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Can the complex system approach be useful to you?



• AR, MA, ARMA, ARIMA,...

• linear trends

• linear correlation

• extrapolations work as long as there is not a change of 
trend, of regime 2

Linear models



• Local vs global prediction methods
• Parameter estimations in the presence of noise 

–leads to inconsistent MLE
–confluence analysis

• Local vs global prediction 

• Most systems are NOT low dimensional!
• Large scale “coherent structures” 3

Low dimensional chaos

V. Pisarenko and D. Sornette, On Statistical Methods of  Parameter Estimation 
for Deterministically Chaotic Time-Series, Phys. Rev. E 69, 036122 (2004) 

Likelihood contour plot
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Bilinear stochastic models

D. Sornette and V.F. Pisarenko, Properties of a simple bilinear stochastic model: estimation and predictability, Physica D 237 (4), 429-445 (2008)

•Zero linear correlation at all lags
•Non-zero three-point correlation function 

e(t) is i.i.d. with std = s

The simplest case of the class of “Volterra discrete series”

(some) NONLINEAR predictability!



Problems: (i) estimation of b and s; (ii) derive e(t), e(t-1),... from r(t), r(t-1)...

Impulse response to:

Conclusions: (i) explosive exp(exp) sensitivity on initial conditions for a|b|>1
(ii) the probability for a stable inversion depends on the length of the realization
(not warranted with certainty: strong sample to sample fluctuations)

e(t) is i.i.d. with std = s

Bilinear stochastic models



• (low-dimensional) chaos

• Spatio-temporal chaos

• Turbulence

• Complex systems

Hierarchical complexity
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Algorithmic complexity theory: most complex 
systems have been proved to be computationally 
irreducible, i.e. the only way to decide about their 
evolution is to actually let them evolve in time.
 
The future time evolution of most complex systems 
appears inherently unpredictable. 

IMPOSSIBILITY THEOREM
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A new kind of Science?
Stephen Wolfram (Mathematica)

(2002)
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256 nearest neighbor 1D cellular automata (Wolfram)
Class 3 Class 1

N-block approach with N=2, 3 or 4

240 coarse-grainable

Coarse-graining rule 110: CIR => C1

Lesson from bottom-up hierarchical grouping
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• Extraordinary complexity of the        trajectories of 
molecules in this room (maximum complexity and 
unpredictability)

• Contrast with “ideal gas law”

or even Van der Waals equation

Complexity vs simplicity of gas law

1025

pV = nRT
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Physics works and is not hampered by 
computational irreducibility because we only ask 
for answers at some coarse-grained level. 
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The Black Swan syndrome
vs

Dragons  and PREDICTION



Black Swan Uncertainty

95 Red, 5 White

1

Odds of a 
white?

?
6

Taleb's demon3 5

?

2

  5%White
95%Red

?

4

Odds of a 
white?

Odds of a 
black?

courtesy P. TaylorThe Black Swan: The Impact of the Highly Improbable, by Nassim Nicholas Taleb 
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Self-organized criticality

Earthquakes Cannot Be Predicted
Robert J. Geller, David D. Jackson, Yan Y. Kagan, Francesco Mulargia
Science 275, 1616-1617  (1997)Turcotte (1999)
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Heavy tails in pdf of earthquakes

Heavy tails in ruptures

Heavy tails in pdf of seismic rates

Harvard catalog

(CNES, France)

Turcotte (1999)

Heavy tails in pdf of rock falls, 
Landslides, mountain collapses

SCEC, 1985-2003, m≥2, grid of 5x5 km, time step=1 day

(Saichev  and Sornette, 2005)
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Heavy tails in pdf of Solar flares

Heavy tails in pdf of Hurricane losses
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(Newman, 2005)

Heavy tails in pdf of rain events

Peters et al. (2002)

Heavy tails in pdf of forest fires

Malamud et al., Science 281 (1998)
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OUTLIERS OUTLIERS 

Heavy-tail of movie sales

Heavy-tail of 
stock financial
returns

 

Firm sizes (Zipf’s law)

City sizes (Zipf’s law)
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Heavy-tail of pdf of war sizes

Levy (1983); Turcotte (1999)

Heavy-tail of pdf of health care costs

Rupper et al. (2002)

Heavy-tail of pdf of book sales

Heavy-tail of pdf of terrorist intensity
Johnson et al. (2006)

Survivor Cdf

Sales per day



Heavy-tail of cdf of cyber risks

b=0.7

ID Thefts

Heavy-tail of YouTube view counts
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Dragons  and PREDICTION
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Beyond power laws: six examples of “Dragons”

Material science: failure and rupture processes.

