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This study explores the relatively new concept of acceleration in the stock mar-
kets. It proposes the use of wavelet transform and wavelet transform modulus max-
ima (WTMM) as novel approaches to define acceleration. It further augments the
momentum strategy with newly defined acceleration measures in a try to extract
possible abnormal returns that cannot be explained by pure momentum. Other ap-
proaches in creating a trading strategy from newly defined acceleration measure in-
volve machine learning methods, where the models are trained on top of the features
that together describe momentum and acceleration. Unfortunately machine learn-
ing driven strategies have turned out to be unstable and much less profitable than
the strategies derived from the simple trading rules. However, one of the defined
acceleration measures suggests that acceleration can be used to adjust the entering
point for positions that exhibit momentum-like behavior. Thus an investor can use
acceleration to decide whether he wants to buy a stock during under- or during
over-reaction phase.
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1

Chapter 1

Introduction

1.1 Stock Markets

Stock markets exist already for many centuries and have ever since been an object
of exploration, even more so in the recent times. Stock markets’ primary goal is to
connect the companies that need funding with those institutions and individuals
willing to invest in these companies. Therefore the stock markets bridge the gap
between those in need of capital and those with the excess capital. As the stock
markets evolved and brought the economic prosperity to continually rising number
of participants, the markets have simultaneously attracted the ever growing number
of speculators.

As investors seek to gain profits from the long-term and low-risk investments
(e.g. by investing in well-known, stable multinational company that regularly pays
the dividends), speculators are rather keen on taking higher risk in the hope of cash-
ing out large profits from relatively short time-horizon investments. Even though
speculation is often confused with gambling, it often diverges from it since the spec-
ulators are informed and make educated bets, which are often hedged to protect
from unsustainable losses.

Beside the division into speculators and investors, we can also divide the market
participants based on type of the analysis done prior to investing. Broadly speaking,
there are two types of analysis: (1) fundamental analysis and (2) technical analysis.

Fundamental analysis focuses on the companies themselves. These analysts try
to asses the management of the company, underlying value of the company’s assets
and liabilities, products, markets and potential expansion possibilities of the com-
pany. They do not really care about the daily or monthly movement in the stock
price, nor any other factors related to the stock market. However, they do constantly
compare current stock price with the underlying value in order to make trading de-
cisions.

On the other side there are technical analysts who take a completely different
approach when picking the stocks. They do not go into specific details of each com-
pany, but alternatively observe the stock prices. They often do relative comparison
across different stocks (cross-sectional portfolios) or comparison of the stock returns
over time. So to make it clear, in the technical analysis, the main decision driver is
the stock price, not the company.

Both types of stock analysis are widely used and there have been examples from
both of them with significant past gains. Some of the most famous investors that
have used fundamental stock analysis are Benjamin Graham (see Graham 1959),
Warren Buffet, Peter Lynch and many others. Also there are many successful strate-
gies that employ the technical analysis. Probably the most famous one is the momen-
tum strategy that is often considered to be originating from Jegadeesh and Titman
1993.
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FIGURE 1.1: Rational behind momentum strategy: Different stages of
stock price movements around the change of the fundamental value.

Source: Hurst, Ooi, and Pedersen 2013

1.2 Momentum Strategy

Momentum (or trend) strategy buys the past winners (i.e stocks with the highest re-
turns in the recent past) and sells the losers (i.e. stocks with the lowest past returns).
The strategy then profits on the difference between the two groups of stocks isolating
itself from the market risk. By selling the same value of stocks that it buys, strategy
is self-financing, meaning that the investor does not require initial investment.

Success of the momentum strategy is usually explained by the theory based on
investors’ irrational behavior. People often tend to buy stocks that perform well (see
De Long et al. 1990). In fact that phenomena is so spread that Grinblatt, Titman,
and Wermers 1995 have shown that the vast majority of mutual funds behaves in
a similar manner: by buying past winners and up to some extent by selling the
past losers. The Figure 1.1 from Hurst, Ooi, and Pedersen 2013 nicely illustrates the
different phases in stock prices that are exploited by the momentum strategy.

When a company-specific event occurs (e.g. unexpected high earnings announce-
ment) there is a sudden change of the fundamental value of the company. Accord-
ing to the Efficient Market Hypothesis (EMH) this change should be immediately
reflected in the market price of the stock. However, since investors often exhibit the
irrational behavior, the price changes differently.

First of all, when the sudden change of the stock’s underlying value occurs, the
price moves slower because of the under-reaction of investors. This phenomena
was also mentioned in the original paper by Jegadeesh and Titman 1993 and studied
more by Barberis, Shleifer, and Vishny 1998; Chan, Jagadesh, and Lakonishok 1996;
A. C. Chui, Titman, and Wei 2010. Possible explanations for initial under-reaction to
the value change of the stock were summarized by Pedersen 2015. Under-reaction is
usually related to anchoring (i.e. people tend to hold their view to past information
and do not adjust quickly to new information), disposition effect (selling winners
to realize profits, holding to losers in hope to make back the losses), mechanically
rebalanced portfolios (they usually sell assets that outperformed the rest of the port-
folio)
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Further, when the stock price reaches the underlying value of the company, it
usually continues moving in the same direction, exceeding the real value of the
stock. This is due to the phenomenon of over-reaction. This can be attributed to
investors’ overconfidence and biased self-attribution (see Kent, David, and Avanid-
har 1998 for more details).

Finally there is a reversal in the trend when investors realize that the stock prices
are unrealistically high (or low). This long-run reversal was observed and docu-
mented by DeBondt and Thaler 1985; Jegadeesh and Titman 1993. In general, after
long period (more than 2,3 yeas) of persistent trend, stoscks returns tend to reverse.
Theory about it is developed by Kent, David, and Avanidhar 1998.

As argued by Moskowitz and Grinblatt 1999, most of the profits of the single
stock momentum actually comes from the industry momentum. When the single
stock momentum returns are adjusted for the industry momentum, the profits dis-
appear. Also the industry momentum has higher returns and is robust.

