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MRW:

Multifractality:
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D. Sornette, Y. Malevergne
and J.F. Muzy
Volatility fingerprints of large
shocks: Endogeneous versus
exogeneous,
Risk Magazine
(http://arXiv.org/abs/cond-
mat/0204626)
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where

Interplay between
-long memory
-exponential

D. Sornette, Y. Malevergne and J.F. Muzy, Volatility fingerprints of large shocks: Endogeneous versus
exogeneous, Risk 16 (2), 67-71 (2003)       (http://arXiv.org/abs/cond-mat/0204626)
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Real Data and Multifractal Random Walk model
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Case

?
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Log-log plot of the second-order moment and its power approximation  for ϕ =0.01 and σ2=20,
30, 40 (top to bottom) The corresponding exponents are equal to  ζ(2) =1.66; 1.49; 1.34.
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Log-log plot of the second-order moment and its power approximation  for ϕ =0.5 and σ2=1
and 5 (top to bottom) The corresponding exponents are equal to  ζ(2) =1.82 and 1.26.
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Universal multifractal spectra ζ(q) for ϕ=0.004 and σ2=10,  20, 30, 40, 50, 60  (top to bottom).

Line:

o:                                                            where Λ(x) is obtained from previous scaling with q=2 and ϕ=0.001

Non-concave:
Holder inequality broken
(Intermediate asymptotics)
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Spatial and temporal organization of
seismicity in Californie
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The time decay of triggered seismicity rate is measurable
after large events, as their number of aftershocks is large
enough.

This time decay is known as the Omori-Utsu law
(1894):

N(t) dt ~ t-p dt

The exponent p is close to 1 for most sequences.
Each event thus defines a mathematical singularity.
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Aftershocks Time Series
Earthquake catalogs appear as a
succession of bursts of activity –
each event, whatever its magnitude,
is followed by a decay of activity.

Events occurring during this
relaxation phase are usually refered
to as aftershocks or triggered
seismicity.
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87
Mechanics of Triggered Seismicity

A B

One class of models to explain triggered
seismicity is slow crack growth : under the
effect of applied stress and thermal agitation,
cracks within rocks grow subcritically by
breaking successive atomic bonds
(represented by springs). After they reach a
critical length, they propagate critically : this
is the seismic event.

σ
N τ

The second class is state and rate-
dependent friction, which predicts a
time shift between a stress
perturbation and the possible slip
instability. This process is also
activated by stress and temperature.
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First-order Models Predict a
Universal Omori Law

Coupling those physical models with the linear elastic
stress tensor perturbation induced by a given event
(the so called stress-transfer patterns) predicts
reasonable spatial locations of triggered events.

In the time domain, those models also predicts that the
triggered seismicity sequence will taper with time as a
power-law (the Omori law) with an exponent p~1.

Two very important remarks:

(1) The exponent p is then predicted to be
independent of the size of the initial, triggering event
(mainshock).

(2) These models neglect interactions among
triggered events and take into account only the
mechanical stress perturbation of the first event in the
sequence.

Stein (1983)
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In self-similar time series, each event defines a
singularity, which means that the seismic activity
it triggers decays with time as :

N(t) ~ t-p

where the exponent p defines the strength of the
singularity. Singularities show up as bursts of
activity.
In self-similar signals, the exponent p generally
varies with the power of the burst: the larger the
burst, the larger the singularity p. This is known
as multifractality, a phenomenology often
observed for earthquakes time series when looking
at correlation functions.

Independently, it is observed that the larger the
magnitude of the initial event, the larger the
average number of events it triggers (the larger
the burst).

• Monofractal case : decay is the same for
all bursts so that p is constant with M.

• Multifractal case : strong bursts decay
faster and thus p must increase with
magnitude M of the initial event.

Mathematics of Multifractal Time
Series and the Omori law

For a self-similar signal such as earthquake
occurrence rate, we thus have only two
possibilities :
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• look for isolated mainshocks according to
magnitude range

• select and stack aftershocks sequences

• fit the stacks with :

N(t) = A t-p + B

where B accounts for a constant background noise

+ + …

0          Time 0          Time

O
uillon a nd  Sornette, 2005

Stacked Triggered
Seismicity Sequences

Large events trigger enough aftershocks to
allow us to compute a p exponent – but this is
not the case for low-magnitude main events.