Geophysics: Gutenberg-Richter law and characteristic 
earthquakes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent 
velocity fluctuations.

Financial economics: Outliers and dragons in the distribution of 
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipf 
distribution of French city sizes.

Brain medicine: Epileptic seizures
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Traditional emphasis on
Daily returns do not reveal
any anomalous events

Crashes as “Black swans”?

“Black swans”



Better risk measure: drawdowns



A. Johansen and D. Sornette, Stock market crashes are outliers,
European Physical Journal B 1, 141-143 (1998)

A. Johansen and D. Sornette, Large Stock Market Price Drawdowns Are Outliers, 
Journal of Risk 4(2), 69-110, Winter 2001/02

“Dragons” of financial risks



“Dragons” of financial risks
(require special mechanism and may be more predictable)
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Hong-Kong

Red line is 13.8% per year: but 
The market is never following the average

growth; it is either super-exponentially
accelerating or crashing

Patterns of price trajectory during 0.5-1 year before each peak: Log-periodic power law
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Beyond power laws: six examples of “Dragons”

Material science: failure and rupture processes.

Geophysics: Gutenberg-Richter law and characteristic 
earthquakes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent 
velocity fluctuations.

Financial economics: Outliers and dragons in the distribution of 
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipf 
distribution of French city sizes.

Brain medicine: Epileptic seizures
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Paris as a king-dragon

Jean Laherrere and Didier Sornette, Stretched exponential distributions in Nature and Economy: ``Fat tails''
with characteristic scales, European Physical Journal B 2, 525-539 (1998)

2009
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Beyond power laws: six examples of “Dragons”

Material science: failure and rupture processes.

Geophysics: Gutenberg-Richter law and characteristic 
earthquakes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent 
velocity fluctuations.

Financial economics: Outliers and dragons in the distribution of 
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipf 
distribution of French city sizes.

Brain medicine: Epileptic seizures
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Energy distribution for the [+-62] specimen #4 at different times, for 5 time windows with 3400
events each. The average time (in seconds) of events in each window is given in the caption.

 H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette, Andrade and Critical Time-to-Failure Laws in Fiber-Matrix 
Composites: Experiments and Model,   Journal of Mechanics and Physics of Solids (JMPS) 53, 1099-1127 (2005)

...
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Beyond power laws: six examples of “Dragons”

Material science: failure and rupture processes.

Geophysics: Gutenberg-Richter law and characteristic 
earthquakes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent 
velocity fluctuations.

Financial economics: Outliers and dragons in the distribution of 
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipf 
distribution of French city sizes.

Brain medicine: Epileptic seizures



Mathematical Geophysics Conference   Extreme Earth Events
Villefranche-sur-Mer, 18-23 June 2000



L'vov, V.S., Pomyalov, 
A. and Procaccia, I. 
(2001) Outliers, 
Extreme Events and 
Multiscaling,
Physical Review E  
6305 (5), 6118, U158-
U166.



Pdf of the square of the
Velocity as in the previous figure 
but for a much longer
time series, so that the tail
of the distributions for large 
Fluctuations is much better
constrained. The hypothesis
that there are no outliers is tested 
here by collapsing the 
distributions for the three shown 
layers. While this is a success for 
small fluctuations, the tails of the 
distributions for large events are 
very different, indicating that 
extreme fluctuations belong to a  
different class of their own and 
hence are outliers. 

L'vov, V.S., Pomyalov, A. and Procaccia, I. (2001) Outliers, Extreme Events and Multiscaling,
Physical Review E  6305 (5), 6118, U158-U166.
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Beyond power laws: six examples of “Dragons”

Material science: failure and rupture processes.

Geophysics: Gutenberg-Richter law and characteristic 
earthquakes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent 
velocity fluctuations.

Financial economics: Outliers and dragons in the distribution of 
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipf 
distribution of French city sizes.

