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“Heaven and FEarth (Three Sisters
Island Trilogy)” by N. Roberts.

*  Collective dynamics and organization of social DynamiCS of success
agents (Commercial sales,YouTube, Open source
softwares, Cyber risks) e o ot (e e

Agent-based models of bubbles and crashes, credit
risks, systemic risks

“Strong Women Stay Young” by Dr. M. Nelson .

e  Prediction of complex systems, stock markets,
social systems

. . rice o B
e  Asset pricing, hedge-funds, risk factors... P o 1o 5

Bubbles s,

e  Human cooperation for sustainability

e Natural and biological hazards (earthquakes,
landslides, epidemics, critical illnesses...)

S&P 500 1998
[]

(2-3 guest-professors, 5 foreign associate professors, - time
1 post-docs, 1 senior researcher, 9 PhD students, 4-6 Master students)




MOTIVATIONS

What are financial bubbles?
Do they exist really?

Why do we care”?

Can they be detected?

Different models (social interactions, herding,
news, value vs noise trading...)

Can their end (the CRASH) be predicted?
Systemic risks? Sub-prime mess...
What is ahead of us?




What are bubbles?
How do detect them?
How to predict them?

Academic Literature:
No consensus on what is a bubble...

Ex:
Refet S. Gurkaynak, Econometric Tests of Asset Price Bubbles: Taking Stock.

Can asset price bubbles be detected? This survey of econometric tests of asset price
bubbles shows that, despite recent advances, econometric detection of asset price
bubbles cannot be achieved with a satisfactory degree of certainty. For each paper
that finds evidence of bubbles, there is another one that fits the data equally well
without allowing for a bubble. We are still unable to distinguish bubbles from time-
varying or regime-switching fundamentals, while many small sample econometrics
problems of bubble tests remain unresolved.




The Fed: A. Greenspan (Aug., 30, 2002):

““We, at the Federal Reserve...recognized that, despite our
suspicions, it was very difficult to definitively identify a bubble
until after the fact, that is, when its bursting confirmed

its existence... Moreover, it was far from obvious that bubbles,
even if identified early, could be preempted short of the Central
Bank inducing a substantial contraction in economic activity, the
very outcome we would be seeking to avoid.”




THE CRASH OF OCTOBER 1987

Proximate explanations

after the fact!

d Computer trading

 Derivatives

4 Illiquidity

d Trade and budget deficits
d Over-valuation

d The auction system

d Off-market and off-hours trading \
4 Floor brokers

S&P 500
N
o
S
[

J Forward market effect \ /7\\/\/\2"\2%

4 Different investor styles v




THE CRASH OF OCTOBER 1987

The Wall Street Journal on August 26, 1987, the day after the
1987 market peak: “In a market like this, every story is a positive
one. Any news is good news. It's pretty much taken for granted
now that the market is going to go up.”

Intermittent anticipation of the crash reflected in out-of-the-money option prices

...........................................
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THE CRASH OF OCTOBER 1929

Stock market crashes are often
unforeseen for most people,
especially economists. “In a few
months, | expect to see the stock
market much higher than today.”
Irving Fisher, famous economist
and professor of economics at
Yale University,14 days before
Wall Street crashed on Black
Tuesday, October 29, 1929.

‘A severe depression such as
1920-21 is outside the range of
probability. We are not facing a
protracted liquidation.” This was
the analysis offered days after the
crash by the Harvard Economic
Society to its subscribers... It
closed its doors in 1932.

400

350 T‘

300 .

Dow Jones

200

150 1 [ | | |
27 27.5 28 285 29 29.5 30

Date

The DIJIA prior to the October 1929 crash on Wall Street.




THE CRASH OF OCTOBER 1929

A financial collapse has never happened when things
look bad.

*Macroeconomic flows look good before crashes.
-Before every collapse, economists say the economy is
In the best of all worlds.

*Everything looks rosy, stock markets go up...
Macroeconomic flows (output, employment, etc.)
appear to be improving further and further.

*A crash catches most people, especially economists,
by surprise.

The good times are exirapolated linearly into the
future.

*Is it not perceived as senseless by most people in a
time of general euphoria to talk about crash and
depression? )
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growing interest
in the public for
the commodity In
question,whether
it consists of
stocks,
diamonds, or
coins.

B.M. Roehner and D.
Sornette, “Thermometers"
of Speculative Frenzy”,
European Physical
Journal B 16, 729-739
(2000)
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THE TuLip MANIA

Between 1585 and 1650, Amsterdam
became the chief commercial emporium,
the center of the trade of the northwestern
part of Europe, owing to the growing
commercial activity in newly discovered
America.

*The tulip as a cultivated flower was
imported into western Europe from Turkey
and it is first mentioned around 1554.
*The scarcity of tulips and their beautiful
colors made them a must for members of
the upper classes of society

FIG. 1.1. A variety of tulip (the Viceroy) whose bulb was one of the most expensive
at the time of the tulip mania in Amsterdam, from The Tulip Book of P. Cos, includ-
ing weights and prices from the years of speculative tulip mania (1637); Wageningen
UR Library, Special Collections.




THE TuLip MANIA

\WWhat we now call the “tulip mania” of the seventeenth
century was the “sure thing” investment during the
period from the mid-1500s to 1636.

Before its devastating end in 1637, those who bought
tulips rarely lost money. People became too confident
that this “sure thing” would always make them money.
*At the period’s peak, the participants mortgaged their
houses and businesses to trade tulips.

*Some tulip bulbs of a rare variety sold for the equivalent
of a few tens of thousands of dollars.

Before the crash, any suggestion that the price of tulips
was irrational was dismissed by all the participants.

12




THE TuLip MANIA

*The conditions now generally associated with the first period of a

boom were all present:
-an increasing currency,

-a new economy with novel colonial possibilities, and

-an increasingly prosperous country
together had created the optimistic atmosphere in which
are said to grow.

*The crisis came unexpectedly.

booms

-On February 4, 1637, the possibility of the tulips becoming

definitely unsalable was mentioned for the first time.

-From then until the end of May 1637, all attempts at
coordination among florists, bulbgrowers, and the
Netherlands government were met with failure.

13




Have We Learned the
Lessons of Black Mondays?

19 October 1987
to

19 October 2007 to 2008...
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THE NASDAQ CRASH OF APRIL 2000

*1995-2000: growing divergence between New Economy and Old
Economy stocks, between technology and almost everything else.

*Over 1998 and 1999, stocks in the Standard & Poor’s technology
sector rose nearly fourfold, while the S&P 500 index gained just
50%. And without technology, the benchmark would be flat.

In January 2000 alone, 30% of net inflows into mutual funds went
to science and technology funds, versus just 8.7% into S&P 500
index funds.

The average price-over-earnings ratio (P/E) for Nasdaqg
companies was above 200.

‘New Economy was also hot in the minds and mouths of investors
iIn the 1920s and in the early 1960s. In 1929, it was utilities; In
1962, it was the electronic sector.

15




*The Nasdaq composite consists mainly of stock related to the
New Economy, that is, the Internet, software, computer
hardware, telecommunication.

*The Nasdaq composite index dropped precipitously, with a low
of 3,227 on April 17, 2000, corresponding to a cumulative loss of
37% counted from its all-time high of 5,133 reached on March10,
2000.

*A main characteristic of these companies is that their P/Es, and
even more so their price-over-dividend ratios, often came in
three digits prior to the crash. Some companies, such as VA
LINUX, actually had a negative earnings/share of -1.68.

EXPECTATIONS of strong future growth




Proposed justifications of PRICES

*better business models (small required
capital, reduced delay in payments...)

the network effect (positive returns and
positive feedbacks)

“first-to-scale advantages

‘real OptiOﬂS (value of fast adaptation to grasp
new opportunities)

Probably true... but problem of timingb..




Log(Nasdaq Composite)

THE NASDAQ CRASH OF APRIL 2000

—— Best fit
........... Third best fit
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Foreign capital inflow
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Many other bubbles and crashes

d Hong-Kong crashes: 1987, 1994, 1997 and

many others
4 October 1997 mini-crash
d August 1998
d Slow crash of spring 1962
d Latin-american crashes
d Asian market crashes
4 Russian crashes
d Individual companies

20




Various Bubbles and Crashes

Jrice

Each bubble has been rescaled vertically and translated
to end at the time of the crash

Hong-Kong 1997
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Hang-Seng

(b) Hong-Kong l ~t
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| : The market is never following the average
growth; it is either super-exponentially
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Patterns of price trajectory during 0.5-1 year before each peak: Log-periodic power law

23




Universal Bubble and Crash Scenario

. The bubble starts smoothly with some increasing production and sales
(or demand for some commodity) in an otherwise relatively optimistic
market.

. The attraction to investments with good potential gains then leads
to increasing investments, possibly with leverage coming from novel
sources, often from international investors. This leads to price appre-
ciation.

. This in turn attracts less sophisticated investors and, in addition, lever-
aging is further developed with small downpayment (small margins),
which leads to the demand for stock rising faster than the rate at which
real money is put in the market.

