.36 4891.16 1.6 20.5%
6% 97% 0.875,0.915 494436 4947.06 54 2.0%
9% 99.0% 0.869,0.918 4900.75 4903.66 5.8 |1.6%
12% 99.7% 0.851,0.904 4872.47 4877.46 10.0 [0.16%
15% 99.7% 0.843,0.898 4854.97 4860.77 11.6 |0.07%
18% 99.9% 0.836,0.890 4845.16 4851.94 13.6 |0.02%

1 3 1 1
-0.2 -0.1 o o 0z 032
Drawdown Drawwup




Hong-Kong

| [l
]

'
4

Red line is 13.8% per year: but
The market is never following the average
growth; it is either super-exponentially
accelerating or crashing

Patterns of price trajectory during 0.5-1 year before each peak: Log-periodic power law
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Beyond power laws: six examples of “Dragons”
Financial economics: Outliers and dragons in the distribution of
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipt
distribution of French city sizes.

Material science: failure and rupture processes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent
velocity fluctuations.

Brain medicine: Epileptic seizures

Geophysics: Gutenberg-Richter law and characteristic

earthquakes. .




Paris as a king-dragon
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Fig. 7. French agglomerations: stretched

“King effect”.
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exponential and

Jean Laherrere and Didier Sornette, Stretched exponential distributions in Nature and Economy: " Fat tails"
with characteristic scales, European Physical Journal B 2, 525-539 (1998)




Beyond power laws: six examples of “Dragons™

Financial economics: Outliers and dragons in the distribution of
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipt
distribution of French city sizes.

Material science: failure and rupture processes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent
velocity fluctuations.

Brain medicine: Epileptic seizures

Geophysics: Gutenberg-Richter law and characteristic

earthquakes. ,
9
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Fig. 4. Frequency of elastic shocks under increas-
ing stresses in materials with different
heterogeneity. From Mogi [1962]




Energy distribution for the [+-62] specimen #4 at different times, for 5 time windows with 3400
events each. The average time (in seconds) of events in each window is given in the caption.

H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette, Andrade and Critical Time-to-Failure Laws in Fiber-Matrix
Composites: Experiments and Model, Journal of Mechanics and Physics of Solids (JMPS) 53, 1099-1127 (2005)




Beyond power laws: six examples of “Dragons”
Financial economics: Outliers and dragons in the distribution of
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipt
distribution of French city sizes.

Material science: failure and rupture processes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent
velocity fluctuations.

Brain medicine: Epileptic seizures

Geophysics: Gutenberg-Richter law and characteristic

earthquakes. .




Mathematical Geophysics Conference EXtreme Earth Events
Villefranche-sur-Mer, 18-23 June 2000




— L'vov, V.S., Pomyalov,
. A. and Procaccia, I.
- -1.0 (2001) Outliers,
'ﬁ'_ ‘ Extreme Events and
%" s \‘\ Multiscaling,
.~ Physical Review E
F3 6305 (5), 6118, U158-
£ 20 '. - U166.
§ ..o
-2.5
-30 - > o '
l o oo et
0 5 6 7

2 2
fuy | i<uy >

FiG. 3.2. Apparent probability distribution function of the square of the fluid veloc-
ity, normalized to its time average. in the eleventh shell of the oy model of hydro-
dynamic turbulence discussed in the text. The vertical axis is in logarithmic scale
such that the straight line. which helps the eye, qualifies as an apparent exponential
distribution, Note the appearance of extremely sparse and large bursts of velocities at
the extreme right above the extrapolation of the straight line. Reproduced from |252).
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Shell 18
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Shell 15
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U 2

n

Pdf of the square of the

Velocity as in the previous figure
but for a much longer

time series, so that the tail

of the distributions for large
Fluctuations is much better
constrained. The hypothesis

that there are no outliers is tested
here by collapsing the
distributions for the three shown
layers. While this is a success for
small fluctuations, the tails of the
distributions for large events are
very different, indicating that
extreme fluctuations belong to a
different class of their own and
hence are outliers.

