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Classical Decision TheoryClassical Decision Theory
 Set of outcomes, set of payoffs, consumer set,  
 field of events

X = {xn : n = 1 , 2 , ... N }, xn ∈ ℝ

Utility function
  elementary utility function, satisfaction function

u  x: X  ℝ
 (i) nondecreasing

u  x1 ≥ u x2  x1 ≥ x2
 (ii) concave

u  x1  1 −  x2   u x11−u x2

0 ≤  ≤ 1 , ü x   0



  

Risk aversion

r  x ≡− ü  x
u̇  x

   
 Coefficient of relative risk aversion
 Pratt (1964), Arrow (1965)
 

R x ≡ x r  x =−x ü x 
u̇ x 

 Coefficient of absolute risk aversion
 Pratt (1964)

Portfolio problem

u  x = 1−e−kx
 Exponential utility function

 Risk aversion

r x  = k , R x = kx



  

Expected UtilityExpected Utility

 Lottery

{p  xn: n = 1 ,2 , ... , N }, ∑
n=1

N

p  xn = 1

                 

 BernoulliBernoulli (1738)
 Von Neumann – MorgensternVon Neumann – Morgenstern (1944)

 Probability measure over X 

         
L = {xn , p  xn: n = 1 ,2 , ... , N }

 Linear combination

L1 = {xn , p1 xn}, L2 = {xn , p2 xn}

 L1  1 −  L2 = {xn ,  p1 X n  1 −  p2 xn}

0 ≤  ≤ 1



  

 Lottery mean
x = 1

N ∑
n=1

N

p xn xn

2L = 1
N ∑

n=1

N

p xn xn
2 − x2L

 Lottery dispersion

U L = ∑
n=1

N

p xnu xn

 dispersion, measure of uncertainty

Expected utility of lottery

 Comparison of lotteries
 Indifference: L1 = L2  U L1 = U L2

 Preference: L1  L2  U L1  U L2

L1 ≥ L2  U L1 ≥ U L2



  

 (2) transitivity

if L1 ≤ L2 and L2 ≤ L3 , then L1 ≤ L3

 (3) continuity

for L1 ≤ L2 ≤ L3 , there exist  ∈ [0 ,1]

 (4) independence

Properties of expected utility

L1 = L2 , L1  L2 , L1  L2 , L1 ≤ L2 , L1 ≥ L2

 L1  1 −  L3 = L2

 (1) completeness

for L1 ≥ L2 and any L3 , 0 ≤  ≤ 1 ,
 L1  1 −  L3 ≥  L2  1 −  L3

for L1 and L2 , one of relations



  

  Classical decision-making schemeClassical decision-making scheme

 Set of lotteries {L j : j = 1 , 2 , ... ,}

 Expected utility U L j 

 compare

U L∗ ≡ sup j U  L j

L j = {xn , p j  xn}

U L j

 Optimal lottery L∗



  

Allais ParadoxAllais Paradox

X = {x1 , x2 , x3}

 Set of 4 lotteries

x1 = 0 , x2 = 1 , x3 = 5

 Probability measures

 AllaisAllais (1953)
 Compatibility violation: Several choices are not compatible with
                                      utility theory

 Payoff set

{L j : j = 1 , 2 ,3 , 4}

{p j  xn}

 Balance conditions
p1 xn  p3 xn = p2 xn  p4 xn

n = 1 ,2 , 3.

units of xn millions of dollars $106

 for all



  

{p1 xn}= {0 ,1 ,0}, {p2 xn}= {0.01 ,0.89 , 0.10}

{p3 xn}= {0.9 ,0 ,0.1} , {p4xn}= {0.89 ,0.11 ,0}

p1 x1  p3x1 = p2 x1  p4 x1 = 0.9

p1x2  p3 x2 = p2 x2  p4 x2 = 1

p1x3  p3 x3 = p2x3  p4 x3 = 0.1



  

 Lotteries

L1  L2

is more uncertainL2

L1 = {$0, 0
$1, 1
$5, 0 } 2 L1 = 0

L2 = {$0 , 0.01
$1 , 0.89
$5 , 0.10 } 2L2 = 0.916



  

L3  L4

is more uncertain, but stake is larger
U L1 = u 1

U L2 = 0.01u 0  0.89u 1  0.1 u 5

U L3 = 0.9 u 0  0.1 u 5

U L4 = 0.89u 0  0.11u 1

L3

L3 = {$0 , 0.9
$1 , 0
$5 , 0.1 } 2L3 = 0.805

L4 = {$ 0 , 0.89
$1 , 0.11
$5 , 0 } 2L4 = 0



  

L1  L2  U  L1  U L2

0.11 u 1  0.01u 0  0.1u 5

L3  L4  U L3  U  L4

0.11 u 1  0.01u 0  0.1u 5

Contradiction!
   For any definition of u(x)!



