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The Multifractal Randow Walk (MRW) model
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MRVW:  (w(t)w(t+ 7))~ ln(z). T<T,

Multifractality:

([8X(1)]) = alq)7?,

for T<<T.
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Linear response to an external shock
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August 19, 1991 : coup against President Gorbachev
September 11, 2001: Attack against the WTC 4 D. Sornette, Y. Malevergne

1 and J.F. Muzy

1 Volatility fingerprints of large

1 shocks: Endogeneous versus

1 exogeneous,

. . o . . .+ . . . .| Risk Magazine
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“Conditional response” to an endogeneous shock
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Within the range At < ¢ << Atex?, 3(t) << a(s)
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D. Sornette, Y. Malevergne and J.F. Muzy, Volatility fingerprints of large shocks: Endogeneous versus
exogeneous, Risk 16 (2), 67-71 (2003) (http://arXiv.org/abs/cond-mat/0204626)
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Real Data and Multifractal Random Walk model
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Log-log plot of the second-order moment and its power approximation for ¢ =0.01 and ¢?<20,
30, 40 (top to bottom) The corresponding exponents are equal to T(2) =1.66; 1.49; 1.34. 10
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Log-log plot of the second-order moment and its power approximation for ¢ =0.5 and 0°=1
and 5 (top to bottom) The corresponding exponents are equal to (2) =1.82 and 1.26.
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Dependance of the intermittency coeffi-
cient N>=2-{(2) as a function of ¢ for different values of ¢
=0.01-0.04 (bottom to top).
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HIGHER-ORDER MOMENTS, UNIVERSAL SCALING
FUNCTION, AND MULTIFRACTAL SPECTRA
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Define

Vgt =250 o

q(g—1)

V(q;aacp)fzx(bazq). o

b=ag’, a=0.58 B=092.

FIG. 6. (Color online) Plot of the universal scaling function
A(x), obtained from relations (1) and (2) and the numerical cal-
culation of the dependence of the effective multifractal exponents
{(g) as a function of o2, for ¢=0.001 and g=2:3:;4. The slight
discrepancies between the curves in the neighborhood of x=1 can
be attributed to some systematic errors of numerical calculations.
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Universal multifractal spectra T(q) for ¢=0.004 and 6°=10, 20, 30, 40, 50, 60 (top to bottom).

Line: S,(v)=qlg—-1) f (v =x)G (x)dx,
0

o0 Lg)=q+(1-q)A(b ()'Zq) where A(x) is obtained from previous scaling with g=2 and (5}96—-0.001



Spatial and temporal organization of
seismicity in Californie
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Aftershocks Time Series

Earthquake catalogs appear as a

o 7 succession of bursts of activity —
Superstfion-  Landers, M<7.3 Hector-Mine ] each event, whatever its magnitude,
10’k 0ceanside | Northridge, —— 1s followed by a decay of activity.
M=5.8 | %?ggua— ' ' M=6.5
! -y | . : :
| e ) Events occurring during this

relaxation phase are usually refered
to as aftershocks or triggered
seismicity.

seismicity rate per day
o

1985 1990 1995 2000 2005
time (yrs)

Helmstetter, 2002

The time decay of triggered seismicity rate is measurable
after large events, as their number of aftershocks is large
enough.

This time decay is known as the Omori-Utsu law g
(1894): g

&

N(t) dt ~ tP dt ’

The exponent p is close to 1 for most sequences.
Each event thus defines a mathematical singularity.

10
time (days)
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Mechanics of Triggered Seismicity

d

Krausz and Krausz, 1987
|

One class of models to explain triggered
seismicity is slow crack growth : under the
effect of applied stress and thermal agitation,
cracks within rocks grow subcritically by
breaking successive atomic bonds
(represented by springs). After they reach a
critical length, they propagate critically : this
1s the seismic event.

The second class 1s state and rate-
dependent friction, which predicts a
time shift between a stress
perturbation and the possible slip
instability. This process 1s also
activated by stress and temperature.

19



First-order Models Predict a

Universal Omori Law

Coupling those physical models with the linear elastic
stress tensor perturbation induced by a given event
(the so called stress-transfer patterns) predicts
reasonable spatial locations of triggered events.

In the time domain, those models also predicts that the
triggered seismicity sequence will taper with time as a
power-law (the Omori law) with an exponent p~1.

Two very important remarks:

(1) The exponent p is then predicted to be
independent of the size of the initial, triggering event
(mainshock).