Beside the company and industry specific reasons that fuel the momentum strat-
egy’s profits, the returns can also be explained by the macro-economic factors. In
fact, Tarun and Lakshmanan 2002 find that the momentum profits disappear after
adjusting for the macro-economic variables and hence show that the momentum
returns exhibit cyclical behavior. The cyclic pattern of the strategy return is also
documented by Cooper, Gutierrez, and Hameed 2004, but authors attribute it to the
market cycles rather than macro-economic variables. The authors showed that re-
turns are positive following the up market and the returns are negative following
the down market. Nevertheless, the authors of the both papers show that during
the bull market, momentum exhibits stable positive returns, while during the bear
market and shortly after the returns are insignificant and even negative.

Finally, even though the momentum was proven by all the authors above to have
significant positive returns, momentum has its pitfalls. Barroso and Santa-Clara
2015 and Daniel and Moskowitz 2016 have shown that momentum strategy has a
hard time recovering from the strong market crashes. The authors have shown that
momentum strategy returns are strongly negatively skewed and they proposed two
methods on how to reduce the sudden, strong crashes of the strategy. More on this
will follow in Section 4.3.

1.3 Acceleration Strategy

As a result of well documented, significant overall performance of the momentum
strategy in the past, the strategy has attracted many researchers and investors to
further investigate it which consequently led to many variations and improvements
of the strategy.

One such variation is trading based on the acceleration of stock prices. Accelera-
tion can be defined as the change of trend. In the other words, acceleration describes
the change of direction of the returns rather than the change of prices prices as in mo-
mentum. The terms momentum/trend and acceleration that are used in the finan-
cial world are closely related to, but should not be confused with, the mathematical
terms of slope and curvature. In the stock prices time series p(t), slope is defined as:

dp
dt

= p(t)− p(t− dt) (1.1)
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Furthermore, curvature is defined as:

κ(t) =
d2 p
dt2

(1 + dp
dt

2
)3/2

(1.2)

with

d2 p
dt2 = (p(t)− p(t− dt))− (p(t− dt)− p(t− 2dt))

= p(t− 2dt)− 2p(t− dt) + p(t)
(1.3)

As we can see, curvature is closely related to the second derivative of the prices
time series, which in other words can be described as change of slope, which is
often referred to as momentum or trend in the financial world. Thus we see the
close connection of the acceleration to the second derivative of the prices time series
which will be heavily used through out the thesis. Section 2.2.2 describes in more
detail on how to estimate the second derivative in the prices times series.

1.3.1 Related Work

As the best of my knowledge, acceleration factor is a very recent topic of study and
there have been only very few publications that document the use of the acceleration
factor in the financial markets. Here I will briefly summarize the known publications
about the acceleration factor.

The first publication is by L. Chen, Kadan, and Kose 2012. Here the authors
try to capture the stocks that have strong positive trend followed by recent strong
negative trend and vice versa. They do it by double-sorting the stocks according to
the returns in the most recent 12 months and the returns in the 12 months preceding
it. The portfolio is constructed by going long the stocks with the lowest returns in the
first 12 out of 24 months and the highest returns in the second 12 out of 24 months,
while shortening the stocks with the opposite returns.

With this double-sort authors combine reversal and momentum effect into fresh
momentum, i.e. the stocks that are growing (or dropping) only since recently. The
average return claimed by the authors is 1.45% monthly on the data from 1925 until
2006. When I backtested it on the data from 1985 until May 2018, I got 12.3% annual
return, which means that the strategy’s profitability slightly dropped.

The second paper is by Ardila-Alvarez, Forro, and Didier Sornette 2015. It de-
fines acceleration Γi,t( f ) = ri,t( f )− ri,t− f ( f ) with ri,t( f ) the return of stocks i at time
t over the last f months. The authors examine two possible portfolios. In one, they
define the weight of an asset in the portfolio as a relative Γ of the stocks compared
to the market Γ. In the second strategy, the authors sort the stocks according to the
Γ and go long top decile and short the bottom decile of the stocks.

The Γ strategy outperformed the momentum strategy in one third of all possible
parameter configurations. However, the authors show that Γ strategy is mostly ex-
plained by momentum. On the other side the momentum cannot be explained well
by Γ factor. This leads the authors to conclude that there is a non-linear dependence
between the two which is affected by different market regimes. Also, the existence
of Γ factor confirms the positive feedback loop that influences the price moves in
certain market regimes. This aligns well with various studies on finite-lasting bub-
bles. See for example Corsi and Didier Sornette 2014; Johansen, Ledoit, and Didier
Sornette 2000; Johansen and Didier Sornette 2010 for more details.
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The most recent paper that exploits acceleration for trading is written by L.-W.
Chen, Yu, and Wang 2018. Here the authors define the acceleration simply as the
quadratic term in the quadratic regression fitted to the prices time series. Then they
go long the stocks with the highest past return and the highest quadratic coefficient
from the regression and short the opposite. The authors claim that the good results
come from the fact that acceleration emphasizes overreaction and extrapolative bias
of the investors.

The authors claim that the results obtained with such acceleration factor are not
contributed to the momentum and they claim average monthly return of 0.95% on
the data from 1962 until 2014. However, when I backtested the strategy I obtained
only 4% annual return for the period from 1985 until May 2018. The strategy had
severe losses after the dot-com bubble in 2001 and after the latest financial crises of
2008 where it lost around one half and two thirds of the value respectively. Also the
returns after 2009 were mostly negligible.

In both the last paper and the one by L. Chen, Kadan, and Kose 2012 the mo-
mentum plays an important role since it is always one of the sorting criteria in the
double-sorted portfolios. As a such, acceleration factor is used to augment the exist-
ing momentum strategy.

