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a b s t r a c t

The accurate detection and classification of network anomalies based on traffic feature dis-
tributions is still a major challenge. Together with volume metrics, traffic feature distribu-
tions are the primary source of information of approaches scalable to high-speed and large
scale networks. In previous work, we proposed to use the Tsallis entropy based traffic
entropy spectrum (TES) to capture changes in specific activity regions, such as the region
of heavy-hitters or rare elements. Our preliminary results suggested that the TES does not
only provide more details about an anomaly but might also be better suited for detecting
them than traditional approaches based on Shannon entropy. We refine the TES and propose
a comprehensive anomaly detection and classification system called the entropy telescope.
We analyze the importance of different entropy features and refute findings of previous
work reporting a supposedly strong correlation between different feature entropies and
provide an extensive evaluation of our entropy telescope. Our evaluation with three differ-
ent detection methods (Kalman filter, PCA, KLE), one classification method (SVM) and a rich
set of anomaly models and real backbone traffic demonstrates the superiority of the refined
TES approach over TES and the classical Shannon-only approaches. For instance, we found
that when switching from Shannon to the refined TES approach, the PCA method detects
small to medium sized anomalies up to 20% more accurately. Classification accuracy is
improved by up to 19% when switching from Shannon-only to TES and by another 8% when
switching from TES to the refined TES approach. To complement our evaluation, we run the
entropy telescope on one month of backbone traffic finding that most prevalent anomalies
are different types of scanning (69–84%) and reflector DDoS attacks (15–29%).

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Entropy-based anomaly detection (AD) has enjoyed
substantial attention of the research community in recent
years [1–6]. The attractiveness of entropy metrics stems
from their capability of condensing an entire feature distri-
bution into a single number and at the same time retaining
important information about the overall state of the distri-
bution. Thus, it is possible to scalably detect concentration

and dispersion of feature distributions that are typical for
certain types of attacks, e.g., DDoS attacks or worm
outbreaks.

Compared to merely detecting an anomalous state, it is
significantly harder to classify an ongoing anomaly and
identify its root cause. Attempts of combining changes in
multiple features to establish anomaly patterns are very
promising (e.g., [2]), but the accurate automatic classifica-
tion of anomalies is still a major challenge, especially if
anomaly sizes and affected host populations vary. There-
fore, we have proposed to use generalized entropy metrics,
such as the Tsallis entropy, which allow to focus on specific
areas of distributions [6], for instance the area of heavy-
hitters or rare elements. By doing this, we retain the

1389-1286/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2011.07.008

⇑ Corresponding author.
E-mail addresses: betellen@ethz.ch (B. Tellenbach), martibur@ethz.ch

(M. Burkhart), schadomi@ethz.ch (D. Schatzmann), gugdavid@ethz.ch
(D. Gugelmann), dsornette@ethz.ch (D. Sornette).

Computer Networks 55 (2011) 3485–3502

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet



Author's personal copy

advantages of entropy metrics in general but get additional
information about the nature of changes that helps distin-
guishing anomalies. Specifically, we proposed to use the
traffic entropy spectrum (TES), which for a single feature
evaluates the Tsallis entropy for different values of its char-
acteristic parameter q. Together, these values form the en-
tropy spectrum. We found that the TES is useful for visually
matching occurring patterns against known patterns
learned from existing anomalies. However, the suitability
of TES for large-scale automatic detection and classifica-
tion has not been evaluated.

In this paper, we build and extensively evaluate a com-
plete anomaly detection and classification system we call
the entropy telescope. The entropy telescope integrates sev-
eral components, such as the TES, SVM based pattern-
matching, and several detection approaches such as the
Kalman filter [7], PCA [1], and KLE [3] (see Fig. 1). Further-
more, we develop TESp, an improved version of TES that
removes internal correlation by pruning feature distribu-
tions. As part of the initial traffic feature selection process,
we revisited recent results regarding feature correlation in
entropy-based AD [8]. We performed a detailed correlation
analysis of a broad set of traffic features and found no per-
sistent strong correlations. On the contrary, we show that
extending the classical feature set with additional features,
such as AS numbers, country code, and flow sizes helps
both detection and classification.

We rigorously evaluated the entropy telescope with a
combination of simulation and real background traffic.
We share the concerns regarding AD evaluation practice
expressed in [9] and avoid ground truth identification by
manual labeling. Instead, we developed a rich set of diverse
flow-level anomaly models inspired by real anomalies.
These models allow to vary parameters and to abstract
from a specific instance of an anomaly to a broader class,
e.g., DDoS attacks of a certain type. Using FLAME [10], it
is possible to inject our anomalies to arbitrary trace files.
Reproducibility and fair comparison of methods is crucial
for scientific progress. For these reasons and to foster fur-
ther research in this direction, we make the set of anomaly
models designed for this study publicly available [11]. Fur-

thermore, we provide access (on request) to the labeled
timeseries data along with a MATLAB toolset to process
them. Some of the most important findings related to the
evaluation of the entropy telescope are that when switch-
ing from Shannon to the refined TES approach, the PCA
method detects small to medium sized anomalies up to
20% more accurately. The classification accuracy is im-
proved by up to 19% when switching from Shannon-only
to TES and by another 8% when switching from TES to
the refined TES approach. Finally, to complement the eval-
uation with injected anomalies, we ran the entropy tele-
scope on a 34 days trace from a backbone network and
report on the prevalence of traffic anomalies. In summary,
the most prevalent anomalies found in this trace were dif-
ferent types of scanning (69–84%) and reflector DDoS at-
tacks (15–29%).

The remainder of the paper is organized as follows. In
Section 2, we describe our data set, the traffic features
we use, and the anomaly models we designed. In Section
3, we describe the different components of the entropy
telescope in detail before we evaluate the detection and
classification accuracy of several techniques in Section 4.
Related work is discussed in Section 5 and the paper is con-
cluded in Section 6. Finally, in Appendix A we present the
detailed feature correlation analysis that refutes findings of
previous work and guided our feature selection process.

2. Methodology

In this section we introduce the traffic traces and basic
concepts, such as the Tsallis entropy. Furthermore, we de-
tail our anomaly models and the anomaly injection
procedure.

2.1. Data set

For our evaluation, we use Netflow data captured from
SWITCH [12], a medium-sized backbone operator that con-
nects several universities, research labs, and governmental
institutions to the Internet. For analyzing the prevalence
of real-world anomalies, we use a period of 34 days from

Fig. 1. Entropy telescope building blocks.
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07/31/2008 until 09/02/2008 (see Section 4.3). For evaluat-
ing the entropy telescope with injected anomalies, we use
one week of the month-long trace from 08/09/2008
0:00 am to 08/15/2008 11:59 pm.

The SWITCH network is a stub AS with an IP address
range containing about 2.4 million addresses which we re-
fer to as internal address space. External addresses are all
addresses not assigned to the network’s range. Accord-
ingly, we use the term incoming traffic to denote flows
from external source to internal destinations and outgoing
traffic for the reverse direction. The flows are collected
from four different border routers which do not apply sam-
pling or anonymization. Note that sampling and anonymi-
zation can skew certain parts of feature distributions. For
instance, deletion of least significant 11 IP address bits,
as applied to Abilene traces [2], corresponds to an aggrega-
tion of IP addresses at the /21 subnet level. As a conse-
quence, a large number of hosts with just a few flows per
host aggregated under the same IP address is indistin-
guishable from a single host with many flows.

2.2. Tsallis entropy

The Tsallis entropy is a parameterized form of entropy
that allows to focus on different regions of a distribution.
It has recently been shown to have advantages over the
Shannon entropy for the detection of network anomalies
[6,5].

Let X be a random variable over the range of values
x1, . . . ,xn and p(xi) = p(X = xi). Then, the Tsallis entropy is de-
fined as follows:

SqðXÞ ¼
1

q� 1
1�

Xn

i¼1

pðxiÞq
 !

; ð1Þ

pðxiÞ ¼
aiPn
j¼1aj

; ð2Þ

where q is a parameter specific to the Tsallis entropy and ai

is the number of occurrences or activity of xi in a time win-
dow of length T. In our context, the xi are the feature ele-
ments, e.g., specific IP addresses or port numbers.

For q ? 1, Sq recovers the Shannon entropy (up to a
multiplicative constant). Note that only elements occur-
ring at least once contribute to the entropy Sq of a specific
time bin. In the literature, q is referred to as a measure for
the non-extensitivity of the system of interest. However,
we do not use Tsallis entropy in an information-theoretic
sense but rather in an operational sense as a metric mea-
suring whether a distribution is concentrated or dispersed.
The main difference to approaches using Shannon entropy
in the same manner is that Tsallis entropy allows to con-
centrate on different regions of the distribution. We dis-
cuss this aspect of Tsallis entropy in more detail in
Section 3.1.

