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Utility theory

2 piu(wi) > 2. qiu(wy)
Von Neumann and Morgenstern

Behavioral Finance:one person
- Fear and Greed
- Over-confidence
- Anchoring
- Law of small numbers (gambler’s fallacy)
- Representativeness (=>weight recent past too heavily)
- Availability and rational inattention
- Allais’ paradox: relative reference level
- Subjective probabilities

- Procedure Utility
2. p(Aws) > 2. aqi)v(Awy)

Kahneman and Tversky
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Imitation

-Imitation is considered an efficient mechanism
of social learning.

- Experiments in developmental psychology suggest that infants use imitation to get
to know persons, possibly applying a ‘like-me’ test (‘persons which I can imitate and
which imitate me”’).

- Imitation is among the most complex forms of learning. It is found in highly
socially living species which show, from a human observer point of view,
‘intelligent’ behavior and signs for the evolution of traditions and culture (humans
and chimpanzees, whales and dolphins, parrots).

- In non-natural agents as robots, tool for easing the programming of complex tasks
or endowing groups of robots with the ability to share skills without the intervention
of a programmer. Imitation plays an important role in the more general context of
interaction and collaboration between software agents and human users.



OBSERVATIONAL LEARNING

For evolutionary fears, monkeys and people learn by watching what other animals and people do (not by doing
themselves and learning from the consequences).

Hands-on learning may not always be the bestt THE APE AND THE SUSHI MASTER (Frans de Waal’s book): in
Japan, apprentic sushi cooks spend three years just watching the sushi master prepare sushi. When the apprentice finally
prepares his first sushi, he does a good job of it. (“The watching of skilled models firmly plants action sequences in the
Head that come in handy, sometimes much later, when the same taskes need to be carried out.” The ape and the sushi
Master: cultural reflections of a primatologist (New York: Basic Books, 2001)

Temple Grandin and C. Johnson,
Animals in translation (Scribner, New York, 2005)

VERVET MONKEY

FEARS ARE CONTAGIOUS Red squirrel monkeys and six-foot Costa Rica snake

Psychologist S. Mineka’s experiments with monkeys and snakes :
lots of phobias and fears are CONTAGIOUS

Monkeys in the wild are terrified by snakes
Monkeys in the lab are not worried by snakes

Dr. Mineka taught a lab monkey to be just a terrified of snakes as any
monkey living in the wild. When Dr. Mineka exposes her fearless
monkeys to wild-reared monkeys acting afraid of snakes, the lab
monkeys instantly got scared themselves, and they stayed scared for
life. The lab-monkeys learned the same level of fear as the
demonstrator-monkey. If the demonstrator-monkey was scared but not
panicked, the observer-monkey became scared but not panicked.

It is impossible to teach a monkey to be afraid of a flower by the same
technique! (video tape of a flower followed by a monkey acting
terrified).

Fear of snake is SEMI-INNATE: monkeys are born ready to fear
snakes at the first hint of trouble (prepared stimulus)

One can protect an animal from developing fear: If Dr. Mineka first
exposed a lab-reared monkey to another lab-reared monkey NOT
acting afraid of a snake, that gave him “immunity”: after that, if he
saw a wild-reared monkey acting scared of a snake, he did NOT
develop snake fear himself. He held to his first lesson.

Temple Grandin and C. Johnson CURIOSITY-SUSCEPTIBIILTY “THEOREM”
. . . i : ! Or CURIOSITY-FEAR THEOREM
Animals in translation (Scribner, New York, 2005)
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With a little help from my friends. When making choices, individuals are influ-
enced by what others think is best, making the final outcome unpredictable.

M. ].

Popular songs became more popular and unpopular songs became less popular when
individuals influenced one another.

The structure of social action—that is, the pattern and strength of social influence—in and
of itself is of considerable importance for explaining the social phenomena we observe.

Salganik, P. S. Dodds, D. ]. Watts, Science 311, 854 (2006)

Why do we have a big brain?