All of these three papers promote buying the stocks that exhibit positive accel-
eration and selling the stocks with detected negative acceleration. On the opposite
of that are the papers by Xiong and Ibbotson 2015; Xiong, Idzorek, and Ibbotson
2016. Namely, Xiong and Ibbotson 2015 argue that since the acceleration is not sus-
tainable, the stocks with the highest acceleration should be sold, since they exhibit
strong reversal in the coming months. Xiong, Idzorek, and Ibbotson 2016 claim that
high acceleration together with past returns is a robust factor in predicting the future
heavy losses, i.e. negative skewness of the returns.

Beside the scientific publications about the acceleration factor, there is also a tech-
nical indicator called "Bill William’s AC indicator". It is defined as AC = AO −
SMA(AO, 5) with AO = SMA(5) − SMA(34) and SMA is a simple moving av-
erage. Since there was not any literature on this and the numbers in the formula
seemed arbitrarily chosen, I decided to exclude it from further research.

1.3.2 Motivation

In the above mentioned papers there are very different and sometimes adversarial
opinions. This contrast points out to the difficulty in understanding the effect of ac-
celeration factor. According to my understanding, acceleration factor can be used
in two different ways. Firstly, it can be used to better, and potentially earlier, cap-
ture the momentum effect as stated by L.-W. Chen, Yu, and Wang 2018 and Ardila-
Alvarez, Forro, and Didier Sornette 2015. Secondly, it can be used to avoid heavy
losses that usually follow after the prices have accelerated upwards as claimed by
Xiong and Ibbotson 2015; Xiong, Idzorek, and Ibbotson 2016.

This study tries to further examine the effect of acceleration factor in the stock
markets on two important levels.

First of all, this study uses a more sophisticated approach in determining the
acceleration factor. In all the previous studies, the authors have described the accel-
eration factor in very simple ways: either by subtracting less recent returns from the
more recent ones or by regression on the stock prices. In either way, the important
parameters where the lengths of the periods on which the returns were obtained,
or curve was fitted. These lengths were fixed and the results were sensitive to their
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change. Thus choosing the right periods opens the possibility for the selection bias
(more on this in Chapter 4).

The main approach used here is the wavelet transform. It is much more robust
to the length of the formation period, and sometimes (as we shall see in Section 3.4)
the length is not important. Also wavelet transform is more robust to noise as it
analyzes the prices at different scales. More on this follows in the Chapter 2.

The second main part of this study is the use of machine learning to try to au-
tomatically exploit the acceleration factor rather than having a-priori assumptions
about the future behavior of the prices. The main motivation for using machine
learning is its power in exploring vast space of possibilities and adapting to the data.
This is in the contrast with previous publications since the authors had a guess on
the possible price move direction prior to the research.

Since this topic is very new and there are only a few available publications that
have somewhat antagonistic views, there is still lots of space for research. Especially,
there are many potential ways to describe the acceleration itself in the financial mar-
kets and many more ways to exploit it.

1.4 Overview

The thesis is structured in the following way:

• Chapter 2 describes the theoretical aspects of the methods used in this study.
It includes wavelet transforms and singular spectrum analysis.

• Chapter 3 describes part of study related to machine learning. It describes the
whole pipeline - from labeling and feature construction up to metrics used to
evaluate the classification of stocks.

• Chapter 4 describes the portfolio construction and backtester used to evaluate
the proposed trading strategies.

• Chapter 5 shows the results and findings from the study, both from the machine-
learning-related strategies and the strategies defined manually.

• Chapter 6 concludes the study and gives possible directions for the future
work.
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Chapter 2

Estimating Trend and Curvature

Core of this study is exploiting acceleration of the stocks prices time series. The
main question is how to define the acceleration and then how to best estimate it.
This Chapter discusses the methods used in this study to define and estimate both
trend and acceleration in the prices time series. Estimation is done using one of the
two following methods and some variations of each. The first method is the Wavelet
Transform (WT) with the first and the second derivatives of the Gaussian wavelet.
The second method is based on the Singular Spectrum Analysis (SSA) and its multi
scale version.

As we shall see in Chapter 3, wavelet transform was used to map stock prices
time series to a feature space that contained information about the slope and curva-
ture of the prices. Singular Spectrum Analysis was primarily used to improve the
curve fitting on the prices time series as described in Section 5.1.1. It was used to
try to detect the change of regime in stocks prices (see Section 2.3.4), but without
success.

The Chapter starts with the description of the problem of estimating the trend
and acceleration from the financial time series. Later it describes the wavelet trans-
forms, motivation for using it, theory behind it and some implementation issues
that I faced. Further, it describes the singular spectrum analysis approach, its appli-
cation, theory and a multi scale version of it. Finally the Chapter concludes with a
brief description of the connection between the two approaches.

2.1 Problem

According to the strong Efficient Market Hypothesis (see Malkiel 1989), today’s re-
turn is completely independent from the historic returns and is random (i.e. it can-
not be predicted). The stock returns are thus a white noise i.e. r(t) = ε(t), with
ε(t) ∼ N (0, σ2) and hence prices represent Brownian Motion p(t) =

∫ t
0 ε(τ)dτ. Let

p̂(ω) be its Fourier transform. Then

p̂(ω) =
∫ +∞

−∞
dteiωt

∫ t

0
ε(τ)dτ =

1
iω

ε̂(ω) (2.1)

Thus the power spectrum of the Brownian Motion is:

S(ω) = | p̂(ω)|2 =
1
|iω|2 |ε̂(ω)|2 =

1
ω2 ∗ const. (2.2)

This shows that the power of low frequencies in the stock prices is higher than
the power of high frequencies. This means that even in the times when stock prices
move randomly, i.e. their future returns are completely independent of their past
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returns, we may still observe longer up- and downswings of the prices that resemble
the strong acceleration. Thus distinguishing random moves from the accelerated
stock price movement due to some underlying factor is a difficult task. There are
some studies that try to find these ’pockets of predictability’ that appear among the
the random stock price moves. Andersen and D. Sornette 2005 explain these pockets
through the dynamical systems theory and Farmer, Schmidt, and Timmermann 2018
detect these pockets with non-parametric estimators.

