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Experiments by Zhurkov Int. J. Fract. Mech. 1, 311 (1965)
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Fig.5. Time and temperature dependence of the lifetime of solids on stress.
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A possible mechanism : thermal activated process




Penny-shaped crack
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Griffith energy ~ ¢ ¢ =kT,

g = 10 — 50 erg/cm? for most solids

C

Importance of thermal fluctuations: H = \/ Td / T

e~ 15—4-10° ¢=1 micron

i~ 1.5—4for ¢ = 1 nanometer
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Figure 4: Measurements on wood samples. The time 7 needed to break the wood
samples under an imposed constant pressure P is here plotted as a function of
1/P% in a semilog scale. The dashed line represents the solution proposed by
Mogi [20](7 = ae~®""). The continuous line is the solution proposed by Pomeau
for microcrystals (7 = r,e(Fo/ P)4). In the plot 7, = 50.5 s and P, = 0.63
atm. Every point is the average of 10 samples. The error bar is the statistical
uncertainty. For the fiberglass samples, we find 7, = 44.6 s and P, = 2.91 atm.



A theory of deformation processes needs two ingredients:

1. the identification of the relevant microscopic objects controlling the deformation.
These defects can be dislocations, grain boundaries, micro-cracks, vacancies and micro-

voids ;

N

the interplay and cooperative behavior of all these defects which lead to the deforma-

tion.

o2 R3
}/"

R _ 2acY 1 F* N

.

t 3b o2 ol

E(R) = aaR® = b

3k
B
Ta t 6 S e k B T Selinger et al (1991)
Golubovic and Feng (1991)

Pomeau (1992)




Failure time and critical behaviour of fracture
precursors in heterogeneous materials

A. Guarino™®, 8. Ciliberto®, A. Garcimartin®,
M. Zei** and R. Scorretti*”

In fact we changed temperature, from 300K to 380K which is a temperature
range where the other parameters, Y and 7, do not change too much. For this
temperature jump one would expect a change in 7 of of about 50% for the
smallest pressure and of about 100% for the largest pressure. Looking at fig. 8
we do not notice any change of 7 within experimental errors which are about
10%. In order to maintain the change of 7 within 10% for a temperature jump
of 80K one has to assume that the effective temperature of the system is about
3000K. Notice that this claim is independent on the exact value of the other
parameters and G.
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Democratic Fiber Bundle Model (DFBM) a)
A A A A

F

S. Roux and F. Hild, On the relevance to meanfield in continuous damage mechanics, Int. J. Fract. 116, 219 (2002)
F. Reurings and M. J. Alava, Damage Growth in Random Fuse Networks (http://arXiv.org/abs/cond-mat/0401592)
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Fig. 1. (a) Modified DFBM: N fiber in parallel, with the edges fixed on a rigid support are subjected to an externally imposed force F* which is
distributed democratically on the net, i.e., all fibers (not broken) are affected in the same way. Each fiber is also subjected to a random (zero mean,
normally distributed), addictive force Af;(z), where it is intended that Af;(7) is a realization of a white, time-independent stochastic process.
Name n(r) the number of broken fibers at time 7; we derive the following expression of local force f; for the ith fiber: f; = (F /(N —n(1)))+Afi.
(b) The equivalent of the fiber bundle model is the fuse network. One can think to our model as a fuse network where the Nyquist noise of several
resistances (current generators A/;) are the noise generators for each bond.

S. Ciliberto et al./ Physica D 158 (2001 ) 83—104



o thermal fluctuations
Condition for rupture:

non-zero probability G(f.(i) — fq) for Afi > fe(i) — fa
G(feli) = fa) = erfc (L0t

1s the rate for the fiber 1 to fail under the force f,
given its rupture threshold £ (1)

Quenched disorder 2 (f) =

vl Bt



fraction of broken fibers at time ¢

by definition ®(t) = 1 — [T df Q(f,1)

Force “rupture front” approximation:
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POLITI, CILIBERTO, AND SCORRETTI
PHYSICAL REVIEW E 66, 026107 (2002)

S(1) = Q(,0)/Py(1)

i pdf of unbroken fibers

Q(f,1) = Pa(f), for f> fi()

excellent approximation




O(t)=1-f"7df Q(f.1)

dQ(f,t)/dt = —Q(f, 1) G(f—fa)

s [T L (1—f)2]erc(f—fa>
(b‘z/fS Tap p[ 7, | T\ G )Y



Cfs = 14 /2T irf (20 — 1)

irf: inverse to error function




For u>1, linearize L which gives

b = R(P) 'YT ~U(®)/T

' T dmpD(®)U (D) ’