(2) These models neglect interactions among
triggered events and take into account only the
mechanical stress perturbation of the first event in the
sequence.

1979 Homestead Valley
2 years of M>1 quality A
aftershocks

Stein (1983)
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Mathematics of Multifractal Time
Series and the Omori law

In self-similar time series, each event defines a
singularity, which means that the seismic activity
it triggers decays with time as :

N(t) ~ tP

where the exponent p defines the strength of the
singularity. Singularities show up as bursts of
activity.

In self-similar signals, the exponent p generally
varies with the power of the burst: the larger the
burst, the larger the singularity p. This is known
as multifractality, a phenomenology often
observed for earthquakes time series when looking
at correlation functions.

Independently, it is observed that the larger the
magnitude of the initial event, the larger the
average number of events it triggers (the larger
the burst).

Landers, M=7.3

Superstition— Hector-Mine
Hill, M=6.6 M=7.1
>3 . Northridge, i
%10 Oceanside Joshua) M=6.7 | San-Simeon
5 [M=538 oshua | M=6.5
13 I Tree, | '
o M=6.1
S 107t
Pary
S
=
a
310}
10° : ' ‘
1985 1990 1995 2000 2005

time (yrs)

For a self-similar signal such as earthquake
occurrence rate, we thus have only two
possibilities :

* Monofractal case : decay is the same for
all bursts so that p is constant with M.

» Multifractal case : strong bursts decay
faster and thus p must increase with

magnitude M of the initial event.
21



Stacked Triggered .
Seismicity Sequences (RS Y

Large events trigger enough aftershocks to
allow us to compute a p exponent — but this is
not the case for low-magnitude main events.

So we prefer to follow a stacking strategy to
improve the signal to noise ratio :

* look for isolated mainshocks according tq
magnitude range

» select and stack aftershocks sequences

i Q
« fit the stacks with : &
Z: S
Nt =AtP+B 15
: gj o 3<gﬂ;§5
. p=0.
where B accounts for a constant background noise R | B Al
IR | % 5<M<ss
4 4 x| o Bas
st sequence 2nd sequence S R
‘ p=1.02
+ + ... 1)

Time (year)

0 Time 0 Time



Omori laws for shocks occurring after 1994 — 1st declusteri ng technique

& 1.5<M<?
p=0.12
2.5<M<3
p=0.44
3.5<M<=4
4 5<M<=5
p=0.89
5.5<M=<b
p=1.07
6.5<M<7
p=0.97

107 *********ﬁﬁﬁﬁﬁ*

» © # O O

Rate

Time (year) 23
D. Sornette and G. Ouillon, Multifractal Scaling of Thermally-Activated Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)



p—value for triggered events
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The Physics of Stress-Aided Thermal Activation of Rupture

In order to reach a state of lower energy, some

E, microscopic physical systems must overcome
an energy barrier.
L E,-E(t)
The rate at which this is done depends 7L(l‘ )= A, exp| - o

exponentially on the height of the barrier, as
well as on the inverse of temperature.

For example, the rate at which a bond breaks at a crack tip depends on
the driving stress applied on that bond, its strength and temperature.

e = W "“ We simply assume that the relationship between the seismicity rate

EWN()

>~ and the applied stress follows the same kind of law.

N

>

Cumulative nb of

o

o

M" )= 2, exp(—%/;—;(t)V)

A\, ~ mean seismicity rate - A(t) : seismicity rate - O :
strength

o(t) : applied stress - V : activation volume - T :
temperature



Thermally activated multifractal rupture process

G. Ouillon and D. Sornette, Magnitude-Dependent Omori Law: Theory and Empirical Study,
J. Geophys. Res., 110, B04306, doi:10.1029/2004JB003311 (2005); Multifractal Scaling of Thermally-Activated
Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)

Intensity (average conditional seismicity rate) ' A =
At positionr and time t =

A7, t) ~exp[—BE(F, )]
E(r,t) = Eo(7) — VE(7,t) (Zhurkov, 1965)

(due to stress corrosion, damage, state-and-velocity dependent friction and
mechano-chemical effects

X(7,1) = Yrar field( ] /dN [dF " x dr]Ac(7',7)g(F— 7't — 1)

g(7,t) = f(7) x h(t And sum over all spatial positions of sources gives

t . .
M) = Mt exp ﬁz/ d Ay(r) gt = )| | Soneralzston ofsvess
. — 00

- Jones et al.]