2.3. Entropy features

In addition to packet, flow, and byte count, we compute
the entropy of different traffic feature distributions. We de-
fine the following basic set of traffic features:

� Shannon classic (SHNC): The Shannon entropy of the
source/destination port and the source/destination IP
address distribution.
� Shannon+ (SHN+): The same traffic features as in SHNC

but extended with the Shannon entropy of the follow-
ing additional feature distributions:
– autonomous system (AS) distribution,
– country code distribution,
– average packet size per flow distribution,
– flow size distribution.
� Tsallis sets (TESp): Based on the same feature distribu-

tions as SHN+.

For AS numbers and country codes, the distribution is
always computed from external addresses only, as we have
data from a single stub AS.

To justify the selection of these features, we did a de-
tailed analysis of whether it is necessary and/or useful to
use all of the 7 (11) features in SHNC(SHN+). All the more be-
cause Nychis et al. recently raised a concern regarding the
correlation of different feature entropies [8]. They study
the pairwise correlation of different feature entropies over
time, such as the entropy of node degree, flow sizes, IP ad-
dresses and port distributions. They found that port and ad-
dress entropy are highly correlated with Pearson
correlation scores greater than 0.95. To investigate this
question further, we performed our own comprehensive
correlation analysis. Our findings suggest that different fea-
ture entropies do indeed provide useful information.

We believe the differences between our results and the
findings of Nychis et al. can largely be explained by the
way the ai (number of occurrences of element i) are calcu-
lated in (2). Nychis et al. compute ai by counting the num-
ber of packets containing element i whereas we count the
number of flows in accordance with other studies
[6,2,1,13,3]. Clearly, the number of packets is highly corre-
lated with overall traffic volume, whereas a high volume
file transfer is usually summarized in a single flow. Thus,
by computing the ai using packet counts, one introduces
a high correlation with traffic volume, and, in turn, also a
pairwise correlation between different feature entropies.
Our detailed analysis of entropy feature correlation is
found in Appendix A.

2.4. Anomaly models and injection

To evaluate the accuracy and sensitivity of the anomaly
detector and the anomaly classifier component, we in-
jected artificial anomalies into one week of real back-
ground traffic using FLAME [10]. This approach has two
main advantages. First, it provides well-defined ground
truth independent of an expert labeling the events. Second,
it allows to inject the same type of anomaly in different
scales, with different parameters, and at different offsets.
Thus, the evaluation is not biased by the very set of anom-
alies accidentally present in a collected trace [9]. However,
for background traffic, we chose to use real instead of sim-
ulated traffic to get more realistic results. The main prob-
lem with real background traffic is that it potentially
contains anomalies for which we do not know the ground
truth. Therefore, we first inspected the background traces
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for existing anomalies by searching for heavy outliers in
each traffic feature using a robust statistical outlier defini-
tion [14] based on the interquartile range. Where obvious
anomalies were found, we labeled the traces accordingly
and did not consider the corresponding time bins for injec-
tion and validation. To mitigate the effect of smaller anom-
alies still present in the trace, we injected each anomaly at
different random locations.

Previous work argues that concentrated activity on few
elements (e.g., the victim of a DDoS attack) leads to a
decrease in entropy and dispersed activity (e.g., the spoofed
source addresses of the same DDoS attack) leads to an
increase in entropy [2,5,6]. However, this is not necessarily
true. The precise effect on the entropy metric depends on
the activity of the elements contributed by both, the normal
traffic and the anomalous traffic and whether and how the
two element sets overlap. Therefore, we explicity consider,
for instance, set of active and inactive IP addresses.

The 20 base anomalies listed in Table 1 are variations of
DDoS attacks, worm outbreaks, scans and P2P outages.
Each combination of base anomaly and intensity was
injected in at least 42 different (random) timeslots. For
each injection, the flow parameters, such as the source/
destination IP address or the source/destination port are
drawn from the feature distribution defined by the models.
Furthermore, depending on the base anomaly model, the
feature distributions for some of the flow parameters were
modified according to the schemes described below. As a
consequence, each injected anomaly is uniquely parame-
terized. For more details, we refer to the model description
files for FLAME which we make available on [11]. In total,
we injected 8064 anomalies into our baseline trace. Or
more precisely, we injected 42 anomalies in each of the
192 copies of our baseline trace.

Anomaly intensity. Each base anomaly is injected with
various intensities, defined by the number of injected flows
per 5 min. Chosen intensities are 50 K, 75 K, 100 K, 200 K,
500 K, and 1 M. The motivation for this choice is that the
intensities should be (1) realistic and (2) small enough that
for most of them the anomaly is invisible when using sim-
ple metrics, such as flow count only. We verified these cri-
teria by analyzing the intensities of a set of well-known
anomalies and checked that most intensity values are hard
to spot when considering the variability and the average
number of flows per 5 min bin contained in our traffic
traces. We illustrate this with Fig. 2 showing a plot of the
number of flows per 5 min bin of our baseline trace into
which we injected several anomalies of intensities 75 K
and 200 K. While the anomalies of intensity 75 K do not
cause a significant change in the flow count signal, those
of intensity 200 K start to become visible. However, most
of the time they do not stand out clearly but vanish in
the normal variability of the flow count signal.

IP addresses. As our traffic traces are collected from a stub
AS, we distinguish addresses from the internal address
space (IN) and external addresses (OUT). In our anomaly
models, the victims are located inside our stub AS with the
exception of the reflector DDoS I and Scan III model. We ob-
served that the characteristics of the traffic flowing into the
network show a higher variability than those of the traffic
leaving our network. Hence, if we place the victims inside
our AS, and if the anomalous traffic to the victim(s) is more
pronounced than the response traffic, the more pronounced
share would be part of the traffic with higher variability and
therefore be more difficult to isolate. Previous work, as well
as intuition, confirm this imbalance for most anomalies.
Most victims of scans do e.g., not reply because the scan is
blocked by a firewall, and victims of a DDoS attack do not

Table 1
Overview of 20 base anomaly models used. HAR/LAR means high/low activity region.

ID Anomaly type Description SRC/DST, variation of IPs

Reflector DDoS I DDoS with few sources but medium intensity from each source Attacker: OUT, Victim: OUT, Reflectors: IN
1 Reflector IPs in LAR
2 Reflector IPs in HAR

Reflector DDoS II DDoS with few sources but medium intensity from each source
Matches other similar attacks such as coordinated password-guessing Attacker: OUT, Victim: IN, Reflectors: OUT

3 Attacker IPs in LAR
4 Attacker IPs in HAR, Victims in LAR
5 Attacker IPs in HAR, Victims in HAR
6 DDoS I Botnet DDoS 1 (SYN flood) Victim: IN, Attackers: OUT
7 DDoS II Flash Crowd/ Botnet DDoS 2 (HTTP GET requests) Victim: IN, Attacker:s OUT
8 DDoS III DDoS with spoofed sources (SYN flood) Victim: IN, Attackers: OUT
9 Worm I Worm Outbreak (Blaster) Victims: mainly IN, Attacker: mainly OUT
10 Worm II Worm Outbreak (Witty) Victims: mainly IN, Attacker: mainly OUT
11 P2P P2P Supernode outage (distributed scanning event) Mix of external/internal addresses

Scan I Scanning from single host outside Victim: IN, Attacker: OUT
12 All ports on single victim
13 All ports on subnet (hosts in LAR)
14 Selected ports on subnet (hosts in LAR)

Scan II Scanning from a botnet (2~000 hosts in LAR) Victim: IN, Attackers: OUT
15 All ports on single victim
16 All ports on subnet (hosts in LAR)
17 Selected ports on subnet (hosts in LAR)

Scan III Scanning from single host inside Victim: OUT, Attacker: IN
18 All ports on single victim
19 Selected ports on subnet and random IPs
20 DoS DoS (1 to 1), HTTP GET requests Attacker: OUT, Victim: IN
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reply to (all) requests because they e.g., crashed or are sim-
ply too busy to serve all requests.

Another important aspect influencing the detection re-
sults is whether these addresses are already present in
the trace or not. We label IP addresses that show persistent
and significant activity as belonging to the high activity re-
gion (HAR). Those that are rarely present or show very low
activity belong to the low activity region (LAR). We draw IP
addresses from many combinations of activity regions and
set sizes. For more details on how we chose IP addresses
and which set was used to customize which anomaly,
please refer to Appendix B.