Beside this, even in the time windows where the prices are pushed by an under-
lying driver, there is a certain amount of noise. There have been numerous tries to
reduce the noise in the data in order to improve the forecasting. For example Soofi
and Cao 2002 have shown that applying noise reduction methods such as singular
value decomposition (SVD) improves the predictions on the financial data. Also Lisi
and Medio 1997 have used variants of SSA to improve the prediction of the noisy
exchange rate data. Sun and Meinl 2012 have used a wavelet-based approach to
denoise the data before data mining. There is also a very well known and simple
method of smoothing the financial data with moving average. The idea is very simi-
lar to the wavelet transform, but the smoothed signal is rather shifted with the delay
that depends on the moving window size and uses only one, pre-defined, scale.

2.2 Wavelet Transform

As discussed above, the noise and the random up- and downswings in the finan-
cial time series are the major problems we are facing when trying to estimate the
acceleration. One of the methods I used to tackle these problems is the Wavelet
Transform. Wavelet transform allows us to analyze the signal in the time-frequency
(or time-scale) domain. In particular, WT is interesting for analyzing the signal at
different frequencies and scales. When analyzing at different scales, WT could po-
tentially differentiate between random price moves and the persisting, event driven
price moves. Also analyzing the time series at lower frequencies (i.e. larger scales)
mitigates the problem of noise. It will be laboriously used together with Wavelet
Transform Modulus Maxima (see Section 2.2.4) to describe certain features of the
stock prices time series (see Chapters 3 and 5).

Wavelet transform has somewhat similar goal as the Fourier transform (as com-
pared by Strang 1993), but it offers some advantages over it. Instead of sine and
cosine, that are used in Fourier transform, wavelet transform uses some predefined
wavelet base function (often called "mother wavelet"). The base function usually
satisfies some properties and the reason for this is elaborated by S. G. Mallat 1989.
In fact, as mentioned in the book by Stephane Mallat 1999, the wavelet transform is
a special case of a Fourier transform.

Since it does not use sine and cosine, but usually well-localized wavelet base
function, the wavelet transform is also time-localized rather than only frequency
localized. The wavelet transform can be applied on discrete time series (DWT), con-
tinuous time series (CWT) and complex time series. Since I use only the continuous
wavelet transform, I will talk about wavelet transform only in the continues space
from now on.

Wavelet transform is used in many different applications. For example, it has
been used for data and image compression by S. Grgic, Kers, and M. Grgic 1999,
edge detection by S. Mallat and Zhong 1992, noise reduction by Patil 2015, multi-
fractal analysis by Struzik 1999 and Puckovs and Matvejevs 2012, in medicine by
Ranjith, Baby, and Joseph 2003 any many other fields.
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2.2.1 Definition

Here I will define the wavelet transform the same way as by Puckovs and Matve-
jevs 2012, but more details on the wavelet transform can be found in the book by
Stephane Mallat 1999 and C. Chui, Lemm, and Sedigh 1992. Let f (x) be the signal
(in our case the stock prices time series). Let ψ(x) be the wavelet base function with
zero mean and well localized in time.

The wavelet transform Wa,b for given scale a and dilation b is defined as the
convolution of signal f and the wavelet base function ψ. It can be written as:

W(a, b) =
1√
a

∫ +∞

−∞
f (t)ψa,b(t)dt (2.3)

with ψa,b(x) = ψ( x−b
a ). This way the signal is represented in the time-scale do-

main.

2.2.2 Estimating Slope and Curvature

Since the goal of this work is to exploit the trend and acceleration in the stock market
and these two terms in finances are related to mathematical concepts of slope and
curvature (as discussed in Section 1.3, we should choose appropriate wavelet base
functions that would help us estimating the slope and curvature (or at least the 2nd
derivative of a function).

As stated by Lyubushin and M.V. Bolgov 2006, convolving the signal with just a
Gaussian function ψ0, we simply obtain a smoothed signal and by convolving it with
the first derivative of Gaussian (DoG) ψ1 and the second derivative of the Gaussian
(Laplace of Gaussian, LoG, or "Mexican Hat") function ψ2, we obtain the estimate of
the first and second derivative of the signal at the given scale.

Mathematically, we can express it as follows:
Let a scale-dependent smooth signal be:

f (a, b) =
1√
a

∫ +∞

−∞
f (t)ψ0(

t− b
a

)dt (2.4)

Let wavelet transform of the signal f (t) with the i-th derivative of Gaussian be
defined as Wi(a, b). Further, let c1 and c2 be defined as:

c1(a, b) =
W1(a, b)

a
√

a
∫ +∞
−∞ vψ1(v)dv

(2.5)

and

c2(a, b) =
W2(a, b)

a2
√

a
∫ +∞
−∞ v2ψ2(v)dv

(2.6)

Then for an arbitrary signal f (t) and given scale a, it holds:

c1(a, b) =
d f (a, b)

db
c2(a, b) =

d2 f (a, b)
db2 (2.7)

Thus I am using the first two derivatives of the Gaussian function as the wavelet
base functions through the whole rest of the study. The Figure 2.1 illustrates these
functions.
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FIGURE 2.1: Wavelet Base Functions. Left: Gaussian Wavelet. It could
be used for smoothing the time series. Middle: Derivative of Gaus-
sian (DoG) wavelet. It is used to estimate the slope of time series
at various scales and time points. Right: Laplace of Gaussian (LoG)
wavelet, also known as Mexican Hat. It is used to estimate the 2nd
derivative (proportional to the curvature as shown in 1.2) of time se-

ries.

(A) Simulated Stock Prices (B) Wavelet Coefficients Matrix

FIGURE 2.2: Example of Wavelet Coefficients Matrix with entries de-
fined in Equation 2.3

Since they are both orthogonal wavelet functions, it is enough to use only a sub-
sample of scales and dilations to obtain orthonormal basis in L2(R) space (as shown
by Stephane Mallat 1999). Thus I am using the scales a in range [1, 2..., amax] and di-
lations b in range [0, 1..., bmax]. Also, since I am only interested in the limited length
(lets denote it with T) of the stock prices, bmax is equal to T. Choice of amax is ex-
plained in Section 2.2.3, but it shall not exceed T

2 .
Finally, the wavelet coefficients are saved in the matrix WT with amax rows and

bmax columns with WTa,b = W(a, b) (see Equation 2.3). Example of the WT matrix
with Mexican Hat Wavelet is given in Figure 2.2.

