Quantum Decision Theory

V.I. Yukalov and D. Sornette

Department of Management, Technology and Economics
ETH Zürich

Plan

1. Classical Decision Theory
1.1. Notations and definitions
1.2. Typical paradoxes
1.3. Absence of solution
2. Quantum Decision Theory
2.1. Definitions and axioms
2.2. General properties
2.3. Solution of paradoxes

Classical Decision Theory

Set of outcomes, set of payoffs, consumer set, field of events

$$
X=\left\{x_{n}: n=1,2, \ldots N\right\}, \quad x_{n} \in \mathbb{R}
$$

Utility function

elementary utility function, satisfaction function

$$
u(x): X \rightarrow \mathbb{R}
$$

(i) nondecreasing

$$
u\left(x_{1}\right) \geq u\left(x_{2}\right) \quad\left(x_{1} \geq x_{2}\right)
$$

(ii) concave

$$
\begin{gathered}
u\left(\alpha x_{1}+(1-\alpha) x_{2}\right)>\alpha u\left(x_{1}\right)+(1-\alpha) u\left(x_{2}\right) \\
0 \leq \alpha \leq 1, \quad \ddot{u}(x)<0
\end{gathered}
$$

Risk aversion

Coefficient of absolute risk aversion Pratt (1964)

$$
r(x) \equiv-\frac{\ddot{u}(x)}{\dot{u}(x)}
$$

Coefficient of relative risk aversion Pratt (1964), Arrow (1965)

$$
\begin{gathered}
R(x) \equiv x r(x)=-x \frac{\ddot{u}(x)}{\ddot{u}(x)} \\
\text { Portfolio problem }
\end{gathered}
$$

Exponential utility function

$$
u(x)=1-\mathrm{e}^{-k x}
$$

Risk aversion

$$
r(x)=k, \quad R(x)=k x
$$

Expected Utility

Bernoulli (1738)

Von Neumann - Morgenstern (1944)
Probability measure over X

$$
\left\{p\left(x_{n}\right): n=1,2, \ldots, N\right\}, \quad \sum_{n=1}^{N} p\left(x_{n}\right)=1
$$

Lottery

$$
L=\left\{x_{n}, p\left(x_{n}\right): n=1,2, \ldots, N\right\}
$$

Linear combination

$$
\begin{gathered}
L_{1}=\left\{x_{n}, p_{1}\left(x_{n}\right)\right\}, \quad L_{2}=\left\{x_{n}, p_{2}\left(x_{n}\right)\right\} \\
\alpha L_{1}+(1-\alpha) L_{2}=\left\{x_{n}, \alpha p_{1}\left(X_{n}\right)+(1-\alpha) p_{2}\left(x_{n}\right)\right\} \\
0 \leq \alpha \leq 1
\end{gathered}
$$

Lottery mean

$$
\bar{x}=\frac{1}{N} \sum_{n=1}^{N} p\left(x_{n}\right) x_{n}
$$

Lottery dispersion

$$
\Delta^{2}(L)=\frac{1}{N} \sum_{n=1}^{N} p\left(x_{n}\right) x_{n}^{2}-\bar{x}^{2}(L)
$$

dispersion, measure of uncertainty

Expected utility of lottery

$$
U(L)=\sum_{n=1}^{N} p\left(x_{n}\right) u\left(x_{n}\right)
$$

Comparison of lotteries
Indifference: $\quad L_{1}=L_{2} \quad \rightarrow \quad U\left(L_{1}\right)=U\left(L_{2}\right)$
Preference: $\quad L_{1}>L_{2} \quad \rightarrow \quad U\left(L_{1}\right)>U\left(L_{2}\right)$

$$
L_{1} \geq L_{2} \quad \rightarrow \quad U\left(L_{1}\right) \geq U\left(L_{2}\right)
$$

Properties of expected utility

(1) completeness
for L_{1} and L_{2}, one of relations

$$
L_{1}=L_{2}, \quad L_{1}<L_{2}, \quad L_{1}>L_{2}, \quad L_{1} \leq L_{2}, \quad L_{1} \geq L_{2}
$$

(2) transitivity

$$
\text { if } L_{1} \leq L_{2} \text { and } L_{2} \leq L_{3} \text {, then } L_{1} \leq L_{3}
$$

(3) continuity
for $L_{1} \leq L_{2} \leq L_{3}$, there exist $\alpha \in[0,1]$

$$
\alpha L_{1}+(1-\alpha) L_{3}=L_{2}
$$

(4) independence
for $L_{1} \geq L_{2}$ and any $L_{3}, \quad 0 \leq \alpha \leq 1$,

$$
\alpha L_{1}+(1-\alpha) L_{3} \geq \alpha L_{2}+(1-\alpha) L_{3}
$$

Classical decision-making scheme

Set of lotteries $\quad\left\{L_{j}: j=1,2, \ldots,\right\}$

$$
L_{j}=\left\{x_{n}, p_{j}\left(x_{n}\right)\right\}
$$

Expected utility $U\left(L_{j}\right)$
compare $U\left(L_{j}\right)$
Optimal lottery L^{*}

$$
U\left(L^{*}\right) \equiv \sup _{j} U\left(L_{j}\right)
$$

Allais Paradox

Allais (1953)