Ports. For application specific attacks and worm out-
breaks exploiting vulnerabilities, we selected fixed ports.
For instance the HTTP GET requests used in DDoS attacks
are targeted at port 80. Otherwise we assign random ports
(i.i.d.) from these sets: all ports, ports above/below 1024,
selected set of application ports, and a dynamic port range
(1024–4999).

Packet sizes. Depending on the attack, we modeled dif-
ferent stages of the 3-way TCP handshake with different
response probabilities from {0.0001,0.02,0.05,0.2,0.8}.
For HTTP requests and Flash crowds, we modeled a per-
centage of delivered web pages of size 0.5 KB and 20 KB,
distributed over several packets. For worm attacks we used
characteristic packet sizes known form studies of the Blas-
ter [15] and Witty [16,17] worm. For the reflector DDoS,
we measured the actual flow and packet size distributions
during a real attack found in our traffic traces and used
these distributions for modeling.

3. Entropy telescope

In this section we describe the entropy telescope con-
sisting of Wide Angle Lenses, zoom lenses, Image Processors
and a Scene Classifier. Fig. 1 gives an overview of the differ-
ent components. The Wide Angle Lenses capture the big
picture in order to tell the Zoom Lenses the region they
should focus on. The Image Processors then take the signals
from the zoom lenses and check them for anomalies. If the
composed image is considered to be anomalous, the com-
posed image is condensed into a so-called spectrum pattern
and fed to the Scene Analyzer for identification.

3.1. Wide Angle: Using Generalized Entropy

An intuitive interpretation of the Tsallis entropy given
in (1) is that Sq focuses on changes of elements that show
high activity for q J 1, medium activity for �1 [ q [ 1
and low activity for q [ �1 [6]. This is because the respec-

tive elements contribute the most to the sum (1) compared
to the elements of other regions. Consider, for example, a
high activity element h with ph = 0.6 and a low activity ele-
ment l with pl = 0.1. If we choose q = 2, the contribution is
p2

h ¼ 0:36 for h and p2
l ¼ 0:01 for l. If, on the other hand, we

choose q = �2, the contributions are p�2
h ¼ 2:78 and

p�2
l ¼ 100. Whereas the contribution of h was clearly dom-

inant with q = 2, the contribution of l is dominant with
q = �2. In other words, it is possible to focus, for instance,
on IP addresses that we see often, occasionally, or rarely
in a specific time interval. The main advantages of this fil-
ter-like property are (1) that changes affecting parts of the
distribution only are more pronounced and (2) that there is
more detailed information for the classification of different
anomalies.

In [6], we propose to use a traffic entropy spectrum
(TES) to characterize changes in traffic feature distribu-
tions. In contrast to other entropy based anomaly detection
methods [13,1,4,3], the TES does not rely on a single (Shan-
non)-entropy value but uses a set of Tsallis entropy values
that is calculated for subsequent time intervals of size T.
The different Tsallis entropy values correspond to Sq with
different choices for q, in particular [6] uses q 2 [�2, . . . ,2]
in steps of 0.25. However, the correlation between time
series resulting from different choices of q has not been
analyzed yet.

For anomaly classification, it would be most useful if
the different Sq were largely independent from each other
and could be used directly to infer the state of a specific re-
gion. Then, an increase or decrease of one or multiple Sq’s
of a specific region would imply a change of the activity
pattern in the respective region. For instance, a significant
change of the Sq’s for q > 1 would imply a change in the
high activity region. Unfortunately, the way element
activities are normalized in (1) makes these types of direct
conclusions impossible. When the probability p(xi) of an
element is computed, its activity ai is divided by the total
activity

Pn
j¼1aj in a specific time interval. This has the neg-

ative side-effect that activity changes in a specific region A
are also transported to regions B and C and cannot be dis-
tinguished from activity changes originating in B and C. For
instance, consider a heavy-hitter being shut down. Because
this host caused a lot of activity, the shutdown will reduce
the overall normalization factor

Pn
j¼1aj and hence also re-

duce the contributions of rare hosts,1 although the activity
ai of rare hosts might not have changed at all.
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Fig. 2. The number of flows per 5 min bin of our baseline trace with injected anomalies of intensities 75 K and 200 K.

1 A smaller normalization factor leads to increased probabilities of rare
hosts, e.g., all hosts that only occur once. Increased probabilities lead to a
decreased contribution in the low activity region, e.g., for q = �2.
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In the next Section, we modify the TES to alleviate this
problem. This change allows to keep the different regions
in focus, independently of the overall activity. Our evalua-
tion in Section 4 shows that this modification indeed im-
proves detection and classification results.

3.2. Zooming in: separating activity regions

The entropy telescope mitigates the unwanted normal-
ization effects by computing a pruned entropy in a two-
step approach. For each time interval, we start with calcu-
lating the TES consisting of the entropy values Sq for a set
of q-values. We then zoom in on the most contributing ele-
ments responsible for p percent of the value of Sq, for a gi-
ven q. In the second step, we calculate the pruned entropy
for the selected elements only, denoted by Sq,p. With this
procedure, we make sure that changes of elements i that
contribute almost nothing to the sum

Pn
i¼1pðxiÞq have no

impact on the final Sq,p, neither through direct contribution
nor through normalization.

More formally, let the original distribution of activities
be A = {ai, . . . ,an}. Then we first compute Sq(A) as defined
by (1). Now let C = ci be the set of element contributions,

that is ci ¼ ai=
Pn

j¼1aj

� �q
. Then we let C0 be the sorted ver-

sion of C such that c0j P c0jþ1 and store the mapping of indi-
ces between C and C0 in a table /. Thus, if ck is mapped to
element c0l, we have /(k) = l. Let r(x) be the partial entropy
computed by summing up all contributions of C0 up to ele-
ment x, that is rðxÞ :¼

Px
j¼1c0j. Further, let x̂ be the smallest

index x for which r(x) P p/100 � Sq(A) holds. From this we
construct the set of selected activities A0 ¼ [x̂

j¼1a/�1ðjÞ. Final-
ly, the pruned entropy is computed by Sq,p :¼ Sq(A0).

The output of the zoom lenses, the pruned TESp, is now
simply the current and past values of Sq,p for the given set
of q-values. It can therefore be plotted in the same way as
the original TES. Note that the original TES corresponds to
TES100.

Fig. 3 illustrates the effect of TESp. The top figure shows
a destination port activity distribution with the ports on
the x-axis ordered by ascending activity. That is, the left-
most port with index 1 is the rarest and the rightmost port
is the top port (port 80 in this case). The activity of a port is
plotted on the y-axis (i) during an anomaly and during nor-
mal activity.

For both distributions there is one plot below, showing
the selected elements for different values of q and p. At a
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Fig. 3. Destination port activity distributions (top) and selected regions for TESp (bottom). On the x-axis all ports are ordered by rank, i.e., with increasing
activity to the right.
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specific coordinate (x,q) there is a point if element x was
selected for the pruned entropy Sq,p and no point other-
wise. For instance, looking at the regions for the anomalous
port distribution, we see that for q = �3 and p = 80, only
about 10,000 ports on the left (i.e., the low activity ports)
are selected. Looking at the regions for the normal port dis-
tribution, we see that q = �3 kept the low activity region in
focus even though there are now around 28’000 low activ-
ity ports. Similar observations can be made for other q- and
p-values with smaller p values tending to capture the dif-
ferent activity levels more tightly at the cost of being prob-
ably too tight: q = �3, p = 80 does e.g., not select the full
range of low activity ports in the normal port activity
distribution.

3.3. Image processing: anomaly detection

In this section we describe how anomaly detection is
performed on the various entropy signals for different met-
rics and q-values. Specifically, We use 20 different values
for q:

q 2 f�3g [ f�2;�1:75; . . . ;1:75;2g:

Including bigger/smaller values is of limited use be-
cause S2 is already very much dominated by the biggest
heavy-hitter and S�3 by the rarest elements, respectively.
With 8 feature entropies, 3 volume metrics (flow, packet,
and byte count), and two directions, this yields a total
number of 2 ⁄ (3 + 8 ⁄ 20) = 326 different metrics for TESp.
For Shannon classic (SHNC) we use 2 ⁄ (3 + 4) = 14 metrics,
and 2 ⁄ (3 + 8) = 22 metrics for Shannon extended (SHN+),
respectively. The computational overhead is dominated
by generating element distributions, in the first place.
Whether we compute a single entropy value or draw mul-
tiple values from a distribution does not make a big differ-
ence in terms of running time or memory consumption.