Epiphenomenal hypothesis: large brains are
unavoidable consequences of a large body

Developmental hypothesis: maternal energy
constraints determine energy capacity for fetal
brain growth (frugivory=richer diet)

Ecological hypothesis: brain evolved to process
information of ecological relevance (frugivory,
home range navigation, extractive foraging)

Social hypothesis: brain size constrains size of
social network (group size) (memory on
relationships, social skills)
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Figure 2. Relative neocortex size in anthropoid primates plotted against (a) percentage of fruit in the diet, (b) mean home-range size scaled as
the residual of range size regressed on body weight (after Dunbar?*), (c) types of extractive foraging (after Gibson*), and (d) mean group size.
((a). (b), and (d) are redrawn from Dunbar?*, Figures 6, 2 and 1, respectively; (c) is from Dunbar,* Figure 2.)

Dunbar, R.I.LM., The social brain hypothesis. Evolutionary Anthropology 6, 178-190 (1998).
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Figure 3. Mean gmoup size plotted against neccortex ratio for individual genera, shown
separately for prosimian, simian, and hominoid primates. Prosimian group size data, from
Dunbar and Joffe,™ include species for which neacortex ratio is estimated fram total brain
volume. Anthropoid data are from Dunbar® Simians: 1, Miopithecus; 2, Papio; 3, Macaca, 4,
Procolobus; 5, 5aimi: &, Endtrocebus; 7, Cercopithecus; 8, Lagothrix: 9, Cebus; 10, Ateles; 11,
Cercocebus; 12, Nasals; 13, Caficebus; 14, Alouatta; 15, Calfmico; 16, Ceboella; 17, 5aguinus;
18, Aotus; 19, Pithecia; 20, Calicebus. Prosimians: a, Lemur; b, Varecia; ¢, Eilemur: d, Fropithe-
cus; e, Indr: f, Microcebus; g, Galago, h, Hapalemur, i, Avahi; |, Perodictus.



circle (support clique), triangle (sympathy group), diamond (bands), stars (cognitive groups),
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A real-life example of a hierarchical network

*Sections (squads): 10-12 soldiers

*Platoons (of 3 sections, = 35 soldiers)

*Companies (3-4 platoons, =~ 120-150 soldiers)

eBattalions (3-4 companies plus support units, = 550-800)

*Regiments (or brigades) (3 battalions plus support,2500+)

eDivisions (3 regiments)
*Corps (2-3 divisions)
eArmies

*Country

.. . apesseem to be
good psychologists in
that they are good at
reading minds, whereas
monkeys are good
ethologists in that they
are good at reading
behavior. ..
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Fair trade. Capuchin monkeys refuse to cooperate when they see a
comrade receive a better reward for the same task.



Collective behavior

Courtesy of B. A. Huberman.

Optimal strategy obtained under limited information

Equation showing optimal imitation solution of decision in absence of intrinsic information and in
the presence of information coming from actions of connected “neighbors”

s;(t4+ 1) =sign| K ) s, + ¢

JEN;

This equation gives rise to critical transition=bubbles and crashes

+ random dynamics of imitation strength

-Crash = coordinated sell-off of a large number of investors
-single cluster of connected investors to set the market off-balance
-Crash if 1) large cluster s>s* and 2) active

-Proba(1) = n(s)
-Proba(2) ~s? with 1<a<2

Proba(crash) ~ Z ost  N(S) $?

If a=2, Z ogr N(s)s? ~ IK-Kcl

(coupling between decisions)




Disorder : K small

Renormalization group:

Critical: |
K=critical i
value

Rational Expectation Bubbles and Crashes

Martingale hypothesis (“no free lunch”):

for all ¢ >t Eip()] = p(t)
If crashes are depletions of bubbles:

dp = (1) p(t) dt — k[p(t) — p1ldj
Martingale gives h(t)=E[dj]

p(t)p(t) = klp(t) —p1]h(t) ,
i.e., if crash hazard rate h(t) increases, so must
the return (bounded rationality)