  

Independence ParadoxIndependence Paradox

 Independence axiom:

 AllaisAllais (1953)

if L1  L2 and L3 ≥ L4 , then for any  ∈ [0 ,1]

 L1  1 −  L3   L2  1 −  L4



  

 Lotteries as in the Allais paradox

take 

{L j : j = 1 , 2 ,3 , 4}

 = 1
2

1
2

L1  L3 = {$0 , 0.45
$1 , 0.50
$5 , 0.05 }

1
2

L2  L4 = {$0 , 0.45
$1 , 0.50
$5 , 0.05 }



  

 but  by the independence axiom it should be

 Contradiction!

 For any definition of u(x)!

U  L1  L3

2  ≡ U  L2  L4

2 

U  L1  L3

2   U  L2  L4

2 



  

Ellsberg ParadoxEllsberg Paradox

 EllsbergEllsberg (1961)

1 urn: 50 red balls + 50 black balls

2 urn: 100 balls, red or black in an 
           unknown proportion

 Payoffs
x1

x2

prize for getting a red ball

prize for getting a black ball

 Units of x
n
, say, $1000

50 red
+
50 black

100

x1
x2



  

 Get a red ball from 1-st urn

 Get a red ball from 2-nd urn

 preference: L1  L2

L1 = {$0 , 1
2

$1 , 1
2 }

L2 = {$0 , 
$1 , 1 −  } 0 ≤  ≤ 1



  

Get a black ball from 1-st urn

 Get a black ball from 2-nd urn

 Preference: L3  L4

 Indifference: L2 = L4

L3 = {$0 , 1
2

$1 , 1
2 }

L4 = {$0 , 1 − 
$1 ,  } 0 ≤  ≤ 1



  

L1  L2  U L1  U L2

1
2

u 0  1
2

u 1  u 0  1 − u 1

L3  L4  U L3  U L4

1
2

u 0  1
2

u 1  1 − u0  u 1

 No such  ∈ [0 ,1]

 Contradiction!



  

 Also:

 hence  = 1
2

p j xn = 1
2

= const

 then
L1 = L2 = L3 = L4

 for any definition of U L

L2 = L4  U  L2 = U  L4

U L j = const



  

Kahneman-Tversky ParadoxKahneman-Tversky Paradox
 Kahneman-TverskyKahneman-Tversky (1979)

 Invariance violation: Preference instead of indifference

 Set of payoffs {xn}= {1 ,1.5 , 2}

 Units of x
n
, thousands of dollars $1000

u 1.5 = 1
2 [ u 1  u 2 ]



  

 After winning, one gets

L
2
 is more certain

L
2
 > L

1

L1 = { $1 , 0.5
$1.5 , 0
$ 2 , 0.5 } , L2 = { $1 , 0

$1.5 , 1
$ 2 , 0 }

2L1 = 0.583 2L2 = 0



  

 After loosing, one gets

L
4
 is more certain, but

L
3
 > L

4

L3 = { $1 , 0.5
$1.5 , 0
$ 2 , 0.5 } , L4 = { $1 , 0

$1.5 , 1
$ 2 , 0 }

2L3 = 0.583 2L4 = 0



  

 However

U L j = 1
2

u 1  1
2

u 2 = u 1.5

 for all  j = 1,2,3,4

 Contradiction!

 For any definition of  u(x)!

L2  L1  U L2  U L1

L3  L4  U L3  U  L4

U L j = const



  

Rabin ParadoxRabin Paradox
 RabinRabin (2000)

 payoffs: X 1 = {x − l1 , x , x  g1}

 l
1
  loss,  g

1
  gain

x ≥ l1 , l1  0 , g1  0

 Small difference between gain and loss
g1 ≈ l1



  

 L
1
  is more uncertain

 L
2
 > L

1

L1 = { $  x − l1 , 0.5
$ x , 0

$  x  g1 , 0.5 } , L2 = { $  x − l1 , 0
$ x , 1

$  x  g1 , 0 }
2L1  0 2L2 = 0



  

 Payoffs: X 2 = {x − l2 , x , x  g2}

x ≥ l2 , l2  0 , g 2  0

 Large difference between gain and loss: g 2 ≫ l2

L3  L4

L3 = { $ x − l2 , 0.5
$ x , 0

$  x  g2 , 0.5 } , L4 = { $ x − l2 , 0
$ x , 1

$  x  g 2 , 0 }
2 L4 = 02 L3  0



  

 Although  L
3
 is more uncertain

 But the stake is much larger

L2  L1  U L2  U L1

u  x  1
2

u x − l1  1
2

u xg1 .