From the list of available statistical anomaly detection
methods, including wavelet transformation [18], Kalman
filter [7], Principal component analysis (PCA) [2], and Karh-
unen–Loeve Expansion (KLE)[3], we selected the Kalman
filter due to its simplicity as well as the PCA and the KLE
method because they reflect the current state of the art:

� The Kalman filter models normal traffic as a measure-
ment-corrected AR (1) auto-regressive process plus
zero-mean Gaussian noise. The difference between this
model and the actually measured value is the residual, a
zero-mean signal without the diurnal patterns found in
original time series. We calculate this residual for all
input time series separately.
� The principal component analysis (PCA) condenses

the information of all input time series to a single out-
put time series reflecting how closely the current input
matches the model built from some other input. PCA
has a parameter k determining how many of the com-
ponents are used for modeling the normal activity. We
discuss the impact of k in our evaluation section.
� The Karhunen–Loeve expansion (KLE) is based on the

Karhunen–Loeve Transform and basically an extension
of the PCA method to account for temporal correlation
in the data. The only but important difference is that

KLE has an additional parameter m stating how many
time bins should be included when accounting for tem-
poral correlations.

We point out that our goal is not the optimization of the
detection step, but rather to demonstrate that the ex-
tended set of Tsallis entropy values improves the detection
accuracy using existing methods.

On the residual(s) we detect anomalies using a quan-
tile-based approach: The first quartile Q1 of a sample of
values corresponds to the 25th percentile and is defined
as the value that cuts off the lowest 25% of values. That
is, one fourth of the values is smaller than Q1. Similarly,
Q2 (the median) and Q3 are defined as the 50th and 75th
percentile, respectively. The interquartile range IQR is a
measure of statistical dispersion and is defined by
IQR = Q3 � Q1. The IQR can be used to detect outliers by
defining a normal range of values [Q1 � k � IQR,Q3 + k � IQR]
for some constant k. We choose k = 1 and define the nor-
malized anomaly score A(x) for a residual value x by the ra-
tio of the distance of x from the normal band and the size of
the normal band, which is 3IQR:

AðxÞ :¼

x�ðQ3þIQRÞ
3IQR if x > Q3 þ IQR;

x�ðQ1�IQRÞ
3IQR if x < Q1 � IQR;

0 elseðsignal is normalÞ:

8>><
>>: ð3Þ

For each output time series, we compute the anomaly
score and call it a vote if the signal is exceeding a threshold
t, that is, jA(x)j > t.

In the case of PCA and KLE, we have only one output time
series. As a consequence, one vote is enough to trigger an
anomaly and the threshold t is the main parameter to tune
the sensitivity of a specific detector.2 However, in the case
of the Kalman filter, we have one residual per input time
series and detection is done using a two parameter ap-
proach. First, we do the same as in the case of PCA and
KLE for each of the output time series: we put a threshold
t on all of the anomaly scores A(X) of their residuals. Next,
we perform the detection by setting a minimum number
v of votes required to trigger an alarm for the current time
interval. In practice, determining good values for the
threshold t and votes v is done by measuring the perfor-
mance of the detector for different combination of t and v.
Ideally, this is done using training data containing a repre-
sentative set of anomalies. The same holds for determining
k for PCA and k and m for KLE or any other anomaly detec-
tion system having one or more tuning parameters. In sum-
mary, we need to sweep the following tuning parameters to
fully assess the performance of the different algorithms:

� Kalman: Threshold t and number of minimum votes v.
� PCA: Threshold t and the number k of components used

for modeling the normal activity.
� KLE: Threshold t, the number k of components and the

number m of time bins used for modeling the normal
activity.

2 Note that there are other tuning parameters such as the parameters k
for PCA and k and m for KLE as described before.
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Note that all of the three approaches require training data
for two reasons: (1) for defining a conservative normal band
to derive the normalized anomaly score A(X) and (2) to get
training data for training the models used by the Kalman,
PCA and KLE methods. While the first training problem is
easy to solve, the second one is more difficult. The reason
for this is that our IQR based normalization is based on the
first and third quartiles, which do not depend on the 25%
smallest and biggest values in the data. It is therefore not af-
fected by outliers. Unfortunately, to solve the second train-
ing problem, we need all of the data points. To ensure that
the training data reflects indeed normal behavior, we se-
lected the training data based on manual analysis of the time
series using box plots and raw time series plots. While there
remains an uncertainty whether our selection of training
data is really clean and representative, we mitigated this
by confirming our findings using different training samples.
However, we can not omit this problem entirely when work-
ing with real traces containing millions of flows per hour.

In our evaluation, we focus on those configurations
showing the ‘best’ performance for a specific method. We
are aware of the fact that different sets of anomalies and/
or other background traffic characteristics might result in a
different choice for these values or worse, a different rating
for the different methods. However, we believe that our
comparison is fair for two reasons: (1) the selection of the
‘best’ parameters is based on a large set of different anomaly
types and intensities and without potential bias because of
anomalies that are more frequent than others, as typically
the case with any real world traces. And (2), our traffic trace
used as background traffic originates from a large stub AS
with fairly complex and dynamic traffic mix characteristics.

3.4. Scene analysis: classifying anomaly patterns

The basic idea behind the scene analysis component is
the notion of spectrum patterns introduced in [6]. The
assumption underlying our anomaly classification is that
each anomaly class leaves a characteristic and (to some de-
gree) invariant footprint in different features and activity re-
gions. As a consequence, the input to this component must
be one signal per count or feature entropy. While the input
signals could be the original time series signals of these fea-
tures, we want to avoid this for two reasons: First, removing
trend and daily patterns form the signals is difficult but has
to be done for most supervised pattern recognition ap-
proaches. And second, we are not interested in the exact
amplitude of the signals but rather a conservative estimate
whether they are abnormal and if yes, how much.

An obvious choice for the input of the classification
component is therefore the output of the Kalman detector:
It outputs a conservative anomaly score per input time ser-
ies. To reduce the volume of data provided by this detec-
tion component, we aggregate anomaly scores in three
buckets corresponding to the low/medium/high activity
regions by calculating the weighted sum of the scores for
all q-values in a region. The low activity region is defined
by q 6 �1, medium by �1 < q < 1, and high by q P 1. That
is, we calculate three values for each metric, measuring
the abnormality of the specific region, denoted by Al

(low), Am (medium), and Ah (high). While different weights
might be used to tune our classification approach in future
work, we found that the simplest choice of setting all
weights to one is enough for achieving a classification
accuracy of around 85 percent.

In a next step, the Scene Analyzer scans the values Al,
Am, and Ah of each traffic feature and decides whether they
signal an increase, decrease or no change of entropy of the
corresponding regions. This transformation can be summa-
rized as follows:

Ci :¼
‘1’ if Ai P upper threshold;
‘0’ otherwise;
‘� 1’ if Ai 6 lower threshold:

8><
>:

For the upper and lower threshold, we use the values
0.5 and �0.5 respectively. A value of Ai = 0.5 is e.g. ob-
tained, if each metric contributing to Ai exceeds its 75th
percentile value by around 1.2 ⁄ IQR.3 Another situation
resulting in Ai = 0.5 is when one of the metrics contributing
to Ai has an anomaly score of 0.5 and all others an anomaly
score of zero. From (3) it follows, that for an anomaly score
of 0.5, the metric exceeds the 75th percentile value by
2.5 ⁄ IQR. Note that a deviation of 1.5 ⁄ IQR is typically
attributed to mild outliers while a deviation of at least
3 ⁄ IQR is attributed to extreme outliers.

The main reason for transforming the continuous values
Al, Am, and Ah of each traffic feature into discrete (tri-state)
values is to avoid the pitfall of overfitting our classifier to
specific amplitudes. Despite the good results produced by
this approach, we need to investigate the impact of this
quantization in more detail. However, not using quantiza-
tion should mainly improve the classification quality in
cases where the input signals are not well-behaved in the
sense that the IQR is not meaningful for separating normal
and abnormal values. An example of such a signal is, e.g., a
signal that has a more or less bi-modal distribution of its val-
ues during normal activity.

In a last step, the Scene Analyzer feeds the discretized
spectrum pattern to a support vector machine (SVM)
trained with different training sets discussed in the evalu-
ation section. Our Scene Analyzer makes use of the LIBSVM
[19], a popular SVM with very good performance and a
wide range of available interfaces. For each of the different
training sets, we followed the basic strategy outlined in
[20]: First, we split the full dataset into three parts contain-
ing approximately the same amount of anomalies of each
anomaly type and size. Next, we take two parts of the split
for training and one part for validation. By doing this, we
get three different training- and validation set combina-
tions. On the training set, we then perform a grid search
and 3-fold cross-validation to identify the best parameters
for the SVM’s RBF kernel. The classification result reported
in the evaluation section is the average classification accu-
racy obtained from the three training- and validation set
combinations. Note that the output of the SVM – the label

3 With 5 metrics as in the high activity region, we get Ah = 0.5 if all
metrics have an anomaly score of 0.1. It follows from (3) that an anomaly
score of 0.1 is the same as exceeding the 75th percentile by 1.2 ⁄ IQR.
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of the anomaly – is at the same time the final result and
output of our Entropy telescope.