Brain medicine: Epileptic seizures



LTAD 1-6
(1-6)

LTMD 1-6
(17-22)

LTPD 1-6
(33-38)

RTAD 1-6
(41-46)

RTMD 1-6
(25-30)

RTAD 1-6
(9-14)

RFD 1-8
(57-64)

LFD 1-8
(49-56)

Depth Needle Electrodes Contact Numbering:           N …                                 3            2            1

                 Key: L=Left
 R=Right
 A=Anterior
 M=Mesial
 P=Posterior
 D=Depth
 T=Temporal
 F=Frontal

Focus

 Epileptic Seizures – Quakes of the Brain?
with Ivan Osorio
KUMC & FHS

Mark G. Frei - FHS
John Milton -The 

Claremont Colleges

(arxiv.org/abs/0712.3929)
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Bursts and Seizures
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Gutenberg-Richter distribution of sizes Omori law: Direct and Inverse

 

pdf of inter-event waiting times The longer it has been since the last event, 
the longer it will be since the next one!
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19 rats treated intravenously (2) with the convulsant 3-mercapto-proprionic acid (3-MPA)
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Distribution of inter-seizure time intervals for rat 5, demonstrating a pure power law, which is characteristic of the SOC state. This 
scale-free distribution should be contrasted with the pdf’s obtained for the other rats, which are marked by a strong shoulder 
associated with a characteristic time scale, which reveals the periodic regime.

Rat with lower dose of convulsant
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The pdf’s of the seizure 
energies and of the inter-
seizure waiting times for 
subject 21. 

Note the shoulder in each 
distribution, 
demonstrating the 
presence of a 
characteristic size and 
time scale, qualifying the 
periodic regime.

Some humans 
are like rats 
with large 
doses of 

convulsant



45

Beyond power laws: six examples of “Dragons”

Material science: failure and rupture processes.

Geophysics: Gutenberg-Richter law and characteristic 
earthquakes.

Hydrodynamics: Extreme dragon events in the pdf of turbulent 
velocity fluctuations.

Financial economics: Outliers and dragons in the distribution of 
financial drawdowns.

Population geography: Paris as the dragon-king in the Zipf 
distribution of French city sizes.

Brain medicine: Epileptic seizures



Singh, et. al., 
1983, BSSA 73, 

1779-1796 

Southern California

Knopoff, 2000, 
PNAS 97, 

11880-11884 

Main, 1995, BSSA 
85, 1299-1308 

Complex magnitude distributions

Characteristic earthquakes?

Wesnousky, 1996, BSSA 86, 286-291 



Complex Systems approach to Prediction

-positive feedbacks

-non sustainable regimes

-rupture
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For humans data at the time could not 
discriminate between:
1. exponential growth of Malthus
2. logistic growth of Verhulst

But data fit on animal population: sheep in 
Tasmania

- exponential in the first 20 years after their 
introduction and completely saturated after 
about half a century. ==> Verhulst
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Symbiosis between human

 population growth and artifacts

Human propagation follows

Assume increase in technology follows

Assume also

Implies double 
geometric growth  

A = const.
t= time

Diminishing returns
to

Increasing returns



Positive feedbacks

Faster than exponential 
transient unsustainable 
growth

Positive feedback in action
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Finite-time 
Singularity

• Planet formation in solar system by run-away accretion of planetesimalsPositive 
feedback 
in action



950C

1Kg

1cm

97

1cm

1Kg

99

1Kg

                                BOILING PHASE TRANSITION
More is different:  a single molecule does not boil at 100C0

Simplest Example of a “More is Different” Transition

?
Extrapolation?

Water level vs. temperature

101

The breaking of 
macroscopic 
linear 
extrapolation
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Generically, close to a regime transition, a system 
bifurcates through the variation of a SINGLE effective 
“control” parameter

(after J. Crutchfield)

Strategy 1: understand from 
proximity to a  reference point as 
a function of a small parameter

Strategy 2: a few universal 
“normal forms”

53

Fundamental reduction theorem
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BIFURCATIONS, PHASE TRANSITIONS, 
CATASTROPHES, TIPPING POINTS...

Phase Transitions
Haken 1983  Synergetics: An Introduction  Springer-Verlag 

Kelso 1995  Dynamic Patterns  MIT Press

Tap the left 
index finger
in-phase with 
the tick
of the 
metronome.