Compatibility violation: Several choices are not compatible with utility theory

Payoff set $\quad X=\left\{x_{1}, x_{2}, x_{3}\right\}$
units of x_{n} millions of dollars $\$ 10^{6}$

$$
x_{1}=0, \quad x_{2}=1, \quad x_{3}=5
$$

Set of 4 lotteries $\quad\left\{L_{j}: j=1,2,3,4\right\}$
Probability measures $\left\{p_{j}\left(x_{n}\right)\right\}$
Balance conditions

$$
p_{1}\left(x_{n}\right)+p_{3}\left(x_{n}\right)=p_{2}\left(x_{n}\right)+p_{4}\left(x_{n}\right)
$$

for all $n=1,2,3$.

$$
\begin{gathered}
\left\{p_{1}\left(x_{n}\right)\right\}=\{0,1,0\}, \quad\left\{p_{2}\left(x_{n}\right)\right\}=\{0.01,0.89,0.10\} \\
\left\{p_{3}\left(x_{n}\right)\right\}=\{0.9,0,0.1\}, \quad\left\{p_{4}\left(x_{n}\right)\right\}=\{0.89,0.11,0\} \\
p_{1}\left(x_{1}\right)+p_{3}\left(x_{1}\right)=p_{2}\left(x_{1}\right)+p_{4}\left(x_{1}\right)=0.9 \\
p_{1}\left(x_{2}\right)+p_{3}\left(x_{2}\right)=p_{2}\left(x_{2}\right)+p_{4}\left(x_{2}\right)=1 \\
p_{1}\left(x_{3}\right)+p_{3}\left(x_{3}\right)=p_{2}\left(x_{3}\right)+p_{4}\left(x_{3}\right)=0.1
\end{gathered}
$$

Lotteries

$$
L_{1}=\left|\begin{array}{ll}
\$ 0, & 0 \\
\$ 1, & 1 \\
\$ 5, & 0
\end{array}\right| \quad \Delta^{2}\left(L_{1}\right)=0
$$

$$
L_{2}=\left(\left.\begin{array}{ll}
\$ 0, & 0.01 \\
\$ 1, & 0.89 \\
\$ 5, & 0.10
\end{array} \right\rvert\, \quad \Delta^{2}\left(L_{2}\right)=0.916\right.
$$

$$
L_{1}>L_{2}
$$

L_{2} is more uncertain

$$
L_{3}=\left|\begin{array}{cc}
\$ 0, & 0.9 \\
\$ 1, & 0 \\
\$ 5, & 0.1
\end{array}\right| \quad \Delta^{2}\left(L_{3}\right)=0.805
$$

$$
L_{4}=\left|\begin{array}{cc}
\$ 0, & 0.89 \\
\$ 1, & 0.11 \\
\$ 5, & 0
\end{array}\right| \quad \Delta^{2}\left(L_{4}\right)=0
$$

$L_{3}>L_{4}$
L_{3} is more uncertain, but stake is larger

$$
\begin{gathered}
U\left(L_{1}\right)=u(1) \\
U\left(L_{2}\right)=0.01 u(0)+0.89 u(1)+0.1 u(5) \\
U\left(L_{3}\right)=0.9 u(0)+0.1 u(5) \\
U\left(L_{4}\right)=0.89 u(0)+0.11 u(1)
\end{gathered}
$$

$$
L_{1}>L_{2} \rightarrow U\left(L_{1}\right)>U\left(L_{2}\right)
$$

$$
0.11 u(1)>0.01 u(0)+0.1 u(5)
$$

$$
L_{3}>L_{4} \rightarrow U\left(L_{3}\right)>U\left(L_{4}\right)
$$

$$
0.11 u(1)<0.01 u(0)+0.1 u(5)
$$

Contradiction!

For any definition of $u(x)$!