4. Evaluation

In this Section we evaluate the entropy telescope using
the feature sets SHNC, SHN+, TES100, TES99.9, TES99, TES95, and
TES80. We show that the biggest improvement in detection
accuracy can be achieved when switching from Shannon
entropy based feature sets to the TES100 set. The novel TESp

makes another significant step in classification accuracy
and optimizes detection for some anomaly categories.

After thoroughly discussing detection and classification
results, we conclude the section with an analysis of anom-
aly prevalence in a 34-days trace of real traffic.

4.1. Detection

In Section 3.3 we defined a metric to be anomalous, de-
noted by a vote, if its anomaly score is bigger than a thresh-
old t, i.e., jA(x)j > t. Moreover, for an anomaly alarm to be
raised in a time slot, a number of v votes need to be pres-
ent. For the PCA and KLE method, v is equal to one since
they have only one output time series. Naturally, high
thresholds for t - and in the case of the Kalman filter also
for v – will lead to low true/false positives while low
thresholds lead to high true/false positives. The preferred
operation point, however, has a high true positive (TP)
and a low false positive (FP) rate. To assess detector perfor-
mance, we use Receiver Operating Characteristics (ROC)
curves [7] that plot the TP rate versus the FP rate for a
range of threshold values. In our case, we vary t between
0 and 100. Note that for readability reasons, we plot the
ROC curves using a logarithmic scale for the FP axis and
display the results for FP rates of 0.4% to 10%. With our
time bins of 5 min, this corresponds to roughly 1 false po-
sitive per day for an FP rate of 0.04% to 1 false positive per
50 min for (10%).

Issues with KLE. The following discussion focuses on the
evaluation results for the Kalman and the PCA methods
only. The reason for this is that our results for KLE are

somewhat ambivalent. For intensities larger than 100 K,
KLE shows a worse performance than PCA for all feature
sets. The same holds for the feature sets TES100 or TESp

and anomalies of intensity up to 100 K. However, for SHNC

and SHN+ and anomalies of intensity up to 100 K, we see an
improvement in detection quality of up to 15%. While the
improvement for SHNC is consistent with the finding in
[3], we are not quite sure about the root cause for the
results with other feature sets. More research is required
to better understand the performance of the KLE method
with different feature sets, anomalies and network
characteristics.

Shannon versus TES feature sets. Fig. 4 shows the ROC
plots for the Kalman and PCA method for intensities 50 K
and 75 K as well as the PCA method with 100 K and
200 K. The plots show the detection accuracy for the best
configuration of different detectors for the feature sets.
To find the best configurations, we performed an extensive
parameter sweep for both, the Kalman and PCA detector.
For PCA, the parameter is the number of components k
used to build the model of normal activity. For Kalman,
the parameter is the number of votes v required to trigger
an alert. Doing these sweeps, we found that while the
detection accuracy is changing quickly for the feature sets
SHNC and SHN+, there is a clear peak for one specific value
of k. In contrast, this is not true for TES100 or TESp. After
reaching the optimal detection accuracy, it remained at a
comparable level for a wide range of k values. One inter-
pretation of this is that the additional time series in the
TES feature sets make the detectors more robust with re-
gard to the selection of the parameter k.

From the plots in Fig. 4 we can see that a switch to TES,
improves the detection accuracy for PCA by up to 20%. How-
ever, for the Kalman filter approach, the gain is rather small
and lies around 5% for TES feature sets other than TES100 or
TES80. It seems that while the TES adds features carrying
valuable information, it also adds noise with which the sim-
ple per-feature detection and voting scheme of the Kalman
detector does not cope well. Unlike PCA, our Kalman detec-
tor does not make use of inter-feature relations. This being
the main reason for the worse performance is supported by
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Fig. 4. ROC curves for different feature sets and detection methods: (a) Anomalies of intensity 50 K and 75 K, Kalman filter (kf) method. (b) Anomalies of
intensity 50 K and 75 K, PCA method (c) Anomalies of intensity 100 K and 200 K, PCA method.

B. Tellenbach et al. / Computer Networks 55 (2011) 3485–3502 3493



Author's personal copy

the Kalman filter’s very bad performance for TES100 but sig-
nificantly improved performance for TESp. As explained in
Section 3, the features reflecting the high and low activity
area can be heavily correlated in TES100, but are not
correlated in TESp. As a comparison of the different plots
in Fig. 5 shows, the improvement in detection accuracy
can also be confirmed when looking at the detection accu-
racy per anomaly type. Switching from SHNC or SHN+ to
TES100 improves detection accuracy for most types for FP
rates of 0.6% (=1 alert per 14 h) and above.

SHNC. versus SHN+ Another observation we can make
based on Fig. 4 is that our extension of the traditional fea-
ture set SHNC to SHN+ improves detection results by up to
10%. This, as well as the increase from k = 6 to k = 9 compo-
nents required to achieve the best detection accuracy with
PCA, confirms that the features added to SHNC carry rele-
vant information. Nevertheless, as can be seen in Fig. 5,
the better overall detection accuracy comes with a de-
crease for the anomaly types Worms I& II, DDoS III and

Scan III while most of the other types show an increase
in detection accuracy.

Kalman versus PCA. But the most surprising result is ex-
posed when comparing the performance of the different
detection methods for the feature set SHNC and SHN+ in
Fig. 4(a) and (b): The Kalman filter method detects anom-
alies up to 10% more accurately than the PCA method. Con-
sidering that PCA has been used with the feature set SHNC

in the past, this is an interesting finding. But since this re-
sult only holds for anomalies with intensities less than
100 K, PCA might still be the best choice for SHNC in gen-
eral. The effect disappears when the feature set is extended
to TESp. There, we found that the PCA method provided
consistently better results than the Kalman filter method.

Relations between parameters k. A final observation from
Fig. 4 is that the optimal k value for both, Kalman and PCA
increases when switching from Shannon to TES. The in-
crease is even of comparable size. Except for TES100 for an
afore mentioned reason: The Kalman method does not
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Fig. 5. ROC curves for anomalies with small intensities (50 K and 75 K) and PCA detection method.
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make use of inter-feature relationships, such as the corre-
lations between high and low activity regions in TES100.

In summary, the shift from Shannon-based feature sets
to TES-based sets can improve detection accuracy up to
20%. The reason why a shift from TES100 to a refined version
of the TES only leads to minor improvements might be the
fact that the main difference between TES100 and TESp is the
decorrelation of the HIGH/LOW intensity parts of the dis-
tribution. Intuitively, for the detection, we do not care
whether an anomaly is seen in two (correlated) metrics
or just one (uncorrelated) metric. At least for PCA and
KLE, which account for correlations between metrics, this
makes no big difference. We believe that the minor gains
are most likely due to a better signal to noise ratio for
anomalies affecting the low activity region only. In
TES100, such anomalies could be concealed by large (but
not yet anomalous) changes in the overall activity.

4.2. Classification

It is important for detection and classification to rely on
models that are robust with respect to varying intensities.
That is, if we train an SVM with DDoS models of a certain
intensity, we do not want to miss the same attacks only be-
cause the real attack size differs slightly from the training
size. Therefore, we trained the SVM with different intensi-
ties and evaluated the models on varying intensities. We
always trained all of the 20 base models from Table 1.
For measuring classification accuracy, we counted the per-
centage of anomaly instances that were assigned to the
correct base model. Thus, if anomaly #16 was classified
as anomaly #17, this is considered incorrect, even though
both belong to the same base anomaly type (Scan II). For
assessing classification quality we assumed a perfect detector.
That is, the true anomalous intervals are considered for
classification. In a real environment, classification would
only be run on those instances that were detected by an
anomaly detector in the first place. The consequence of this
is that the difference between classification accuracy of
SHN and TES feature sets would be even bigger in practice
because a detector based on the SHN feature set would feed
more false positives to the classifier.