L'vov, V.S., Pomyalov, A. and Procaccia, I. (2001) Outliers, Extreme Events and Multiscaling,

Physical Review E 6305 (5),6118, U158-U166.




Beyond power laws: six examples of “Dragons™
Financial economics: Outliers and dragons in the distribution of
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipt
distribution of French city sizes.

Material science: failure and rupture processes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent
velocity fluctuations.

Brain medicine: Epileptic seizures

Geophysics: Gutenberg-Richter law and characteristic

earthquakes. N




Epileptic Seizures —

L

LFD 1-8
(49-56)

LTAD 1-6
(1-6)

Quakes of the Brain?

R

with lvan Osorio
KUMC & FHS
Mark G. Frei - FHS

John Milton -The
Claremont Colleges

(arxiv.org/abs/0712.3929)

RTAD 1-6

‘/ (9-14)

LTMD 1-6
(17-22)
LTPD 1-6
(33-38)
Focus
[ || || || || || ]
Depth Needle Electrodes Contact Numbering: N ... 3 2 1

 RTMD 1-6

(25-30)

(41-46)

Key: L=Left
R=Right
A=Anterior
M=Mesial
P=Posterior
D=Depth
T=Temporal
F=Frontal




Bursts and Seizures
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Gutenberg-Richter distribution of sizes Omori law: Direct and Inverse

The longer it has been since the last event,

P df of inter-event waiting times the longer it will be since the next one!

41




19 rats treated intravenously (2) with the convulsant 3-mercapto-proprionic acid (3-MPA)

42




Rat with lower dose of convulsant

Distribution of inter-seizure time intervals for rat 5, demonstrating a pure power law, which is characteristic of the SOC state. This
scale-free distribution should be contrasted with the pdf’s obtained for the other rats, which are marked by a strong shoulder
associated with a characteristic time scale, which reveals the periodic regime.




Some humans
are like rats
with large
doses of
convulsant

The pdf’s of the seizure
energies and of the inter-
seizure waiting times for
subject 21.

Note the shoulder in each
distribution,
demonstrating the
presence of a
characteristic size and
time scale, qualifying the
periodic regime.
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Beyond power laws: six examples of “Dragons™
Financial economics: Outliers and dragons in the distribution of
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipt
distribution of French city sizes.

Material science: failure and rupture processes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent
velocity fluctuations.

Brain medicine: Epileptic seizures

Geophysics: Gutenberg-Richter law and characteristic
carthquakes.
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Complex magnitude distributions

Characteristic earthquakes?

Southern California

Singh, et. al., Knopoff, 2000,
1983, BSSA 73, PNAS 97,
1779-1796 11880-11884

Main, 1995, BSSA
85, 1299-1308

Wesnousky, 1996, BSSA 86, 286-291




Complex Systems approach to Prediction

-positive feedbacks
-non sustainable regimes

-rupture




For humans data at the time could not
discriminate between:

1. exponential growth of Malthus

2. logistic growth of Verhulst

But data fit on animal population: sheep in
Tasmania

- exponential in the first 20 years after their

introduction and completely saturated after
about half a century. ==> Verhulst

48




Symbiosis between human
population growth and artifacts

Diminishing returns

dHuman propagation follows to
rate of change of population = R(t) x population Increasing returns

JAssume increase in technology follows
rate of change of technology = C x population

JAssume also
R(t) = K x technology

dImplies double
geometric growth

. A
population =
A = const. (tc - t)

t= time

t. = critical time 49




Positive feedback in action

Positive feedbacks

dp q
o P

0= (£) ey

m

m=1/(d—1) >0andt, =ty +mpy ?/c.

Faster than exponential
transient unsustainable
growth




Positive
feedback
In action

\

Finite-time
Singularity

Artist’s
illustration of
matter from a
red giant star
being pulled
toward a black
hole.

