Financial, Real-Estate Bubble, Derivative Bubbles
Finite-Singularity Models

D. Sornette

Department of Management, Technology and Economics, ETH Zurich, Switzerland

Member of the Swiss Finance Institute
co-founder of the Competence Center for Coping with Crises in Socio-Economic Systems, ETH Zurich (http://www.ccss.ethz.ch/)

long-term Collaborators:
Y. Ageon (Insight Finance, France)
J. Andersen (CNRS, France)
D. Darcet (Insight Research)
K. Ide (UCLA)
A. Johansen (Denmark)
Y. Malevergne (Univ. Lyon, France)
V: Pisarenko (Acad. Sci. Moscow, Russia)
W.-X. Zhou (ECUST, Shanghai)

Collaborators at ETH Zurich:

"The budget should be balanced, the Treasury should be refilled, public debt should be reduced, the arrogance of officialdom should be tempered and controlled, and the assistance to foreign lands should be curtailed lest Rome become bankrupt. People must again learn to work instead of living on public assistance."

Cicero - 55 BC
• The financial instability hypothesis
• What are financial bubbles?
• Different models (social interactions, herding, news, value vs noise trading...)
• Finite-time singular (FTS) models
• Hypothesis 1: bubbles can be diagnosed in real time
• Hypothesis 2: the termination of bubbles can be determined probabilistically in advance
• The Financial Crisis Observatory at ETH Zurich and the Financial Bubble Experiment
The Paradox of the 2007-20XX Crisis

(trillions of US$)

Source: IMF Global Financial Stability Report; World Economic Outlook November update and estimates; World Federation of Exchanges.
Crises frequently emanate from the financial centers with transmission through interest rate shocks and commodity price collapses. Thus, the recent US sub-prime financial crisis is hardly unique.

Sovereign External Debt: 1800-2006
Percent of Countries in Default or Restructuring

This Time is Different: A Panoramic View of Eight Centuries of Financial Crises
Sources: Bordo et al. (2001), Caprio et al. (2005), Kaminsky and Reinhart (1999), Obstfeld and Taylor (2004), and Carmen M. Reinhart and Kenneth S. Rogoff,
Hong-Kong

Textbook example of a series of super-exponential acceleration followed by crashes

Arrows show peaks followed by corrections of more than 15% in less than three weeks

Red line is 13.8% per year: but the market is never following the average growth; it is either super-exponentially accelerating or crashing

Patterns of price trajectory during 0.5-1 year before each peak: Log-periodic power law
Various Bubbles and Crashes

Each bubble has been rescaled vertically and translated to end at the time of the crash.
Financial Instability Hypothesis
(Minsky, 1974)

“A fundamental characteristic of our economy is that the financial system swings between robustness and fragility and these swings are an integral part of the process that generates business cycles.”

- **Hedge-finance**: in-flow - out-flow positive over all periods
- **Speculative finance**: in-flow - out-flow negative near term and expected to turn positive long-term
- **Ponzi finance**: in-flow - out-flow negative until the very last period at which a big gain compensates for all the previous losses.
A 15y History of the 2008- crisis

- Real-estate bubbles (2003-2006)
- Commodities and Oil bubbles (2006-2008)
- Consequences (deep loss of trust, systemic instability)
- Solution?
Academic Literature: No consensus on what is a bubble...

Ex: Refet S. Gürkaynak, *Econometric Tests of Asset Price Bubbles: Taking Stock*. Can asset price bubbles be detected? This survey of econometric tests of asset price bubbles shows that, despite recent advances, econometric detection of asset price bubbles cannot be achieved with a satisfactory degree of certainty. For each paper that finds evidence of bubbles, there is another one that fits the data equally well without allowing for a bubble. We are still unable to distinguish bubbles from time-varying or regime-switching fundamentals, while many small sample econometrics problems of bubble tests remain unresolved.

Professional Literature: we do not know... only after the crash

“We, at the Federal Reserve…recognized that, despite our suspicions, it was very difficult to definitively identify a bubble until after the fact, that is, when its bursting confirmed its existence… Moreover, it was far from obvious that bubbles, even if identified early, could be preempted short of the Central Bank inducing a substantial contraction in economic activity, the very outcome we would be seeking to avoid.”
What is a bubble?

Positive feedbacks

\[\frac{dp}{dt} = cp^d \]

\[p(t) = \left(\frac{c}{m} \right)^{-m} (t_c - t)^{-m} \]

\[m = \frac{1}{(d - 1)} > 0 \text{ and } t_c = t_0 + mp_0^{1-d}/c. \]

Our proposition:
Faster than exponential transient unsustainable growth of price
Finite-time Singularity

• Planet formation in solar system by run-away accretion of planetesimals

• PDE’s: Euler equations of inviscid fluids and relationship with turbulence

• PDE’s of General Relativity coupled to a mass field leading to the formation of black holes

• Zakharov-equation of beam-driven Langmuir turbulence in plasma

• rupture and material failure

• Earthquakes (ex: slip-velocity Ruina-Dieterich friction law and accelerating creep)

• Models of micro-organisms chemotaxis, aggregating to form fruiting bodies

• Surface instability spikes (Mullins-Sekerka), jets from a singular surface, fluid drop snap-off