. At this stage, the behavior of the market becomes weakly coupled or
practically uncoupled from real wealth (industrial and service) produc-
tion.

. As the price skyrockets, the number of new investors entering the spec-
ulative market decreases and the market enters a phase of larger ner-
vousness, until a point when the instability is revealed and the market
collapses.




The upswing usually starts with an opportunity - new markets, new
technologies or some dramatic political change - and investors looking for
good returns.

- It proceeds through the euphoria of rising prices, particularly of assets, while
an expansion of credit inflates the bubble.

- In the manic phase, investors scramble to get out of money and into illiquid
things such as stocks, commodities, real estate or tulip bulbs: 'a larger and
larger group of people seeks to become rich without a real understanding of
the processes involved'.

- Ultimately, the markets stop rising and people who have borrowed heavily
find themselves overstretched. This is 'distress', which generates unexpected
failures, followed by 'revulsion' or 'discredit'.

- The final phase is a self-feeding panic, where the bubble bursts. People of
wealth and credit scramble to unload whatever they have bought at greater and
greater losses, and cash becomes king.

Charles Kindleberger, Manias, Panics and Crashes (19558)




What is the cause of the crash?

v" Proximate causes: many
possibilities

v' Fundamental cause: maturation
towards an instability

An instability is characterized by

-large or diverging susceptibility to external
perturbations or influences

-exponential growth of random perturbations
leading to a change of regime, or selection of
a new attractor of the dynamics.




Mechanism(s)
Complex Systems

-positive feedbacks
-non sustainable regimes

-rupture




For humans data at the time could not
discriminate between:

1. exponential growth of Malthus

2. logistic growth of Verhulst

But data fit on animal population: sheep in
Tasmania

- exponential in the first 20 years after their

introduction and completely saturated after
about half a century. ==> Verhulst

28




Positive feedbacks and finite-time singularity

Conjecture: Many systems exhibit transient F'TS
as “ghost-like” solutions that the system follows for
a while before being attenuated.

Analogous to exponential sensitivity to imnitial condi-
tion with reinjection — chaos but here F'T'S blow-
up.

dp dp
== mp(0[K = p()] i rlp(0)]'*°.

with K o< p°
|

p(t) o< (t, —t)°, with z = s and ¢ close to ..

Multi-dimensional generalization: multi-variate positive feedzlgacks
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chart courtesy Ned Davis Research Monthly Data 1/31/1960 - 3/31/2002 (Log Scale)
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Faster than exponential growth

Suppose GROWTH RATE doubles when POPULATION doubles

POPULATION GROWTH RATE DOUBLING TIME

Q 1000 Q 1% Q 69y

Q 2000 Q 2% Q 69/2y
Q 4000 Q 4% d 69/4y
I Q.. Q ..

d 2" x 1000 Q 2n 9, d 69/2"y

69+69/2+69/4+69/8...=69x(1+1/2+1/4+1/8+...)=69x2=138y

Zeno paradox .
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Figure 1: Monthly Capital Appreciation Index 1/1815-12/1999
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Dow Jones Industrial Average Jan 1790-Sept 2000
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Finite-time
Singularity

Artist’'s
illustration of
matter from a
red giant star

being pulled
toward a black
hole.

e Planet formation in solar system by run-away accretion of planetesimals

e PDE’s: Euler equations of inviscid fluids and rela-
tionship with turbulence

e PDE's of General Relativity coupled to a mass field
leading to the formation of black holes

e Zakharov-equation of beam-driven Langmuir tur-
bulence in plasma

e rupture and material failure

e Barthquakes (ex: slip-velocity Ruina-Dieterich fric-
tion law and accelerating creep)

e Models of micro-organisms chemotaxis, aggregat-
ing to form fruiting bodies

e Surface instability spikes (Mullins-Sekerka). jets
from a singular surface. fluid drop snap-oft

e Luler’s disk (rotating coin)

e Stock market crashes...




e Technical and rational mechanisms
1. Option hedging
2. Insurance portfolio strategies
3. Trend following investment strategies
4. Asymmetric information on hedging strategies

 Behavioral mechanisms:
1. Breakdown of “psychological Galilean invariance”
2. Imitation(many persons)
a) It is rational to imitate
b) It is the highest cognitive task to imitate
c) We mostly learn by imitation
d) The concept of "CONVENTION” (Orléan)

37




Utility theory

2 piu(wi) > 2 qiu(wy)

Von Neumann and Morgenstern

- Fearand Greed ~ Behavioral Finance:one person
- Over-confidence

- Anchoring

- Law of small numbers (gambler’s fallacy)

- Representativeness (=>weight recent past too heavily)

- Availability and rational nattention

- Allais’ paradox: relative reference level

- Subjective probabilities

- Procedure Utility

Z mpi)v(Aw;) > Z g, )V(AWI)

*Prospect theory Kahneman and Tversky




JUST A NORMAL DAY AT THE NATION'S MOST IMPORTANT FINANCIAL INSTITUTION...

2 THIS 1S
MADNESS!
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Imitation

-Imitation is considered an efficient mechanism
of social learning.

- Experiments in developmental psychology suggest that infants use imitation to get
to know persons, possibly applying a ‘like-me’ test (‘persons which I can imitate and
which imitate me’).

- Imitation 1s among the most complex forms of learning. It is found in highly
socially living species which show, from a human observer point of view,
‘intelligent’ behavior and signs for the evolution of traditions and culture (humans
and chimpanzees, whales and dolphins, parrots).

- In non-natural agents as robots, tool for easing the programming of complex tasks
or endowing groups of robots with the ability to share skills without the intervention
of a programmer. Imitation plays an important role in the more general context of
interaction and collaboration between software agents and human users. 41




OBSERVATIONAL LEARNING

For evolutionary fears, monkeys and people learn by watching what other animals and people do (not by doing
themselves and learning from the consequences).

Hands-on learning may not always be the best! THE APE AND THE SUSHI MASTER (Frans de Waal’s book): in
Japan, apprentice sushi cooks spend three years just watching the sushi master prepare sushi. When the apprentice finally
prepares his first sushi, he does a good job of it. (“The watching of skilled models firmly plants action sequences in the
Head that come in handy, sometimes much later, when the same taskes need to be carried out.” The ape and the sushi
Master: cultural reflections of a primatologist (New York: Basic Books, 2001)

Temple Grandin and C. Johnson,
Animals in translation (Scribner, New York, 2005)

VERVET MONKEY 42




EXAMPLES OF STRONG IMITATION EFFECTS:
FEARS ARE CONTAGIOUS

Psychologist S. Mineka’s experiments with monkeys and snakes :
lots of phobias and fears are CONTAGIOUS

Monkeys in the wild are terrified by snakes
Monkeys in the lab are not worried by snakes

Dr. Mineka taught a lab monkey to be just a terrified of snakes as any
monkey living in the wild. When Dr. Mineka

exposes her fearless monkeys to wild-reared monkeys acting afraid of
snakes, the lab monkeys instantly got scared

themselves, and they stayed scared for life. The lab-monkeys learned
the same level of fear as the demonstrator-monkey.

If the demonstrator-monkey was scared but not panicked, the
observer-monkey became scared but not panicked.

It is impossible to teach a monkey to be afraid of a flower by the same
technique! (video tape of a flower followed
by a monkey acting terrified).

Fear of snake is SEMI-INNATE: monkeys are born ready to fear snakes
at the first hint of trouble (prepared stimulus)

One can protect an animal from developing fear: If Dr. Mineka first
exposed a lab-rearer monkey to another lab-reared

Monkey NOT acting afraid of a snake, that gave him “immunity”: after
that, if he saw a wild-reared monkey acting

scared of a snake, he did NOT develop snake fear himself. He held to his
first lesson.

Red squirrel monkeys and six-foot Costa Rica snake
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Social Independent
Influence

With a little help from my friends. When making choices, individuals are influ-

enced by what others think is best, making the final outcome unpredictable.

Exp. 2

Social Independent
Influence

Ranked popularity

Popular songs became more popular and unpopular songs became less popular when

individuals influenced one another.

The structure of social action—that is, the pattern and strength of social influence—in and
of itself is of considerable importance for explaining the social phenomena we observe.

M. ]. Salganik, P. S. Dodds, D. ]. Watts, Science 311, 854 (2006)
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Thy Neighbor’s Portfolio: Word-of-Mouth Effects
in the Holdings and Trades of Money Managers

THE JOURNAL OF FINANCE e VOL. LX, NO. 6 « DECEMBER 2005
HARRISON HONG, JEFFREY D. KUBIK, and JEREMY C. STEIN*

A mutual fund manager is more likely to buy (or sell) a particular stock in any quarter
if other managers in the same city are buying (or selling) that same stock. This pattern
shows up even when the fund manager and the stock in question are located far apart,
so it is distinct from anything having to do with local preference. The evidence can
be interpreted in terms of an epidemic model in which investors spread information
about stocks to one another by word of mouth.