* Planet formation in solar system by run-away accretion of planetesimals

e PDE’s: Euler equations of inviscid fluids and rela-
tionship with turbulence

¢ PDE’s of General Relativity coupled to a mass field
leading to the formation of black holes

e Zakharov-equation of beam-driven Langmuir tur-
bulence in plasma

e rupture and material failure

e [arthquakes (ex: slip-velocity Ruina-Dieterich fric-
tion law and accelerating creep)

e Models of micro-organisms chemotaxis, aggregat-
ing to form fruiting bodies

e Surface instability spikes (Mullins-Sekerka). jets
from a singular surface. fluid drop snap-off

e Fuler’s disk (rotating coin)

e Stock market crashes...




Simplest Example of a “More is Different” Transition
Water level vs. temperagure

The breaking of
macroscopic
linear
extrapolation

950C 97 99 101

C

BOILING PHASE TRANSITION
More is different: a single molecule does not boil agzlﬂ()C“




Fundamental reduction theorem

Generically, close to a regime transition, a system
bifurcates through the variation of a SINGLE effective
“control” parameter

Bifurcation: Qualitative change in behavior
as parameter is (slowly) varied
Bifurcation surface: B

Strategy 1: understand from
proximity to a reference point as
a function of a small parameter

Strategy 2: a few universal
“normal forms”’

Space of all dynamical systems: M
a particular dynamical system: M € M

(after J. Crutchfield)
53




BIFURCATIONS, PHASE TRANSITIONS,
CATASTROPHES, TIPPING POINTS...

Phase Transitions

Haken 1983 Synergetics: An Introduction Springer-Verlag
Kelso 1995 Dynamic Patterns MIT Press

Tap the left
index finger Try to tap the
in-phase with — — right index
the tick finger out-of-
of the EMG phase with the
metronome. tick of the

metronome.

1st VI 1st VI
1st DI 1st DI
(after Liebovitch)
DORSAL VOLAR

INTEROSSEI INTEROSSEI

54




Phase Transitions

Haken 1983 Synergetics: An Introduction Springer-Verlag
Kelso 1995 Dynamic Patterns MIT Press

As the frequency of the metronome increases, the right
finger shifts from out-of-phase to in-phase motion.

T,

— Position of Right Index Finger
—— Position of Left Index Finger

360°
1800 _w\/—%

Oo ] ] ] ] ] ] |_2sec | ] ] | ]

(after Liebovitch)




Phase Transition

Haken 1983 Synergetics: An Introduction
Springer-Verlag
Kelso 1995 Dynamic Patterns MIT Press

This bifurcation
can be explained
as a change in a
potential energy
function similar to
the change which
occurs in a
physical phase
transition.

«— control parameter —
Frequency of metronome

Order parameter: difference in phase between right and left fingers phase

(after Liebovitch)




Disorder : K small

Renormalization group:

Critical:

K=critical
value




Tipping Pointedly Colder and Hotter

For much of Earth history, the climate has been considerably warmer than it is today. But 33.7 million years ago, at the
Eocene-Oligocene boundary, the world became trapped in the glacial state that continues to this day.

Data from multiple ocean basins elucidate an ancient climate transition from greenhouse to icehouse.

Lee R. Kump  SCIENCE VOL 323 27 FEBRUARY 2009
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SYNCHRONISATION AND COLLECTIVE EFFECTS
IN EXTENDED STOCHASTIC SYSTEMS

Firetflies

Earthquake-fault model

59
Miltenberger et al. (1993)




Generic phase diagram

Interaction (coupling)

strength Coexistence of SOC
1 and Synchronized

SYNCHRONIZATION 4+ behavior

10 | EXTREME RISKSt

1 +

0.1 +

0.01 SELF-ORGANIZED CRITICALITY
0.001 INCOHERENT
0.001 0.01 0.1 1 10

Heterogeneity




Landau-Ginzburg Theory of Self-Organized Criticality

Normal form of sub-critical bifurcation

L. Gil and D.
Sornette
“Landau-Ginzburg
theory of self-
organized criticality”,
Phys. Rev.Lett. 76,
3991-3994 (1996)

Diffusion equation

61




fast hysteresis cycle

slow hysteresis
cycle

w =10 = 0.1

System sizes range from L/a = 64 to 2048. P(M)dM »_vg}w—(vlﬁLM)dM.