• Euler’s disk (rotating coin)

• Stock market crashes...
Mechanisms for positive feedbacks in the stock market

• Technical and rational mechanisms
 1. Option hedging
 2. Insurance portfolio strategies
 3. Trend following investment strategies
 4. Asymmetric information on hedging strategies

• Behavioral mechanisms:
 1. Breakdown of “psychological Galilean invariance”
 2. Imitation (many persons)
 a) It is rational to imitate
 b) It is the highest cognitive task to imitate
 c) We mostly learn by imitation
 d) The concept of “CONVENTION” (Orléan)
Thy Neighbor’s Portfolio: Word-of-Mouth Effects in the Holdings and Trades of Money Managers

THE JOURNAL OF FINANCE • VOL. LX, NO. 6 • DECEMBER 2005

HARRISON HONG, JEFFREY D. KUBIK, and JEREMY C. STEIN*

A mutual fund manager is more likely to buy (or sell) a particular stock in any quarter if other managers in the same city are buying (or selling) that same stock. This pattern shows up even when the fund manager and the stock in question are located far apart, so it is distinct from anything having to do with local preference. The evidence can be interpreted in terms of an epidemic model in which investors spread information about stocks to one another by word of mouth.

A fundamental observation about human society is that people who communicate regularly with one another think similarly. There is at any place and in any time a Zeitgeist, a spirit of the times... Word-of-mouth transmission of ideas appears to be an important contributor to day-to-day or hour-to-hour stock market fluctuations. (pp. 148, 155) Shiller (2000)

Humans Appear Hardwired To Learn By 'Over-Imitation'

ScienceDaily (Dec. 6, 2007) — Children learn by imitating adults--so much so that they will rethink how an object works if they observe an adult taking unnecessary steps when using that object, according to a new Yale study.
Universal Bubble and Crash Scenario

Displacement → Credit creation → Euphoria → Critical stage / Financial distress → Revulsion

Charles Kindleberger, Manias, Panics and Crashes (1978)
Many bubbles and crashes

- Hong-Kong crashes: 1987, 1994, 1997 and many others
- October 1997 mini-crash
- August 1998
- Slow crash of spring 1962
- Latin-american crashes
- Asian market crashes
- Russian crashes
- Individual companies
Simplest Example of a “More is Different” Transition

Water level vs. temperature

BOILING PHASE TRANSITION
More is different: a single molecule does not boil at $100^\circ C$

(S. Solomón)
Example of “MORE IS DIFFERENT” transition in Finance:

Instead of
Water Level:
-economic index
(Dow-Jones etc...)

Crash = result of collective behavior of individual traders

(S. Solomon)
Rational Expectation Bubbles and Crashes (Blanchard-Watson)

Martingale hypothesis ("no free lunch"):

$$\text{for all } t' > t \quad \mathbb{E}_t[p(t')] = p(t)$$

If crashes are depletions of bubbles:

$$dp = \mu(t)p(t)dt - \kappa[p(t) - p_1]dj$$

Martingale gives

$$\mu(t)p(t) = \kappa[p(t) - p_1]h(t)$$,

i.e., if crash hazard rate $h(t)$ increases, so must the return (bounded rationality)

A. Johansen, D. Sornette and O. Ledoit

Optimal strategy obtained under limited information

Equation showing optimal imitation solution of decision in absence of intrinsic information and in the presence of information coming from actions of connected “neighbors”

\[s_i(t + 1) = \text{sign}\left(K \sum_{j \in N_i} s_j + \epsilon_i \right) \]

This equation gives rise to critical transition=bubbles and crashes

-Crash = coordinated sell-off of a large number of investors
- single cluster of connected investors to set the market off-balance
- Crash if 1) large cluster \(s > s^* \) and 2) active

- \(\text{Proba(crash)} = n(s) \)
- \(\text{Proba(active cluster)} \sim s^a \) with \(1 < a < 2 \) (coupling between decisions)

\[\text{Proba(crash)} \sim \sum_{s > s^*} n(s) s^a \]

If \(a=2 \), \(\sum_{s > s^*} n(s) s^2 \sim |K-K_c|^{-\gamma} \)
Disorder: K small

Renormalization group:
Organization of the description scale by scale

Critical:
$K = \text{critical value}$

Order K large
Bubble with stochastic finite-time singularity due to positive feedbacks

\[
\frac{dB(t)}{B(t)} = \mu dt + \sigma dW_t - \kappa dj
\]

\[
\mu(B)B = \frac{m}{2B}[B\sigma(B)]^2 + \mu_0[B(t)/B_0]^m
\]

\[
\sigma(B)B = \sigma_0[B(t)/B_0]^m,
\]

\[
\frac{dB}{dt} = (a\mu_0 + b\eta)B^m - \kappa Bdj \quad h(t) = \frac{\mu(B(t))}{\langle\kappa\rangle}
\]

\[
B(t) = \alpha^\alpha \frac{1}{\left(\mu_0[t_c - t] - \frac{\sigma_0}{B_0^m} W(t)\right)^\alpha}, \quad \text{where } \alpha \equiv \frac{1}{m - 1}
\]

Stochastic finite-time singularity
Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles

\[B(t) = \alpha \frac{1}{(\mu_0 [t_c - t] - (\sigma_0/B_0^m)W(t))} \]

The price drives the crash hazard rate.