A. Johansen, D. Sornette and O. Ledoit A. Johansen, O. Ledoit and D. Sornette, Crashes as critical
Predicting Financial Crashes using discrete scale invariance, points, International Journal of Theoretical and Applied
Journal of Risk 1 (4), 4, 5-32 (1999) Finance 3 (2), 219-255 (2000)
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Importance of Positive Feedbacks and
Over-confidence in a Self-Fulfilling Ising
Model of Financial Markets

si(1) = sign ZJ% K (OE[s;[(1) + ai(0)G(L) + ¢(1)

Imitation News

[{gj(t) = bz‘j + CJ{,,;K'ﬂ'j(t — 1) + ,8?‘(15 — I)G(f — 1)

(generalizes Carlos Pedro Gongalves, who generalized Johansen-Ledoit-Sornette)

B: propensity to be influenced by the felling of others
1. B<O0: rational agents

« (>0: over-confident agents

Didier Sornette and Wei-Xing Zhou, in press in Physica A (2006) (http://arxiv.org/abs/cond-mat/0503607)



News:

Price:

G(1) =

r(t) =

1
—1

p(t) = p(t — 1)exp[r(2)],

Zie/l‘" Si(t)

if 1(6)>0,
if7(1)<0.

(1) the agents make decisions based on a combination of three ingredients:

imitation, news and private information

(2) they are boundedly rational

(3) traders are heterogeneous (Kij and 0));

(4) The propensity to imitate and herd is evolving adaptively as an interpretation that
the agents make of past successes of the news to predict the direction of the market.

lustration of the existence of an Ising-like phase transition,

as a function of the control parameter b, ,, for both regimes 3 =-1 and p=1
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a; = 0 corresponding to the absence of memory of the coefficients K;;'s
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Fig. 1. Density distribution of returns r; for a realization of the artificial stock
market model formulated by Gongalves (2003) generated using bmax = 0.22 ~ 0.24,
Omax = 0.14 ~ 0.15 and CV = 0.8 ~ 0.9 as recommended by this author. The time
series of returns have been kindly provided by Gongalves. Our own simulations
reproduce the same results.
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Case 8 = 41 (“over-confident” agents)
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Fig. 3. A realization af the logarithm of the price over 107 time steps generated
using o = 0.2, bypay = 0.3, Ty = 0,03 and OV = 0.1 of the generalized artificial
stock market madel defined by (1), (4) and {10).

Fig. 4. Time series of the log-returns of the price shown in Fig. 3.

Fig. 5. (Color online) Empirical (solid lines) and theoretical (dashed thin lines)
probability distribution density (in logarithmic scales) of log-returns at different
time scales r of the price time series shown in Fig. 3. The log-returns 7, are normal-
ized by their corresponding standard deviations o.. The pdf curves are translated
vertically for clarity. The thick dashed line is the Gaussian pdf.
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Multifractal random walk
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lﬂ(l) panel plots the correlation function as a function of the logarithm of the time lag,
as suggested by the multifractal random walk model (see text).
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Fig. 1. Multifractal analysis of the intraday future S&P3500
index over the period 1988-1999. (a) Plot of the original in-
dex time-series. The analyzed time-series is the detrended
and de-seasonalized logarithm of this series. (b) Log-log plots
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-2048 0 2048
At (5 min)

A. Arneodo, J.-F. Muzy and D. Sornette, Direct causal cascade in the stock market,
European Physical Journal B 2, 277-282 (1998)

The multiplicative cascade
paradigm

X (M) = M6 X (1) = Wr6 X (t)

e )V-cascades (wavelet cascade)

Integral scale L= 2 months

In(1)

1 = 2 months

-1 =1 month

-1 = 1/2 month

Increment (wavelet) scale-time space
Il Il Il Il Il Il Il

1/4 month 1 month



The Multifractal Randow Walk (MRW) model |

rarlt) = c(t) oarlt) = c(t) -+

1
UAr = iln(azAt]—CAt(O)

T
Carlr) = Covlwas(t),wart +7)] = Aln (M)

oat) = par+ [ drn(r) Kaile =)

o

way (1) is Gaussian with mean gra, and variance Va, = [ dr K3, (7) = A% In (—Tz;r)

