
Endogenous versus exogenous dynamics and scaling laws
in YouTube, Open Source Softwares and Cyber-risks

Didier Sornette
Chair of Entrepreneurial Risks
ETH Zurich
(Swiss Federal Institute of Technology, Zurich)
Department of Management, Technology and Economics
http://www.er.ethz.ch/

Collaborators:
Riley Crane (post-doc)
Thomas Maillart (PhD student)

Social networks

Guidelines from Physics:
perturb and study the response

20:00 4 March. 2005

Updated every hour
AMAZON BOOK SALES

D. Sornette et al., Phys. Rev. Letts. 93 (22), 228701 (2004)

Epidemic processes by word-of-mouth

Definition of the branching model:
starting from an existing branch, with probability
C0 the branch stops at the next step; with
probability C1, the branch continues to grow at
the next step; with probability C2, it develops
two branches

The critical condition C1 + 2C2 = 1 together with the normalization C0+C1+C2 = 1 yields
the condition C0 = C2 at criticality.

Simplest example of branching

Mean field theory of Hawkes self-exciting conditional Poisson Process

 Theory: Null Hypotheses
• The tests are about the slopes of the

response functions, conditional on the
class of peak determined by the slope
of the growth AT CRITICALITY n=1

Endogenous Exogenous

Foreshock
(or growth)
Aftershock
(or decay)

Abrupt peak

Non-critical:
+

D-MTEC Chair of Entrepreneurial Risks

 Hawkes ETAS model and numerical simulations
The impact of cascades of generations

 is the global law
also an Omori
law ?

 pglobal # plocal ?

Rate of aftershocks for a numerical simulation of the ETAS model

Endogenous precursor

Endogenous relaxation

Exogenous

endogenous

Exogenous
relaxation

Exogenous
precursor

TM

Riley Crane, Didier Sornette
ETH Zurich, D-MTEC
Chair of Entrepreneurial Risks

A Shocking Look At...

The Front Page

Overview

 Video Arrival and Site Growth

 Featuring – Endogenous/Exogenous Shocks

 Dynamical Relaxation Following Shocks

Perl script, via application programming interface (API) for the
automated request of data. Stored in MySQL database

YouTube responds with a structured (XML) document containing
information such as the cumulative number of times a video has
been viewed (dynamic), along with descriptive information (static)
concerning the user who posted the video, the title, tags, length,
category, rating, comments, etc

Birth of a Video

Videos Added per Minute

Locally - distribution of Waiting

times is Exponential

Non-Stationary Poisson Process

Non-Stationary Poisson Rate

N(t)≈t^3.3

Cumulative Number of Videos

Exponent 3.3 reveals the average nb of “friends”

Most Viewed Page

Most Recent Page

Datum

The Effect of Featuring
Growth of a Video before being featured

Featuring
begins

Decline of a video after being featured

Featuring ends

Editorial Featuring
(arbitrary and random)

Shocks in YouTube

“Endogenous”

“Exogenous”

Shocks in YouTube

Non-Parametric Superposition

Endogenous

Exogenous

Temporal variation of seismicity

Observations :

Typical Relaxation Following Peak

Typical Relaxation Following Peak

Typical Relaxation Following Peak

Typical Relaxation Following Peak

Typical Relaxation Following Peak

Typical Relaxation Following Peak

Shock: more than 100 views on a single day, and has at least 10 days following this peak.
Of the 5 million videos we are tracking, 76% do not receive 100 views on any given day.
Furthermore, 15% either don't have 10 days worth of data, or don't have 10 days following a
qualified peak. This leaves us with roughly 9% (=421,487 videos).

 A Least-Squares Fit is performed on
the log-log data over the largest
possible range.

 The exponent “p” is extracted

A = Amplitude

p = exponent governing decay

Typical Response

Sorting Out the data: Peak Height Fraction

“Critical/Endo”
Fraction ~ 1%

“Not Critical/Exo”
Fraction ~ 40%

Exponent – Shock as Fraction of Total Peak Height

“Not Critical”
 relaxes quickly
(Front page)

“Endogenous”
relaxes more slowly

“Critical”
relaxes slowly
(most viewed)

• vulnerability process is a good proxy of
software resilience to bugs

• we identify 4 steps in vulnerability process:

1. discovery (red)
2. exploit (green)
3. public disclosure (time reference)
4. patch release (blue)

• exploits and patch can appear before
disclosure (crosses) or after (circles)

• once again, response distribution in this
process is heavily tailed

• very characteristic is the distribution of
exploits (before disclosure, green crosses)
which shows some patterns of power-law
with phase transition, in lower tail

with S. Frei (ETH Zurich)

time

time

ccdf

ccdf

Software vulnerability dynamics

• Here we show comparison
between types of softwares:
- Microsoft (blue)
- Linux (red)
- Oracle (purple)
- Mozilla (green)

• We can see that time to patch
distribution is also heavily
tailed.