A fundamental observation about human society is that people who
communicate regularly with one another think similarly. There is at any
place and in any time a Zeitgeist, a spirit of the times. ... Word-of-mouth

transmission of ideas appears to be an important contributor to day-to-day
or hour-to-hour stock market fluctuations. (pp. 148, 155) Shiller (2000)

Humans Appear Hardwired To Learn By 'Over-Imitation’
ScienceDaily (Dec. 6, 2007) — Children learn by imitating adults--so much so that
they will rethink how an object works if they observe an adult taking unnecessary
steps when using that object, according to a new Yale study.




Are two heads better than one?

Yes IF:

1. Only one solution (otherwise “average of Nice and LA is in the Atlantic”)
2. Independence between decisions (otherwise: inadequate sampling)

3. No feedbacks between people’s decisions (otherwise: self-reinforcing bias)

¢ Dresdner Kleinwort Wasserstein Seven Sins of Fund Management

Groupthink is often characterised by:
» A tendency to examine too few alternatives
» A lack of critical assessment of each other’s ideas
» A high degree of selectivity in information gathering
» A lack of contingency plans
» Poor decisions are often rationalized
» The group has an illusion of invulnerability and shared morality
» True feelings and beliefs are suppressed
» An illusion of unanimity is maintained

» Mind guards (essentially information sentinels) may be appointed to protect the group
from negative information




Network effects and Collective behavior

Courtesy of B. A. Huberman




Simplest Example of a “More is Different” Transition

Water level vs. temperature

9590

)
N

Extrapolation?

The breaking of
macroscopic
linear
extrapolation

1

BOILING PHASE TRANSITION

More is different: a single molecule does not boil at 100C?

(S. Soloméaf)
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Example of “MORE IS DIFFERENT” transmon in FrRance

Dow Jones Industrials - ’
~Weekly Chart o "
"‘

B S 4 It T ‘
s ] €7
nstead o 7\ Pt -~
Water Level: 6 m w WT’
-economic index — |

(Dow-Jones etc...)  DJAWweekly

10/29

http:// www.lowrisk.com

Crash = result of collective behavior of individual traders

(S. Solomdh)




Optimal strategy obtained under limited information

Equation showing optimal imitation solution of decision in absence of intrinsic information and in
the presence of information coming from actions of connected “neighbors”

s;(t+ 1) =sign( K ) s, + g
eN

This equation gives rise to critical transition=bubbles and crashes

-Crash = coordinated sell-off of a large number of investors
-single cluster of connected investors to set the market off-balance
-Crash if 1) large cluster s>s* and 2) active

-Proba(crash) = n(s)
-Proba(active cluster) ~s2 with 1 <a<2 (coupling
between decisions)

Proba(crash) ~ 2
If a=2, 2.

osx  N(S) $?

n(s) sz ~ IK-Kcl

S>s* 51
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Importance of Positive Feedbacks and
Over-confidence in a Self-Fulfilling Ising
Model of Financial Markets

si(l) = sign Z Ky ()

Imitation

Bls;](t) + oi(1)G(1) + «(t)

News

I{?;j(t) — b?;j —+ O{/,;[X/(,;j(t — 1) —+ ,GT(t — 1)G(t — 1)

(generalizes Carlos Pedro Gongalves, who generalized Johansen-Ledoit-Sornette)

[3: propensity to be influenced by the felling of others

1. p<0: rational agents

 [(>0: over-confident agents

Didier Sornette and Wei-Xing Zhou, Physica A 370 (2), 704-726 (2006))




News. I if I(1)>0,
ews: GO=9_1 irrn<o.

Price: p(t) = p(t — 1) exp[r(1)],

S si(D)
N

r(t) =

(1) the agents make decisions based on a combination of three ingredients:
imitation, news and private information

(2) they are boundedly rational
(3) traders are heterogeneous (Kij and 0,);

(4) The propensity to imitate and herd is evolving adaptively as an interpretation that
the agents make of past successes of the news to predict the direction of the market.
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a; = 0 corresponding to the absence of memory of the coefficients K;;'s

800 - T T

7001

600

n

S

=
1

Kij(t) = Ki(t) = bi + pr(t — 1)G(1 = 1)

Histogram
» =
S S
(= =)

200
100
0
-1 -0.5 0 0.5 1
Return

Fig. 1. Density distribution of returns r; for a realization of the artificial stock
market model formulated by Gongalves (2003) generated using bmax = 0.22 ~ 0.24,
Omax = 0.14 ~ 0.15 and C'V = 0.8 ~ 0.9 as recommended by this author. The time
series of returns have been kindly provided by Gongalves. Our own simulations
reproduce the same results.




News predicts the next return — decrease of imitation: f = —1
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Fig. 2. A typical example of the multimodal distribution for by.x = 0.2,

Omax = 0.045, and C'V = 0.1.




Case 3 = +1 (“over-confident” agents)

In|p(0)]

Fig. 3. A realization of the logarithm of the price over 107 time steps generated
using @ = 0.2, byax = 0.3, Gpax = 0.03 and C'V = 0.1 of the generalized artificial
stock market model defined by (1), (4) and (10).

Fig. 4. Time series of the log-returns of the price shown in Fig. 3.




Fig. 5. (Color online) Empirical (solid lines) and theoretical (dashed thin lines)
probability distribution density (in logarithmic scales) of log-returns at different
time scales 7 of the price time series shown in Fig. 3. The log-returns . are normal-
ized by their corresponding standard deviations o,. The pdf curves are translated
vertically for clarity. The thick dashed line is the Gaussian pdf.
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Multifractal random walk




Daily Returns

Dow Jones Index Returns Jan. 2nd 1980-Dec.31st 1987
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Iig. 7. Autocorrelation function of the absolute value of log-returns of the realization
shown in Fig. 3. The top panel show the correlation in linear-linear scale. The bottom
panel plots the correlation function as a function of the logarithm of the time lag,

as suggested by the multifractal random walk model (see text).




Fig. 8. The impact of e on the auto-correlation of the absolute values of the returns
and of the returns.




for different time scales 7

I'ig. 9. Scaling of the autocorrelation functions of |r(#)
of the realization shown in Fig. 3.




Fig. 1. Multifractal analysis of the intraday future S&P500
index over the period 1988-1999. (a) Plot of the original in-
dex time-series. The analyzed time-series is the detrended
and de-seasonalized logarithm of this series. (b) Log-log plots
of M(q,l) wversus | for ¢ = 1,2,3,4,5. The time scales [
range from 10 minutes to 1 year. (c¢) log,(M(q,l)/M(1,1)?)
for ¢ = 2,3,4,5. Such plots should be horizontal for a process
that is not multifractal. (d) {; spectrum for the S&P 500 fluc-
tuations. The plot in the inset is the parabolic nonlinear part

of (.




The Multifractal Randow Walk (MRW) model

rar(t) = e(t) - oae(t) = €(t) - exar®

1
pAr = 5111(02At)—0m(0)

T
Catr) = ottt 7= ()

)
wae(t) = par + / dr n(7) Ka(t —7)

wa(t) is Gaussian with mean jia,; and variance Va, = [J7 dr K3,(7) = A*In (th )

CM(T):/ dt Ka(t)Kae(t+|7])
0

KarlP)? = Carlf) =202 £~ [fo7 #5041+ 0 (FALIn(£AD)|

. AT
Kat(m) ~ Ko/ —  for At << 7<< T
T

D. Sornette, Y. Malevergne and J.F. Muzy, Volatility fingerprints of large shocks: Endogeneous versus exogeneous,
Risk 16 (2), 67-71 (2003)((http://arXiv.org/abs/cond-mat/0204626)




Linear response to an external shock
— - 2K
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Fig. 14. Relaxation of superposed excess volatility after exogenous shocks obtained

by imposing a very large news G/(t;) for At = 1.




“Conditional response” to an endogeneous shock

‘12
Eendo[0”(t) [wo] = 2(t) C*P[ C (8 2(}(&)
a(s)+5(1)
_ ( ) Interplay between
-long memory
o(s) = 3:3/2 | -exponential
where hl( At )
In(t/At)
1 = 2A2
6( ) ]H(TBB/Q/At)

12|
Within the range At < t << Atex?, 8(t) << a(s)

Eendo[02(t) | wo] ~ t~2)




Real Data and Multifractal Random Walk model

Eendo[02(t) | wo] ~ t=2()




Fig. 12. Average normalized conditional volatility ¢%,(t)/F[¢?] as a function of the
time t — t; from the local burst of volatility at time ¢4 for different log-amplitudes
s in double logarithmic coordinates.

Fig. 13. Exponent a(s) of the conditional volatility response as a function of the
endogenous shock amplitude S for At = 1,2,4, and 8.




Bubbles and crashes

Fig. 15. Five price trajectories showing bubbles preceding crashes that occur at the
shifted time 0. The five time series have been translated so that the time of their

crash is placed at the origin ¢t = 0.
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Figure 4: (Color online) Superposed epoch analysis of the 11
time intervals, each of 6 years long, of the DJIA index centered
on the time of the maxima of the 11 predictor peaks above Al = 0.3

of the alarm index shown in Fig. 3.