fast hysteresis cycle

slow hysteresis

cycle
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Generic phase diagram => pdf (I)

4
S

A pdf

\Couphng strength increases
ﬁ
64

TSk risks
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G

\

eneric phase diagram => pdf (1)

pdf

Coupling strength increases

~
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lllustration: THE GREAT MODERATION

Variance of inflation

Source: SIR JOHN GIEVE, Deputy Governor, Bank of England, Feb 2009
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lllustration: The 2007-?7?7?7? crisis




lllustration: The 2007-?7?7?7? crisis

M1 Money Multiplier (MULT)
Source: Federal Reserve Bank of St. Louis
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Econ prof Bill Seyfried of Rollins College:
The M1 money multiplier just slipped below 1. So each $1 increase in reserves (monetary base) results in the money

supply increasing by $0.95 (OK, so banks have substantially increased their holding of excess reserves while the M1

money supply hasn't changed by much). -
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Generic Critical Precursors to a Bifurcation
Braxton hiCkS COntraCtionS (Simple example Of

Catastrophe theory)

-Amplitude of fluctuations
-Response to external forcing

Sornette, D. Carbone, F.Ferre, C. Vauge and E.Papiernik, Modéle
mathématique de la parturition humaine : implications pour le diagnostic
prénatal, Médecine/Science 11, n°8, 1150-1153 (1995)
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D. Sornette, F. Ferre and E.Papiernik

Mathematical model of human gestation and parturition :
implications for early diagnostic of prematurity and post-maturity ol I T | k) i
Int. J. Bifurcation and Chaos 4, N°3, 693-699 (1994) TRl el L e e




Critical Precursory Fluctuations
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Strategy: look at the forest rather
than at the tree

Our prediction system is now
used in the industrial phase
as the standard testing

procedure.
E A D S J.-C. Anifrani, C. Le Floc'h, D. Sornette and B. Souillard
LAUNCH "Universal Log-periodic correction to renormalization group scaling for rupture stress
prediction from acoustic emissions", J.Phys.I France 5, n°6, 631-638 (1995) 72
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Various Bubbles and Crashes

Jrice

Each bubble has been rescaled vertically and translated
to end at the time of the crash
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Real-estate in the UK

W.-X. Zhou, D. Sornette, 2000-2003 real estate bubble in the UK but not in the USA, Physica A 329
(2003) 249-263.




Real-estate in the USA

W.-X. Zhou, D. Sornette | Physica A 361 (2006) 297-308




Source: R. Woodard (FCO, Eyﬂ-l Zurich)




2006-2008 Oil bubble

D. Sornette, R.
Woodard and W.-X.
Zhou, The 2006-2008
Oil Bubble and
Beyond,

Physica A 388,
1571-1576 (2009)
(arXiv.org/abs/
0806.1170)

Typical result of the calibration of the simple LPPL model to the oil price in US$ in shrinking windows with starting
dates tstart moving up towards the common last date tiast = May 27, 2008.




Slowing down as an early warning signal for abrupt climate change

V. Dakos, M.
Scheffer, E.H. van
Nes, V. Brovkin, V.
Petoukhovi, and H.
Held, Slowing down
as an early warning
signal for abrupt
climate change,
PNAS 105 (38),
14308-14312

Eight reconstructed time series of abrupt climate shifts in the past. (A) The end of the greenhouse Earth, (M) the end of the Younger
Dryas, (K) the Bolling-Allero"dtransition, (O) the desertification of North Africa, (/) theendof the last glaciation,and(G, E,andF) the ends of
earlier glaciations. In all cases the dynamics of the system slow down before the transition, as revealed by an increasing trend in
autocorrelation (B,D, F,H, J, L,N, and P). The gray bands identify transition phases. The arrows mark the width of the moving window
used to compute slowness. The smooth gray line through the time series is the Gaussian kernel function used to filter out slow trends.
Data in Acome from tropical Pacific sediment core records, data inMare from the Cariaco basin sediment, data in K come from the
Greenland GISP2 ice core, data in O from the sediment core ODP Hole 658C off the west coast of Africa, and data presented in C, E, G
and / are from the Antarctica Vostok ice core. 79
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Greenland GISP2 ice core, data in O from the sediment core ODP Hole 658C off the west coast of Africa, and data presented in C, E, G
and / are from the Antarctica Vostok ice core. 80