Table 2 summarizes the classification accuracies for dif-
ferent anomaly intensities and feature sets. The columns
labeled with arrows ()) show the performance difference
between the feature sets on the left and right side. The use
of SHN+ over SHNC yields a gain in classification accuracy

between 7.14% and 14.21% across all intensities. Using
TES100 gives and additional gain of 7.84% to 9.38% for small
intensities in the top three rows. For training and classifi-
cation with bigger anomalies, the gain is generally smaller.
Although accuracy with TES100 is already quite high, the
introduction of the pruned TES95 adds another 5.8% on
average. While choices of p = 99.9 and p = 80 also improve
over TES100, p = 95 works best in our setting. The average
aggregated gain of TES95 over SHNC is 22.3%, leading to
an average classification accuracy of 83.17%. The
improvement is generally bigger for low-intensity anoma-
lies. In Fig. 6 we provide a detailed view on which base
anomalies were classified correctly and which not. Each
point in the plots indicates the probability that the anom-
aly on the y-axis was classified as the anomaly on the x-
axis. SHNC and SHN+ often misclassified anomalies of types
3–5 and 13–18. As expected, the classification accuracy
with regard to sub-types of the broader anomaly types in-
creases when switching from SHN to TES feature sets. This
is expected since TES provides a more detailed view on the
changes in a distribution. For a broad classification, these
details are clearly less important.

To give a graphical intuition of cluster centers and
boundaries for different anomaly types, we show Fisher’s
LDA (Linear discriminant analysis) [21] in Fig. 7. LDA is typ-
ically used in machine learning to find a linear combina-
tion of features which characterize or separate two or
more classes of objects. The resulting combination may
be used as a linear classifier, or, more commonly, for
dimensionality reduction before later classification. The
plots show that for intensity 50 K, Shannon yields no clear
clusters, whereas TES95 is capable of separating ‘‘Ref. DDoS
1’’ from ‘‘DDoS + Worm’’ and Scans. With intensity 200 K,
the situation improves for both sets of metrics, but clusters
are still better distinguished for TES95.

4.3. Prevalence of anomalies in real backbone traffic

As a last step in our evaluation, we report and discuss
the results from applying our entropy telescope to a
34 days flow trace collected by one of the border routers
of the SWITCH network in August 2008.

Fig. 8 shows four pie charts representing the detected
anomalies for different detection thresholds. From subfig-
ure (a) to (d), the detection threshold is lowered succes-
sively, resulting in alert rates of 0.5% for (a), 1% for (b),
3% for (c), and 10% for (d). An alert rate of 0.5% means that

Table 2
Average classification accuracy in percent for different sets of features and for different training and validation data set constraints.

Training Evaluation SHNC ) SHN+ ) TES100 ) TES99.9 TES95 TES80

50 K 50 K 55.13 10.42 65.55 9.38 74.93 7.14 80.58 82.07 80.95
>50 K 54.73 8.78 63.51 7.84 71.35 7.16 74.26 78.51 77.35

200 K <200 K 49.38 8.04 57.42 9.13 66.54 8.43 72.82 74.98 73.83
200 K 66.07 14.06 80.13 2.16 82.29 5.21 86.53 87.50 87.72
>200 K 64.69 14.21 78.91 1.49 80.39 4.09 80.95 84.49 84.34

ALL <200 k 60.91 7.14 68.06 8.85 76.91 7.04 80.95 83.95 86.46
200 K 68.30 11.68 79.99 3.65 83.63 4.17 85.27 87.80 87.80
>200 K 67.49 13.36 80.84 1.75 82.59 3.50 83.15 86.09 82.96
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(c) TES100
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Fig. 6. Base anomaly classification matrix. The plots show which injected base anomaly types (y-axis) were classified as which types (x-axis) with what
probability (color code). Models were trained using anomalies of ALL intensities. Classification is performed on anomalies with intensity < 200 K.
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Fig. 7. Fisher’s LDA plots of SHN+ versus TES95.

3  [Refl.DDoS II]: 15%

4  [Refl.DDoS II]: 10%

5  [Refl.DDoS II]: 4%

6  [DDoS I]: 2%
11 [Distr.Scan]: 2% 13 [Scan I]: 56%

14 [Scan I]: 4%
15 [Scan II]: 2%

17 [Scan II]: 4%

(a) Alert rate: 0.5% (=1 alert every 16.7 hours)
Total alerts: 49 (out of 9792 time bins)

3  [Refl.DDoS II]: 12%

4  [Refl.DDoS II]: 7%

5  [Refl.DDoS II]: 5%

6  [DDoS I]: 2%

11 [Distr.Scan]: 23%

13 [Scan I]: 46%

14 [Scan I]: 3%
15 [Scan II]: < 1%

17 [Scan II]: 2%

(b) Alert rate: 1% (=1 alert every 8.3 hours)
Total alerts: 103 (out of 9792 time bins)

1  [Refl.DDoS I]: 1%
3  [Refl.DDoS II]: 9%

4  [Refl.DDoS II]: 7%

5  [Refl.DDoS II]: 5%
6  [DDoS I]: 2%

8  [DDoS III]: < 1%

11 [Distr.Scan]: 22%

13 [Scan I]: 41%

14 [Scan I]: 9%

15 [Scan II]: 1%
17 [Scan II]: 2%

18 [Scan III]: 1%

(c) Alert rate: 3% (=1 alert every 2.8 hours)
Total alerts: 196 (out of 9792 time bins)

1  [Refl.DDoS I]: 1%
3  [Refl.DDoS II]: 6%

4  [Refl.DDoS II]: 6%
5  [Refl.DDoS II]: 2%

6  [DDoS I]: < 1%
8  [DDoS III]: < 1%

10 [Worm II]: < 1%

11 [Distr.Scan]: 10%
12 [Scan I]: < 1%

13 [Scan I]: 57%

14 [Scan I]: 12%15 [Scan II]: < 1%
17 [Scan II]: 4%

18 [Scan III]: < 1%
20 [DDoS*]: < 1%

(d) Alert rate: 10% (=1 alert every 50 minutes)
Total alerts: 979 (out of 9792 time bins)

Fig. 8. Detection and Classification results for a 34 days flow trace collected by one of the border routers of the SWITCH network in August 2008. Results are
for TES95 with a PCA [k = 36] detector.
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1 in 200 timeslots with duration of 5 min is considered
anomalous, i.e., one anomaly is reported every 16.7 h. A
high alert rate of 10% as in subfigure (d) results in one alert
every 50 min and is certainly not desirable for daily oper-
ations. It is only shown to give an idea of the behavior of
the classifier for very low thresholds. This is interesting
since we expect a larger number of false positives for this
setting and were interested to see whether this leads to
classifications of anomalies as events that are presumably
not present in our trace: worm outbreaks.

For all thresholds, scans are predominant, accounting
for roughly 2/3 to 3/4 of all anomalies. This result is consis-
tent with the fact that scanning has become omnipresent
in today’s networks [22] and is often not even considered
to be of special interest anymore. Among scans, type 13
(scan of a subnet from a single host) has by far the biggest
share. Type 11 (distributed scanning) goes up from 2% to
23% when going from (a) to (b). The relatively high thresh-
old in (a) was most likely not sensitive enough to detect
the distributed n-to-m scanning modeled with type 11.
Therefore, it is only reported with lower thresholds as in
(b) to (d). Regarding worm activity, no alerts were trig-
gered and also the network operator is not aware of any
incidents. There is only one worm alert in subfigure (d),
which we consider to be a false-positive.

DDoS-type anomalies have a share between 23% and
31% for (a) to (c). Translated into number of incidents, this
means between 15 and 45 DDoS events for the measured
period of one month. Note that these events may also con-
tain flash crowd events, as these are generally very hard to
distinguish from DDoS attacks. Or in the case of the type
Refl.DDoS II, massive coordinated password guessing at-
tacks. It is difficult to compare these figures to external
numbers, primarily due to the difficulty of quantifying glo-
bal DDoS activity. Furthermore, it is not clear how global
numbers are broken down to an individual network for
comparison. Moore et al. estimate 2,000–3,000 global
DDoS attacks per week already for 2001–2004 [23]. Veri-
Sign, drawing from different sources, estimates between
1000 and 10,000 DDoS attacks per day in 2008 [24]. The
CSI computer crime and security survey 2008 [25] states
that from the 522 responders, 21% were affected by DoS at-
tacks in 2008. Of course, the reported incidents are only
those that had enough impact to be recognized by
operations.

Considering that our traces contain traffic from around
40 individual organizations, we think our numbers are
realistic. That is, for a medium alert rate, we expect around
1 DDoS alert per day.