Our Physical Picture of Seismicity

The rupture of each event is thermally activated,
driven by stress.

Each shock induces instantaneously a burst of . .
aftershocks, which amounts to 109 events. This plCture takes account

At each location, stress fluctuations due to previous of the fact that
events are distributed as:

earthquakes generate
P(o)do =~ ¢ — do stress fluctuations, which

0+, )" in turn modify the stress

The rheology is viscoplastic, with a relaxation function state in a feedback lOOp
featuring a very large relaxation time Ty, :

and cascading process,
¢ involving the whole
t)- [ )+9 exP ( ) B=—1/2+¢ history of the system.

At any place r and any time ¢, the seismicity rate (on
the left-hand side) depends exponentially on the

stress fluctuations due to past earthquakes, mediated
by the relaxation function:

)\.(V t) A, exp|—

7 SolH-1)

passe




Since y(t) ~ In(t) and o, ~ M, we obtain p(M)

Y(T) / v(%)

Theoretical predictions using tail covariance (Ide-Sornette, 2001)
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Predictions of the Model

Solving for what occurs after an event of magnitude M, we find that, depending on the
values of exponents u and 0, we (sometimes) obtain an Omori law with p(M) = aM + b.

The figures below show the shape of the seismicity rate after any event — horizontal and
vertical axis are scaled by model parameters (magnitude, relaxation time...).

1 e i [ 2l R : : 14
0.9 e‘\s //» ////////// i E : :
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0.8F Ceh ]
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\\ S .,”./ 1 - S
0.7F SR ] S
5 ] , 5
0.6 i :
_ o ~08 5
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0.3f ' . Q
=00 \\‘ ‘s‘ 0.4 :S
02l -- 8=1/2 y=2/3 TR 1 B N
- 8200 p=10 N ., E 0.2y
0.1 == B==1/2 u=2.0 TR |
i 9=-2/3 u=3.0 ST
0~ > - - = . — 5 0 -6 < 2 0
10 10 10 10 10 10 10 19 10 i 10 0
Time fime

We obtain an exact multifractality (i.e. a linear,
Omori-like trend in log-log scales) if uw(1+6) ~1 2



p(M)=aM +Db

We processed three catalogs, that we pre-processed to check for their completude and its evolution with
time.

We then computed stacked aftershocks time series, sorting them within intervals of 0.5 magnitude
amplitudes.

We clearly observed a linear dependence of p with magnitude M.

Statistical tests have been performed using a bootstrap strategy, and we were able to show that all slopes
were significantly different from 0, and that all linear relationships were significantly different from each
other.

P(M) relationships for California (SCEC), Japan (JMA) and the world (Harvard)
16 T T T T T T T

For Southern California (SCEC

O SCEC data ~ cata]og);
14+ O JMA data 53
O Harvard data 3
———fit SCEC 0 9 s p(M) =0.10M + 0.37
120 | == =fitJMA o : N
------- fit Harvard o o.-"|
S
1" S

For Japan (JMA catalog):
p(M) =0.07M + 0.54

0.8r

0.6

041

For the World (Harvard catalog); |
p(M) =0.14M + 0.11

0.2
1



u(1+0) : evidence of self-organization ?

relaxation [l seismicity

u controls stress fluctuations, which mainly depend on
the spatial structure of the fault network over which
events occur — which make the fault pattern grow (left).

0 controls the stress relaxation in rocks. Stress
determines the seismicity rate, but earthquakes are
themselves part of the stress relaxation complex process

\ (top).
All in all, the condition p(1+6) ~ 1 reflects the

critical self-organization of brittle processes in
the earth’s crust.

Fault pattern seismicity




Conclusion

e The multifractal time distribution of earthquakes implies that the exponent p of
the Omori law increases with the magnitude M of the mainshock.

e Empirical data observations on various catalogs suggest that p linearly increases
with M: p(M) =aM + b
* We proposed a physical model where the seismicity rate depends exponentially

on stress and on inverse temperature, and where the rheology is viscoplastic
with a slow relaxation.

* A condition linking the fault network geometry and the rheology of the
tectonic system emerges to explain such a multifractal phenomenology : w(1+0) ~

1 — we speculate that it is a fundamental equation of self-organized criticality.

e For the first time, a physical microscopic model is proposed that is able to explain
earthquakes time dynamics at all scales.
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