2.2.3 Cone of Influence

Cone of Influence (CoI) of a wavelet is defined as the range around the time point
that influences the wavelet transform of wavelet base function ψ. This range that
affects the wavelet transform increases linearly with the scale. This means that close
to the ends (i.e. the oldest and the most recent time points) of the signal the wavelet
transform will return invalid results since the CoI will extend beyond the signal.
This is known as the boundary effect.
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FIGURE 2.3: Cone of Influence. Dashed area describes the time range
that influences the wavelet coefficient at time point v for different
scales. The time range linearly increases with the increase of the scale.

The figure is taken from Stephane Mallat 1999

The exact connection between the scale and the CoI was explained by Stephane
Mallat 1999 and well summarized by Eliasson 2018. Given a wavelet function ψ
with the effective compact support [−C, C] and the time point v, ψ((t− u)/s) has a
compact support in [u− Cs, u + Cs]. This means that CoI of time point t is |u− v| ≤
Cs. The Figure 2.3 visualizes this connection. It was taken from Stephane Mallat
1999.

Knowing that, we can deduce that all the time points v < Cs and v > T − Cs at
scale s of signal with length T are affected by the boundary effect. The next step is
then to find C, i.e. the effective compact support of the wavelet functions.

Addison 2017 states that the appropriate constant should be derived empirically
for each wavelet and Torrence and Compo 1998 says that for the derivative of Gaus-
sian function, the CoI should be defined as sqrt2 ∗ a. But on the other hand, we
should also take into account the implementation, i.e. the width, of the wavelet base
function.

Here I used PyWavelets1 library to run the wavelet transform and in their im-
plementation, all wavelet base functions are defined on the range [−5, 5]. However
the effective support of these wavelet base functions is far smaller. So in order to ac-
curately estimate the effective support of the wavelet base functions, I have slightly
adjusted the PyWavelets library.

The adjustments were the following: I trimmed the base function on the edges
where the |ψ(x)| < 1e− 2. I have further rescaled the function ψ(x) to be defined
only on the range [−1, 1]. The adjusted wavelet base functions DoG and LoG are
shown in Figure 2.4. This way the wavelet base function had an effective compact
support C = 1.

To deal with the boundary effect, one can simply pad the signal either with zeros
(this is implicitly done in the implementation) or with the reflection of the signal.
But since this would mean that I predict the asset prices in the future, I have decided
to simply ignore all the wavelet coefficients that are affected by the boundary effect.

Also one more thing to notice is the choice of amax. After choosing the appropriate
constant C, and ignoring all the values behind the lines defined by C, it does not
make sense to calculate the wavelet coefficient for scales a that do not have any valid

1https://pywavelets.readthedocs.io/en/latest/, Last Accessed on the 5th of July 2018

https://pywavelets.readthedocs.io/en/latest/
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FIGURE 2.4: Adjusted Wavelet Base Functions: these functions are
obtained after adjusting PyWavelets library to make sure that the ef-
fective compact support of the wavelet base functions is in the range

[−1, 1]. Original wavelet base functions are shown in Figure 2.1.

values. Thus amax is picked in such a way so that there is at least one valid value at
scale amax.

2.2.4 Wavelet Transform Modulus Maxima

In this section I am going to explain one of the most important concepts I used dur-
ing this study. It is called Wavelet Transform Modulus Maxima (WTMM). I used it
for describing prices time series with a sequence of features obtained by WTMM
method that were later used by both machine learning strategies (see Chapter 3) and
the other, manually defined strategies (see Chapter 5). The method was developed
by S. Mallat and Hwang 1992 and has shown some promising results.

The idea of WTMM starts from the fact that mapping a function (with wavelet
transform) from time domain to the time-scale domain introduces the redundancies.
Also most of the information in the signal comes from its irregularities as stated by
S. Mallat and Hwang 1992. Thus WTMM tries to reduce the redundancy of wavelet
transform by talking into account only the local maxima. The authors have shown
that the signal can be very well approximated with WTMM method.

WTMM is used in many different applications. In the original paper by S. Mallat
and Hwang 1992 authors used it to remove the noise from 1-D signal and to detect
the edges in the images (represented as 2-D signal). Furthermore WTMM is used
for Holder exponent estimation by Struzik 1999, multi-fractal analysis of signals by
Puckovs and Matvejevs 2012, Bunde, Kropp, and Schellnhuber 2012 shape classifi-
cation by Bruce and Adhami 1999, ECG analysis by Legarreta et al. 2005 and many
more.

WTMM consists of the two main parts. First, the local extrema in the wavelet
coefficient matrix WT have to be found for each scale (i.e. each row in WT matrix).
Further, the local extrema have to be appropriately connected across the scales to
obtain the skeleton. This yields the WTMM skeleton. Of course, all the points in the
skeleton are defined within the valid part of the WT matrix which is described in the
Section 2.2.3.

The example of the WTMM skeleton is shown in Figure 2.5. This is the example
of the wavelet transform of the randomly generated stock prices that are shown in
Figure 2.2. Left column is wavelet transform with DoG wavelet, and the right col-
umn is with the LoG wavelet. Top row shows the wavelet coefficient matrices WT,
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middle row shows the local extrema points and the bottom row shows the skeleton
in which dots of the same color belong to the same tree of ridge lines (left and right
columns are independent even though there are some same colors appearing in both
columns).

2.2.5 Implementation

Conceptually, the WTMM approach is very simple since it consists only of finding
the local extreme points and connecting them. On the other hand, implementing it
was not such an easy task since there were many difficulties and ambiguities that I
have come across during the implementation. Here I will briefly describe my imple-
mentation approach and mention some difficulties I faced.