5. Related work

Most approaches for anomaly detection in large scale
networks rely (to some extent) on traffic-feature distribu-
tions. In [26,27], the distributions are captured by histo-
grams while [28,4,29,30] summarizes them with Sketch
data structures. Sketch-based approaches rely on a set of
histograms where the elements are assigned to the bins
using a set of different hash-functions. Approaches that
rely on entropy to expose changes in distributions using

(1) Shannon-Entropy [2,1,4], (2) an approximation of
(Shannon-) entropy [13] based on compression or (3) the
Kullback–Leibler Distance which corresponds to the Kull-
back–Leibler entropy,4 [26,32]. A different application of en-
tropy is presented in [33] where the authors introduce an
approach to detect anomalies based on Maximum Entropy
estimation and relative entropy. The distribution of benign
traffic is estimated with respect to a set of packet classes
and is used as the baseline for detecting anomalies. In [5],
Ziviani et al. propose to use Tsallis entropy for the detection
of network anomalies. By injecting DoS attacks into several
traffic traces they search for the optimal q-value for detect-
ing the injected attacks. While Ziviani et al. found a q value
around 0.9 is best for detecting DoS attacks, Shafiq et al. [34]
could optimize the detection of portscans of malware using
a q value equal to 0.5.

Tsallis entropy has also many applications in physics,
medicine or in a broader context, in complex systems. In
[35], the authors propose a q-parameterized Expectation
Maximization (q-EM) algorithm for parameter estimation
based on incomplete observations. They investigate itera-
tive schemes for joint channel estimation and signal detec-
tion over frequency selective channels using q-EM
algorithms and show that convergence speed is improved
by replacing the standard expectation with q-expectation,
which was first introduced in the Tsallis entropy literature.
And in [36], Torres et al. exploit the ability of multi-resolu-
tion entropies to show slight changes in a parameter of the
law that governs the nonlinear dynamics of a given time
series signal. To do so, they capture these changes as statis-
tical variations at each scale and calculate the correspond-
ing principal components and feed them to a statistical
change detector. There are many more applications of Tsal-
lis entropy which are loosely related to anomaly detection
such as e.g., [37]. Refer to [38] for a complete bibliography
on Tsallis entropy related publications.

6. Conclusion

In this paper, we improved network anomaly classifica-
tion by introducing the pruned TES (traffic entropy spec-
trum) feature set, which uses the non-extensive Tsallis
entropy to focus on specific regions of feature distribu-
tions. We built an integrated anomaly detection and classi-
fication system called the entropy telescope and compared
the performance of different well-known detectors, such
as the Kalman filter, PCA, and KLE. We extensively evalu-
ated the entropy telescope with a rich set of artificial
anomalies and real backbone traffic. We show that using
the pruned TES instead of classical Shannon-only ap-
proaches improves detection accuracy by up to 20% and
classification accuracy by 22.3% on average. In particular,
the pruned TES is much more sensitive for small anomalies
and established anomaly patterns are very robust with re-
spect to varying anomaly intensities. A run of the entropy
telescope on one month of backbone traffic shows that
most prevalent anomalies are different types of scanning
(69–84%) and reflector DDoS attacks (15–29%).

4 Rényi distance of order 1 (a = 1) [31].
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Appendix A. Analysis of feature correlation

The Shannon entropy of a random variable X is defined
as follows:

HðXÞ ¼ �
Xn

i¼1

pðxiÞlog2pðxiÞ; ðA:1Þ

pðxiÞ ¼
aiPn
j¼1aj

; ðA:2Þ

where ai is the number of occurrences of xi in a time win-
dow of length T and p(xi) = p(X = xi). In our context, the xi

are the feature elements, e.g., specific IP addresses or port
numbers.

Nychis et al. [8] raised a concern regarding the pairwise
correlation of different feature entropies. They found that
port entropy, address entropy and traffic volume (pack-
ets/s) are highly correlated. Therefore, a single feature,
e.g., traffic volume, would already provide enough informa-
tion for reliably detecting DDoS-like events. Consequently,
the use of multiple features would not provide additional
information to improve the anomaly detection rate.

Motivated by our own experience in the field, which
contradicts the results reported by Nychis et al., we per-
formed our own correlation analysis of traffic features.
We did not find any persistent strong correlation between
traffic features. To aid detection and especially classification
of network anomalies, we therefore suggest to use a wide
range of features to capture different aspects of traffic
dynamics.

A.1. Methodology

In this Section we present the methodology of our cor-
relation analysis. We performed a correlation analysis on
the following entropies:

� Flow size (Fsize).
� Bytes per packet (BytesPP).
� Source and destination port (Dp,Sp).
� Source and destination IP address (Sip,Dip).
� Autonomous system (AS).
� Country code (Country).

We computed the entropy values for the various distri-
butions over time and compared the resulting timeseries of
entropy values using correlation metrics defined below.

Correlation metrics. A possible correlation metric for two
timeseries X and Y consisting of n data points is the Pearson
product-moment correlation r, as used by [8]. The Pearson
correlation coefficient rxy is defined as

rxy ¼
Pn

i¼1ðxi � �xÞðyi � �yÞ
ðn� 1Þrxry

: ðA:3Þ

where �x and �y are the sample means of X and Y, and rx and
ry are the sample standard deviations of X and Y. In partic-
ular, Nychis et al. measured Pearson correlation scores big-
ger than 0.95 for port and address distributions, where
score 1 means maximum correlation.

An alternative correlation metric is the Spearman’s rank
correlation defined as

q ¼ 1� 6
Pn

i¼1d2
i

nðn2 � 1Þ ; ðA:4Þ

where di = xi � yi is the difference between the ranks of cor-
responding values Xi and Yi.

Whereas Pearson only captures linear correlation,
Spearman considers any correlation described by a mono-
tone function, including linear correlation. A comparison of
the two correlation metrics on our data set showed that
Spearman correlation was consistently higher than Pear-
son correlation, hinting at considerable non-linear correla-
tion. Therefore, we used Spearman’s correlation for our
analysis.

Data Set. To evaluate the feature correlation, we used 10
different traces summarized in Table A.4 from SWITCH, the
Swiss educational and research network [12]. SWITCH con-
nects several universities, research labs, and governmental
institutions to the Internet. The network is a stub AS with
an IP address range containing about 2.4 million addresses,
which we refer to as internal address space. External ad-
dresses are all addresses not assigned to the network’s
range. Accordingly, we use the term incoming traffic to de-
note flows from external source to internal destinations
and outgoing traffic for the reverse direction.

The flows are collected from four different border rou-
ters which do not apply sampling or anonymization. Note
that sampling and anonymization can skew certain parts
of feature distributions. For instance, deletion of least sig-
nificant 11 IP address bits, as applied to Abilene traces
[2], corresponds to an aggregation of IP addresses at the
/21 subnet level and reduces the utility of entropy metrics
for anomaly detection [39].

Traces 1–9 were captured on the largest exchange point
(router 1) around major anomalies, such as global worm
outbreaks, outages or a DDoS attack using internal hosts
as reflectors. On average, roughly 50% of their duration is
considered anomalous. Trace number 10 is a continuous
trace over 4 months from all exchange points with no ma-
jor anomaly. In total, the traces cover 247 days from
5 years.

A.2. Feature correlation

The absolute value of the Spearman coefficients in per-
cent are presented in the Tables A.3, A.5, and A.6. A value of
100 denotes maximum correlation where on the other
hand 0 means no correlation.

Table A.3 shows correlation statistics for traces 1–9,
comprising several anomalous intervals from a range of
5 years. Strong correlations (P0.8) are highlighted. For
each feature pair, we compute the correlation of the
respective time series for each of the nine traces. Then,
the maximum, minimum, and average correlation is se-
lected for each feature pair. Generally, correlation of the
different features is low. For some feature pairs, correlation
is high in some traces, but low in general. This is, for in-
stance, the case for (Sip,Dip) with a maximum correlation
of 0.9 but an average correlation of only 0.4. Only the pair
(BytesPP,Fsize) has a very strong average correlation of al-
most 1. The next highly correlated feature pairs are (Sip,F-
size) with 0.83 and (Sip,BytePP) with 0.81 average
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correlation. All other pairs have an average correlation of
less than 0.8.

Tables A.5 and A.6 show correlation statistics for traces
10a-d, studying the correlation between different routers
during a 4 months period of relatively normal traffic, con-
taining no major anomaly. Table A.5 shows the correla-
tion for TCP traffic and Table A.6 for UDP traffic
respectively. For TCP, again correlation is in general very
low, the only exception being (Sp,Dp) with correlations
between 0.96 and 0.98. Surprisingly, the three most corre-
lated pairs from Table A.3 are not at all correlated in
traces 10a-d, although both tables show statistics for
TCP traffic. This suggests that correlation can vary signif-
icantly with time and between normal or anomalous traf-
fic conditions. For UDP, there is quite a number of pairs
with high maximum correlations. However, it is usually
not stable over all routers, as the minimum correlation
is quite weak for most of them. The only pair with con-
stant strong correlation is again (Sp,Dp). However, while
(Sp,Dp) is strongly correlated in normal traffic (traces
10a-d), it is only moderately correlated in anomalous traf-
fic (traces 1–9).