Try to tap the 
right index 

finger out-of-
phase with the 

tick of the 
metronome.

(after Liebovitch)



Position of Right Index Finger
Position of Left Index Finger

Phase Transitions
Haken 1983  Synergetics: An Introduction  Springer-Verlag 

Kelso 1995  Dynamic Patterns  MIT Press

As the frequency of the metronome increases, the right 
finger shifts from out-of-phase to in-phase motion.

360o

0o

180o

2 sec

(after Liebovitch)



This bifurcation 
can be explained 
as a change in a 
potential energy 

function similar to 
the change which 

occurs in a 
physical phase 

transition.
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Phase Transition
Haken 1983 Synergetics: An Introduction 

Springer-Verlag 
Kelso 1995 Dynamic Patterns MIT Press

phaseOrder parameter: difference in phase between right and left fingers 
(after Liebovitch)



Disorder : K small

Order
K large

Critical:
K=critical
value

Renormalization group:
Organization of the
description scale by scale
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Tipping Pointedly Colder and Hotter

SCIENCE VOL 323 27 FEBRUARY 2009Lee R. Kump

Data from multiple ocean basins elucidate an ancient climate transition from greenhouse to icehouse.

For much of Earth history, the climate has been considerably warmer than it is today. But 33.7 million years ago, at the 
Eocene-Oligocene boundary, the world became trapped in the glacial state that continues to this day.
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SYNCHRONISATION AND COLLECTIVE EFFECTS
IN EXTENDED STOCHASTIC SYSTEMS

Fireflies

Miltenberger et al. (1993)

Earthquake-fault model



Interaction (coupling)
strength

Heterogeneity
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and Synchronized 
behavior

INCOHERENT 

Generic phase diagram
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 L. Gil and D. 
Sornette
“Landau-Ginzburg 
theory of self-
organized criticality”, 
Phys. Rev.Lett. 76, 
3991-3994 (1996)

Normal form of sub-critical bifurcation

Diffusion equation
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Mechanism:
Negative effective
Diffusion coefficient

slow hysteresis 
cycle

fast hysteresis cycle



63

fast hysteresis cycle

slow hysteresis 
cycle
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pdf

risks risks

pdf

Coupling strength increases

Generic phase diagram => pdf  (I)
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pdf

risks

pdf

risks

Coupling strength increases

Generic phase diagram => pdf  (II)



Source: SIR JOHN GIEVE, Deputy Governor, Bank of England, Feb 2009

http://www.clevelandfed.org/research/trends/2009/0309/03ecoact.cfm

Illustration: THE GREAT MODERATION
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Illustration: The 2007-???? crisis
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M O N D AY,  J A N U A RY  0 5 ,  2 0 0 9

The Disappearing Money Multiplier

Econ prof Bill Seyfried of Rollins College:
The M1 money multiplier just slipped below 1. So each $1 increase in reserves (monetary base) results in the money 
supply increasing by $0.95 (OK, so banks have substantially increased their holding of excess reserves while the M1 
money supply hasn't changed by much).

Illustration: The 2007-???? crisis
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Generic Critical Precursors to a Bifurcation

-Amplitude of fluctuations
-Response to external forcing

(Simple example of
Catastrophe theory)

Braxton hicks contractions

D. Sornette, F. Ferre and E.Papiernik
Mathematical model of human gestation and parturition :
implications for early diagnostic of prematurity and post-maturity
 Int. J. Bifurcation and Chaos 4, N°3, 693-699 (1994) 

Sornette, D. Carbone, F.Ferre, C. Vauge and E.Papiernik, Modèle 
mathématique de la parturition humaine : implications pour le diagnostic 
prénatal, Médecine/Science 11, n°8, 1150-1153 (1995)



Critical Precursory Fluctuations

Without NL term:

δ = µc − µ

µc

µ
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Our prediction system is now 
used in the industrial phase
as the standard testing 
procedure.