Independence Paradox

Allais (1953)

Independence axiom:
if $L_{1}>L_{2}$ and $L_{3} \geq L_{4}$, then for any $\alpha \in[0,1]$

$$
\alpha L_{1}+(1-\alpha) L_{3}>\alpha L_{2}+(1-\alpha) L_{4}
$$

Lotteries as in the Allais paradox

$$
\left\{L_{j}: j=1,2,3,4\right\}
$$

take $\quad \alpha=\frac{1}{2}$

$$
\begin{aligned}
& \frac{1}{2}\left(L_{1}+L_{3}\right)=\left|\begin{array}{ll}
\$ 0, & 0.45 \\
\$ 1, & 0.50 \\
\$ 5, & 0.05
\end{array}\right| \\
& \frac{1}{2}\left(L_{2}+L_{4}\right)=\left|\begin{array}{ll}
\$ 0, & 0.45 \\
\$ 1, & 0.50 \\
\$ 5, & 0.05
\end{array}\right|
\end{aligned}
$$

$$
U\left|\frac{L_{1}+L_{3}}{2}\right| \equiv U\left|\frac{L_{2}+L_{4}}{2}\right|
$$

but by the independence axiom it should be

$$
U\left|\frac{L_{1}+L_{3}}{2}\right|>U\left|\frac{L_{2}+L_{4}}{2}\right|
$$

Contradiction!

For any definition of $u(x)$!

Ellsberg Paradox

Ellsberg (1961)

1 urn: 50 red balls + 50 black balls

2 urn: 100 balls, red or black in an unknown proportion

Payoffs
$x_{1} \quad$ prize for getting a red ball
x_{2} prize for getting a black ball
Units of x_{n}, say, $\$ 1000$

Get a red ball from 1-st urn

$$
L_{1}=\left|\begin{array}{ll}
\$ 0, & \frac{1}{2} \\
\$ 1, & \frac{1}{2}
\end{array}\right|
$$

Get a red ball from 2-nd urn

$$
L_{2}=\left(\left.\begin{array}{cc}
\$ 0, & \alpha \\
\$ 1, & 1-\alpha
\end{array} \right\rvert\, \quad 0 \leq \alpha \leq 1\right.
$$

preference: $\quad L_{1}>L_{2}$

Get a black ball from 1-st urn

$$
L_{3}=\left\{\left.\begin{array}{ll}
\$ 0, & \frac{1}{2} \\
\$ 1, & \frac{1}{2}
\end{array} \right\rvert\,\right.
$$

Get a black ball from 2-nd urn

$$
L_{4}=\left|\begin{array}{cc}
\$ 0, & 1-\alpha \\
\$ 1, & \alpha
\end{array}\right| \quad 0 \leq \alpha \leq 1
$$

Preference: $\quad L_{3}>L_{4}$
Indifference: $\quad L_{2}=L_{4}$

$$
\begin{gathered}
L_{1}>L_{2} \rightarrow U\left(L_{1}\right)>U\left(L_{2}\right) \\
\frac{1}{2} u(0)+\frac{1}{2} u(1)>\alpha u(0)+(1-\alpha) u(1) \\
L_{3}>L_{4}
\end{gathered} \rightarrow U\left(L_{3}\right)>U\left(L_{4}\right) \quad 10(0)+\frac{1}{2} u(1)>(1-\alpha) u(0)+\alpha u(1)
$$

No such $\alpha \in[0,1]$ Contradiction!

Also:

$$
L_{2}=L_{4} \rightarrow U\left(L_{2}\right)=U\left(L_{4}\right)
$$

hence $\quad \alpha=\frac{1}{2}$

$$
p_{j}\left(x_{n}\right)=\frac{1}{2}=\text { const }
$$

then

$$
L_{1}=L_{2}=L_{3}=L_{4}
$$

$$
U\left(L_{j}\right)=\text { const }
$$

for any definition of $U(L)$

Kahneman-Tversky Paradox

Kahneman-Tversky (1979)

Invariance violation: Preference instead of indifference

Set of payoffs

$$
\left\{x_{n}\right\}=\{1,1.5,2\}
$$

Units of x_{n}, thousands of dollars $\$ 1000$

$$
u(1.5)=\frac{1}{2}[u(1)+u(2)]
$$

After winning, one gets

$$
\begin{array}{rr}
L_{1}=\left|\begin{array}{cc}
\$ 1, & 0.5 \\
\$ 1.5, & 0 \\
\$ 2, & 0.5
\end{array}\right|, & L_{2}=\left|\begin{array}{cc}
\$ 1, & 0 \\
\$ 1.5, & 1 \\
\$ 2, & 0
\end{array}\right| \\
\Delta^{2}\left(L_{1}\right)=0.583 & \Delta^{2}\left(L_{2}\right)=0
\end{array}
$$

L_{2} is more certain
$L_{2}>L_{1}$

After loosing, one gets

$$
\begin{array}{rc}
L_{3}=\left|\begin{array}{cc}
\$ 1, & 0.5 \\
\$ 1.5, & 0 \\
\$ 2, & 0.5
\end{array}\right|, & L_{4}=\left|\begin{array}{cc}
\$ 1, & 0 \\
\$ 1.5, & 1 \\
\$ 2, & 0
\end{array}\right| \\
\Delta^{2}\left(L_{3}\right)=0.583 & \Delta^{2}\left(L_{4}\right)=0
\end{array}
$$

L_{4} is more certain, but

$$
L_{3}>L_{4}
$$

$$
\begin{aligned}
& L_{2}>L_{1} \rightarrow U\left(L_{2}\right)>U\left(L_{1}\right) \\
& L_{3}>L_{4} \rightarrow U\left(L_{3}\right)>U\left(L_{4}\right)
\end{aligned}
$$

However

$$
U\left(L_{j}\right)=\frac{1}{2} u(1)+\frac{1}{2} u(2)=u(1.5)
$$

for all $j=1,2,3,4$

$$
U\left(L_{j}\right)=\text { const }
$$

Contradiction!