D. Sornette and J.V. Andersen
A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles,
\[B(t) = \alpha^x \frac{1}{(\mu_0 [t_c - t] - (\sigma_0/B_0^m)W(t))^x} \quad \text{where } \alpha \equiv 1/m - 1 \]

Contains two ingredients:

(1) growth faster than exponential

(2) growth of volatility

\[
\lim 1/\alpha \to 0 \quad (m \to 1)
\]

\[B_{BS}(t) = \exp(\mu_0 t + \sigma_0 W(t)) \quad \text{Standard Geometric random walk} \]

Wilks’ test of embedded hypotheses

Test of the existence of both ingredients

Example of a “fearful” super-exponential bubble

S&P 500 index from 1/7 1985 to 31/8 1987

Percentage of 100 searches $P_{SB} = 0.70$, $P_{BS} = 0.28$

Parameters of the curves in the figure

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>r</th>
<th>σ</th>
<th>μ</th>
<th>α</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>110.64</td>
<td>2.0×10^{-5}</td>
<td>4.59×10^{-5}</td>
<td>7.36×10^{-4}</td>
<td>3.0</td>
<td>3390.54</td>
</tr>
<tr>
<td>BS</td>
<td>185.06</td>
<td>2.0×10^{-4}</td>
<td>7.81×10^{-5}</td>
<td>9.65×10^{-4}</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

$T=183.71$ Prob.(SB) > 0.9999
Example of a “fearless” super-exponential bubble

Nasdaq future 100 index from 18/6 1999 to 27/3 2000

Percentage of 100 searches $P_{SB} = 0.03$, $P_{BS} = 0.97$

<table>
<thead>
<tr>
<th>Parameters of the curves in the figure</th>
<th>F</th>
<th>r</th>
<th>σ</th>
<th>μ</th>
<th>α</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>1262.08</td>
<td>2.0×10^{-5}</td>
<td>8.89×10^{-5}</td>
<td>1.55×10^{-3}</td>
<td>1.0</td>
<td>368.34</td>
</tr>
<tr>
<td>BS</td>
<td>1845.20</td>
<td>1.60×10^{-4}</td>
<td>5.10×10^{-4}</td>
<td>3.73×10^{-3}</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

$T = -45.30$ Prob.(BS) > 0.9999
THE CRASH OF OCTOBER 1987

Intermittent anticipation of the crash reflected in out-of-the-money option prices

Percentage deviation \((C-P)/P\) of call from put prices (skewness premium) for options at-the-money and 4% out-of-the-money, over 1985–87. The percentage deviation \((C-P)/P\) is a measure of the asymmetry between the perceived distribution of future large upward moves compared to large downward moves of the S&P 500 index. Deviations above (below) 0% indicate optimism (fear) for a bullish market (of large potential drops). The inset shows the same quantity \((C-P)/P\) calculated hourly during October 1987 prior to the crash: ironically, the market forgot its “fears” close to the crash.

The Wall Street Journal on August 26, 1987, the day after the 1987 market peak: “In a market like this, every story is a positive one. Any news is good news. It’s pretty much taken for granted now that the market is going to go up.”

Renormalization Group approach

\[f(K) = g(K) + \frac{1}{\mu} f[R(K)] \]

(Derrida, Eckmann, Erzan, 1983)

\[f(x) = \sum_{n=0}^{\infty} \frac{1}{\mu^n} g[R^{(n)}(K)] \]

\[f(x) = \sum_{n=0}^{\infty} \frac{1}{\mu^n} \gamma^n x \]

\[f_W = \sum_{n=0}^{\infty} b^n \cos[a^n \pi x] \]

Inverse Mellin transform

\[f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \hat{f}(s)x^{-s}ds \]

\[f_s(x) = \sum_{n=0}^{\infty} A_n x^{-s_n} \]

\[f_r(x) = \sum_{n=0}^{\infty} B_n x^n \]

\[A_n = \frac{\hat{g}(s_n)}{\ln \gamma} \]

\[s_n = -m + i \frac{2\pi}{\ln \gamma} n \]

Fractal function
(Weierstrass)
Empirical test on LPPL: nonparametric test; nonlinear least-square fits of price (focusing on price)

Directly test LPPL on return is infeasible:
- Signal is one-order-of magnitude smaller than background noise.
- Lack of long time series since bubble is a transient structure.

Chang and Feigenbaum (2006): Bayesian method to return time series
- Without considering crash probabilities, BS model outperforms the JLS model.