D. Sornette and W.-X. Zhou
Predictability of Large Future Changes in major financial indices,
International Journal of Forecasting 22, 153-168 (2006)




All stylized facts are reproduced when

*The system operates close to the Ising critical point (large
susceptibility and anomalous volatility: Shiller’s paradox)

e Agents over-interpret or mis-attribute the origin of price changes

No feedback of the price on the decision making process




INFORMATION: normal people’s high level of general intelligence makes them
too smart for their own good.

In 1909, a broker using the pseudonym Don Guyon wrote a small book called One-Way Pockets.
He was utterly mystified as to why, after a full cycle of rise and fall after which stocks were valued
just where they were at the start, all his clients lost money. His answer, in a nutshell, is herding.
His clients felt fearful at the start of bull markets and so traded in and out constantly. At the
market’s peak, they felt confidently bullish and held much more stock “for the long run,”

Rats beat humans:

The rats and the humans had to look at a TV screen and press the lever anytime a dot appeared in the top
half of the screen. The experimenters did not tell the human subjects that’s’ what they were supposed to do;
they had to figure it out for themselves the same way the rats did. The experiment was set up so that 70% of
the time the dot was in the top of the screen. Since there was no punishment for a wrong response, the
smartest strategy was just to push the bar 100% of the time. That way, you get the reward 70% of the time,
even though you have not clue of what is the pattern.

That’s what the rats did.

But the humans never figured this out!

They kept trying to come up with a rule, so sometimes they pressed the bar and sometimes they would not,
trying to figure it out. Some of them thought they had come up with a rule. But they were of course deluded
and their performance was much less than the rats.

People makes STORIES! Normal people have an “interpreter” in their left brain that takes all the random,
contradictory details of whatever they are doing or remembering at the moment, and smoothes everything in
one coherent story. If there are details that do not fit, they are edited out or revised!

Temple Grandin and C. Johnson, Animals in translation (Scribner, New York, 2005)




Endogenous versus exogenous origins
of inancial bubbles and crashes

(GGeorees Harras & Didier Sornette
O

http://arXiv.org/abs/0806.2989

http://papers.ssrn.com/sol3/papers.cfim?abstract_id=1156348}
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Opinion formation

opinion;(t) = ¢y; - Z ki;(t - Ei[s(t)] 4+ coi - u(t — 1) - news(t) + c3; - €;(t)

Trading decision

- if opinion,(t) > |opinion-th,|  : s;(f) = +1
. _ __cash;(t)
. .. o @i (t) = 9 price(t—1)
- if opinion,(t) < —|opinion-th,| : s;(t) = -1
a;(t) = g- stocks;(t),

Learning and adaptation

u(t) = a-u(t—1)+r(t)- news(t—1) -

ks() = a-kylt—1) +(t) - Eifs;(t —1)]
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Price clearing condition N
1
t) = —— S; (T
r(t) TN ;1 (t)

log [price(t)] = log [pricte(t — )] +r(t),

Wealth evolution

cash;(t) = cash;(t —1) — a;(t) - price(t)
stocks;(t) = stocks;(t — 1)+ a;(t).

75
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NEWS IMPACT
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ENDO-EXO view of bubbles and crashes; Transient runs of news are sufficient
to trigger large crashes in a system of over-learning and over-controlling agents
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which controls their risk aversion: continuous line (all agents):; dotted line (agents

with high ‘opinion-th’, i.e. high risk aversion): thick dashed line (agents with low
‘opinion-th’, i.e. low risk aversion). 79




Rational Expectation Bubbles and Crashes
(Blanchard-Watson)

Martingale hypothesis (“no free lunch”):

for all t' >t Eipt)] = p(t)
If crashes are depletions of bubbles:

dp = p(t) p(t) dt — k[p(t) — p1ldj
Martingale gives

n(t)p(t) = klp(t) — p1]h(t) ,
i.e., if crash hazard rate h(t) increases, so must
the return (bounded rationality)

A. Johansen, D. Sornette and O. Ledoit A. Johansen, O. Ledoit and D. Sornette, Crashes as critical
Predicting Financial Crashes using discrete scale invariance, points, International Journal of Theoretical and %plied
Journal of Risk, vol. 1, number 4, 5-32 (1999) Finance Vol. 3, No. 2 219-255 (2000)




Bubble with stochastic finite-time singularity
due to positive feedbacks

[B(t
(B (g)) = pdt + odW; — kdy
WB)B = _Z[Bo(B) + ol B(t)/Bol™

o(B)B = oo|B(t)/Bo]" ,

dB

dt

K
= a” ! where o = ;
(polte — 1] — g5 W (1) ~om

Stochastic finite-time singularity




Nonlinear Super-Exponential Rational Model of

Speculative Financial Bubbles

B(t)

W(t)

dB(t)

dW(t)

4.0

2.0

1.0

0.5

0.2

-0.2

0.1

-0.1

1

B(t)=o"

(olte — t] — (ao/BFIW (1))*

The price

drives the
crash hazard

2500

rate.

D. Sornette and J. V.

Andersen

A Nonlinear Super-

2500 Exponential Rational

Model of Speculative

Financial Bubbles,
Int. J. Mod. Phys. C 13
(2), 171-188 (2002)

2500

2500
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1

B = o” where o = 1/m —
() = ol — 11— (oo By () “here 2= 1/m 1

Contains two ingredients:
(1) growth faster than exponential

(2) growth of volatility
limit 1/o — 0 (m — 1)
BBS(t) = exp(uot + 0y W(t)) Standard Geometric random walk

Wilks' test of embedded hypotheses

Test of the existence of both ingredients

J.V. Andersen, D. Sornette/ Physica A 337 (2004) 565—585




Example of a “fearful” super-exponential bubble
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Example of a “fearless” super-exponential bubble
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NONPARAMETRIC ANALYSES OF LOG-PERIODIC
PRECURSORS TO FINANCIAL CRASHES (W.-X. Zhou and D. Sornette)

(H,q) derivatives and Hilbert transform
d

qx +oc
Dq f(z) flz) — flqz) i‘(s):l/— 2(t)

[(.1 — q);r:H ' ™
the Dow Jones Industrial Average, October 1987 Crash,

the Dow Jones Industrial Average, October 1997 strong correction,
the S&P 500 Index, October 1987 crash,

the S&P 500 Index, October 1997 strong correction,

the Nasdaq Index, October 1987 crash,

the Nasdaq Index, October 1997 strong correction, and
the Nasdaq Index, April 2000 crash.

‘Residuals

dt X (v) = —j sign(v)X(v) .-
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International Journal of Modern Physics C 14 (8) (2003) 1107-1125.




I(t)=A+B(t.— 1) +C(t, — 1) cos(wlog (t. — t) — ¢)
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Figure 5: Empirical distribution of the log-periodic
angular frequency w in eq. (1) for over thirty case Figure 6: Empirical distribution of the exponent
studies. The fit with a Gaussian distribution gives z of the power law in eq. (1) for over thirty case
w = 6.36+£1.55. The smaller peak centered on 11— studies. The fit with a Gaussian distribution gives

12 suggests the existence of a second discernable 3~ 0.33+0.18.
harmonics at 2w =~ 12.
Demonstration of universal values of z and omega across many different bubbles at different
epochs and different markets
A. Johansen and D. Sornette, Shocks, Crashes and Bubbles in Financial Markets,

Brussels Economic Review (Cahiers economiques de Bruxelles), 49 (3/4), (2006) 88




DISCRETE HIERARCHY
OF THE AGENT NETWORK

Presentation of three different mechanisms leading to discrete scale invariance, discrete
hierarchies and log-periodic signatures

d Co-evolution of brain size and group size
(Why do we have a big Brain?)

d Interplay between nonlinear positive and
negative feedbacks and inertia

 Discrete scale invariance
Complex fractal dimension

Log-periodicity

89




Why do we have a big brain?