For any definition of $u(x)$!

Rabin Paradox

Rabin (2000)
payoffs: $\quad X_{1}=\left\{x-l_{1}, x, x+g_{1}\right\}$
l_{1} loss, g_{1} gain

$$
x \geq l_{1}, \quad l_{1}>0, \quad g_{1}>0
$$

Small difference between gain and loss

$$
g_{1} \approx l_{1}
$$

$$
\begin{array}{r}
L_{1}=\left|\begin{array}{cc}
\$\left(x-l_{1}\right), & 0.5 \\
\$ x, & 0 \\
\$\left(x+g_{1}\right), & 0.5
\end{array}\right|, \quad L_{2}=\left|\begin{array}{cc}
\$\left(x-l_{1}\right), & 0 \\
\$ x, & 1 \\
\$\left(x+g_{1}\right), & 0
\end{array}\right| \\
\Delta^{2}\left(L_{1}\right)>0
\end{array}
$$

L_{1} is more uncertain

$$
L_{2}>L_{1}
$$

Payoffs: $X_{2}=\left\{x-l_{2}, x, x+g_{2}\right\}$

$$
x \geq l_{2}, \quad l_{2}>0, \quad g_{2}>0
$$

Large difference between gain and loss: $\quad g_{2} \gg l_{2}$

$$
\begin{aligned}
& L_{3}=\left|\begin{array}{cc}
\$\left(x-l_{2}\right), & 0.5 \\
\$ x, & 0 \\
\$\left(x+g_{2}\right), & 0.5
\end{array}\right|, \quad L_{4}=\left|\begin{array}{cc}
\$\left(x-l_{2}\right), & 0 \\
\$ x, & 1 \\
\$\left(x+g_{2}\right), & 0
\end{array}\right| \\
& \Delta^{2}\left(L_{3}\right)>0
\end{aligned}
$$

Although L_{3} is more uncertain
But the stake is much larger

$$
\begin{gathered}
L_{2}>L_{1} \rightarrow U\left(L_{2}\right)>U\left(L_{1}\right) \\
u(x)>\frac{1}{2} u\left(x-l_{1}\right)+\frac{1}{2} u\left(x+g_{1}\right)
\end{gathered}
$$

$$
L_{3}>L_{4} \rightarrow U\left(L_{3}\right)>U\left(L_{4}\right)
$$

$$
u(x)<\frac{1}{2} u\left(x-l_{2}\right)+\frac{1}{2} u\left(x+g_{2}\right)
$$

Rabin theorem (2000)

If for some $l>0, \quad g>0$

$$
u(x)>\frac{1}{2} u(x-l)+\frac{1}{2} u(x+g),
$$

then it is so for all l, g, because of the concavity of $u(x)$.

Contradiction with above!

For any concave $u(x)$!

Disjunction Effect

Tversky-Shafir (1992)

Two-step gambles
1-st step: $\begin{cases}1-\text { st } & \text { gamble won }\left(B_{1}\right) \\ 1 & \text {-st } \\ \text { gamble lost }\left(B_{2}\right)\end{cases}$
2 -nd gamble accepted $\left(A_{1}\right)$
2 -nd gamble refused $\left(A_{2}\right)$
People accept the 2 -nd gamble independently whether they won the first,

$$
p\left(A_{1} B_{1}\right)>p\left(A_{2} B_{1}\right),
$$

or they lost the first gamble, $\quad p\left(A_{1} B_{2}\right)>p\left(A_{2} B_{2}\right)$.

But, when the results of the 1 -st gamble are not known,

$$
B=B_{1}+B_{2} \quad\left(B_{1} B_{2}=0\right)
$$

people restrain from the 2-nd gamble,

$$
p\left(A_{2} B\right)>p\left(A_{1} B\right) .
$$

By probability theory,

$$
\begin{aligned}
& p\left(A_{1} B\right)=p\left(A_{1} B_{1}\right)+p\left(A_{1} B_{2}\right), \\
& p\left(A_{2} B\right)=p\left(A_{2} B_{1}\right)+p\left(A_{2} B_{2}\right) .
\end{aligned}
$$

If $p\left(A_{1} B_{j}\right)>p\left(A_{2} B_{j}\right)$ for $j=1,2$, then

$$
p\left(A_{1} B\right)>p\left(A_{2} B\right) .
$$

Contradiction!