JLS model = deterministic trajectory + random walk

Variance ever increasing!
Price strays farther and farther away from LPPL trend

To be consistent, actual price series should be co-integrated with LPPL nonlinear trend, which means the residuals ought to be a stationary process!
A Consistent Model of ‘Explosive’ Financial Bubbles
With Mean-Reversing Residuals
L. Lin, R. E. Ren and D. Sornette (2009)
http://papers.ssrn.com/abstract=1407574

\[
\frac{dI}{I} = [r + \rho\Sigma + \kappa h(t)] dt - \alpha \rho_Y Y dt + (\sigma_Y + \sigma_W) dW
\]
First model

Volatility Confined LPPL = deterministic component + Ornstein-Uhlenbeck process

- first model: based on Rational Expectation (RE) condition
 - Original price process: \(\frac{dp}{p} = \mu(t)dt + \sigma_Y dY + \sigma_w dW - k dt \)
 \(dY = -\alpha Y dt + dW \)
 - Stochastic Discount Factor: \(\frac{d\Lambda}{\Lambda} = -rdt - \rho_Y dY - \rho_w dW \)
 - Under no-arbitrage condition:
 \[\mu(t) = \text{LPPL component} + \alpha(\sigma_Y - \rho_Y)Y_t^\infty \]
 \[r_{i+1} = \ln p_{t_{i+1}} - \ln p_{t_i} \sim N(\Delta H_{t_{i+1},t_i} - \alpha(\ln p_{t_i} - H_{t_i}), \sigma^2(t_{i+1} - t_i)) \]
 \[H_{t_i} = A - B(t_c - t_i)^\beta \left[1 + \frac{C}{\sqrt{1 + \left(\frac{\omega}{\beta} \right)^2}} \cos(\omega \ln(t_c - t_i) + \phi) \right] \]
The second model: based on concept of Behavioral Stochastic Discount Factor (BSDF) with critical behavior

- Shefrin (2006) introduce BSDF to characterize market sentiment. Critical behavior can be attributed to one kind of market sentiment.
- BSDF:
 \[\frac{d\Lambda_t^{ST}}{\Lambda_t^{ST}} = -[r - a]dt - b d\bar{y} + \rho_y dY + \rho_w dW \]

- Objective price process:
 \[\frac{dp}{p} = \mu(t) dt + \sigma_y dY + \sigma_w dW \]
 \[dY = -\alpha Y dt + dW \]

- The solution is same as the first model.
- Crash breaks the no-arbitrage conditions. Absence of basic securities cause price continuously falling. This vicious circles results form positive feedback.
Evaluation of GARCH process to test for type I error (false positive)

- Stylized features of LPPL
- False positive rate: less than 0.2%
- Unit-roots test shows: most of residual series can not reject non-stationary hypothesis.

Test on S&P500 index for nearly 60 years

<table>
<thead>
<tr>
<th>start of window</th>
<th>end of window</th>
<th>reject H_0 for residuals</th>
<th>type of sliding step</th>
</tr>
</thead>
<tbody>
<tr>
<td>May. 7, 1984</td>
<td>Apr. 24, 1987</td>
<td>Yes</td>
<td>I</td>
</tr>
<tr>
<td>Jun. 12, 1984</td>
<td>Jun. 1, 1987</td>
<td>Yes</td>
<td>I & II</td>
</tr>
<tr>
<td>Mar. 15, 1991</td>
<td>Feb. 16, 1994</td>
<td>Yes</td>
<td>I & II</td>
</tr>
<tr>
<td>May. 3, 1994</td>
<td>Apr. 18, 1997</td>
<td>Yes</td>
<td>I & II</td>
</tr>
<tr>
<td>Jun. 8, 1994</td>
<td>May. 23, 1997</td>
<td>Yes</td>
<td>I</td>
</tr>
<tr>
<td>Sep. 23, 1994</td>
<td>Sep. 10, 1997</td>
<td>Yes</td>
<td>I & II</td>
</tr>
<tr>
<td>Apr. 28, 1995</td>
<td>Apr. 11, 1998</td>
<td>Yes</td>
<td>I & II</td>
</tr>
<tr>
<td>Jun. 5, 1995</td>
<td>May. 15, 1998</td>
<td>Yes</td>
<td>I</td>
</tr>
<tr>
<td>Jun. 11, 1995</td>
<td>Jun. 21, 1998</td>
<td>Yes</td>
<td>I & II</td>
</tr>
<tr>
<td>Sep. 16, 1996</td>
<td>Sep. 30, 1999</td>
<td>Yes</td>
<td>I & II</td>
</tr>
</tbody>
</table>

Unit roots test:

$H_0 : \phi = 1; H_1 : |\phi| < 1$

$\Delta y_t = (\phi - 1)y_t + \epsilon_t$
Specific Test focusing on classic crash of October 87

- Test for the validity of the LPPL conditions and unit-root tests on residuals in windows all ending on Sep. 30, 1987 with different starting dates for the S&P500 US index. The smallest window size is 750 days. P_{LPPL} is the percentage of windows that obey the LPPL conditions in all the test windows. $P_{StationaryResi.|LPPL}$ is the probability that the null unit-root tests for non-stationarity are rejected for the residuals, conditional on the fact that the LPPL conditions are met. The unit-root tests are also the Phillips-Perron and Dickey-Fuller tests (both produce the same results) with significance level of 0.001.