Epiphenomenal hypothesis: large brains are
unavoidable consequences of a large body

Developmental hypothesis: maternal energy
constraints determine energy capacity for fetal
brain growth (frugivory=richer diet)

Ecological hypothesis: brain evolved to process
information of ecological relevance (frugivory,
home range navigation, extractive foraging)

Social hypothesis: brain size constrains size of
social network (group size) (memory on
relationships, social skills) (Prof. R. Dunbar)
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Figure 6. Mean grooming clique size plotted against mean neocortex ratio for individual
primate genera. The square is Homo sapiens. Species sampled are L. catta, L. fulvus, Propithe-
cus, Indri, S. sciwrews, C. apella, C. torquatus, A. geoffro, A. fuscice ps, P. badius, P. enteflus, P
pieata, P johni, C. campbeli, C. diana, C. aethiops, C. mitis, E. patas, M. mulatta, M. fuscata,
M. arctoides, M. sylvana, M. radiata, P anubis, P. wrsinus, P cynocephalus, P hamadryas, T.
gelada, P. troglodytes, P. paniscus. (Redrawn from Kudo, Lowen, and Dunbar*' Fig. 4a.)
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Figure 3. Mean group size plotted against neocortex ratio for individual genera, shown
separately for prosimian, simian, and hominoid primates. Prosimian group size data, from
Dunbar and Joffe,” include species for which neocortex ratio is estimated from total brain
volume. Anthropoid data are from Dunbar.?! Simians: 1, Miopithecus; 2, Papio; 3, Macaca; 4, Dunbar (1998)
Procolobus; 5, Saimiri; 6, Erythrocebus; T, Cercopithecus; 8, Lagothrix; 9, Cebus; 10, Ateles; 11,
Cercocebus; 12, Nasals; 13, Callicebus; 14, Alouatta; 15, Calimico; 16, Cebuella; 17, Saguinus;
18, Aotus; 19, Pithecia; 20, Callicebus. Prosimians: a, Lemur; b, Varecia; c, Etlemur; d, Propithe-

cus; e, Indi; f, Microcebus; g, Galago; h, Hapalemur; i, Avahi: j, Pesodictus. 92




Source  Support Clique  Sympathy group Camp Village Tribe
[11] 3.01
[12] 3.3
[13] 4.47 11.6
[14] 3.30
[15] 10.9
[16] 14.0/15.1/13.5/13.8
[17] S~9
[18] 14.5
[19] 10.2
[20, 21] 15
[22, 23] 15.0/14.3/14.8/14.2
[24] 14.4
[25] 25-30 2215 886
[26] 273 202.5 1237.3
[27] 48 90 2290
[28] 26.5 53-159 450
[29] 60 109.1 1200
[30] 26.8/40-50  90-120  471/1625
[31] 21-85 2000
[32] 18.6 152.3 2693
[33] 25-35 60-100 1050
[34] 31.8/62.7 413
[35] 10-60 60-250
[36] 50-75
[37] 40-120
[38] 128.7/180
39, 40] 60-150
[41] 150 483
[42] 100 600
[43] 101.9 663
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Human Network sizes




Method 1: Average sizes of different network layers. To summarize the
previously cited data, we denote S as the mean support clique size, S, the mean
sympathy group, S3 the mean band size, S the mean cognitive group size, and S5
and S the size of small and large tribes. Here, we do not address the relevance
of this classification (which will be done below) but only characterize it quanti-
tatively. The previously cited data gives Sy = 1 (individual or ego), S; = 4.6,
Sy = 14.3, 53 = 42.6, 5; = 132.5, 55 = 566.6, and Sg = 1728. In order to
determine the possible existence of a discrete hierarchy, we construct the series of
ratios S;/.S;_; of successive mean sizes:

Si/Si 1 =4.58,3.12,2.08,3.11,4.28,3.05, fori=1,---,6. ()

This result suggests that humans form groups according to a discrete hierarchy
with a prefered scaling ratio between 3 and 4: the mean of S;/.5; 1 is 3.50.
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Non-parametric analysis of human group sizes
demonstrating the existence of a discrete
hierarchy

Preferred scaling

ratio close to 3

Discrete Hierarchical Organization
of Social Group Sizes
W.-X. Zhou!, D. Sornette!-23, R..M. Dunbar* and R. Hill>

Proc. Royal Soc. London 272, 439-444 (2005)
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Method 3: Probability density function and generalised g-analysis of indi-
vidual networks. We apply the same analysis to individual social networks based
upon the exchange of Christmas cards in contemporary Western Society.

Hill, R.A. and Dunbar, R.I.M., Human Nature 14. 53-72 (2003).

1
a flz) — flgz)
(1 —q)z]”

D, f(x)

10 20 30 40 50
@
Figure 5: Average Lomb periodogram Py (w) of the (H, ¢)-derivative Df (s) with
respect to the number of receivers of the residual contact frequency for each
individual in the Christmas card experiment, as a function of the angular log-

frequency w of the (H, ¢)-derivative, over the 42 individuals and different pairs of
(H,q) with —1 < H < land 0.80 < ¢ < 0.95.




A real-life example of a hierarchical network

*Sections (squads): 10-12 soldiers

ePlatoons (of 3 sections, = 35 soldiers)

Companies (3-4 platoons, = 120-150 soldiers)

eBattalions (3-4 companies plus support units, = 550-800)
*Regiments (or brigades) (3 battalions plus support,2500+)
eDivisions (3 regiments)

*Corps (2-3 divisions)

*Armies

*Country




http://www.army.mil/organization/unitdiagram.html




Summary

e Discrete social hierarchies may be deeply rooted in
the cognitive processing abilities of human brains.

* We suggest that this has observable consequences,
such as in financial markets.

e Implications for the optimization of
— Corporate management
— Politics

— Departments and universities




DISCRETE HIERARCHY
OF THE AGENT NETWORK

Presentation of three different mechanisms leading to discrete scale invariance, discrete
hierarchies and log-periodic signatures

d Co-evolution of brain size and group size
(Why do we have a big Brain?)

d Interplay between nonlinear positive and
negative feedbacks and inertia

 Discrete scale invariance
Complex fractal dimension

Log-periodicity
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Oscillatory finite-time singularity

Another mechanism of LPPL (log-periodic power law)

The balance between supply and demand determines
the price variation from p(t) to p(t+0t) over the time
interval of according to [Fa,l'mor. 1998]

Inp(t + 6t) — In p(¢) [thw + Qieen(t)] (10)

Fundamental value strategies

Qvall,le(t) = —C lll[p(t)/pf] “Il[p(t)/pf””_l

Technical analysis strategies

Qtech(t) = a1 [111 p(t) — In p(t — 5t)]
+as[lnp(t) —Inp(t — 0t)]|Inp(t) — np(t — ot)|"*




Inertia + NL negative feedback + NL positive feedback

The essential element is the nonlinear (NL) nature (threshold like)
of the fundamental valuation-based and of the technical analysis-based strategies

The theory becomes critical when the "mass”™ term
vanishes. 1.e.. when a; = L. Rcscaling t and y; by

a and posing s = le/dt and v = a~"He/L(5t)?
where oo = as(0t)" /L. we obtain

dyl B
7 =y,
ddt Y2
W — cplypl — by
dt
or
d2y1 — —yy ‘y ‘n—l | dyl‘dyl‘m
a2 L T T




-Non-linear fundamental value strategies
-Non-linear technical analysis strategies
-Inertia

m=2.5 n=3 y(0)=0.02

Oscillatory finite-time singularity

K. Ide and D. Sornette

Oscillatory Finite-Time Singularities
in Finance, Population and Rupture,
Physica A 307 (1-2), 63-106 (2002)




DISCRETE HIERARCHY
OF THE AGENT NETWORK

Presentation of three different mechanisms leading to discrete scale invariance, discrete
hierarchies and log-periodic signatures

d Co-evolution of brain size and group size
(Why do we have a big Brain?)

d Interplay between nonlinear positive and
negative feedbacks and inertia

 Discrete scale invariance
Complex fractal dimension

Log-periodicity
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FRACTALS

1)deN Euclid (ca. 325-270 BC)

2)d € R Mandelbrot (1960-1980)

(Weierstrass, Hausdorff, Holder, ...)

JydeC

Discrete scale invariance

Log-periodicity

Prefered scaling ratio is 3

D(n) =In4/In3 +1 2nn/In3

T
L
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Fractal function

(Weierstrass)
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Log-periodic route to fractal functions

1 1 |
fIK)=g(K)+ ZAIRK)) f(K)= 2 —5el R7(K))
o1
(Derrida, Eckmann, Erzan, 1983) f (X ) — ZO _n g [ ')/n.X:]
n—
fw= 2 b" cos|a" mx].
n=1_
| ctiow
f(x)= 2 : f (s)x°d S: Inverse Mellin transform
f(Y)—z A,,x n y :é(si7)
il T Inwv
f(X):]FS(X)‘Ff,,(X) 21
f,<x>—2 B,x" Sp=—m+i—n
n=0 In vy
S. Gluzman and D. Sornette, Log-periodic route to fractal functions, art. no. 036142, =-m + lf 6(1) n

Phys. Rev. E V6503 N3 PT2A:U418-U436 (2002)




1
fK)=g(K)+ ZAIRKI]  [(x)= 2 Apx

n=>0

TABLE 1. Synthesis of the different classes of Weierstrass-type functions according to the general classification (21), A4,

~(1/nPye *"e'"n of the expansion (18) in terms of a series of power laws x 2. The parameters p, k=0, and ¢, are determined by the form

of g(x) and the values of x and . All numerical values given in this table correspond to m=0.5,w=7.7 corresponding to y=2.26 and
p=+y=1.5. The last two columns quantify the amplitude of the log-periodic oscillations with respect to the leading real power law.

g(\) P K l.//n |An =1 /A4 n= ()| |A n=2 /4 i ~()|
cos(x) m+1/2 0 wn In(wn) 0.065 0.032
exp(—x) m-+1/2 (72)w wn In(wn) 5.12x10 7 1.432x 10 2
exp| —ex|cos(xs)* m+1/2 ([72] - a)w wn In(wn)