The algorithm works as follows:

• Apply logarithm on the stock prices

• Normalize the log-prices as in Section 3.1

• Run the wavelet transform on the normalized prices to obtain the WT matrix

• Find local extreme points across the scales with scipy2:

sc ipy . s i g n a l . argrelmax ( row , order =1)

• Build the mask by setting the extrema within the valid time points to 1 and the
rest to 0 as in the middle of Figure 2.5

• Build the skeleton from the mask:.

– Start from the lowest scale and consider each "one" to be start of a new
ridge line

– At each higher scale search for the closest "one" for each ridge line and
concatenate it. Only search within a proximity of 10 within WT. The
number 10 was chosen empirically.

– Stop when all the ridge lines have reached the maximum possible length
or when there are no more "ones" within the proximity. The result will
contain many ridge lines that are overlapping at some scales.

– If there are missing scales in some ridge line, fill it with the linear interpo-
lation.

– Concatenate the ridge lines that are overlapping so that the ridge lines
are represented as tree structures with nodes being the bifurcations. At
the bottom of Figure 2.5 each color visualizes a different tree.

The biggest difficulties I faced here were related to building the WTMM skele-
ton. There are often ridge lines that are broken, i.e. there scales where local extrema
were not found. I fixed this issue by looking in the neighborhood when adding new
points to the ridge line rather then looking at the next scale only. Still, it was not al-
ways clear how big should the neighborhood be. If it is too big, it happens that two
very different ridge lines have a bifurcation, which should not happen. If it is too
small, the ridge lines will go only up to the scale where the first bigger break appears
and this will produce ridge lines that are too short. Selecting an exact neighborhood

2https://www.scipy.org/ Last accessed on the 13th of August 2018

https://www.scipy.org/
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(A) WT matrix (DoG wavelet) (B) WT matrix (LoG wavelet)

(C) WT matrix extrema (DoG) (D) WT matrix extrema (LoG)

(E) WTMM skeleton (DoG) (F) WTMM skeleton (LoG)

FIGURE 2.5: Wavelet Transforms and WTMM of the time series
shown in Figure 2.2 with both 1st derivative of Gaussian (left) and

the 2nd derivative of Gaussian (right) wavelets.
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size is impossible, but I have tried to find the size that empirically seemed reason-
able. I ran WTMM multiple times on the synthetic data (time series generated with
Geometric Brownian Motion) and did a visual check on all the results. It turned out
that the value of 10 was good enough. I have also run the machine learning pipeline
described in Chapter 3 with proximity 15, but the results were worse sine there was
often only one or two ridge lines detected for the signal length of 240.

I have implemented the algorithm in Python and I used wtmm-python3 reposi-
tory as a starting point, but during the course of the project, I have made substantial
changes that resulted in the code that was changed by more than a half as I was
adapting it to the needs of the project. Nevertheless I am thankful to its author for
giving me a good starting point.

2.3 Singular Spectrum Analysis

Another approach I tried used to estimate the trend and acceleration in this study
is based on the Singular Spectrum Analysis (SSA). The main goal of this approach is
to decompose the signal into additive components: (1) complex trend, (2) periodic
components, (3) noise. Summing up all the components brings in the original signal.
Do not confuse it with the spectral analysis related to time-frequency decomposition,
the name originates from the "spectrum of eigenvalues" that are obtained by singular
value decomposition.

SSA is related to the concept of separability. Here we can distinguish among
strong separability, weak separability and approximate separability as discussed by
Golyandina and Shlemov 2015. SSA allows us to separately analyze each of these
components. When analyzing components separately we can get a better picture
of the underlying process and thus draw a conclusion about the data that would
otherwise be invisible.

As stated by Hassani 2007, SSA was independently developed by couple of dif-
ferent researches, but it is usually linked to Broomhead and King 1986. It is applied
in many fields. For example Hassani and Thomakos 2010 and Hassani, Soofi, and
A. A. Zhigljavsky 2010 used it in financial markets. Schoellhamer 2001 used it for
filling in the missing data in time series. But most often it is used to remove the
noise (e.g. Hassani, Zokaei, et al. 2009, Vautard, Yiou, and Michael Ghil 1992) and to
decouple trend from periodic events (e.g. Q. Chen et al. 2013, Alonso, Castillo, and
Pintado 2005).

In this study, SSA method was used in its Multi-Scale version described in Sec-
tion 2.3.3 to try to detect the changes of regime in stock prices (see Section 2.3.4)
and for the purpose of noise reduction for better curve fitting as described in Section
5.1.1. However the methods did not turn out to be successful.

The main advantages of this algorithm are the following: it works well on the
noisy and short data (see Vautard, Yiou, and Michael Ghil 1992), it does not require
any prior assumptions on the data, it works well on the non-stationary signals and
it only has a few parameters and it does not require any expert knowledge to adjust
them. If observed from another perspective, that will be discussed in Section 2.3.3,
it offers even more useful insights.

In a nutshell, the algorithm is Principal Component Analysis (PCA) of the lag-
correlation matrix of the time series. The first principal component (the one with
the highest eigenvalue) is often related to the trend of the time series, while the
others can later be decoupled into periodic signals and noise. The more detailed

3https://github.com/buckie/wtmm-python, Last Accessed on the 5th of July 2018

https://github.com/buckie/wtmm-python


16 Chapter 2. Estimating Trend and Curvature

(A) Original and Reconstructed Signal (B) Eigenvalues

FIGURE 2.6: Example of the signal decomposed with the SSA. Signal
is the AirPassenger Dataset from R.

explanation of the algorithm follows. The example is given in Figure 2.6 on the The
AirPassenger dataset from R (source: Box and Jenkins 1990) which includes monthly
totals of a US airline passengers, from 1949 to 1960. For the starting point of my
implementation of the (MS-)SSA algorithm, I used pySSA4 repository.