| start of window | number of samples | number of series satisfy LPPL condition | P_{LPPL} | $P_{StationaryResi.|LPPL}$ |
|-----------------|-------------------|--|-----------|--------------------------|
| Jan. 2, 1980 | 242 | 43 | 17.78% | 100%** |
| Jan. 3, 1983 | 90 | 43 | 47.48% | 100%** |
| Sep. 1, 1983 | 57 | 42 | 73.68% | 100%** |
| Dec. 1, 1983 | 44 | 43 | 97.73% | 100%** |
| Mar. 1, 1984 | 32 | 32 | 100% | 100%** |
Bayesian approach
S&P500 1987 and Hong-Kong 1997

- Bayesian Factor
 - $B(\text{model}_1, \text{model}_2) = \frac{\text{Marginal Likelihood (model}_1)}{\text{Marginal Likelihood (model}_2)}$

- Model_1: Volatility Confined LPPL
- Prior probability
- Model_2: Black–Scholes model

- Calculation Results
 - $\mathcal{L}_{\text{LPPL}}(2.5\% - 97.5\%) = 3173.546 - 3176.983$
 - $\mathcal{L}_{\text{BS}}(2.5\% - 97.5\%) = 3169.808 - 3170.097$

LPPL outperform BS here
First model: finite-time singularity in the price dynamics with stochastic critical time

\[d\tilde{p} = \mu \tilde{p}^m (1 + \delta(\tilde{p}, t)) dt + \sigma \tilde{p}^m dW \]

\[\delta(\tilde{p}, t) = \alpha \tilde{T}_c(t) + \frac{\sigma^2}{2\mu} m [p(t)]^{m-1} \quad (3) \]

\[d\tilde{T}_c = -\alpha \tilde{T}_c dt + (\sigma/\mu) dW \quad (4) \]

Proposition 1. Provided that \(\delta(\tilde{p}, t) \) follows the process (3) with (4), the solution of equation (1) can be written under a form similar to (2) as follows,

\[p(t) = K (\tilde{T}_c - t)^{-\beta}, \]

with

\[\beta = \frac{1}{m-1}, \quad K = \left(\frac{\beta}{\mu} \right)^{\beta}, \quad T_c = \frac{\beta}{\mu} p_0^{-\frac{1}{\beta}}, \quad \tilde{T}_c = T_c + \tilde{T}_c. \]
Let us denote $t > 0$ the time at which the i’s arbitrageur has entered the market.

Being aware of the price dynamics, at each instant t, the rational arbitrageur forms a belief quantified by her hazard rate $h_i(t)$, of the probability that a crash might occur in the next instant, conditional on the fact that it has not yet happened.

She estimates the probability $1 - \Pi_i(t)$ that the crash will not happen until time t.

The arbitrageur forms a belief of the crash hazard rate which is of the same form, that is,

$$h_i(t) = \frac{\pi_i(t)}{1 - \Pi_i(t)} \propto (T_{c,i} - t)^{-\beta_i} \quad (8)$$

Occurrence of the market collapse is posited to be triggered when a sufficiently large number of arbitrageurs have exited the market, leading to a large price movement, amplified by the herding of noise traders.

Optimal exit time:

$$\max_t \mathbb{E}^i[(1 - \Pi_i(t)) \cdot dp - \pi_i(t)dt \cdot \kappa p]$$

Solution:

$$(1 - \Pi_i(t))\mathbb{E}^i(\mu p^m(1 + \delta(p, t))) = \pi_i(t)\mathbb{E}^i(\kappa p)$$
Proposition 2. Given a population of heterogeneous arbitrageurs, which form their expectation of the crash hazard rate according to (8) with heterogeneous anticipated critical times $T_{c,i}$ and exponents β_i reflecting their different views on the riskiness of the market, a given arbitrageur i decides to exit the market at the date t_{i}^{ex} which is the solution of

$$
\frac{\mathbb{E}^i[dp(t_{i}^{ex})]}{\mathbb{E}^i[\kappa^i p(t_{i}^{ex})]} = h_i(t_{i}^{ex}) \propto (T_{i,c} - t_{i}^{ex})^{-\beta_i}.
$$

(11)

Since $\mathbb{E}^i(p) \neq \mathbb{E}^j(p)$ and $h_i(t) \neq h_j(t)$, we have $t_{i}^{ex} \neq t_{j}^{ex}$. Notwithstanding the fact that the presence of the bubble is common knowledge among all rational arbitrageurs, the absence of synchronization of their market exit allows the bubble to persist and run its course up to a time close to its expected value (7).

This synchronization problem is analogous to that identified by Abreu and Brunnermeier (2003), with the important difference that we emphasize that the lack of synchronization results from the heterogeneous beliefs concerning the critical end t_{c} of the bubble.