Mechanism for and Detection of Pockets of
Predictability in Complex Adaptive Systems

Predictability of Large Future Changes in a Competitive Evolving Population
Lampert, Howison and Johnson, PRL 88, 017902 (2002)

Third-party game calibration
on a black-box game

1.
— — m=3,1=0.5
m=3, 1=0.52
0.8+ a —— m=3, 1=0.53
oo m=3, 1=0.55
- -— - m=2,1=0.5
306 S~ m=2,1=0.52
2] m=2, 1=0.53
g
< 041
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T

FIG. 1. Estimation of the parameter set for the black-box
game. The correlation between Ny-; and Sy- is calculated over
200 time steps for an ensemble of candidate third-party games.
The third-party game that achieves the highest correlation is the
one with the same parameters as the black-box game.

Crash prediction




Mechanism for and Detection of Pockets of
Predictability in Complex Adaptive Systems

If decoupled strategies dominate => predictability
since decision independent of next outcome(s)

Decomposition of total action:

Atm (t) 1ﬂm(f)d_|_A m () (3)

couple decoup]ed

Condition of certain predictability

For N=25 and N=102, very small probability for these pockets of pre-
dictability to occur by chance (assuming decoupling between agents)




Mechanism for and Detection of Pockets of
Predictability in Complex Adaptive Systems
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TABLE I: Out-of-sample success rate % (second row) using
different thresholds for the predicted global decoupled action
(first row) of the third-party $-games calibrated to the Nasdaq
Composite index. Nb (third row) is the number of days from
t = 62 to 123 which have their predicted global decoupled

action | Agecoupled| larger than the value indicated in the first
TOW.

1500

1000
Time t (a.u.)

FIG. 1: Adecouplea definedin (3) as a function of time for the
MG with N = 101,s = 12, m = 3. Circles indicate one-
step prediction days, crosses are the subset of days starting a
run of two or more consecutive one-step prediction days.

J.V. Andersen and D. Sornette, Europhys. Lett., 70 (5), 697-703 (2005)
A Mechanism for Pockets of Predictability in Complex Adaptive Systems




Predictability of large future changes in major financial indices

D. Sornette and W.-X. Zhou
International Journal of Forecasting 22, 153-168 (2006)

Sparse-data pattern recognition method
Physics of the Earth and Planetary Interiors, 11 (1976) 227-283

Trait: array of answers to set of questions
Feature: a treat which 1s frequent in class I and unfrequent in class II

Alarm index(t): moving average of number of features at time t




Short-term earthquake prediction

Research

A case history:

@ A novel methodology: Reverse Tracing o .
Advance prediction of San Simeon (M6.5, Dec. 22, 2003)

of Precursors (RTP), is developed for
short-term (months in advance) earthquake

prediction Precursor detected May, 2003

Precursor reported to the
The RTP methodology uses increase of group of experts in June, 2003

earthquake correlation range as a San Simeon earthquake, M6.5

short-term premonitory signal occurred on Dec. 22, 2003
within the alarm.

@ An experiment in advance prediction has
been launched in four seismically active
regions around the World; first results
are encouraging

Broader Impact

Potential applications to other geological,

geotechical disasters. Collaboration with

experts in geodynamics, complex systems, pattern recognition, and
disaster management from US, Russia, Japan, France, Italy and UN

Keilis-Borok's group




Determination of relevant “traits” that allow us to
distinguish targets from non targets in the Learning process

Parameter for positivity of crash hazard rate

Figure 1: Density distribution p(w|l or II) of the DSI parameter

w obtained from (1) and complementary cumulative distribution
P(b|l or 1I) of the constraint parameter b obtained from (2) for the
objects in classes I (dotted, dashed, and dotted-dashed) and II
(continuous) for three different values of f{;.