(1+x%) ! 0 (m2)w (7/2)ym 9.901x10 ° 4414x10 "

log(1+x) 1 TW —aTm 4.045% 10 12 =()

exp(—x") m/ih+1/2 (m2h)w [(wn)/h]In(wn) 0.064 (h=50) 0.03 (h=150)
4.386x 10 * (h=2) 6.177%10 7 (h=2)

sin(.\'),r".\"s m+o+1/2 0 —wn In(wn) 0.044 (6=0.1) 0.021 (6=0.1)

0.091 (6= —0.1) 0.049 (6= —0.1)
Si(x) m+3/2 0 wn In(wn) 4.199x 10 ° 1.053x 10 *
| —x" 0=x<1 2 0 ™ 0.064 (h=50) 0.031 (h=150)
0.012 (h=2) 3.146X 10 % (h=2)

Mechanism for large log-periodic corrections to scaling:
The non-universal function g(K) must be either quasi-

periodic or with compact support
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Fig. 2 (a)

08 1.0

\ 41

using N=32 terms to estimate the sums (51). Increasing N does not change the results.
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FIG. 2. Quasi-Weierstrass function for (a) a=m/2, (b) «=0.9937/2=1.56, (¢) a=0.97/2=1.414, and (d) =0, for m=0.25,w=17.7,
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FIG. 8. “Golden-mean log-periodic Weierstrass function™
S'®(x) defined by Eq. (69) with Eq. (72) for m=0.5,w=7.7,N
= 500. Py =y +2mRn

n+1
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FIG. 10. ““e-log-periodic Weierstrass function” SY” defined by
Eq. (69) with Eq. (72) and R=¢=2.718 ... for m=0.5,w=7.7,N
=500. U =0+ 2mRn




X

FIG. 11. Singular part f((x) of the Weierstrass-like function for
the regular function g(x) equal to the stretched exponential (82) for
h=75 (solid line), #=10 (dashed line), #=20 (dotted line), 4 =50
(dashed-dotted line), and ~2=100 (dashed-dot-dotted line), for m
=04,w=7.7,N=22.
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Positive feedbacks + hierarchies

New theory of bubbles and crashes

(Log-periodic power law)
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5.8

The bubble and Crash of Oct. 1997
Continuous line: first-order LPPL

Dashed line: second-order LPPL
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S&P 500

320

During and after the crash: the market behaves
as a single-degree-of-freedom damped oscillator;
the whole market Is synchronized
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o2 (S&P 500)

90

Long-term relaxation of the implied volatility
30 can also be accounted for by the LPPL.
It describes the progressive fragmentation of the marKet
o which recaptures its usual heterogeneity
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Hang-Seng

Hong-Kong
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Non-parametric analysis of
log-periodicity: we find a strong and
universal log-periodic spectrum
for all bubbles investigated
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Figure 2. Log-periodic spectra for all the major bubbles ending in
crashes on the Dow Jones and SP500 index in the twentieth century
as well as the NASDAQ crash of 2000. Observe that the
sub-harmonics (half log-frequency) and two harmonics 2 f and 3 f
are quite strong in some of the data sets. See Johansen et al (1999)
for details on how to calculate the Lomb periodogram.
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Figure 3. Log-periodic spectra for the major recent bubbles on
currencies. See Johansen er al (1999) for details on how to calculate
the Lomb periodogram.




Crash I, (- Loin % drop m, ® A
1929 (DJ) 30.22 29.65 29.87 47% 0.45 7.9 2.2
1985 (DM) 85.20 85.15 85.30 14% 0.28 6.0 2.8
1985 (CHF) 85.19 85.18 85.30 15% 0.36 5.2 34
1987 (S&P) 87.74 87.65 87.80 30% 0.33 7.4 2.3
1987 (HK) 87.84 87.75 87.85 50% 0.29 5.6 3.1
1994 (HK) 94.02 94.01 94.04 17% 0.12 6.3 2.7
1997 (HK) 97.74 97.60 97.82 42 % 0.34 7.5 2.3
1998 (S&P) 08.72 08.55 98.67 19.4% 0.60 6.4 2.7
1999 (IBM) 99.56 99.53 99.81 34% 0.24 5.2 34
2000 (P&G) 00.04 00.04 00.19 54% 0.35 6.6 2.6

2000 (Nasdaq) ~ 00.34  00.22  00.29 37% 027 7.0 24

t. is the critical time predicted from the fit of the financial time series to the equation (15). The
other parameters m,, w, and A of the fit are also shown. The fit is performed up to the time ¢

max

at which the market index achieved its highest maximum before the crash. ¢ . is the time of the

min

lowest point of the market before rebound. The percentage drop is calculated from the total loss
to t,,,.- Reproduced from [218].

min

from ¢

max
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Out-of-sample test over 20 years of the Heng Seng

Alarms were produced in the following nine time intervals
containing the date of the last point used in the fit:

(a) 1981.60 to 1981.68. This was followed by a ~ 30%
decline.

(b) 1984.36 to 1984.41. This was followed by a ~ 30%
decline.

(c) 1985.20 to 1985.30; false alarm.

(d) 1987.66 to 1987.82. This was followed by a ~ 50 %
decline.

(e) 1989.32 to 1989.38. This was followed by a =~ 35 %
decline.

(f) 1991.54 to 1991.69. This was followed by a &~ 7% single
day decline; considered a false alarm, nevertheless.

(g) 1992.37 to 1992.58. This was followed by a =~ 15%
decline. This is a marginal case.

(h) 1993.79 to 1993.90. This was followed by a =~ 20%
decline. This can also be considered as a marginal case,
if we want to be conservative.

(1) 1997.58t0 1997.74. This was followed by &~ 35% decline.
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and Applied Finance
4 (6), 853-920 (2001) 190 ' ' ' A ' ' T layei
1200 - ]
1000 - ]
800 - 4
600 - 4
2 a0l .
200 1 1 1 1 1 1 1 1 1
91 92 93 94 95 96 o7 o8 99

Figure 31: The Malaysian stock market index as a function of date. 1 extended bubble with a subsequent very large
draw down can be identified. The approximate date for the draw down is early 94.
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Figure 32: The Philippines stock market index as a function of date. 1 bubble with a subsequent very large draw
down can be identified. The approximate date for the draw down is early 94.
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Figure 33: The Thai stock market index as a function of date. 1 bubble with a subsequent very large draw down can 25
be identified. The approximate date for the draw down is early 94. -




We show the
parametric LPPL
fits (left panels)
and the non-
parametric log-
periodic spectral
analyses (right
panels)
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Figure 34: Hong Kong stock market bubble ending with the crash of Oct. 87. See table 5 for the parameter values of
the fit with equation (1). Only the best fit is used in the Lomb periodogram.
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Figure 35: Hong Kong stock market bubble ending with the crash

the fit with equation (1).
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Figure 36: Hong Kong stock market bubble ending with the crash of Oct. 97. See table 5 for the parameter values of
the fit with equation (1).
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Figure 37: Korean stock market bubble ending in 1994. See table 5 for the parameter values of the fit with equation
(1). The data set of the residue had to be truncated in order to eliminate a severe drift in the last part of the data
close to t..
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Figure 38: Indonesian stock market bubble ending in 1997. See table

(1).
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Figure 39: Indonesian stock market bubble ending in Jan. 1994. See table 5 for the parameter values of the fit with

equation (1).
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Figure 40: Malaysian stock market bubble ending with the crash of Jan. 94. See table 5 for the parameter values of
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Figure 41: Philippine stock market bubble ending in Jan. 1994. See table 5 for the parameter values of the fit with

equation (1).
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Figure 42: Thai stock market bubble ending with the crash of Jan. 94. See table 5 for the parameter values of the fit

with equation (1). - z
[(t)=A+B (t.—t) +C(t.—1t) cos(wlog(t. —1t) — ¢)

Parameters of the log-periodic fits; z= crit_ical exponent; omega=Ilog-periodic frequency

Stock market A B C 2z i W o
Hong-Kong T | 5523;4533 | —3247;—2304 | 171; =174 | 0.29;0.39 | 87.84;87.78 | 5.6;5.2 | —1.6; 1.1

Hong-Kong 11 21121 —15113 —429 0.12 94.02 6.3 —0.6
Hong-Kong T11 20077 —8241 —397 0.34 97.74 7.5 0.8
Indonesia 1 6.76 —1.11 0.039 0.44 94.09 15.6 —1.3
Indonesia 11 7.38 —0.92 —0.06 0.23 98.05 10.08 5.8
Korea | 6.97 —0.28 —0.05 1.05 94 .87 8.15 1.1
Malaysia | 7.61 —1.16 0.038 0.24 94.02 10.9 1.4
Philippines 1 9.00 —1.74 —0.078 0.16 94.02 8.2 0.2
Thailand 1T 7.81 —1.41 —0.086 0.48 94.07 6.1 —0.2