Construction of alarms

\[\tilde{T}_{c,i}(t) = \frac{1}{K} \frac{1}{[p(t)]^{1/\beta}} + t, \quad t = t_i - 749, \ldots, t_i \]

\[T_{c,i} = \frac{1}{750} \sum_{t=1}^{750} \tilde{T}_{c,i}(t) \quad \tilde{t}_{c,i}(t) = \tilde{T}_{c,i}(t) - T_{c,i} \]

Bubble diagnostic if

(i) \(\beta^* > 0 \) such that \(m > 1 \) (the signature of a positive feedback in our model) and

(ii) \(T_{c,i} - t_i < 750 \), i.e., the estimated termination time of the bubble is not too distant

(iii) Dickey – Fuller unit – root test is rejected at 99.5% significance level
Figure 1: Logarithm of the historical S&P500 stock index and corresponding alarms shown in the three lower panels as vertical lines indicating the ends of the windows of 750 trading days in which our procedure using the first bubble model of section 2 flags a diagnostic for the presence of bubble. The three lower panels corresponds to alarms for which $T_{c,i} - t_i < 750$, $T_{c,i} - t_i < 500$ and $T_{c,i} - t_i < 250$, from top to bottom. By definition, the set of alarms of the lowest panel is included in the set of alarms of the middle panel which is itself included in the set of alarms of the upper panel.

The exponents m found for the upper panel corresponding to $T_{c,i} - t_i < 750$ have a mean of 2.76 with a standard deviation of 0.33.
Figure 2: Same as Fig. 1 for the Nasdaq Composite index. The exponents m found for the upper panel corresponding to $T_{c,i} - t_i < 750$ have a mean of 2.85 with a standard deviation of 0.23.
Figure 3: Same as Fig.1 for the Heng Seng index of Hong Kong. The exponents m found for the upper panel corresponding to $T_{c,i} - t_i < 750$ have a mean of 2.84 with a standard deviation of 0.22.
Second model: finite-time singularity in the momentum price dynamics with stochastic critical time

\[
y(t) = \ln p(t)
\]

\[
dy = x(1 + \gamma(x, t))dt + (\sigma/\mu)x dW
\]
\[
dx = \mu x^m(1 + \delta(x, t))dt + \sigma x^m dW
\]

Deterministic limit:

\[
\frac{d^2y}{dt^2} = \mu \left(\frac{dy}{dt}\right)^m
\]

\[
y(t) = A - B(T_c - t)^{1-\beta}
\]

\[
\beta = \frac{1}{m-1}, \quad T_c = (\beta/\mu)\left(\frac{dp}{dt}\right|_{t=t_0})^{-\frac{1}{\beta}}, \quad B = \frac{1}{1-\beta}(\mu/\beta)^{-\beta} \text{ and } A = p(T_c).
\]
We postulate the following specific processes

\[
\gamma(x, t) = \alpha \tilde{t}_c(t) + \frac{\sigma^2}{2\mu} [x(t)]^{m-1}
\]

\[
\delta(x, t) = \alpha \tilde{t}_c(t) + \frac{\sigma^2}{2\mu} [x(t)]^{m-1}
\]

\[
d\tilde{t}_c = -\alpha \tilde{t}_c \text{d}t + (\sigma/\mu) \text{d}W
\]

Proposition 3. Provided that \(\gamma(x, t)\) and \(\delta(p, t)\) follow the processes given respectively by (19) and (20), then the solution of (15,16) for the log-price \(y(t) = \ln p(t)\) can be written under a form similar to expression (18) as follows,

\[
y(t) = A - B(T_c + \tilde{t}_c(t) - t)^{1-\beta}
\]

where

\[
\beta = \frac{1}{m-1}, \quad T_c = \frac{\beta}{\mu} x_0^{1/\beta}, \quad x_0 := x(t = 0), \quad B = \frac{1}{1-\beta(\beta/\mu)^{\beta}},
\]

and \(A\) is a constant.
Construction of alarms

\[\tilde{T}_{c,i}(t) = t_i + \left(\frac{A - \ln p(t)}{B} \right)^{\frac{1}{1-\beta}}, \quad t = t_i - 899, \ldots, t_i. \]

\[T_{c,i} = \frac{1}{750} \sum_{t=1}^{750} \tilde{T}_{c,i}(t) \]

\[\tilde{t}_{c,i}(t) = \tilde{T}_{c,i}(t) - T_{c,i} \]

Bubble diagnostic if

(i) \(0 < \beta^* < 1\) such that \(m > 2\) (the signature of a positive feedback in the momentum price dynamics model) and

(ii) \(-25 \leq T_{c,i} - t_i \leq 50\), such that the estimated termination time of the bubble is close to the right side of the time window.

(iii) We further refine the filtering by considering three levels of significance quantified by the value of the exponent \(m\): level 1 \((m > 2)\), level 2 \((m > 2.5)\) and level 3 \((m > 3)\).

(iv) Dickey – Fuller unit – root test is rejected at 99.5% significance level
Figure 4: Logarithm of the historical S&P500 stock index and corresponding alarms shown in the three lower panels as vertical lines indicating the ends of the windows of 900 trading days in which our procedure using the second bubble model of section 3 flags a diagnostic for the presence of bubble. The three lower panels correspond to alarms for which $m > 2$, $m > 2.5$ and $m > 3$, from top to bottom. By definition, the set of alarms of the lowest panel is included in the set of alarms of the middle panel which is itself included in the set of alarms of the upper panel.
Figure 5: Same as Fig.4 for the Nasdaq Composite index.
Figure 6: Same as Fig.4 for the Hang Seng index of Hong Kong.
Hypothesis H1: financial (and other) bubbles can be diagnosed in real-time before they end.

