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Experiments by Zhurkov   Int. J. Fract. Mech. 1, 311 (1965) 

Empirical energy barrier

A possible mechanism :   thermal activated process
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Penny-shaped crack
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Importance of thermal fluctuations:

= kTd



(2002)

η: surface energy
Y: elastic modulus

Case of a pre-
existing crash
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2. F. Reurings and M. J. Alava, Damage Growth in Random Fuse Networks (http://arXiv.org/abs/cond-mat/0401592)

Democratic Fiber Bundle Model  (DFBM)





thermal fluctuations

for 

Condition for rupture:

is the rate for the fiber i to fail under the force fa
given its rupture threshold fc(i)

=Quenched disorder



Force “rupture front” approximation:

excellent approximation

S(t) = Q(f,t)/Pd(f)

f pdf of unbroken fibers
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irf:  inverse to error function



For µ>1, linearize L which gives

and

Energy barrier between the applied 
force per fiber and the “front force”

Valid for 
(final explosive 
rupture regime)

=



corresponds to minimum
failure rate

This gives 

OMORI law: 1/tp (apparent exponent <1)

γ obtained by matching with the initial state



From , minimum failure rate is solution of



Omori law
time-to-failure
tertiary regime



Tertiary creep and finite-time to failure law

= c





Dominant contribution to the total time to failure 

TOTAL LIFETIME:

( )



Increasing disorder



Different crack lengths



Taneike et al. Nature (2003)



H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette (2004)
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Eyring rheology

H. Nechad, A. Helmstetter, R.
El Guerjouma and D. Sornette
Andrade and Critical Time-to-Failure Laws
in Fiber-Matrix Composites:
Experiments and Model,
Journal of Mechanics and Physics of Solids
(JMPS) 53, 1099-1127 (2005)



H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette (2004)



Frozen disorder enhances/renormalizes thermal fluctuations but also
act as rupture barriers



Summary

• Quenched disorder Td is a relevant parameter!
• Annealed disorder T is a relevant parameter
• Renormalization/amplification of T by Td

• Theory of both primary and tertiary regime
– Primary: controlled by the thermally activated stress

transfer on the weakest elements
– Tertiary: controlled by the cascade of failures

• Consequences of longevity/prediction
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Spatial and temporal organization of
seismicity in Californie



Seismicity rate per day in Southern California M>2
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λ0 ~ mean seismicity rate  -  λ(t) : seismicity rate  -  σ0 :
strength

σ(t) : applied stress  -  V : activation volume  -  T :
temperature

k : Boltzmann’s constant
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The Physics of Stress-Aided Thermal Activation of Rupture

In order to reach a state of lower energy, some
microscopic physical systems must overcome
an energy barrier.

The rate at which this is done depends
exponentially on the height of the barrier, as
well as on the inverse of temperature.
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For example, the rate at which a bond breaks at a crack tip depends on
the driving stress applied on that bond, its strength and temperature.

We simply assume that the relationship between the seismicity rate
and the applied stress follows the same kind of law.



(Zhurkov, 1965)
(due to stress corrosion, damage, state-and-velocity dependent friction and
mechano-chemical effects

Generalization of stress
release models [Vere-
Jones et al.]

And sum over all spatial positions of sources gives

G. Ouillon and D. Sornette, Magnitude-Dependent Omori Law: Theory and Empirical Study,
 J. Geophys. Res., 110, B04306, doi:10.1029/2004JB003311 (2005); Multifractal Scaling of Thermally-Activated
Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)

Intensity (average conditional seismicity rate) 
At position r   and time t

Thermally activated multifractal rupture process



• The rupture of each event is thermally activated, driven by
stress.

• Each shock induces instantaneously a burst of aftershocks,
which amounts to 10qM events.

• At each location, stress fluctuations due to previous events are
distributed as:

• The rheology is viscoplastic, with a relaxation function
featuring a very large relaxation time τM :

• At any place r and any time t, the seismicity rate (on the left-
hand side) depends exponentially on the stress fluctuations
due to past earthquakes, mediated by the relaxation function:
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Our Physical Picture of Seismicity
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This picture takes account
of the fact that
earthquakes generate
stress fluctuations, which
in turn modify the stress
state in a feedback loop
and cascading process,
involving the whole
history of the system.

θ=−1/2+ϕ



Theoretical predictions using tail covariance (Ide-Sornette, 2001)

Since γ(t) ~  ln(t) and ωm ~  M , we obtain p(M) = a M + b 

µ = 2µ(1+θ) ~ 1

We obtain an exact multifractality if µ(1+θ) ~ 1



• look for isolated mainshocks according to
magnitude range

• select and stack aftershocks sequences

• fit the stacks with :

N(t) = A t-p + B

where B accounts for a constant background noise

+ + …

0          Time 0          Time

O
uillon and Sornette,

2005

Stacked Triggered
Seismicity Sequences

Large events trigger enough aftershocks to
allow us to compute a p exponent – but this is
not the case for low-magnitude main events.

So we prefer to follow a stacking strategy to
improve the signal to noise ratio :

1st sequence 2nd sequence



D. Sornette and G. Ouillon, Multifractal Scaling of Thermally-Activated Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)



P(M) relationships

First declustering method



p(M) = aM + b

Ribeiro et al, 2006

We processed three catalogs, that we pre-processed to check for their completude and its evolution with
time.
We then computed stacked aftershocks time series, sorting them within intervals of 0.5 magnitude
amplitudes.

We clearly observed a linear dependence of p with magnitude M.

Statistical tests have been performed using a bootstrap strategy, and we were able to show that all slopes
were significantly different from 0, and that all linear relationships were significantly different from each
other.

For Southern California (SCEC
catalog):

p(M) = 0.10M + 0.37

For Japan (JMA catalog):

p(M) = 0.07M + 0.54

For the World (Harvard catalog):

p(M) = 0.14M + 0.11
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relaxation seismicity
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Fault pattern seismicity

µ(1+θ) : evidence of self-organization ?

µ controls stress fluctuations, which mainly depend on
the spatial structure of the fault network over which
events occur – which make the fault pattern grow (left).

θ controls the stress relaxation in rocks. Stress
determines the seismicity rate, but earthquakes are
themselves part of the stress relaxation complex process
(top).

All in all, the condition µ(1+θ) ~ 1 reflects the
critical self-organization of brittle processes in
the earth’s crust.



• The multifractal time distribution of earthquakes implies that the
exponent p of the Omori law increases with the magnitude M of the
mainshock.
• Empirical data observations on various catalogs suggest that p
linearly increases with M: p(M) = aM + b
• We proposed a physical model where the seismicity rate depends
exponentially on stress and on inverse temperature, and where the
rheology is viscoplastic with a slow relaxation.
• A condition linking the fault network geometry and the rheology
of the tectonic system emerges to explain such a multifractal
phenomenology : µ(1+θ) ~ 1 – we speculate that it is a fundamental
equation of self-organized criticality.
• For the first time, a physical microscopic model is proposed that is
able to explain earthquakes time dynamics at all scales.
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Conclusions