Multi-scale approach to critical times




Multiscale Pattern Recognition Method

D. Sornette and W.-X.
Zhou, Predictability of
Large Future Changes in
Complex Systems,
(http://arXiv.org/abs/cond-
mat/0304601)

Extension to a multi-scale LPPL analysis with Gelfand’s method of pattern recognition to predict




We obtain very
significant
prediction gains




Shuttle Flight 51-L (Challenger) 1986

Feynman's Appendix to the Rogers Commission
Report on the Space Shuttle Challenger Accident

It appears that there are enormous differences of opinion as to the probability of a failure with loss of
vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in 100,000. The higher
figures come from the working engineers, and the very low figures from management. What are the
causes and consequences of this lack of agreement? Since 1 part in 100,000 would imply that one
could put a Shuttle up each day for 300 years expecting to lose only one, we could properly ask "What
is the cause of management's fantastic faith in the machinery?

On January 28, 1986 seven crew members died
when the space shuttle Challenger exploded just
over a minute after take-off. The Report of the
Presidential Commission on the Space Shuttle
Challenger Incident (1986) concluded that neither
NASA nor Thiokol, the seal designer, “responded
adequately to internal warnings about the faulty seal
design. . . . Awell structured and managed system
emphasizing safety would have flagged the rising
doubts about the Solid Rocket Booster joint seal.”




Challenger disaster

Technical cause:

o failure of a pressure seal (“O-ring”) in
the aft field joint of the right solid
rocket motor

» Solid rocket motor assembled from
four cylindrical sections, 25 feet long,
12 feet diameter, containing 100 tons
of fuel

e 2 O-rings seal gaps in the joints
caused by pressure at ignition

Factors:

» temperature: cold reduces resiliency
of the O-ring

e chance of O-ring failure increased by
test procedures causing blow holes
in the putty used to pack the joint

But this was just the point failure...
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Finding patterns to predict RISKS

O-nng damage

mmdex, each launch
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Finding patterns to predict RISKS
“The dog that did not bark™ (Sherlock Holmes)

O-nng damage

index, cach launch
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D. Sornette, A. B. Davis, K. Ide, K. R. Vixie, V. Pisarenko, and J. R. Kamm, Algorithm for Model Validation: Theory and
Applications, Proc. Nat. Acad. Sci. USA 104 (16), 6562-6567 (2007)




Summary

« A four-step approach for a quantitative validation step:

1. Start with a prior “potential trust” of a model’s value: 1, .
2. Conduct an experiment, use the model, compare resulits.
3. Grade the comparison between data y,,, and model M.

4. Update posterior “trust”: V,oserior / Viior = FLP(M1Yobs), ¢ 5 cnovel
— The multiplier F must satisfy certain (plausible) constraints.

 lterate the validation process:
vih) Sybh - —y@) Sy@ - —y@) 5 5y0)

prior posterior prior posterior prior posterior

4 simplified examples—using discrete values of p/g and
chove— illustrated the nature of this process.

»Olami-Feder-Christensen model of seismicity

»Compressible CFD code for Richtmyer-Meshkov instability (induced mixing
and shock tests)

> Multifractal random walk as a model of financial returns

» Anomalous diffusion as a model for solar reflectivity in cloudy atmosphere

D. Sornette, A. B. Davis, K. Ide, K. R. Vixie, V. Pisarenko, and J. R. Kamm, Algorithm for Model Validation: Theory and
Applications, Proc. Nat. Acad. Sci. USA 104 (16), 6562-6567 (2007)




A Formalized Iterative Approach
to Verification and Validation (V&YV),
with Examples

Validation as a Constructive Iterative Process

96

D. Sornette, A. B. Davis, K. Ide, K. R. Vixie, V. Pisarenko, and J. R. Kamm, Algorithm for Model Validation: Theory and
Applications, Proc. Nat. Acad. Sci. USA 104 (16), 6562-6567 (2007)




Princeton
University

Press
Jan. 2003

97




First edition
2000

Second

enlarged edition
2004 and 2006 Nov 2005

98




2009