L3  L4  U L3  U L4

u  x  1
2

u x − l2  1
2

u x  g2



  

 Rabin theorem (2000)

        If for some  l > 0,   g > 0

 then it is so for all  l, g, because of 
 the concavity of  u(x).

 Contradiction with above!

 For any concave  u(x)!

u  x  1
2

u x − l   1
2

u x  g  ,



  

Disjunction EffectDisjunction Effect
 Tversky-ShafirTversky-Shafir (1992)
 Two-step gambles

 1-st step:
- st   gamble won  (B

1
)

-st  gamble lost  (B
2
)

 2-nd step:
-nd  gamble accepted  (A

1
)

-nd  gamble refused  (A
2
)

 People accept the 2 -nd gamble independently whether they won   
 the first, p  A1 B1  p A2 B1 ,

 or they lost the first gamble, p  A1 B2  p A2 B2 .



  

         But, when the results of the 1-st gamble are not known,
B = B1  B2  B1 B2 = 0  ,

 people restrain from the 2-nd gamble,

           By probability theory,

p A1 B = p A1 B1  pA1 B2 ,

p A2 B = p A2 B1  p A2 B2 .

 If p A1 B j  p A2 B j for  j = 1,2,  then

 Contradiction!

p A2 B  pA1 B .

p A1 B  p A2 B .



  

Sure-thing principleSure-thing principle
 SavageSavage (1954)

 Humans respect probability theory:

p A1 B j  p A2 B j  p A1 B  p  A2 B

However, disjunction effect:

 Humans do not abide to probability theory!



  

Another example of Disjunction EffectAnother example of Disjunction Effect 

 1-st step:

 2-nd step:

 Students go to vacation in any case of known results:

p  A1 B1  p A2 B1 , p A1 B2  p A2 B2 .

 When results are not known, students forgo vacations:

 Contradiction with sure-thing principle!

p A1 B  p A2 B B = B1  B2



  

Conjunction FallacyConjunction Fallacy
 Tversky-KahnemanTversky-Kahneman (1983)

One event   (A).

Another event   (B = B
1
 + B

2
), 

which

may happen    (B
1
),

or does not happen   (B
2
).



  

 People often judge:

 But, by probability theory,

p A B = p A B1  p A B2 ,
 hence, conjunction rule:

 j = 1 , 2 .

 Contradiction!

  ExamplesExamples: description of a person, of a subject, of an event,...
 Decide on the existence of one feature  (A).
 Decide on the existence of another feature (B

1
) or absence of  

 it (B
2
).

p  A B  p A B1  B = B1  B2  .

p A B  p A B1 .

p A B ≥ p A B j



  

Save utility theory ?Save utility theory ?
 Non-expected utility functionals.

L = {xn , pxn} For a lottery

 Instead of expected utility U(L), utility functionals

F L = F [ xn , pxn , u xn]
 Minimal requirements:   Risk aversion
        Between two lotteries  L

1
 and  L

2
, with the same mean 

x L1 = x L2

 the lottery  L
1
  is preferred to  L

2 
 ( L

1  
> L

2 
) if 2L1  2L2 .

        Then  F(L
1 
) 

 
> F(L

2
).

Safra and SegalSafra and Segal (2008): Non-expected utility functionals do not  
                                        remove paradoxes!



  

What to do?What to do?

1. Realistic problems are complicated,     
    consisting of many parts.

2. Different parts of a problem interact      
    and interfere with each other.

3. Several thoughts of mind can be       
    intricately interconnected (entangled).

Life is complex!



  

Quantum Decision TheoryQuantum Decision Theory
Main definitionsMain definitions

1. Action ring
= {An: n=1 , 2 , ... , N }

    Intended actions  A
n

 addition Am  An ∈

 associative: A1   A2  A3 = A1  A2  A3

reversible: A1  A2 = A3  A1 = A3 − A2



  

 multiplication: Am An ∈

 distributive: A1 A2  A3 = A1 A2  A1 A3

 idempotent: An An ≡ An
2 = An

 noncommutative: Am An ≠ An Am (generally)

 empty action: An 0 = 0 An = 0

 disjoint actions: Am An = An Am = 0



  

 2. Action Modes

    Composite actions

action modes, representations
An An =  An

3. Action prospects

 conjunction, composite or simple,
     composite and simple prospects



  