Energy barrier between the applied

where force per fiber and the “front force”

U(®) =TL*(®,®) = % [£+(®) — fa(®)]°

and

D(®) = (1//27Ty3)d f(®)/dd = exp{irf*(2d — 1)}

] (final explosive
Valid for ¢ < ¢ e = ] — fU rupture regime)

. fo Py 1 (1-f)°
o=t Palf)= \/727ereXp[_ o7, ]




time to reach some &

v Tt = 47r;1f0¢) D(2)U(z) YT dy

D@OU®) vayr g - W@

~t ~ 4Ty | _

| P Ae) T

for & « P corresponds to minimum

T —— failure rate
This gives
Ulet)] =Tnyt  (t <t7)
v obtained by matching with the initial state
' 1 | o
D ex (1 — fo— QT]nwt)
Arpt In~t P 2Ty fo \/ )

OMORI law: 1/tP (apparent exponent <1)



From ¢© — R(gﬁ ), minimum failure rate 1s solution of

dR(®)/d® = 0

D(®°)(1 - &7)° = \/*zf;Td
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b* () = 24— 2n+8(4+m)a a < 3/2,
B 1 av T in o a /e

s erfe (VIn a/) = a> 3/2.
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FIG. 2. Time derivative of ® versus time for 7,= 10" % and two
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v(t. —t) = 4mp f;CD(z)U(z) eV ()T 4

D(®)U (P
Y(te — 1) ~4mp ?Azg)ﬂ ) eV (®)T o > o7

Uld(t)] =TIn[y(t. —1)] (" <P < D)

B _ /2T Iny(to—t)
P — @(t) = fo 1—/2T Iny(t.—t)

B(t) = C(t)/(t. — 1)

C(t) = foT/[e(1—e)?] with ¢ = /2T In[y(t. — t)]

Tertiary creep and finite-time to failure law
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Fig. 3. Time evolution of ¢ at f = 0.6, KT = 0.008 and K73 = 0. The continuous line corresponds to a solution obtained by the numerical
solution of Eq. (12). The dashed line is instead the approximated solution (Eq. (14)) of Eq. (12). The symbols (O) correspond to the results of
the direct numerical simulation of the DFBM. These data are plotted in the inset as a function of 1 — ¢/t in a semi-log scale.

S. Ciliberto et al. / Physica D 158 (2001) 83—-104



Dominant contribution to the total time to failure (D ~ (I) *

(@) = U(@7) ~ B@)(@— )%, B(@®) = -2 ()
d ~ R(P*) exp [—B(;)*) (P — <I>*)2]

~ The solution of this equation 1s

(erfi (z) = + erf (iz) is the imaginary error function)

erfi (\/B(;)*) (<I>—<I’*)) = ‘2\/3(?*) R(®™) (t = t7),

T

A —
,/C_

TOTAL LIFETIME: 1 / . [_B(q) ) (@ — @*)2] 1

R (3%)
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Fig. 4. Heterogeneous bundle (K743 # 0). Dependence of the lifetime t on 1 /KT at fiy = 0.45. The different symbols correspond to different
values of KT4: (O) KTy = 0; (v) KTg = 0.02; ((J) KT4 = 0.04. Notice that both 7 and dt/dKT decrease as KTy increases, i.e., the more the
media become heterogeneous, the smaller is T and the dependence on K7 of 7.



Thermal activation of rupture and slow crack growth
in a model of homogeneous brittle materials

S. SANTUCCL, L. VANEL. A. GUARINO. R. SCORRETTI and S. CILIBERTO
Furophys. Lett., 62 (3), pp. 320-326 (2003)

10°
O %
v
10°* 70
(2 %
‘ 2+ %
{/
10° o O
_ Ie; .
~ o . Different crack lengths
2 v, ' ¢
10 A 75 ¥ £=6:kT=1.1107
o B & O £-10:k7=3.3107
10"k @@ 9 O £=10;kT=55107
£ 4+ £=10;T=1.1107
X O £=20:k=33107
O 1 1 1 1
10 0 500 1000 1500 2000

AU /kT

Fig. 1 — Logarithm of lifetime as a function of the energy barrier as predicted by eq. (2). Failure of
data to scale with initial crack length is the main observation. Straight lines are a guide for the eye.
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Figure 1 Creep rate versus time curves of at 923K and 140 MPa. Circles, 0.002% C;

squares, 0.018% C; diamonds, 0.047% C; inverse triangles, 0.078% C; crosses, 0.120%
C; triangles, 0.160% C. The base composition of the steels was Fe—9% Cr—3% W—-3%
Co—0.2% V-0.06% Nb—0.05% N.