Sure-thing principle

Savage (1954)

Humans respect probability theory:

$$
p\left(A_{1} B_{j}\right)>p\left(A_{2} B_{j}\right) \rightarrow p\left(A_{1} B\right)>p\left(A_{2} B\right)
$$

However, disjunction effect:

Humans do not abide to probability theory!

Another example of Disjunction Effect

Students go to vacation in any case of known results:

$$
p\left(A_{1} B_{1}\right)>p\left(A_{2} B_{1}\right), \quad p\left(A_{1} B_{2}\right)>p\left(A_{2} B_{2}\right) .
$$

When results are not known, students forgo vacations:

$$
p\left(A_{1} B\right)<p\left(A_{2} B\right) \quad\left(B=B_{1}+B_{2}\right)
$$

Contradiction with sure-thing principle!

Conjunction Fallacy

Tversky-Kahneman (1983)

One event (A).
Another event $\left(B=B_{1}+B_{2}\right)$,
which
may happen $\quad\left(B_{1}\right)$,
or does not happen $\left(B_{2}\right)$.

People often judge: $\quad p(A B)<p\left(A B_{1}\right)$.

But, by probability theory,

$$
p(A B)=p\left(A B_{1}\right)+p\left(A B_{2}\right)
$$

hence, conjunction rule:

$$
p(A B) \geq p\left(A B_{j}\right) \quad(j=1,2)
$$

Contradiction!

Examples: description of a person, of a subject, of an event,... Decide on the existence of one feature (A).
Decide on the existence of another feature $\left(B_{1}\right)$ or absence of it $\left(B_{2}\right)$.

$$
p(A B)<p\left(A B_{1}\right) \quad\left(B=B_{1}+B_{2}\right)
$$

Save utility theory?

Non-expected utility functionals.
For a lottery $L=\left\{x_{n}, p\left(x_{n}\right)\right\}$
Instead of expected utility $U(L)$, utility functionals

$$
F(L)=F\left[x_{n}, p\left(x_{n}\right), u\left(x_{n}\right)\right]
$$

Minimal requirements: Risk aversion
Between two lotteries L_{1} and L_{2}, with the same mean

$$
\bar{x}\left(L_{1}\right)=\bar{x}\left(L_{2}\right)
$$

the lottery L_{1} is preferred to $L_{2}\left(L_{1}>L_{2}\right)$ if $\Delta^{2}\left(L_{1}\right)<\Delta^{2}\left(L_{2}\right)$.
Then $F\left(L_{1}\right)>F\left(L_{2}\right)$.
Safra and Segal (2008): Non-expected utility functionals do not remove paradoxes!

What to do?

1. Realistic problems are complicated, consisting of many parts.
2. Different parts of a problem interact and interfere with each other.
3. Several thoughts of mind can be intricately interconnected (entangled).

Life is complex!

Quantum Decision Theory

Main definitions

1. Action ring

$$
\mathcal{A}=\left\{A_{n}: n=1,2, \ldots, N\right\}
$$

Intended actions A_{n}
addition $A_{m}+A_{n} \in \mathcal{A}$
associative: $\quad A_{1}+\left(A_{2}+A_{3}\right)=\left(A_{1}+A_{2}\right)+A_{3}$
reversible: $\quad A_{1}+A_{2}=A_{3} \rightarrow A_{1}=A_{3}-A_{2}$
multiplication: $\quad A_{m} A_{n} \in \mathcal{A}$
distributive: $\quad A_{1}\left(A_{2}+A_{3}\right)=A_{1} A_{2}+A_{1} A_{3}$
idempotent: $\quad A_{n} A_{n} \equiv A_{n}^{2}=A_{n}$
noncommutative: $A_{m} A_{n} \neq A_{n} A_{m} \quad$ (generally)
empty action: $\quad A_{n} 0=0 A_{n}=0$
disjoint actions: $\quad A_{m} A_{n}=A_{n} A_{m}=0$

2. Action Modes

Composite actions

$$
A_{n}=\bigcup_{\mu=1}^{\mathrm{M}_{n}} A_{n \mu} \quad\left(\mathrm{M}_{n}>1\right)
$$

