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The time decay of triggered seismicity rate is 
measurable after large events, as their number of 
aftershocks is large enough.

This time decay is known as the Omori-Utsu 
law (1894):

N(t) dt ~ t-p dt

The exponent p is close to 1 for most sequences.
Each event thus defines a mathematical 
singularity.

Aftershocks Time Series
Earthquake catalogs appear as a 
succession of bursts of activity – 
each event, whatever its magnitude, 
is followed by a decay of activity.

Events occurring during this 
relaxation phase are usually refered 
to as aftershocks or triggered 
seismicity.
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State and rate friction
Dieterich (1994)

Spatial correlations
between Coulomb 
stress and aftershocks 
but no account of 
the stress fluctuations 
due to aftershocks.
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Yamashita and 
Knopoff (1987)
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Earthquake nucleation 
activated by static stress

Omori law with p=1
independent of M
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Stress corrosion
Yamashita and 
Knopoff (1987)

State and rate friction
Dieterich (1994)

Spatial correlations
between Coulomb 
stress and aftershocks 
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the stress fluctuations 
due to aftershocks.



Thermally activated 
process driven by stress

Slow crack growth due to stress corrosion
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Thermally activated 
process driven by stress

State and rate friction law
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The physical 
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stress barrier = σ0−σ(t)

The physical 
model : thermal 
activation 
driven by stress

Arrhenius law for the activation rate:



Before
the shock

Energy barrier = E0-E(t)

After
the shock

λ(t) : instantaneous rate

λ0 ~ average nucleation rate

σ0 : material strength

σ(t) : applied stress

V : activation volume

T : temperature

k : Boltzmann constant

stress barrier = σ0−σ(t)

3

The physical 
model : thermal 
activation 
driven by stress

Arrhenius law for the activation rate:

Compatible with state-and-
rate friction, stress corrosion, …



Experiments by Zhurkov   Int. J. Fract. Mech. 1, 311 (1965) 

Empirical energy barrier

A possible mechanism :   thermal activated process

τ
(s)

σ (kg/mm2)

    U
(kcal/mol)

σ (kg/mm2)

Ln τ = A-B σ
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distribution 
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Stress 
fluctuations 
at sources

Green 
function 
for stress 
transfer
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Stress is assumed to be a scalar for the sake of simplicity 
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Stress fluctuations at      depend on 
the location of events (red dots), their 
rupture geometry, and on the spatial 
decay of the Green function. Most of 
these parameters are unknown, and 
some events even not recorded at all. 
Those fluctuations are thus considered 
as realizations of a random variable.
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A few working 
hypotheses

Every shock is activated by stress 
and temperature according to 
Arrhenius law

Every shock of magnitude M triggers 
instantaneously 10qM other events

Separation of variables :

Stress fluctuations at location  
due to previous events :

Elastoviscoplastic rheology

Maxwell time
τM >> time scale of observations

h(t) : dislocations motion and 
unresolved seismicity

5

Exponent µ depends on (and 
encapsulates) the spatial 
structure of the fault pattern, the 
GR law, as well as f(r).
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spatial averaging :

λtec is the average seismicity rate, modulated by 
a time-varying activation term. The formulation 
is thus non-linear.
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Relaxation after 
a magnitude M 
event

Power-law relaxation rate of aftershocks increases 
with the size of energy fluctuations => multifractality

Multifractal  Stress  Activation  model

6
cf Ouillon and Sornette, JGR, 2005

We re-write in discrete form after 
spatial averaging :

λtec is the average seismicity rate, modulated by 
a time-varying activation term. The formulation 
is thus non-linear.



Theoretical predictions using tail covariance (Ide-Sornette, 2001)

Since γ(t) ~  ln(t) and ωm ~  M , we obtain p(M) = a M + b 
µ = 2µ(1+θ) ~ 1

We obtain an exact multifractality if µ(1+θ) ~ 1
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Define a time window (T=1 year)

Define a spatial window (R=2L)

Consider all events within [0,R]x[0,T] as 
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If the starting event is the aftershock of a 
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Stack all individual aftershocks series

Time 
distribution of 
aftershocks

Building 
aftershocks 
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An example on 
a real catalog

SCEC – M[2.5;3.0] – p=0.63

n=0  m=2

n=3  m=5
n=0  m=12

11

Ouillon et al, 2007 
submitted to GJI

3 different scaling 
functions yield 
power law scaling 
with the same 
value of p.

s (yr)

C(s)
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Results on 
real catalogs

SFA : p(M)=0.16M-0.09
Bins : p(M)=0.13M+0.14

CMT-HARVARD
1976-2006

13

SCEC
1932-2006

SFA : p(M)=0.11M+0.38
Bins : p(M)=0.10M+0.40



p(m) = 0.3 + 0.11 m

Predicts minimum earthquake magnitude
for triggering m0= -3  (~ Ben-Zion, 2003)



Seismicity on the medio-atlantic rift

Bohnenstiehl et al 
(2003)



Benzion 
(2003)

A new universal law?