4. Elementary prospects
     binary multi-index

 = {in , n : n=1 ,2 , ... , N }
number of α, cardinality

  conjunction of modes

e e =  e



  

 5. Prospect lattice

 6. Mode states

L = { j : j=1 ,2 , ... , N L}

    ordering: i ≤  j or i ≥  j

An  complex function

      scalar product

〈 An∣An〉 = 



  

 7. Mode space

 8. Basic states

    closed linear envelope

 Hilbert space

  elementary prospect e 



  

 9. Mind space

 10. Prospect states

 11. Strategic states
   reference states



  

 12. Mind strategy

 13. Prospect operators

 14. Operator averages

        Person character, basic beliefs and principles

 Involutive bijective algebra



  

 15. Prospect probability

 16. Prospect ordering

       π
1
  indifferent to  π

2
:

π
1
  preferred to  π

2
:

        Decisions are probabilistic



  

 17. Partial probabilities

       π
j
e

α
 conjunction prospects

 18. Attraction factor

      Quantifies the attractiveness of the project with respect to   
      risk, uncertainty, biases.

      Caused by action interference.



  

 19. Attraction ordering

      π
1  

is more attractive than  π
2
:

        (less risky, less uncertain)

 π
1  

and  π
2
  are equally attractive: 

 (equally risky, equally uncertain)

 20. Attraction conditions
π

1  
is more attractive than  π

2 
 if it is connected with:

 (a) more certain gain,
 (b) less certain loss,
 (c) higher activity under certainty,
 (d) lower activity under uncertainty.

     Aversion to risk, uncertainty, and loss.



  

General propertiesGeneral properties

  PropositionProposition 1. 1.

  PropositionProposition 2. 2.

 Attraction alternation



  

  PropositionProposition 3. 3.

 π
1
  preferred to  π

2  
if and only if

 Return to classical decision theory:



  

Binary mindBinary mind
 Two actions

 Two mode spaces

 Mind space



  

 Elementary prospects e j  = A j B

 Basic states

 Action prospects:

 Prospect probabilities:

 Conditional probability



  

CorrespondenceCorrespondence
lottery 

payoffs

normalized measure of 

probability of the payoffs in the lottery

normalized utility of

q  A j B  ?    No equivalent



  

Allais paradoxAllais paradox

 Balance condition for all

is more attractive:



  

more attractive:

 Balance condition  →

 in classical utility theory contradiction

 In QDT no contradiction! − 1
2

 0.065  1
2



  

Disjunction EffectDisjunction Effect
Tversky – ShafirTversky – Shafir (1992)

 A
1
: second gamble accepted

 A
2
: second gamble refused

 B
1
: first gamble won

 B2: first gamble lost

 Experiment
 1-st gamble won + 2-nd accepted:

 1-st gamble won + 2-nd refused:

p A1 B1 = 0.345

p A2 B1 = 0.155

p A1 B1 = 0.345  0.155 = pA2 B1



  

 1-st gamble lost + 2-nd accepted:

 1-st gamble lost + 2-nd refused:

p A1 B2 = 0.295

p A2 B2 = 0.205

p A1 B2 = 0.295  0.205 = p A2 B2

B = B1  B2

 1-st gamble not known + 2-nd accepted:

 1-st gamble not known + 2-nd refused:

p A1 B = 0.36
p  A2 B = 0.64

p A1 B  = 0.36  0.64 = pA2 B



  

  TheoryTheory
 Active under uncertainty:   A

1
B   →

 attraction factor       q(A
1
B)  

 Passive under uncertainty:   A
2
B   →

 attraction factor       q(A
2
B)  

q A2 B  q A1 B 

 Alternation theorem →
q A2 B =−qA1 B  0

q A2 B  0.25 , q A1 B  −0.25



  

  PredictionPrediction

p  A1 B = p  A1 B1  p A1 B2  q A1 B

p  A2 B = p  A2 B1  p A2 B2  q A2 B

p  A1 B = 0.39 , p  A2 B = 0.61

P A1 B  = 0.39  0.61 = p A2 B

 Agreement with experiment!
  Theory:Theory:

  ExperimentExperiment

P  A1 B  = 0.36  0.64 = p A2 B



  

ConclusionsConclusions
● Novel approach to decision making is developed 

based on a complex Hilbert space over a lattice of 
composite prospects.

● Risk and uncertainty are taken into account.
● Paradoxes of classical decision theory are explained.
● Good quantitative agreement with empirical data.
● Conjunction fallacy is a sufficient condition for 

disjunction effect.
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                        Mathematical Basis of Quantum Decision Theory,   
                     ssrn.com/abstract=1263853 (2008).
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