2.3.1 Algorithm

The algorithm consist of the following steps: (1) building the trajectory matrix, (2)
decomposing it, (3) grouping and (4) reconstructing the signal by diagonal averag-
ing. I am going to explain every step in more detail as it was described by Golyand-
ina and A. Zhigljavsky 2013 and Hassani, Xu, and A. Zhigljavsky 2011.

Build the Trajectory matrix

Given the time series X = [x1, x2, x3, ..., xN ], we form K lagged vectors of size L such
that K = N − L + 1:

Xi = [xi, xi+1, xi+2, ..., xi+L−1]
T (2.8)

and stack them to obtain the trajectory matrix:

X =


x1 x2 x3 . . . xK
x2 x3 x4 . . . xK+1
x3 x4 x5 . . . xK+2
...

...
...

. . .
...

xL xL+1 xL+2 . . . xN

 (2.9)

Each trajectory matrix uniquely defines a time series. It is also worth noticing
for later that elements on the anti-diagonals are the same which makes the matrix a
Hankel matrix.

Singular Value Decomposition (SVD)

This is the most important step of the SSA. Here we decompose the lag-correlation
matrix C = XXT with the SVD int:

C = UDUT (2.10)

sine C is normal and positive semi-definite. U consists of eigenvectors, often called
empirical orthogonal functions (EOFs), U = [U1, U2, ..., Ud] and D = diag(λ1, λ2...)

4https://github.com/aj-cloete/pySSA Last accessed on the 13th of August 2018

https://github.com/aj-cloete/pySSA
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is a diagonal matrix with eigenvalues sorted such that λ1 > λ2 > ...λd with d =
rank(D).

We further define:
Vi =

1√
λi

XTUi (2.11)

and
Xi =

√
λiUiVT

i (2.12)

Here Xi is called elementary matrix and (λi, Ui, Vi) is called eigentriple.
Sum of all the elementary matrices equals to the original trajectory matrix X:

X =
d

∑
i=1

Xi (2.13)

Grouping

After obtaining the elementary matrices, they should be grouped in disjoint sets.
Most often they are grouped in a way that distinguishes among trend, periodic part
and noise of the signal. This part can be automatically done with clustering of w-
correlation matrix, but since this is not important for this study, I will not go further
into details (see Golyandina and A. Zhigljavsky 2013, Hassani, Heravi, and A. Zhigl-
javsky 2009).

Diagonal Averaging

Diagonal averaging has the goal to convert elementary matrix (or sum over a group
of elementary matrices) to the signal. Since the obtained matrices are not exactly
Hankel, we need a bit more complex way to convert them to signals. The reason why
the matrices are not Hankel is that the signal is not perfectly separable according to
Golyandina and A. Zhigljavsky 2013.

The matrix is converted to the signal by averaging over the anti-diagonals:

yk =


1
k ∑k

m=1 y∗m,k−m+1 1 ≤ k < L∗
1
L∗ ∑L∗

m=1 y∗m,k−m+1 L∗ ≤ k ≤ K∗
1

N−k+1 ∑N−K∗+1
m=k−K∗+1 y∗m,k−m+1 K∗ < k ≤ N

(2.14)

where L∗ = min(L, K), K∗ = max(L, K).

Choosing the Parameters

Even though SSA is simple approach with only a few parameters, there are still
some thinks that are worth mentioning. First parameter that we should pick is L or
embedding dimension. L should never be bigger than a half of the signal length since it
is equivalent to K up to the symmetry. Only the trajectory matrix will be transposed,
but the results will stay the same. Also L should not be too small because we can lose
some information from the time series. In that case L would serve as a smoothing
filter. As we shall see later, the smoothing is not the goal in this study and thus L
choosing L does not change a lot here. I have picked L = N/3 as proposed by Yiou,
Didier Sornette, and Michael Ghil 2000.

Second parameter to choose is the number of principal components (PCs) (i.e.
eigentriples) to use when reconstructing the signal. Usually the signal can be well
approximated with only the first two or three components. It also depends on the
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underlying process that generates the time series. E.g. time series with very com-
plex periodic events might need more than just three components to be well recon-
structed. It is up to the user to understand the process and the goals that should be
achieved with SSA and pick the number accordingly. Here I have picked either only
the first two or the first three components, depending on the objective.

The last and the most important thing to keep in mind is that SSA decomposes
the signal into additive components. Signals that are generated by some additive
process (e.g. x(t) = x1(t) + x2(t)) are easier to decompose than the ones generated
by some multiplicative process like Geometric Brownian Motion (GBM). As mentioned
above, we assume that stock prices time series are generated with GBM and thus
decomposing directly the prices time series would be wrong. In order to adjust for
this, the SSA should be applied on the log-prices.

2.3.2 Extensions of SSA

There are many variations of SSA. Here I will list only couple of them that I found
interesting during the study:

• Multi-Scale SSA (MS-SSA): developed by Yiou, Didier Sornette, and Michael
Ghil 2000. More details in Section 2.3.3

• Multivariate SSA (M-SSA): implemented by Golyandina, Korobeynikov, et al.
2015. It is an extension of SSA for the multi-dimensional time series.

• Sliding SSA: developed by Harmouche et al. 2018. Good when components
appear or vanish with the time. Similar to MS-SSA.

• DerivSSA: multivariate SSA with derivatives of the original time series. Used
when strong separability does not hold, but the weak separability does. It was
developed by Golyandina and Shlemov 2015.

Even though all of them have various advantages over the simple SSA, they are
mostly used for very specific tasks and most of them are thus not very useful in this
study or they are very similar to Multi-Scale SSA that I am using here.

2.3.3 Multi-Scale Singular Spectrum Analysis

This section describes the Multi-Scale SSA (MS-SSA) by Yiou, Didier Sornette, and
Michael Ghil 2000. The method aims to better analyze the input signal in the style
similar to the wavelet transform. It extends the SSA method towards the time-scale
analysis.