Hypothesis H2: The termination of financial (and other) bubbles can be bracketed using probabilistic forecasts, with a reliability better than chance (which remains to be quantified).
Many other bubbles and crashes

- Hong-Kong crashes: 1987, 1994, 1997 and many others
- October 1997 mini-crash
- August 1998
- Slow crash of spring 1962
- Latin-american crashes
- Asian market crashes
- Russian crashes
- Individual companies
The market is never following the average growth; it is either super-exponentially accelerating or crashing.

Patterns of price trajectory during 0.5-1 year before each peak: Log-periodic power law.
Real-estate in the UK

Fig. 1. (Color online) Plot of the UK Halifax house price indices from 1993 to April 2005 (the latest available quote at the time of writing). The two groups of vertical lines correspond to the two predicted turning points reported in Tables 2 and 3 of [1]: end of 2003 and mid-2004. The former (resp. later) was based on the use of formula (2) (resp. (3)). These predictions were performed in February 2003.

Fig. 5. (Color online) Quarterly average HPI in the 21 states and in the District of Columbia (DC) exhibiting a clear upward faster-than-exponential growth. For better representation, we have normalized the house price indices for the second quarter of 1992 to 100 in all 22 cases. The corresponding states are given in the legend.

Index price vs. time, S&P 500

bubble peaking in Oct. 2007

Source: R. Woodard (FCO, ETH Zurich)
Typical result of the calibration of the simple LPPL model to the oil price in US$ in shrinking windows with starting dates t_{start} moving up towards the common last date $t_{\text{last}} = \text{May 27, 2008}$.

Source: R. Woodard (FCO, ETH Zurich)
Successful forecast of end of Chinese Shanghai index bubble

The Chinese Equity Bubble: Ready to Burst,
FCO@ETH: Towards operational science of financial instabilities

- Main mission:
 - Identify bubbles
- Theory:
 - Positive feedback
- Deliverables
 - Weekly global bubble scan
 - Research, papers
 - Public forecasts
 - Digital timestamps

Didier Sornette, Maxim Fedorovsky, Stefan Riemann, Hilary Woodard, Ryan Woodard, Wanfeng Yan, Wei-Xing Zhou
Financial Crisis Observatory

The Financial Crisis Observatory (FCO) is a scientific platform aimed at testing and quantifying rigorously, in a systematic way and on a large scale the hypothesis that financial markets exhibit a degree of inefficiency and a potential for predictability, especially during regimes when bubbles develop.

Financial Bubble Experiment
1Nov, 2009

We introduce a new experiment involving the forecasts of the end of bubbles in financial time series using techniques developed over the past 15 years. The majority of forecasts that we have made in the past have been published after we found them to be successful. That is, we have predicted certain bubbles to end and then have written about the post-mortem analysis. In this new experiment, we propose a new method of delivering our forecasts where the results are revealed only after the predicted event has passed but where the original date when we produced these same results can be publically, digitally authenticated. More information can be found in the first delivery of the Financial Bubble Experiment.

Highlighted Papers

Featured on the FT blog "Dragon-king of the outlier events"

Past analysis and forecasts

CHINESE EQUITY (10 July 2009)

Amid the current financial crisis, there has been one equity index beating all others: the Shanghai Composite. Our analysis of this main Chinese equity index shows clear signatures of a bubble build up and we go on to predict its most likely crash date: July 17-27, 2009 (20%/80% quantile confidence interval). See full analysis and results in this paper.

CDS (19 February 2009)

Our analysis has been performed on data kindly provided by Amjed Younis of Fortis on 19 February 2009. It consists of 3 data sets: credit default swaps (CDS); German bond futures prices; and spread evolution of several key euro zone sovereigns. The date
FCO Report - US - P bubbles - 21 October

Academic Portfolio Tracking
- Allow non-integer number of shares
- Use daily adjusted closing prices
- No transaction fees

SP500

Weekly reports

Historical appearances sorted by:
- Stock
- Sector
- Crashes/Rallies

<table>
<thead>
<tr>
<th>Ticker info</th>
<th>Last t1 (1 July 2009)</th>
<th>Qualified fits</th>
<th>Indicators</th>
<th>News</th>
<th>ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticker</td>
<td>Sector</td>
<td>num. qual. fits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN</td>
<td>Consumer Discretionary</td>
<td>-0.129, -3.076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASEI</td>
<td>Industrials</td>
<td>0.043, 1.809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Industrials</td>
<td>0.072, 1.522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRKL</td>
<td>Financials</td>
<td>-0.064, 1.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWL</td>
<td>Consumer Discretionary</td>
<td>0.279, 1.807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYG</td>
<td>Industries</td>
<td>-0.042, -0.526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. dd index, fit</td>
<td>0.136, 0.080</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SP1000