So we prefer to follow a stacking strategy to
improve the signal to noise ratio :

1st sequence 2nd sequence
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D. Sornette and G. Ouillon, Multifractal Scaling of Thermally-Activated Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)
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P(M) relationships

First declustering method
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λ0 ~ mean seismicity rate  -  λ(t) : seismicity rate  -  σ0 :
strength

σ(t) : applied stress  -  V : activation volume  -  T :
temperature

k : Boltzmann’s constant
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EQ
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The Physics of Stress-Aided Thermal Activation of Rupture

In order to reach a state of lower energy, some
microscopic physical systems must overcome
an energy barrier.

The rate at which this is done depends
exponentially on the height of the barrier, as
well as on the inverse of temperature.
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For example, the rate at which a bond breaks at a crack tip depends on
the driving stress applied on that bond, its strength and temperature.

We simply assume that the relationship between the seismicity rate
and the applied stress follows the same kind of law.
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(Zhurkov, 1965)
(due to stress corrosion, damage, state-and-velocity dependent friction and
mechano-chemical effects

Generalization of stress
release models [Vere-
Jones et al.]

And sum over all spatial positions of sources gives

G. Ouillon and D. Sornette, Magnitude-Dependent Omori Law: Theory and Empirical Study,
 J. Geophys. Res., 110, B04306, doi:10.1029/2004JB003311 (2005); Multifractal Scaling of Thermally-Activated
Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)

Intensity (average conditional seismicity rate) 
At position r   and time t

Thermally activated multifractal rupture process
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• The rupture of each event is thermally activated,
driven by stress.

• Each shock induces instantaneously a burst of
aftershocks, which amounts to 10qM events.

• At each location, stress fluctuations due to previous
events are distributed as:

• The rheology is viscoplastic, with a relaxation function
featuring a very large relaxation time τM :

• At any place r and any time t, the seismicity rate (on
the left-hand side) depends exponentially on the
stress fluctuations due to past earthquakes, mediated
by the relaxation function:
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Our Physical Picture of Seismicity
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This picture takes account
of the fact that
earthquakes generate
stress fluctuations, which
in turn modify the stress
state in a feedback loop
and cascading process,
involving the whole
history of the system.θ=−1/2+ϕ
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Theoretical predictions using tail covariance (Ide-Sornette, 2001)

Since γ(t) ~  ln(t) and ωm ~  M , we obtain p(M) = a M + b 
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Solving for what occurs after an  event of magnitude M, we find that, depending on the
values of exponents µ and θ, we (sometimes) obtain an Omori law with p(M) = aM + b.

The figures below show the shape of the seismicity rate after any event – horizontal and
vertical axis are scaled by model parameters (magnitude, relaxation time…).

We obtain an exact multifractality (i.e. a linear,
Omori-like trend in log-log scales) if µ(1+θ) ~ 1

µ(1+θ) ~ 1 µ = 21.2
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Predictions of the Model
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p(M) = aM + b

R ib eiro et  al , 20 06

We processed three catalogs, that we pre-processed to check for their completude and its evolution with
time.
We then computed stacked aftershocks time series, sorting them within intervals of 0.5 magnitude
amplitudes.

We clearly observed a linear dependence of p with magnitude M.

Statistical tests have been performed using a bootstrap strategy, and we were able to show that all slopes
were significantly different from 0, and that all linear relationships were significantly different from each
other.

For Southern California (SCEC
catalog):

p(M) = 0.10M + 0.37

For Japan (JMA catalog):

p(M) = 0.07M + 0.54

For the World (Harvard catalog):

p(M) = 0.14M + 0.11
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Fault pattern seismicity

µ(1+θ) : evidence of self-organization ?

µ controls stress fluctuations, which mainly depend on
the spatial structure of the fault network over which
events occur – which make the fault pattern grow (left).

θ controls the stress relaxation in rocks. Stress
determines the seismicity rate, but earthquakes are
themselves part of the stress relaxation complex process
(top).

All in all, the condition µ(1+θ) ~ 1 reflects the
critical self-organization of brittle processes in
the earth’s crust.
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• The multifractal time distribution of earthquakes implies that the exponent p of
the Omori law increases with the magnitude M of the mainshock.
• Empirical data observations on various catalogs suggest that p linearly increases
with M: p(M) = aM + b
• We proposed a physical model where the seismicity rate depends exponentially
on stress and on inverse temperature, and where the rheology is viscoplastic
with a slow relaxation.
• A condition linking the fault network geometry and the rheology of the
tectonic system emerges to explain such a multifractal phenomenology : µ(1+θ) ~
1 – we speculate that it is a fundamental equation of self-organized criticality.
• For the first time, a physical microscopic model is proposed that is able to explain
earthquakes time dynamics at all scales.
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