I(t)=A+B(t.— 1) +C(t, — 1) cos(wlog (t. — t) — ¢)
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Figure 5: Empirical distribution of the log-periodic
angular frequency w in eq. (1) for over thirty case Figure 6: Empirical distribution of the exponent
studies. The fit with a Gaussian distribution gives z of the power law in eq. (1) for over thirty case
w = 6.36+£1.55. The smaller peak centered on 11— studies. The fit with a Gaussian distribution gives

12 suggests the existence of a second discernable 3~ 0.33+0.18.
harmonics at 2w =~ 12.
Demonstration of universal values of z and omega across many different bubbles at different
epochs and different markets
A. Johansen and D. Sornette, Shocks, Crashes and Bubbles in Financial Markets,

Brussels Economic Review (Cahiers economiques de Bruxelles), 49 (3/4), (2006) 131




Dow Jones Index Returns Jan. 2nd 1980-Dec.31s5t 1987
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Endogenous vs exogenous crashes

1. Systematic qualification of outliers/kings in pdfs of drawdowns

2. Existence or absence of a *“‘critical” behavior by LPPL patterns
found systematically in the price trajectories preceding this
outliers

Results: In worldwide stock markets + currencies + bonds
*21 endogenous crashes
*10 exogenous crashes

A. Johansen and D. Sornette,

Endogenous versus Exogenous Crashes in Financial Markets,
in press in “"Contemporary Issues in International Finance"
(Nova Science Publishers, 2004)

(http://arXiv.org/abs/cond-mat/0210509)
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Multiscale Pattern Recognition Method

Forecasting 22,
153-168 (2006)
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Extension to a multi-scale LPPL analysis with Gelfand’s method of pattern recognition to predict

Figure 3: (Color online) Alarm index AI(t) (upper panel) and

the DJIA index from 1900 to 2003 (lower panel). The peaks of

the alarm index occur at times indicated by arrows in the bottom
panel. 137




Determination of relevant “traits” that allow us to
distinguish targets from non targets in the Learning process

Tty ——r———

0.005 0.01  bh=Bm — |C|\/m? + »*=>0.

Parameter for positivity of crash hazard rate

Figure 1: Density distribution p(w|l or II) of the DSI parameter

w obtained from (1) and complementary cumulative distribution

P(b|]I or 1I) of the constraint parameter b obtained from (2) for the
objects in classes I (dotted, dashed, and dotted-dashed) and II
(continuous) for three different values of {;. 138




Multi-scale approach to critical times
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Figure 2: Alarm times t (or dangerous objects) obtained by the
multiscale analysis. The alarms satisfy b >0, 6 < w < 13 and 0.1 <
m < 0.9 simultaneously. The ordinate is the investigation “scale”
in trading day unit. The results are robust with reasonable
changes of these bounds.
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Figure 4: (Color online) Superposed epoch analysis of the 11
time intervals, each of 6 years long, of the DJIA index centered
on the time of the maxima of the 11 predictor peaks above Al = 0.3

of the alarm index shown in Fig. 3.
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Figure 5: Error diagram for our predictions for two definitions
of targets to be predicted r9 = 0.1 and 9 = 0.15 obtained for the
DJIA. The anti-diagonal line corresponds to the random prediction
result. The inset shows the prediction gain.
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What are bubbles?
How do detect them?
How to predict them?

Academic Literature:
No consensus on what is a bubble...

The Fed: A. Greenspan (Aug., 30, 2002):

““We, at the Federal Reserve...recognized that, despite our
suspicions, it was very difficult to definitively identify a bubble
until after the fact, that is, when its bursting confirmed

its existence... Moreover, it was far from obvious that bubbles,
even if identified early, could be preempted short of the Central
Bank inducing a substantial contraction in economic activity, the
very outcome we would be seeking to avoid.”




What are bubbles?
How do detect them?
How to predict them?

Our proposition to the Academic Literature:
“Super exponential price acceleration’ and ‘‘king” effect

Our proposition to the Fed:

Complex system approach with emphasis on

(i) positive and negative feedback interplay

(ii) collective behavior and organization lead to “EMERGENCE”




Towards a methodology
to identify crash risks

d Development of methods to diagnose bubbles
4 Crashes are not predictable

d Only the end of bubbles can be forecasted

4 2/3 ends in a crash

4 Multi-time-scales

4 Probability of crashes; alarm index

® Successful forward predictions: Oct. 1997; Aug. 1998,
April 2000

® False alarms: Oct. 1997

d Towards a FINANCIAL CRISIS OBSERVATORY
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Real-estate

W.-X. Zhou, D. Sornette, 20002003 real estate bubble in the UK but not in the USA, Physica A 329 146
(2003) 249-263.




W.-X. Zhou, D. Sornette | Physica A 361 (2006) 297-308
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(2005)

2 Bedrooms, 1 Bath(s)
1,310 Estimated Sq. Ft.

Listing #: 620130

$1,049,000

And this with the median household income in San Mateo County of ~$70,000. With 20% down, the mortgage
for a "starter" $1M house would be 11-12 times the median income. Even if one were "buying up" to one of these houses,
say, with equity of 50%, the mortgage/median income ratio would be 7:1!!!

From late '02 and early '03 to date--the bubbliest phase--the value of the property below is estimated to have more than DOUBLED,
peaking at an estimated $1.16M in summer-fall '05, an annualized increase in value of ~14% from '96. However, before the one
order of magnitude of exponential growth of the bubble commenced in late '02, the rate of growth of the value of this property

was ~6.9%/yr. Were the value to regress to the pre-bubble trend, the estimated value would be $620,000-$820,000 over the
course of the next 4 years or a 30% to 40-45% nominal decline and -11% to -18%/yr. in real terms (at the trend 2.7%1%P2).




The Components of Gross Equity Extraction
Billions of dollars (1991:Q1-2005:Q1, seasonally adjusted annual rate)

1,200
e Total gross equity extraction

1.100 | e Cash outs resulting from refinancings
1000 4 = = Originations to finance purchases of existing homes minus sellers' debt cancellation

= B_F Change in home equity debt outstanding less unscheduled repayments on RMDO
900

800

700 Over the past decade and a half, (B - F) has been closely correlated with realized capital
600 gains on the sale of homes.
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Alan Greenspan and James Kennedy (Nov. 2005)

2002 2003 2004 2005
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- Equity Extraction
Billions of dollars (1991:Q1-2005:Q1, seasonally adjusted annual rate)

1,200

—(10SS €QUity extraction

1,100 A
- = « Net equity extraction (gress equity extraction minus fees, taxes, and points)

1,000
900 \
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600 AT Y
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Year

-Gross equity extraction as the change in RMDO (regular mortgage debt outstanding) minus new home originations plus
scheduled amortization.

-Net equity extraction is defined as gross equity extraction less closing costs and other costs related to the extrac |ggr of home
Equity.




Ratio
012

Ratios of Gross and Net Equity Extraction to Disposable Income
(1991:Q1-2005:Q1, seasonally adjusted)
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Regular Mortgages: Originations, Repayments, and the Change in Mortgage Debt
Outstanding

Billions of dollars (1991:Q1-2005:Q1, seasonally adjusted annual rate)
5,500 —
e=(riginations
5,000 A —— Repayments
- - = Changein RMDO
4,500 ‘
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Regular Mortgage Originations to Purchase Homes and to Refinance Existing Loans
Billions of dollars (1991:Q1-2005:Q1, seasonally adjusted annual rate)
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== Total originations
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LAS VEGAS

© Raw data
_tlast =2005Q1

—t =2004Q4
last

U

75 1980 1985 1990 1995 2000 2005 2010
t

Figure 1: Three fits of the quarterly data of Las Vegas house price index from 1978Q2 to 2004Q3,
to 2004Q4, and to 2005Q1, respectively, using the pure power model (9). The fit parameters for
2004Q3 are t. = 2004.75 and m = 0.63 with the r.m.s. of the fit residuals being 0.0686. The fit
parameters for 2004Q4 are t. = 2005.0 and m = 0.54 with the rm.s. of the fit residuals being
0.0709. The fit parameters for 2005Q1 are £. = 2005.25 and m = 0.48 with the r.m.s. of the fit

residuals being 0.0725.
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Regional Case-Shiller-Weiss Indices of Las Vegas
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Time evolution of the Case-Shiller-Weiss (CSW) indices of 27 Las Vegas zip codes




Figure 11: Dependence of the data p for all CSW indices on its growth rate . The overall correlation
coefficient 1s 0.494. The red line 1s the linear fit of the data points.




Figure 18: Predicting regional CSW indexes one year ahead. Red lines: Prediction using average
growth rate obtained from all 27 indexes; Magenta lines: Prediction using average growth rate
obtained from the individual index under investigation.




This graph shows the year-over-year price changes for the Case-Shiller composite 10 and 20 indices
(through February), and the Case-Shiller and OFHEO National price indices (through Q4 2007).




The Case-Shiller national index will probably be off close to 12% YoY (will be released in late May).
Currently (as of Q4) the national index is off 10.1% from the peak.
The OFHEO index is barely negative YoY as of Q4 2007, and prices are only off 1.6% from the peak.