$A_{n \mu}$ action modes, representations

$$
A_{n \mu} A_{n \nu}=\delta_{\mu \nu} A_{n \mu}
$$

3. Action prospects

$$
\pi_{j}=\bigcap_{n=1}^{N} A_{j_{n}} \quad\left(A_{j_{n}} \in \mathcal{A}\right)
$$

conjunction, $A_{j_{n}}$ composite or simple, composite and simple prospects

4. Elementary prospects

binary multi-index

$$
\alpha=\left\{i_{n}, \mu_{n}: n=1,2, \ldots, N\right\}_{\alpha}
$$

number of α, cardinality

$$
\begin{aligned}
& \operatorname{card}\{\alpha\}=\prod_{n=1}^{N} \mathrm{M}_{n} \\
& e_{\alpha}=\bigcap_{n=1}^{N} A_{i_{n} \mu_{n}}
\end{aligned}
$$

conjunction of modes

$$
e_{\alpha} e_{\beta}=\delta_{\alpha \beta} e_{\alpha}
$$

5. Prospect lattice

$$
L=\left\{\boldsymbol{\pi}_{j}: j=1,2, \ldots, N_{L}\right\}
$$

ordering: $\quad \pi_{i} \leq \pi_{j} \quad$ or $\quad \pi_{i} \geq \pi_{j}$
6. Mode states
$A_{n \mu} \rightarrow$ complex function

$$
\left|A_{n \mu}\right\rangle: \mathcal{A} \rightarrow \mathbb{C}
$$

scalar product

$$
\left\langle A_{n \mu} \mid A_{n v}\right\rangle=\delta_{\mu v}
$$

7. Mode space

closed linear envelope

$$
\begin{gathered}
\mathcal{M}_{n}=\operatorname{Span}\left\{\left|A_{n \mu}\right\rangle: \mu=1,2, \ldots, \mathrm{M}_{n}\right\} \\
\operatorname{dim} \mathcal{M}_{n}=\mathrm{M}_{n}
\end{gathered}
$$

Hilbert space
8. Basic states
elementary prospect $e_{\alpha} \rightarrow$

$$
\begin{aligned}
&\left|e_{\alpha}\right\rangle: \mathcal{A} \times \mathcal{A} \times \ldots \times \mathcal{A} \rightarrow \mathbb{C} \\
&\left|e_{\alpha}\right\rangle=\left|A_{i_{1} \mu_{1}} A_{i_{2} \mu_{2}} \ldots A_{i_{N} \mu_{N}}\right\rangle=\bigotimes_{n=1}^{N}\left|A_{i_{n} \mu_{n}}\right\rangle \\
&\left\langle e_{\alpha} \mid e_{\beta}\right\rangle=\delta_{\alpha \beta}
\end{aligned}
$$

9. Mind space

$$
\begin{gathered}
\mathcal{M}=\operatorname{Span}\left\{\left|e_{\alpha}\right\rangle: \alpha \in\{\alpha\}\right\}=\bigotimes_{n=1}^{N} \mathcal{M}_{n} \\
\operatorname{dim} \mathcal{M}=\prod_{n=1}^{N} \mathrm{M}_{n}
\end{gathered}
$$

10. Prospect states

$$
\pi_{j} \in L \rightarrow\left|\pi_{j}\right\rangle \in \mathcal{M}
$$

11. Strategic states
reference states $\left|\psi_{s}\right\rangle \in \mathcal{M}$

$$
\left\langle\psi_{s} \mid \psi_{s^{\prime}}\right\rangle=\delta_{s s^{\prime}}
$$

12. Mind strategy

$$
\begin{gathered}
\Sigma=\left\{\left|\psi_{s}\right\rangle, w_{s}: s=1,2, \ldots, S\right\} \\
\sum_{s=1}^{S} w_{s}=1, \quad 0 \leq w_{s} \leq 1
\end{gathered}
$$

Person character, basic beliefs and principles
13. Prospect operators

$$
\hat{P}\left(\pi_{j}\right)=\left|\pi_{j}\right\rangle\left\langle\pi_{j}\right|
$$

Involutive bijective algebra $\left\{\hat{P}\left(\pi_{j}\right): \pi_{j} \in L\right\}$
14. Operator averages

$$
\left\langle\hat{P}\left(\pi_{j}\right)\right\rangle=\sum_{s=1}^{S} w_{s}\left\langle\psi_{s}\right| \hat{P}\left(\pi_{j}\right)\left|\psi_{s}\right\rangle
$$

15. Prospect probability

$$
p\left(\pi_{j}\right)=\left\langle\hat{P}\left(\pi_{j}\right)\right\rangle, \quad \sum_{j=1}^{N_{L}} p\left(\pi_{j}\right)=1
$$

16. Prospect ordering
π_{1} indifferent to π_{2} :

$$
p\left(\pi_{1}\right)=p\left(\pi_{2}\right) \quad\left(\pi_{1}=\pi_{2}\right)
$$

π_{1} preferred to π_{2} :

$$
p\left(\pi_{1}\right)>p\left(\pi_{2}\right) \quad\left(\pi_{1}>\pi_{2}\right)
$$