Taneike et al. Nature (2003)
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Figure 4: Creep strain and AE response for [90/35] angle ply composite #3. The thin solid line
is the deformation (left axis), the heavy black line is the cumulated AE count (right axis) and
dashed line is the cumulated energy (arbitrary units).

H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette (2004)
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Figure 8: Rate of AE events for [90/35] angle ply composite #3. We use different axes to illus-
trate Andrade law in the primary creep regime dN/dt ~ 1/t? (b) and the power-law singularity
of the AE rate before failure dN/dt ~ 1/(t, — £)?". 1. Nechad, A. Helmstetter, R. El Guerjouma and D. Somnette (2004)



Eyring rheology

d1 €y
) . :
10 100 \J 5=33
100 $=33
1072
5 10+ 5
) ()
© ©
106
10
10-10 I
s=22
1 0_1 2 . . . . . 1 0-8 . . A .
0O 02 04 06 08 1 102 10° 102 10%
(a) ttax (b) t (sec)
104
102 s=33
100
H. Nechad, A. Helmstetter, R. = 102
El Guerjouma and D. Sornette @ 104
Andrade and Critical Time-to-Failure Laws 5
in Fiber-Matrix Composites: 10
Experiments and Model, 108
Journal of Mechanics and Physics of Solids 10-10

(JMPS) 53, 1099-1127 (2005)

(c)

10 102 10*  10°®
(teD/te




10

—
o

C

rupture time t_ (sec)
(@)

H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette (2004)

, I[t62']

O [90/35]
+ SMC

| fitt =t x1.58+16
c m

(62
L

E=N
TT

10
transition time t (sec)

4

10



0.38
0.36]

0.34! /

0.32

002 004 006 0.8 01 d
FIG. 1: Effective barrier energy U(®*) as a function of the
disorder strength 7y, in the case where ®* = 1/2, correspond-
ing to 77 = 2 f7, for fo = 0.1 leading to T; ~ 0.025. This
illustrates the non-monotonous behavior of U(®™) and thus
of the lifetime t. with Tj.

Frozen disorder enhances/renormalizes thermal fluctuations but also
act as rupture barriers



Summary

Quenched disorder T is a relevant parameter!
Annealed disorder T is a relevant parameter
Renormalization/amplification of T by T,
Theory of both primary and tertiary regime

— Primary: controlled by the thermally activated stress
transfer on the weakest elements

— Tertiary: controlled by the cascade of failures

Consequences of longevity/prediction



Spatial and temporal organization of
seismicity in Californie
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Seismicity rate per day in Southern California M>2
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The Physics of Stress-Aided Thermal Activation of Rupture

" S

Eo

In order to reach a state of lower energy, some
microscopic physical systems must overcome
an energy barrier.

The rate at which this is done depends A(z‘)= A, exp( -
exponentially on the height of the barrier, as
well as on the inverse of temperature.

kT

For example, the rate at which a bond breaks at a crack tip depends on
the driving stress applied on that bond, its strength and temperature.

We simply assume that the relationship between the seismicity rate
and the applied stress follows the same kind of law.

] |

Cumulative nb of

A\, ~ mean seismicity rate - A(t) : seismicity rate - O :

strength

o(t) : applied stress - V : activation volume - T :

temperature

AE)= 2, exp(—%/;—;(t)V)




Thermally activated multifractal rupture process

G. Ouillon and D. Sornette, Magnitude-Dependent Omori Law: Theory and Empirical Study,
J. Geophys. Res., 110, B04306, doi:10.1029/2004JB003311 (2005); Multifractal Scaling of Thermally-Activated
Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)

Intensity (average conditional seismicity rate) ' A <
At positionr and time t 2

A7, t) ~ exp [-GFE(7, )]
E(r,1) = Eo(7) — VX(r,t) (Zhurkov, 1965)

(due to stress corrosion, damage, state-and-velocity dependent friction and
mechano-chemical effects

Y(7, 1) = Etar field ( / /dN [dF ' x dr]Ag( T)g(F— f’t_T)

g(7,t) = f(7) x h(t And sum over all spatial positions of sources gives

t . .
Ml = )0 62/ ir ey (r) gt )| | Soperaleaton of s
- — 00

4 | Jones et al.]




Our Physical Picture of Seismicity

The rupture of each event is thermally activated, driven by
stress.