Numerical Simulations of thermally activated 
earthquake on on a fault network



The upper boundary moves at constant velocity => stress increases linearly with time within 
the plate.

Rupture is thermally activated on each fault segment => we predict the time and location of 
occurrence of the next earthquake using a thinning approach.

The ruptured element slips irreversibly and radiates a dynamic stress on its immediate 
neighbours.

One of those neighbours may rupture due to this dynamic stress => rupture propagation

When the rupture stops, we compute the equilibrium static stress field. If a segment is 
subjected to a too high stress, it ruptures and may continue rupture propagation.

When a rupture definitely stops, we predict the time and location of the next rupture.

Boundary conditions and rupture rules



Computation of the static stress field
using an electric analog

Each node k has a potential Vk ( displacement)

Linearly increasing potential is maintained 
at the top of the plate

Each link j has an electrical resistance Rj

Within each link, we have an intensity Ij ( stress)

We define 2 networks:
- the fault network (yellow)
- an electric resistance dual 
network (orange)



Computation of the static stress field
using an electric analog

To solve the problem we:

- Express voltages Uj on links as a function of end 
nodes potentials Vk

The vector V0 represents the loading conditions

- Express relationships between Ii and Ui.

The vector Ic represents sources equivalent to the 
cumulative plastic displacement on each fault.

- Use Kirchoff law at each node



Computation of the static stress field
using an electric analog

We solve for displacements V by a conjugate gradient approach.



General algorithm

1) Build the fault network and define boundary conditions (constant loading 
rate).

2) Define the strength of each fault segment with

3) Compute the stress map and translate it into a nucleation rate map 
(exponential activation).

4) Use a thinning method to choose time and location of the next event.

5) Transfer dynamic stress to neighbors and test them for rupture – propagate 
rupture until the dynamic rupture criterion fails.

6) Impose a stress drop on each failed element and compute the new static 
stress map.

7) If stress on an element is larger than its sth then continue rupture (and use 
again the dynamic rupture criterion).

8) When all segments are stable, start the loading again and go to step 3)



The thinning procedure

1) Last event occurred at ti

2) At time t the nucleation rate on each segment is

where µ is the loading rate.

3) We sum all rates over the plate to obtain the total nucleation rate at time t, λ(t)

4) Find a constant C such that C> λ(ti+1) ; as ti+1 is unknown, we choose a large C

5) Starting from ti we generate an event using a Poisson process with rate C. Its time of 
occurrence is t’

6) Generate a random variable U uniformly distributed in [0,1]

7) If CU< λ(t’) then ti+1=t’, otherwise ti=t’ and go to 5)

8) Generate the spatial location of the event

9) Start the rupture routine
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50% disorder

Dynamic 
stress

Low 
temperature

8

50% disorder

Dynamic 
stress

Very low 
temperature
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50% disorder

Dynamic 
stress

Ultra-low 
temperature
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50% disorder

Dynamic 
stress

High strain 
rate

2

50% disorder

Dynamic 
stress

Size distribution of events                                        Final geometry of fault pattern

Effect of strain rate – dynamic stress transfer



Preliminary results

Strain localization is promoted by frozen disorder – little influence of 
temperature or dynamic stress loading.

Rupture length distribution: a Gutenberg-Richter law is promoted by :

 - disorder

 - dynamic stress distribution

While temperature only weakly influences this distribution.



Time

Boundary 
displacement

Relaxation of a stress step



Increasing temperature

Stress Relaxation is nearly exponential but slower

Average stress relaxation function
Lo

g(
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)

Time



N(t)dt ~ t-p               p ~ 0.1

Temperature 
increases

Seismicity relaxation function

Time
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Aftershocks occur due to thermal activation

But a larger system is needed to provide 
series with more events

Aftershock sequences

Each dataset 
corresponds to a 
different rupture 
length of the 
mainshock
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Summary

Mechanical model taking 
account of interactions between 

all events

Seismicity rate depends 
exponentially on applied stress

Stress fluctuations are distributed 
as power laws (µ)

Stress fluctuations decay with time 
as power laws (θ)

µ(1+θ)=1 => p(M)=aM+b in agreement 
with empirical observations

This model is the only one that is 
able to predict the multifractal 

nature of seismicity

Multifractality stems from the 
spatio-temporal self-organization 

of the fault pattern (µ(1+θ)=1)
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