• While it varies differently
according to considered
software the allure remains
somehow the similar, especially
when we consider Microsoft
(blue) and Linux (red).

Software vulnerability dynamics

(Frei et al. 2006)

Towards Predictions

Observations :

 Predicting the rise and fall of social and economic
interactions by monitoring and modeling internet

activities and commercial sales

Endogenous versus Exogenous
Extinctions
 -meteorite at the Cretaceous/Tertiary KT boundary
 -volcanic eruptions (Deccan traps)
 -self-organized critical events
Financial crashes
 -external shock
 -self-organized instability
Immune system
 -external viral or bacterial attack
 - “ internal” (dis-)organization
Brain (learning)
 -external inputs
 -internal self-organization and reinforcements (role of sleep)

Recovery after wars?
 -internally generated (civil wars)
 -externally generated

Aviation industry recession
 -September 11, 2001
 -structural endogenous problems

Volatility bursts in financial time series
 -external shock
 -cumulative effect of “small” news

Commercial success and sales
 -Ads
 -epidemic network
Social unrests
 -triggering factors
 -rotting of social tissue

Discoveries
 -serendipity
 -maturation

Parturition
 -mother/foetus triggered?
 -mother-foetus complex?

Earthquakes
 -tectonic driving
 -triggering

Open Source Software (OSS)
Contribution in Mozilla

• data mining in Concurrent Versioning System (CVS)

• analyze software (Mozilla Project) since its start (1998)

• focus on developers, debuggers, contribution

Motivation, Effort, Production in
Open Source Software

Open Source Software (OSS) Network
(with Thomas Maillart)

• One Key feature of OSS is the capability to reuse
pieces of source code wherever they are useful or
needed.

• Programs call other Programs, allowing development
time savings, and long range updates

• We can define Links between programs (nodes) as
Edges of an OSS Network. These Links are directed.

• We study the connectivity of nodes (out degrees)
distribution among a particular OSS subset: packages
included in Debian Linux Distribution

• exponent = 1
Zipf Law

• on four orders of
magnitude

• this is the typical
pattern of a scale
free network

Open Source Software (OSS) Network

linux kernel

Debian software

• Since no formal organisation occurs in OSS, we
determine the activity of source code committers
in time series

• We differentiate by developers (adding features)
and debugger (adding robustness)

• We can clearly see that clusters of activity occur in
time and space (source code tree)

Open Source Software (OSS)
Contribution in Mozilla

• distribution of contributions (both development
and debugging) is heavy tailed

• we analyze distribution of deviations between
development and debugging per committer to find
coder’s profiles.

• Many are developing as much as debugging

• But some develop far much more than debugging

• This distribution is also heavy tailed

Open Source Software (OSS)
Contribution in Mozilla

0 500000 1000000 1500000

1
2

5
1

0
2

0
5

0
2

0
0

5
0

0

Distribution of Code Contribution by Coder

Contribution [lines of code]

lo
g

 r
a

n
k

0 5000 15000 25000

1
2

5
1

0
2

0
5

0
2

0
0

5
0

0

Distribution of Commits by Coder

Number of Commits [checkins]

lo
g

 r
a

n
k

1e+01 1e+03 1e+05

1
2

5
1

0
2

0
5

0
1

0
0

2
0

0
5

0
0

Distribution of Contributions (in blue) and Commits by Coder

Number of Contributions (blue) [lines] and Commits [checkins]

lo
g

 r
a

n
k

• The graphs show 4 distributions:

1. checkins in the source code repository (purple)
2. contribution in lines of code (blue)
3. bugs treated (red)
4. difference between checking and bugs (green)

• We can see that all distributions are heavy tailed, denoting a
wide dispersion in coders contributions as well as in their
specialization (developers or debuggers)

• From the green graph, we assert that developers mainly also
debug (lower tail) while have a tendency to only develop
(upper tail)

Open Source Software (OSS)
Contribution in Mozilla

- Activity Maps -
• Clusters of activity appear by visual inspection

• Coders tend to work in localized space
(source code tree) and time

• Open question: are there cascading effects,
source code development ? Intuitevely Yes!

• What are the sources of these cascading
effects? exogenous? endogenous? How does
source code development process evolves in
the life of OSS project?

fo
ld

er
s

(s
or

te
d

by
 p

at
h)

co
de

rs
 (

so
rt

ed
 b

y
se

ni
or

ity
)

co
de

rs
 (

so
rt

ed
 b

y
se

ni
or

ity
)

time [checkins]

Activity by Folder by Coder

Activity by Folder vs Time
Activity by Coder vs Time

time [checkins]