Does knowledge of all this change the future? Forecasts?

Learning from the Oct. 1987 Crash: implied volatility has changed
dramatically, and in Bates’ opinion permanently, since the 1987 crash.
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Fig. 2. Upper panel: implicit volatilities from at-the-money S&P 500 futures options, 1983-93. §
Lower panel: Volatility spreads for calls and puts. : ~
R 0,
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Fig. 3. 4% OTM skewness premium (upper line), and call transactions as a percentage of total
reported call and put transactions (lower line).

Bates, D., 2000, Post-'87 crash fears in S&P500 futures options. Journal of Econometrics, 94, 181-238. 163




Hang Seng China Entreprises Index (HSCEI)
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The 2006-2008 Oil Bubble and Beyond

D. Sornette.! R. Woodard,! and W.-X. Zhou?

| JIANG Ze-min |

Typical result of the calibration of the simple LPPL model to the oil price in US

$ in shrinking windows with starting dates tstart moving up towards the
common last date tlast = May 27, 2008.
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Imblance & return
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Time series from 2004 to the first
quarter of 2008 of the total World oll
demand minus supply (positive
values mean that the demand is
larger than the supply). For
comParison, the relative price
variation (return r(t)) of Oil (West
Texas Intermediate) is also shown
over the same period. The first data
point of DS (demand minus supply) is
for the whole year of 2004 and the
second data point is for 2005. The
other DS values are quarterly,
according to the IEA. The returns are
also calculated on the quarterly time
scale.

r(t) =ro+ayr(t —1) +bogDS(t) + b1 DS(t — 1)

The coefficient ro is estimated at the level of 9.8% over this period with a p-value of 0.03,
making it significant at the 97% level. Both coefficients a1 = 0.11 and bo = 0.04 are found
insignificant with p-values of 0.75 and 0.32 respectively. The small value of a1 confirms the
absence of reactivity of the oil prices to short-term shocks in the demand-supply variable
over this time scale, due to the probable dominance of speculation that we argue here.
The coefficient b1 = 0.077 has a p-value of 0.097, making it significant at the 90%
confidence level.




9.

14 factors to propel a market bubble

. the capitalist explosion and the ownership society,
. cultural and political changes favoring business success,
. new information technology,

1
2
3
4. supportive monetary policy and the Greenspan put,
d.
6
/
38

the baby boom and their perceived effects on the markets,

. an expansion in media reporting of business news,
. analysts’ optimistic forecasts,
. the expansion of defined contribution pension plans,

the growth of mutual funds,

10. the decline of inflation and the effects of money illusion,
11.the expansion of the volume of trade due to discount brokers,
12. day traders,

13. twenty-four-hour trading,

14. the rise of gambling opportunities.
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Why bubbles are not arbitraged away?

1. limits to arbitrage caused by noise traders (DeLong et, 1990)
2. limits to arbitrage caused by synchronization risk (Abreu and
Brunnermeier, 2002 and 2003)

3. short-sale constraints (many papers)

4. lack of close substitutes for hedging (many papers)

5. heterogenous beliefs (many papers)

6. lack of higher-order mutual knowledge (Allen, Morris and
Postlewaite, 1993)

/. delegated investments (Allen and Gorton, 1993)

8. psychological biases (observed in many experiments)

9. positive feedback bubbles
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Securitization of credit risks

dSecuritization of credit risks leads
to smaller risks

JdBut more inter-connected
= global risk?

CDS and CDO: form of insurance contracts linked to underlying debt that protects the buyer in case of
default.

The market has almost doubled in size every year for the past five years, reaching $20
trillion in notional amounts outstanding last June 2007, according to the Bank for
International Settlements.

Bundling of indexes of CDSs together and slicing them into trenches, based on riskiness and return.
The most toxic trench at the bottom exposes the holder to the first 3%

of losses but also gives him a large portion of the returns. At the top, the risks and returns are much
smaller-unless there is a systemic failure.
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Separation of financial and credit risks Securitization leads to larger inter-connectivity
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SYNCHRONISATION AND COLLECTIVE EFFECTS
IN EXTENDED STOCHASTIC SYSTEMS

Fireflies

171
Miltenberger et al. (1993)




Coexistence of SOC

Stress drop (coupling strength) . .
| and Synchronized behavior

0 PERIODIC n
SYNCHRONIZED (Sornette et al., 1994)
LARGE RISKS *
1 L . (Ben-Zion, Dahmen et
0.1 al., 1998)
¢ &
0.01 SELF-ORGANIZED CRITICALITY
%k &
0.001 S
0.001 0.01 0.1 1 10 Heterogeneity
Rupture thresholds

“Phase diagram” for the model in the space (heterogeneity, stress drop).
Crosses (+) correspond to systems which exhibit a periodic time evolution.
Stars * corresponds to systems that are self-organized critical, with a
Gutenberg-Richter earthquake size distribution and fault localization whose
geometry 1s well-described by the geometry of random directed polymers.




- ? Notional value of CDS
ISKS on
| |

25 1

Securitization of non-financial assets
(commodities, real-estate, credit)

10

-US global imbalances 5

-Yen carry trades which could be unwound massively IHOT  1HO2  1HO3  1HO4  1HOS  1HOG
Source UBS (March 07)

-Commodity prices jumping leading to inflationary pressures and liquidity tightening

-Low risk premia on emerging market bonds and High yield bonds which could lead
to a global credit repricing

-What are possible scenarios with regard to the development of global financial
markets?

+Monetary union in Asia

+Continuation of the massive development of derivatives in all risk sectors

-Principle-agency-theory shows:

-information asymmetries and strategic behavior of agents lead to moral hazard and cannot be
corrected by incentive alone

-cooperation needs transparency and the possibility to retaliate/punish (feedback). 173




Conclusion

4 Reqgularities in bubbles and crashes

4 Kings and black swans

4 Positive and negative feedbacks

J RE bubble models and imitation/herding
Jd Empirical case studies

d Endogenous versus Exogenous

4 Foreign capital flows, Fed’s feedback and
macroeconomic feedbacks (not shown here)

d Anti-bubbles and the recent 2000-05 phase
(not shown here)
d Towards routine predictions

All papers and much more at http://
www.ess.ucla.edu/faculty/sornette/ 174




Main Messages

Investors, stock market regulators and macro-economic
policy cannot ignore COLLECTIVE BEHAVIOR between

AGENTS (with negative and positive feedbacks).

Imitation and herding behaviors lead to Positive and
negative feedbacks AND vice-versa : the stock markets
and the economy have never been more a CONFIDENCE
“game”.

Predictions and Preparation: complexity theory applied
to such collective processes provides clues for
precursors and suggests steps for precaution and
preparation. 175
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S&P vs Nikkei
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The US Market Descent Prediction
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D. Sornette and W.-X. Zhou,
1500 4 The US 2000-2002 Market Descent: T
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i Quantitative Finance2, 468-481 (2002)
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*In December 2004, we decided to discontinue the update, concluding that, after more than

two years, our projections for the US market have not been verified.
*In contrast, our projections for the US market translated in foreign currencies (in
particular in euro) have been rather accurate. 182




Left ordinate: Fits of the S&P 500 index over a time interval of three years with a daily sampling
rate using the first-order LPPL formulae (1) and the second-order LPPL formulae (3). The parameters are
the following: 7. = 2000/08 /27, m = 0.72,m» = 9.2, ¢ = 4.62, A = 7.3123, B = —0.0037, C = —0.0008, and
the r.m.s. of fit residuals is y; = 0.03859 for the first order formula; and 7z, = 2000/08 /06, m = 0.76,
w=114 ¢ =103,4,=2778, 4, = —22.6, A =7.3245, B= —0.0031, C = —0.0007, and the r.m.s. of fit
residuals is 7, = 0.03729 for the second order formula. Right ordinate: The probability that the simulated
log-likelihood-ratio exceeds the realized ratio as a function of 7y,g.
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Causal slaving of the US Treasury Bond yields to the stock market

7

30Y

2001 2002 2003
t

W.-X. Zhou, D. Sornette! Physica A 337 (2004) 586—608




S&P 500 in other currencies

Fig. 9. The S&P 500 index denominated in GBP from 2000/08/09 to 2004/07/16 and its fits using the first-
order and second-order Landau formulas. The values of the fit parameters are listed in Table 3. The fits are

extrapolated to the end of 2005.
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A hierarchy of antibubbles

US 10-year treasury bond yield
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Comparison of the Federal funds rate, the S&P 500 Index x(t), and the NASDAQ composite z(t),
from 1999 to mid-2003. To allow a illustrative visual comparison, the indices have been
translated and scaled as follows: x — 5x — 34 and z — 10z — 67.
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Cross-correlation coefficient C(n) between the increments of the logarithm of the

S&P 500 Index and the increments of the Federal funds rate as a function of time lag n in days. The

three curves corresponds to three different time steps used to calculate the increments: weekly, monthly and
quarterly. A positive lag n corresponds to having the Federal funds rate posterior to the stock markleg}2