Each shock induces instantaneously a burst of aftershocks,

which amounts to 109 events. This piCture takes account
At each location, stress fluctuations due to previous events are
distributed as: of the fact that
P(0)do ~ C — do earthquakes generate
(o+0, )" stress fluctuations, which
The rheology is viscoplastic, with a relaxation function in turn mOdify the stress

featuring a very large relaxation time T,

state in a feedback loop
n()- exp( t J O=—1/2+¢ and cascading process,
(+ ) )+9 involving the whole
At any place r and any time , the seismicity rate (on the left- ~ history of the system.

hand side) depends exponentially on the stress fluctuations
due to past earthquakes, mediated by the relaxation function:

)\.(V t) A, exp|—

passé

7 Soln-1)




Theoretical predictions using tail covariance (Ide-Sornette, 2001)
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Sinc
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h

1

evy(t) ~ In(tt)and w,, ~ M,

- At2/w (t2m—1
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T4e 4 m
: 1 1
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We obtain an exact multifractality if n(1+0) ~ 1



Stacked Triggered
Seismicity Sequences

Large events trigger enough aftershocks to
allow us to compute a p exponent — but this is
not the case for low-magnitude main events.

So we prefer to follow a stacking strategy to
improve the signal to noise ratio :

* look for isolated mainshocks according tq

magnitude range _—— T
g g }\TMEX!C

» select and stack aftershocks sequences

« fit the stacks with : e

)
=
S
N{t)=AtP+B N
§ O 3<M<3.5
. p=0.67
where B accounts for a constant background noise G | o sdnis
S % 5<M<5.5
Q f
A A IR | o Baues
1st sequence 2nd sequence 3 il
p=1.02

+ + ... )

. > . > 7 7 Time (;/ear)
0 Time 0 Time




Omori laws for shocks occurring after 1994 — 1st declusteri ng technlque

® 1.5<M<2
2.5<M<3
p=0.44
3.5<M<4
p=0.60
4 5<M<5
5.5<M<6
p=1.07
6.5<M<7
p=0.97

» © # O O

Rate

Time (year)
D. Sornette and G. Ouillon, Multifractal Scaling of Thermally-Activated Rupture Processes, Phys. Rev. Lett. 94, 038501 (2005)



p-value as a function of magnitude for the various sub—catalogs

p-value for triggered events
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p(M)=aM +b

We processed three catalogs, that we pre-processed to check for their completude and its evolution with
time.

We then computed stacked aftershocks time series, sorting them within intervals of 0.5 magnitude
amplitudes.

We clearly observed a linear dependence of p with magnitude M.

Statistical tests have been performed using a bootstrap strategy, and we were able to show that all slopes
were significantly different from 0, and that all linear relationships were significantly different from each
other.

P(M) relationships for California (SCEC), Japan (JMA) and the world (Harvard)
16 T T T T T T T

For Southern California (SCEC

O SCEC data ~ cata]og);
14+ O JMA data 53
O Harvard data 3
——fit SCEC o O N p(M)=0.10M + 0.37
120 | —— —fitumA o : s
------- fit Harvard o 0 .- - o
S
1 S

For Japan (JMA catalog):
p(M) =0.07M + 0.54

0.8r

0.6

041

For the World (Harvard catalog):
p(M) =0.14M + 0.11

0.2
1



u(1+0) : evidence of self-organization ?

h t
do )= —0 __
©) (t+2,)" eXp( rM)

_ NEvADA /

relaxation [ seismicity

u controls stress fluctuations, which mainly depend on
the spatial structure of the fault network over which

\ events occur — which make the fault pattern grow (left).
0 controls the stress relaxation in rocks. Stress

determines the seismicity rate, but earthquakes are

themselves part of the stress relaxation complex process

\ (top).
All in all, the condition u(1+0) ~ 1 reflects the

critical self-organization of brittle processes in
the earth’s crust.

TMEXICO\ N\ 0

Fault pattern seismicity




Conclusions

- The multifractal time distribution of earthquakes implies that the
exponent p of the Omori law increases with the magnitude M of the
mainshock.

* Empirical data observations on various catalogs suggest that p
linearly increases with M: p(M) =aM + b

* We proposed a physical model where the seismicity rate depends
exponentially on stress and on inverse temperature, and where the
rheology is viscoplastic with a slow relaxation.

e A condition linking the fault network geometry and the rheology
of the tectonic system emerges to explain such a multifractal
phenomenology : u(1+0) ~ 1 — we speculate that it is a fundamental
equation of self-organized criticality.

* For the first time, a physical microscopic model is proposed that is
able to explain earthquakes time dynamics at all scales.
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