Our findings suggest that different feature entropies
provide useful and non-correlated information for detect-
ing and classifying anomalies.

Besides a strong correlation of (Sp,Dp) in normal traf-
fic, our results do not confirm the very strong correlation
between src/dst port and address entropies in normal and
anomalous traffic found by Nychis et al. [8], even though
we used the more comprehensive Spearman correlation.
We think these differences can largely be explained by
the way the ai (number of occurrences of item i) are cal-
culated in (A.2). Nychis et al. compute ai by counting the
number of packets containing element i whereas we count
the number of flows in accordance with other studies
[6,2,1,13,3]. Clearly, the number of packets is highly cor-
related with overall traffic volume, whereas a high vol-
ume file transfer is usually summarized in a single flow.
Thus, by computing the ai using packet counts, one intro-
duces a high correlation with traffic volume, and, in turn,
also a pairwise correlation between different feature
entropies.Ta
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Table A.4
Overview of traces used. To indicate the size of traces, we list the 75-
percentile (75p) of flow counts computed in 5-min windows.

ID Description Start Days 75p Fcnt (K)

TCP UDP

1 Blaster worm 08/01/03 22 567 146
2 DNS attack 02/04/04 6 919 793
3 Witty worm 03/16/04 6 1095 304
4 Sasser worm 04/26/04 9 1068 276
5 YouTube outage 08/07/06 13 544 468
6 Telia fiber cut 08/12/07 26 877 921
7 Gant anomaly 10/17/07 6 954 1456
8 YouTube outage II 02/01/08 25 895 1404
9 Reflector DDoS 03/31/08 14 954 1479
10a 4 months (router 1) 02/29/08 120 930 1520
10b ‘‘(router 2)’’ 442 618
10c ‘‘(router 3)’’ 206 82
10d ‘‘(router 4)’’ 547 623
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In summary, we found no strong feature correlation that
is invariant over time, different routers, and normal/anom-
alous traffic conditions. Hence, to build a broad information
basis for modeling both normal and anomalous traffic, we
make use of all these features in our entropy telescope.

A.3. Summary

We revisited the results of Nychis et al. [8] by perform-
ing an extensive correlation analysis of traffic feature

entropies on a large data set containing traffic from a di-
verse set of customers. In contrast to Nychis et al., we did
not find persistent strong correlation between traffic fea-
ture entropies. We believe the differences between our re-
sults and the findings of Nychis et al. can largely be
explained by the way the ai (number of occurrences of ele-
ment i) are calculated in (A.2). Nychis et al. compute ai by
counting the number of packets containing element i
whereas we count the number of flows in accordance with
other studies [6,2,1,13,3]. Clearly, the number of packets is

Table A.5
Correlation of different feature entropies in percent for traces 10a-d (TCP). The table shows the maximum and minimum of 4 different routers for H(X).
Percentages of 80 percent or more are set in bold.

Sp Dp AS Sip Dip Country BytesPP Fsize

max min max min max min max min max min max min max min max min

Fcnt 94 51 93 38 70 46 61 26 45 7 61 19 67 36 43 5
Sp - - 98 96 63 28 65 38 57 36 76 43 26 4 35 7
Dp - - - - 68 19 66 32 58 32 73 34 22 3 37 7
AS - - - - – – 85 62 45 14 29 18 43 9 44 23
Sip – – – – – – – – 64 58 70 42 23 15 27 12
Dip – – – – – – – – – – 93 54 58 7 67 7
Country – – – – – – – – – – – – 54 14 56 22
BytesPP – – – – – – – – – – – – – – 39 5
Fsize – – – – – – – – – – – – – – – –

Table A.6
Correlation of different feature entropies in percent for traces 10a-d (UDP). The table shows the maximum and minimum of 4 different routers for H(X).
Percentages of 80 percent or more are set in bold.

Sp Dp AS Sip Dip Country BytesPP Fsize

max min max min max min max min max min max min max min max min

Fcnt 82 73 80 64 95 63 86 7 84 13 83 14 78 13 86 12
Sp – – 96 93 79 65 79 29 70 27 78 42 64 1 76 6
Dp – – – – 78 49 79 46 72 18 64 39 63 2 74 2
AS – – – – – – 89 11 94 16 84 19 79 22 96 8
Sip – – – – – – – – 89 20 79 0 87 21 91 21
Dip – – – – – – – – – – 92 27 70 14 94 53
Country – – – – – – – – – – – – 47 1 88 8
BytesPP – – – – – – – – – – – – – – 78 4
Fsize – – – – – – – – – – – – – – – –

Table A.7
IP address sets used to customize anomaly models. The ID column corresponds to the anomaly ID in Table 1.

ID Attacker IPs Victim IPs Reflector IPs

1 EXT-IP EXT-IP INT-IPS-P80-LA-{500, 2000}, INT-IPS-P80–5000
2 EXT-IP EXT-IP INT-IPS-HA-{500,2000,5000}, INT-IPS-P25-HA-{500,2000}
3 EXT-IP INT-IP-{LA/HA} EXT-IPS-P25-LA-2000, EXT-IPS-LA-500
4 EXT-IP INT-IP-LA EXT-IPS-P25-HA-500, EXT-IPS-HA-{2000,5000}
5 EXT-IP INT-IP-HA EXT-IPS-P25-HA-500, EXT-IPS-HA-{2000,5000}
6 EXT-IPS-LA-{5000,10000} INT-IP-HA n/a
7 EXT-IPS-LA-{5000,10000} INT-IP-HA n/a
8 EXT-IPS-RAND-2.5MIO INT-IP-HA n/a
9 EXT-IPS-RAND-2.5MIO INT-IPS-RAND-0.5MIO n/a

10 EXT-IPS-RAND-2.5MIO INT-IPS-RAND-0.5MIO n/a
11 INT-IPS-1000 EXT-IPS-20 n/a
12 EXT-IP INT-IP-LA n/a
13 EXT-IP INT-IP-LA-1200 n/a
14 EXT-IP INT-IP-LA-1200 n/a
15 EXT-IPS-LA-2000 INT-IP-LA n/a
16 EXT-IPS-LA-2000 INT-IP-LA-1200 n/a
17 EXT-IPS-LA-2000 INT-IP-LA-1200 n/a
18 INT-IP EXT-IP n/a
19 INT-IP EXT-IPS-2000 n/a
20 EXT-IP INT-IP n/a
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highly correlated with overall traffic volume, whereas a
high volume file transfer is usually summarized in a single
flow. Thus, by computing the ai using packet counts, one
introduces a high correlation with traffic volume, and, in
turn, also a pairwise correlation between different feature
entropies.

Appendix B. Variation of IP address sets

The source and destination IP addresses for one in-
stance of an anomaly of the base anomaly types described
in Table 1 are determined as follows: For each flow, the
source- and destination IP address are drawn from a set
of IP addresses assigned to this anomaly. If multiple sets
are assigned, only one of those set is used for a specific
anomaly instance. But in total, all sets are used the same
number of times. We built the following sets based on an
analysis of the persistence and activity of IP addresses in
our baseline trace:

� IP: A single fixed IP measured from real attacks.
� IP-LA/ IP-HA: An IP with low/high activity.
� IPS: IPs from all activity ranges.
� IPS-HA: IPs with high activity.
� IPS-LA: IPs with low activity.
� IPS-Pxx: IPs with activity on port xx.
� IPS-Pxx-HA: IPs with high activity on port xx.
� IPS-Pxx-LA: IPs with low activity on port xx.
� IPS-RAND: Randomly chosen IPs. They might or might

not be present in the base trace.

An IP address shows low activity, if it occurs on a more
or less regular basis but is not the source/destination of a
significant number of flows (typically less than 10 flows
per protocol and 5 min). An IP address showing high activ-
ity is one that occurs on a regular basis and is the source/
destination of a significant number of flows (typically more
than 100 flows per protocol and 5 min). To indicate the size
of the sets, we append the number of IP addresses to the
set name. Also, the prefixes INT and EXT denote whether
IP addresses were chosen from the internal or external ad-
dress range. For instance, the set INT-IPS-HA-5000 con-
tains 5000 IP addresses randomly chosen from highly
active internal addresses. Likewise, the set EXT-IPS-
RAND-2.5MIO contains 2.5 million random addresses from
the external range. Table A.7 shows which sets were used
for which anomaly type.
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