J.-C. Anifrani, C. Le Floc'h, D. Sornette and B. Souillard
 "Universal Log-periodic correction to renormalization group scaling for rupture stress
prediction from acoustic emissions", J.Phys.I France 5, n°6, 631-638 (1995) 

Strategy: look at the forest rather
than at the tree

72



Princeton
University
Press
Jan. 2003

1997
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Various Bubbles and Crashes

Each bubble has been rescaled vertically and translated
to end at the time of the crash

time

price
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Real-estate in the UK



76

Real-estate in the USA



77Source: R. Woodard (FCO, ETH Zurich)
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Typical result of the calibration of the simple LPPL model to the oil price in US$ in shrinking windows with starting 
dates tstart moving up towards the common last date tlast = May 27, 2008.

2006-2008 Oil bubble

D. Sornette, R. 
Woodard and W.-X. 
Zhou, The 2006-2008 
Oil Bubble and 
Beyond,
Physica A 388, 
1571-1576  (2009)
(arXiv.org/abs/
0806.1170)
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V. Dakos, M. 
Scheffer, E.H. van 
Nes, V. Brovkin, V. 
Petoukhov‡, and H. 
Held, Slowing down 
as an early warning 
signal for abrupt 
climate change, 
PNAS 105 (38), 
14308-14312

Slowing down as an early warning signal for abrupt climate change

Eight reconstructed time series of abrupt climate shifts in the past. (A) The end of the greenhouse Earth, (M) the end of the Younger 
Dryas, (K) the Bølling-Allero¨dtransition, (O) the desertification of North Africa, (I) theendof the last glaciation,and(G,E,andF) the ends of 
earlier glaciations. In all cases the dynamics of the system slow down before the transition, as revealed by an increasing trend in 
autocorrelation (B,D, F,H, J, L,N, and P). The gray bands identify transition phases. The arrows mark the width of the moving window 
used to compute slowness. The smooth gray line through the time series is the Gaussian kernel function used to filter out slow trends. 
Data in A come from tropical Pacific sediment core records, data inMare from the Cariaco basin sediment, data in K come from the 
Greenland GISP2 ice core, data in O from the sediment core ODP Hole 658C off the west coast of Africa, and data presented in C, E, G, 
and I are from the Antarctica Vostok ice core.
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Slowing down as an early warning signal for abrupt climate change

V. Dakos, M. 
Scheffer, E.H. van 
Nes, V. Brovkin, V. 
Petoukhov‡, and H. 
Held, Slowing down 
as an early warning 
signal for abrupt 
climate change, 
PNAS 105 (38), 
14308-14312

Eight reconstructed time series of abrupt climate shifts in the past. (A) The end of the greenhouse Earth, (M) the end of the Younger 
Dryas, (K) the Bølling-Allero¨dtransition, (O) the desertification of North Africa, (I) theendof the last glaciation,and(G,E,andF) the ends of 
earlier glaciations. In all cases the dynamics of the system slow down before the transition, as revealed by an increasing trend in 
autocorrelation (B,D, F,H, J, L,N, and P). The gray bands identify transition phases. The arrows mark the width of the moving window 
used to compute slowness. The smooth gray line through the time series is the Gaussian kernel function used to filter out slow trends. 
Data in A come from tropical Pacific sediment core records, data inMare from the Cariaco basin sediment, data in K come from the 
Greenland GISP2 ice core, data in O from the sediment core ODP Hole 658C off the west coast of Africa, and data presented in C, E, G, 
and I are from the Antarctica Vostok ice core.



Lampert, Howison and Johnson, PRL 88, 017902 (2002)

Third-party game calibration
on a black-box game

Crash prediction



Decomposition of total action:

Condition of certain predictability

For N=25 and N=102, very small probability for these pockets of pre-
dictability to occur by chance (assuming decoupling between agents)

(3)

If decoupled strategies dominate => predictability 
since decision independent of next outcome(s)



J.V. Andersen and D. Sornette, Europhys. Lett., 70 (5), 697-703 (2005)



D. Sornette and W.-X. Zhou

Sparse-data pattern recognition method 

Trait: array of answers to set of questions

Feature: a treat which is frequent in class I and unfrequent in class II

Alarm index(t): moving average of number of features at time t

International Journal of Forecasting 22, 153-168 (2006)



Advance prediction of San Simeon (M6.5, Dec. 22, 2003)

Keilis-Borok's group

Short-term earthquake prediction

• Precursor detected May, 2003

• Precursor reported to the
  group of experts in June, 2003

• San Simeon earthquake, M6.5 
  occurred on  Dec. 22, 2003
  within the alarm.