Carlr) = / dt K as(t)Kalt + |7))
0

Rar(D? = Caa(f) = 222 = [J§ 550t 1 0 (rAtin(AL)

, AT
Kai(r) ~ Koy —  for At << 7 << T
T

D. Sornette, Y. Malevergne and J.F. Muzy, Volatility fingerprints of large shocks: Endogeneous versus
exogeneous, Risk 16 (2), 67-71 (2003)((http://arXiv.org/abs/cond-mat/0204626)

Linear response to an external shock
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Fig. 14. Relaxation of superposed excess volatility after exogenous shocks obtained
by imposing a very large news G(ts) for At = 1.

“Conditional response” to an endogeneous shock

2
Eanal0) [ ] = 72(O)exp [26e0 — )+ 0 - 200
a(s)+4(t)
— ( ) Interplay between
-long memory
2 - .
a(s) = T:‘S/Q ’ exponential
where hl( At )
In(t/At)
t) = 2\
Blt) In(Te3/2] At)

12|
Within the range At < t << Atex?, 3(t) << a(s)

Eendo[02(t) | wo] ~ t72)




Inverse Omori law, conditional
foreshock

Analogy Brownian motions / seismicity rate in the ETAS model

without conditioning: conditioning to a large value W(t,.)=d :
stationary process, average=0  non-stationary process, average # 0

d

W average \dlue

(mainshock)
seismicity rate

before a

mainshock,

inverse Omori law

stationary
seismicity rate

Real Data and Multifractal Random Walk model

500 1000 2 2 2 s
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Fig. 13. Exponent «(s) of the conditional volatility response as a function of the
endogenous shock amplitude S for At = 1,2, 4, and 8
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Bubbles and crashes

I"ig. 15. Five price trajectories showing bubbles preceding crashes that occur at the
shifted time 0. The five time series have been translated so that the time of their
crash is placed at the origin ¢ = 0.
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Figure 4: (Color online) Superposed epoch analysis of the 11
time intervals, each of 6 years long, of the DJIA index centered
on the time of the maxima of the 11 predictor peaks above Al = 0.3

of the alarm index shown in Fig. 3.

D. Sornette and W.-X. Zhou
Predictability of Large Future Changes in major financial indices,
International Journal of Forecasting 22, 153-168 (2006)

All stylized facts are reproduced when

*The system operates close to the Ising critical point (large
susceptibility and anomalous volatility: Shiller’s paradox)

*Agents over-interpret or mis-attribute the origin of price changes

No feedback of the price on the decision making process



INFORMATION: normal people’s high level of general intelligence makes
them too smart for their own good.

In 1909, a broker using the pseudonym Don Guyon wrote a small book called One-Way Pockets.
He was utterly mystified as to why, after a full cycle of rise and fall after which stocks were
valued just where they were at the start, all his clients lost money. His answer, in a nutshell, is
herding. His clients felt fearful at the start of bull markets and so traded in and out constantly. At
the market’s peak, they felt confidently bullish and held much more stock “for the long run,”

Rats beat humans:

The rats and the humans had to look at a TV screen and press the lever anytime a dot appeared in the top
half of the screen. The experimenters did not tell the human subjects that’s” what they were supposed to do;
they had to figure it out for themselves the same way the rats did. The experiment was set up so that 70% of
the time the dot was in the top of the screen. Since there was no punishment for a wrong response, the
smartest strategy was just to push the bar 100% of the time. That way, you get the reward 70% of the time,
even though you have not clue of what is the pattern.

That's what the rats did.

But the humans never figured this out!

They kept trying to come up with a rule, so sometimes they pressed the bar and sometimes they would not,
trying to figure it out. Some of them thought they had come up with a rule. But they were of course deluded
and their performance was much less than the rats.

People makes STORIES! Normal people have an “interpreter” in their left brain that takes all the random,
contradictory details of whatever they are doing or remembering at the moment, and smoothes everything in
one coherent story. If there are details that do not fit, they are edited out or revised!

Temple Grandin and C. Johnson, Animals in translation (Scribner, New York, 2005)