Weekly reports

Historical appearances sorted by:
- Stock
- Sector
- Crashes/Rallies

<table>
<thead>
<tr>
<th>Ticker info</th>
<th>Last t1 (1 July 2009)</th>
<th>Qualified fits</th>
<th>Indicators</th>
<th>News</th>
<th>ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ticker</td>
<td>Sector</td>
<td>num. qual. fits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN</td>
<td>Consumer Discretionary</td>
<td>-0.129, -3.076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASEI</td>
<td>Industrials</td>
<td>0.043, 1.809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Industrials</td>
<td>0.072, 1.522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRKL</td>
<td>Financials</td>
<td>-0.064, 1.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWL</td>
<td>Consumer Discretionary</td>
<td>0.279, 1.807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NYG</td>
<td>Industries</td>
<td>-0.042, -0.526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max. dd index, fit</td>
<td>0.136, 0.080</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weekly scan of (soon-to-be) all major global stock exchanges and indexes.
METHODOLOGY OF THE FINANCIAL BUBBLE EXPERIMENT

• We choose a series of dates with a fixed periodicity on which we will reveal our forecasts (1 May 2010 + 6 months periodicity)
• Continuous research of +30’000 global financial time series.
• Confident forecast => summarize it in a simple .pdf document
• We do not make this document public.
• We make its digital fingerprint public (MD5 hash algorithm and SHA-2 hash) => three strings of letters and numbers that are unique to this file.
• First version of our “meta” document (description of our theory and methods, the MD5 and SHA-2 hashes of our first forecast and the date (1 May 2010) on which we will make the first original .pdf document public)
• Upload to http://arxiv.org. It makes public the MD5 and SHA-2 hashes of our first forecasts + independent timestamp ‘v1’ (version 1) (trusted third party)
• We continue this protocol until 1 May 2010 at which time we upload our final version of the master document and publish all .pdf forecast files + our summary and analysis of the forecasts.
The Financial Bubble Experiment:
advanced diagnostics and forecasts of bubble terminations

The Financial Crisis Observatory*

*Department of Management, Technology and Economics,
ETH Zurich, Kreuzplatz 5, CH-8092 Zurich, Switzerland
(Dated: November 2, 2009)

<table>
<thead>
<tr>
<th>Publication date</th>
<th>MD5SUM</th>
<th>SHA256SUM</th>
<th>SHA512SUM</th>
</tr>
</thead>
</table>
| 2009-11-02 | 6d9479eb2849115a12c219cfa902990e
d7ad5c9531166917ba97f871fb61bd1f6290b4b4ce54e3ba0c26b42e2661dc06
80bbbfaddbca3db8d0f55d74cabledf5201ecd70340f66e27dfac588ce88214f52f8f0fc4b3ffaac75231038d68ed68bd320e7f17ef321b4bc61a19e88071039 | |
| 2009-11-02 | 5d375b742a9955d4aeae1bd5c7220b2b
5a9c395b9ab1d2014729ac5ff3b22a352e14096fa43c59836ea0d4ae0e3b453
e7ef9150b4738253f4021b0600eff1cd456b2671e421b789b268518439b5669994b3f8b398742bdc7622b5536034e74ade86e0a6bff71ad5ff90m293f809f | |
| 2009-11-02 | fd85000d0ce3231892ef1257d2f7ab1e
d3f3d504d85d50eb3dc0fe2c3042746db2f010509f4d1717370d14012972e86f
91a8fa92b7f06d0ea22d2a1f7ce3266f5aa159bb0c047f65b14315f7229d92976cc7b30453453fb8eced0350789907c93562192d32ba90f1cc1ce126385832e63a | |

TABLE I: Checksums of Financial Bubble Experiment forecast documents.

Forecasting financial crashes: the ultimate experiment begins

If a new technique for predicting crashes really works, a bold new experiment will measure how well.

Is it really possible to predict the end of financial bubbles? Didier Sornette at the Swiss Federal Institute of Technology in Zurich thinks so and has set up the Financial Crisis Observatory at ETH to study the idea.

We've looked at his extraordinary predictions before. Earlier this year, he identified a bubble in the Shanghai Composite Index and much to this blog's surprise, forecast its end with remarkable accuracy.
Final remarks

1-All proposals will fail if we do not have better science and better metrics to monitor and diagnose (ex: biology, medicine, astronomy, chemistry, physics, evolution, and so on)

2-Leverage as a system variable versus the illusion of control by monetary policy, risk management, and all that

3-Need to make endogenous policy makers and regulators ("creationist" view of government role, illusion of control and law of unintended consequences of regulations)

4-Fundamental interplay between system instability and growth; the positive side of (some) bubbles

5-Time to reassess goals (growth vs sustainability vs happiness). In the end, endogenous co-evolution of culture, society and economy

KEY CHALLENGE: genuine trans-disciplinarity by TRAINING in 2-3 disciplines + CHANGE OF CULTURE
Why bubbles are not arbitraged away?

1. limits to arbitrage caused by noise traders (DeLong et, 1990)
2. limits to arbitrage caused by synchronization risk (Abreu and Brunnermeier, 2002 and 2003)
3. short-sale constraints (many papers)
4. lack of close substitutes for hedging (many papers)
5. heterogenous beliefs (many papers)
6. lack of higher-order mutual knowledge (Allen, Morris and Postlewaite, 1993)
7. delegated investments (Allen and Gorton, 1993)
8. psychological biases (observed in many experiments)
9. positive feedback bubbles
Further Reading