Decisions are probabilistic

17. Partial probabilities

$\pi_{j} e_{\alpha}$ conjunction prospects
$p\left(\pi_{j} e_{\alpha}\right)=\left\langle\hat{P}\left(e_{\alpha}\right) \hat{P}\left(\pi_{j}\right) \hat{P}\left(e_{\alpha}\right)\right\rangle, \quad \sum_{j, \alpha} p\left(\pi_{j} e_{\alpha}\right)=1$
18. Attraction factor

$$
q\left(\pi_{j}\right)=\sum_{\alpha \neq \beta}\left\langle\hat{P}\left(e_{\alpha}\right) \hat{P}\left(\pi_{j}\right) \hat{P}\left(e_{\beta}\right)\right\rangle
$$

Quantifies the attractiveness of the project with respect to risk, uncertainty, biases.

Caused by action interference.

19. Attraction ordering

π_{1} is more attractive than $\pi_{2}: \quad q\left(\pi_{1}\right)>q\left(\pi_{2}\right)$
(less risky, less uncertain)
π_{1} and π_{2} are equally attractive: $q\left(\pi_{1}\right)=q\left(\pi_{2}\right)$
(equally risky, equally uncertain)

20. Attraction conditions

π_{1} is more attractive than π_{2} if it is connected with:
(a) more certain gain,
(b) less certain loss,
(c) higher activity under certainty,
(d) lower activity under uncertainty.

Aversion to risk, uncertainty, and loss.

General properties

$$
L=\left\{\pi_{j}: j=1,2, \ldots, N_{L}\right\}
$$

Proposition 1.

$$
p\left(\pi_{j}\right)=\sum_{\alpha} p\left(\pi_{j} e_{\alpha}\right)+q\left(\pi_{j}\right)
$$

Proposition 2.

$$
\sum_{j=1}^{N_{L}} q\left(\pi_{j}\right)=0
$$

Attraction alternation

Proposition 3.

π_{1} preferred to π_{2} if and only if

$$
\sum_{\alpha}\left[p\left(\pi_{1} e_{\alpha}\right)-p\left(\pi_{2} e_{\alpha}\right)\right]>q\left(\pi_{2}\right)-q\left(\pi_{1}\right)
$$

Return to classical decision theory:

$$
q\left(\pi_{j}\right) \rightarrow 0
$$

Binary mind

Two actions

$$
A=\bigcup_{j=1}^{\mathrm{M}_{1}} A_{j}, \quad B=\bigcup_{\mu=1}^{\mathrm{M}_{2}} B_{\mu},
$$

Two mode spaces

$$
\begin{aligned}
\mathcal{M}_{1} & =\operatorname{Span}\left\{\left|A_{j}\right\rangle: j=1,2, \ldots, \mathrm{M}_{1}\right\} \\
\mathcal{M}_{2} & =\operatorname{Span}\left\{\left|B_{\mu}\right\rangle: \mu=1,2, \ldots, \mathrm{M}_{2}\right\}
\end{aligned}
$$

Mind space

$$
\mathcal{M}=\mathcal{M}_{1} \otimes \mathcal{M}_{2}
$$

Elementary prospects $e_{j \mu}=A_{j} B_{\mu}$

Basic states

$$
\left|e_{j \mu}\right\rangle=\left|A_{j} B_{\mu}\right\rangle=\left|A_{j}\right\rangle \otimes\left|B_{\mu}\right\rangle
$$

Action prospects: $\quad \pi_{j}=A_{j} B$
Prospect probabilities:

$$
p\left(\pi_{j}\right)=\sum_{\mu=1}^{\mathrm{M}_{2}} p\left(A_{j} B_{\mu}\right)+q\left(\pi_{j}\right)
$$

Conditional probability

$$
p\left(A_{j} B_{\mu}\right)=p\left(A_{j} \mid B_{\mu}\right) p\left(B_{\mu}\right)
$$

Correspondence

$A_{j} \rightarrow$ lottery L_{j}
$B_{\mu} \rightarrow$ payoffs
$p\left(B_{\mu}\right) \rightarrow$ normalized measure of B_{μ}
$p\left(A_{j} \mid B_{\mu}\right) \rightarrow p_{j}\left(B_{\mu}\right)$
probability of the payoffs B_{μ} in the lottery L_{j}
$\sum p\left(A_{j} B_{\mu}\right) \rightarrow$ normalized utility of L_{j}
$q\left(A_{j} B\right) \rightarrow$? No equivalent

Allais paradox

$$
A=\bigcup_{j=1}^{4} A_{j}, \quad B=\bigcup_{\mu=1}^{3} B_{\mu}
$$

Balance condition for all $\mu=1,2,3$

$$
\begin{gathered}
p\left(A_{1} B_{\mu}\right)+p\left(A_{3} B_{\mu}\right)=p\left(A_{2} B_{\mu}\right)+p\left(A_{4} B_{\mu}\right) \\
\pi_{1}>\pi_{2}: p\left(\pi_{1}\right)>p\left(\pi_{2}\right)
\end{gathered}
$$