A case history:A novel methodology: Reverse Tracing 
of Precursors (RTP), is developed for 
short-term (months in advance) earthquake 
prediction

An experiment in advance prediction has
been launched in four seismically active
regions around the World; first results
are encouraging

The RTP methodology uses increase  of
earthquake correlation range as a 
short-term premonitory signal  

Broader Impact

Research

Potential applications to other geological,
geotechical disasters. Collaboration with 
experts in geodynamics, complex systems, pattern recognition, and 
disaster management from US, Russia, Japan, France, Italy and UN 



Parameter for positivity of crash hazard rate

Determination of relevant “traits” that allow us to 
distinguish targets from non targets in the Learning process



Multi-scale approach to critical times 



Multiscale Pattern Recognition Method

D. Sornette and W.-X. 
Zhou, Predictability of 
Large Future Changes in 
Complex Systems,
(http://arXiv.org/abs/cond-
mat/0304601)

Extension to a multi-scale LPPL analysis with Gelfand’s method of pattern recognition to predict



We obtain very
s i g n i f i c a n t 
prediction gains



 

It appears that there are enormous differences of opinion as to the probability of a failure with loss of 
vehicle and of human life. The estimates range from roughly 1 in 100 to 1 in 100,000. The higher 
figures come from the working engineers, and the very low figures from management. What are the 
causes and consequences of this lack of agreement? Since 1 part in 100,000 would imply that one 
could put a Shuttle up each day for 300 years expecting to lose only one, we could properly ask "What 
is the cause of management's fantastic faith in the machinery?

Feynman's Appendix to the Rogers Commission 
Report on the Space Shuttle Challenger Accident

On January 28, 1986 seven crew members died 
when the space shuttle Challenger exploded just 
over a minute after take-off. The Report of the 
Presidential Commission on the Space Shuttle 
Challenger Incident (1986) concluded that neither 
NASA nor Thiokol, the seal designer, “responded 
adequately to internal warnings about the faulty seal 
design. . . . A well structured and managed system 
emphasizing safety would have flagged the rising 
doubts about the Solid Rocket Booster joint seal.”

Shuttle Flight 51-L (Challenger)  1986



 Challenger disaster

Technical cause:
• failure of a pressure seal (“O-ring”) in 

the aft field joint of the right solid 
rocket motor

• Solid rocket motor assembled from 
four cylindrical sections, 25 feet long, 
12 feet diameter, containing 100 tons 
of fuel

• 2 O-rings seal gaps in the joints 
caused by pressure at ignition

Factors:
• temperature: cold reduces resiliency 

of the O-ring
• chance of O-ring failure increased by 

test procedures causing blow holes 
in the putty used to pack the joint

But this was just the point failure…

© 2001, Steve Easterbrook



 

Finding patterns to predict RISKS



 

Finding patterns to predict RISKS
“The dog that did not bark” (Sherlock Holmes)



 

D. Sornette, A. B. Davis, K. Ide, K. R. Vixie, V. Pisarenko, and J. R. Kamm, Algorithm for Model Validation: Theory and 
Applications, Proc. Nat. Acad. Sci. USA 104 (16), 6562-6567 (2007)



 Summary
•  A four-step approach for a quantitative validation step:  

1.  Start with a prior “potential trust” of a modelʼs value: Vprior .
2.  Conduct an experiment, use the model, compare results.
3.  Grade the comparison between data yobs and model M.
4.  Update posterior “trust”:

•  Iterate the validation process: 

� 

Vprior
(1) Vposterior

(1) =Vprior
(2) Vposterior

(2) =Vprior
(3)   ... Vposterior

(n)

Olami-Feder-Christensen model of seismicity
Compressible CFD code for Richtmyer-Meshkov instability (induced mixing 

and shock tests)
Multifractal random walk as a model of financial returns
 Anomalous diffusion as a model for solar reflectivity in cloudy atmosphere

� 

Vposterior Vprior =  F[p(M |yobs), q ; cnovel]

• 4 simplified examples—using discrete values of p/q and 
cnovel— illustrated the nature of this process.

– The multiplier F must satisfy certain (plausible) constraints.
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