π_{1} is more attractive: $q\left(\pi_{1}\right)>q\left(\pi_{2}\right)$

$$
\sum\left[p\left(A_{2} B_{\mu}\right)-p\left(A_{1} B_{\mu}\right)\right]<q\left(\pi_{1}\right)-q\left(\pi_{2}\right)
$$

$$
\pi_{3}>\pi_{4}: p\left(\pi_{3}\right)>p\left(\pi_{4}\right)
$$

π_{3} more attractive: $q\left(\pi_{3}\right)>q\left(\pi_{4}\right)$

$$
\sum_{\mu}\left[p\left(A_{3} B_{\mu}\right)-p\left(A_{4} B_{\mu}\right)\right]>q\left(\pi_{4}\right)-q\left(\pi_{3}\right)
$$

Balance condition \rightarrow

$$
\begin{aligned}
-\left|q\left(\pi_{3}\right)-q\left(\pi_{4}\right)\right| & <\sum_{\mu}\left[p\left(A_{2} B_{\mu}\right)-p\left(A_{1} B_{\mu}\right)\right]< \\
& <\left|q\left(\pi_{1}\right)-q\left(\pi_{2}\right)\right|
\end{aligned}
$$

in classical utility theory $q\left(\pi_{j}\right) \rightarrow 0$, contradiction
In QDT no contradiction! $\quad-\frac{1}{2}<0.065<\frac{1}{2}$

Disjunction Effect

Tversky - Shafir (1992)

A_{1} : second gamble accepted
A_{2} : second gamble refused
B_{1} : first gamble won
B_{2} : first gamble lost

Experiment

1-st gamble won + 2-nd accepted: $\quad p\left(A_{1} B_{1}\right)=0.345$
1-st gamble won + 2-nd refused: $\quad p\left(A_{2} B_{1}\right)=0.155$

$$
p\left(A_{1} B_{1}\right)=0.345>0.155=p\left(A_{2} B_{1}\right)
$$

1-st gamble lost + 2-nd accepted: $\quad p\left(A_{1} B_{2}\right)=0.295$
1-st gamble lost + 2-nd refused: $\quad p\left(A_{2} B_{2}\right)=0.205$

$$
p\left(A_{1} B_{2}\right)=0.295>0.205=p\left(A_{2} B_{2}\right)
$$

$B=B_{1}+B_{2}$
1-st gamble not known + 2-nd accepted: $\quad p\left(A_{1} B\right)=0.36$
1-st gamble not known + 2-nd refused: $\quad p\left(A_{2} B\right)=0.64$

$$
p\left(A_{1} B\right)=0.36<0.64=p\left(A_{2} B\right)
$$

Theory

Active under uncertainty: $A_{1} B \rightarrow$ attraction factor $\quad q\left(A_{1} B\right)$

Passive under uncertainty: $A_{2} B \rightarrow$
attraction factor $\quad q\left(A_{2} B\right)$

$$
q\left(A_{2} B\right)>q\left(A_{1} B\right)
$$

Alternation theorem \longrightarrow

$$
\begin{gathered}
q\left(A_{2} B\right)=-q\left(A_{1} B\right)>0 \\
q\left(A_{2} B\right) \rightarrow 0.25, \quad q\left(A_{1} B\right) \rightarrow-0.25
\end{gathered}
$$

Prediction

$$
\begin{gathered}
p\left(A_{1} B\right)=p\left(A_{1} B_{1}\right)+p\left(A_{1} B_{2}\right)+q\left(A_{1} B\right) \\
p\left(A_{2} B\right)=p\left(A_{2} B_{1}\right)+p\left(A_{2} B_{2}\right)+q\left(A_{2} B\right) \\
p\left(A_{1} B\right)=0.39, \quad p\left(A_{2} B\right)=0.61
\end{gathered}
$$

Agreement with experiment!
Theory:

$$
P\left(A_{1} B\right)=0.39<0.61=p\left(A_{2} B\right)
$$

Experiment

$$
P\left(A_{1} B\right)=0.36<0.64=p\left(A_{2} B\right)
$$

Conclusions

- Novel approach to decision making is developed based on a complex Hilbert space over a lattice of composite prospects.
- Risk and uncertainty are taken into account.
- Paradoxes of classical decision theory are explained.
- Good quantitative agreement with empirical data.
- Conjunction fallacy is a sufficient condition for disjunction effect.

References: V.I. Yukalov and D. Sornette, Quantum Decision Theory, arXiv.org. 0802.3597 (2008); Mathematical Basis of Quantum Decision Theory, ssrn.com/abstract=1263853 (2008).