In the simple version, SSA has a global scope as it analyzes the whole signal at
once. Here, MS-SSA tries to analyze the signal in the local manner by sliding the
windows of different sizes along the signal. This resembles the wavelet transform
where sliding can be seen as shift parameter b and sliding window size as scale
a. This way MS-SSA analyzes the the signal at different scales and it assumes that
information in th signal is of the local character.

As mentioned by Yiou, Didier Sornette, and Michael Ghil 2000, the embedding
dimension of the local SSA analysis should stay fixed relative to the scale since in
the wavelet transform, the mother wavelet does not change its width. So the authors
have fixed L = W/3 with W the window size.

The comparison between SSA and the wavelet transform was done by M. Ghil
and Taricco 1997 and it was summarized in the Table 2.1 by Yiou, Didier Sornette,
and Michael Ghil 2000 and M. Ghil, Allen, et al. 2002.
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Methods SSA Wavelet Transform

Analyzing function EOF ρk Mother Wavelet ψ
Basic Facts ρk eigenvectors of C ψ chosen a priori
Decomposition ∑M

t′ X(t + t′)ρk(t′)
∫

X(t)ψ( t−b
a )dt

Scale W = αM a
Epoch t b
Average and trend ρ1 ψ(0)

Derivative ρ2 ψ(1)

TABLE 2.1: Analogy between SSA and Wavelet Transform. Table
taken from Yiou, Didier Sornette, and Michael Ghil 2000

The authors argue that the EOFs are the analogs of the wavelet functions pro-
vided that the EOFs adapt to the input signal. They also argue that the EOFs’ oscil-
lations increase with the rank, what is to expect since they are orthogonal. Thus the
first EOF usually has one extreme point, second EOF has two extreme points and so
on. This resembles the Gaussian wavelets where the k-th EOF resembles (k− 1)-th
derivative of Gaussian wavelet.

2.3.4 Shape of EOFs

As mentioned above, Yiou, Didier Sornette, and Michael Ghil 2000 argue that the
EOFs somewhat resemble the Gaussian wavelets. Also in Section 2.2.2 I have ex-
plained how could the first and second derivative of the Gaussian wavelet be used
to estimate the slope and curvature of the signal. Hence I have decided to deeper
examine the shape of the EOFs on the stocks prices data to see how similar they are
with the Gaussian wavelets and if they could be used for slope and curvature esti-
mation. I also wanted to see if the shape of EOFs at different scales and shifts can be
used to recognize the change of regime in the stock prices.

The data I used to run (MS-)SSA on is a random subset of 4000 stock prices picked
from the dataset described in Section 4.2. As mentioned before, the (MS-)SSA was
applied on the log-prices.

Since I am interested only in the slope and curvature, I have analyzed only EOF-2
and EOF-3 (separately). First, to have a more meaningful analysis of EOFs, I wanted
to make sure that there are no EOFs that in principle have the same shape, but dif-
ferent sign. To avoid this, I have multiplied some EOFs with −1 to make sure that
for EOF-2 maximum is always at the right (while the minimum is at the left) and for
EOF-3 that maximum is always between the two minima.

Further, I clustered the EOFs according to their shape both with k-Means and
Gaussian Mixture Model (GMM) algorithms and I have obtained similar results with
both. Here I will present only the results of GMM since k-Means is the special case
of GMM.

For the sake of simplicity I have run EM with 3 clusters in order to get the mean
shape of EOF-2 and EOF-3. I have also tried with more clusters, but the shapes of the
biggest three clusters did not change a lot and the means of the further clusters were
very similar to top three ones. The mean shape of each cluster for both EOF-2 and
EOF-3 is presented in Figure 2.7. We can notice that the means of the two biggest
clusters for EOF-2 (which in total represent 97.5% of the data) do have a shape very
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FIGURE 2.7: Left: means of the 3 clusters obtained by GMM on EOF-2
of the random subset of stock prices. Right: Same but clustering was

done on the EOF-3. Legend shows cluster index and cluster size.

FIGURE 2.8: Log-prices from a randomly picked stock that has a
regime change

similar to the DoG wavelet, but rather trimmed. Also more than 80% of the EOF-3s
belong to the cluster whose mean somewhat resembles the LoG, also trimmed.

Even more, the shapes of these most common EOFs intuitively correspond to the
wavelets that can be used to estimate slope and curvature. Remember the equations
1.1 and 1.3 that define the slope and curvature of the stocks prices. By convolving
the prices time series with EOF-2, we basically subtract the less recent prices from
the most recent ones, which corresponds to the returns. Also EOF-3 subtracts the
most and least recent prices from the 2x prices in middle, which corresponds to the
curvature estimation.

Further I wanted to investigate the shapes of EOFs obtained locally at different
scales, i.e. with MS-SSA. I wanted to see if the change of regime in the stock prices
affects the shapes of EOFs along the time shift and scale. The result on one of the
stocks that changes the regime (see Figure 2.8 for the prices time series) is given in
Figure 2.9. From the figure it becomes obvious that EOFs keep the same shape (up to
one or two outliers) along different scales and shifts even when there is a change in
regime in the prices. I have noticed this pattern on many different stocks and even
more interesting, the EOFs do often change sign along different scales, no matter if
there is a regime change in the stock prices.

At the end I have concluded that the change in regime of the stock prices does
not imply the change of the shapes of local EOFs. Hence there is no need for further



2.3. Singular Spectrum Analysis 21

(A) MS-SSA EOF-2 (B) MS-SSA EOF-3

FIGURE 2.9: EOFs obtained by MS-SSA on the log-prices shown in
Figure 2.8. Left: EOF-2, right: EOF-3. Each row was obtained from
local SSA at different scale. Different lines within each plot are from
different shifts. The similar shape of EOFs for different scales and
time shifts implies that the regime change cannot be detected by the

shape of EOFs.

investigation of the EOFs shapes in MS-SSA.
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Chapter 3

Optimal Strategy

When creating a new trading strategy, there are roughly speaking two approaches.
In the first approach, one tries to use his knowledge and recent findings about the
financial markets. Using this findings one sets the rules for trading, bet sizing etc. In
the other approach, one does not set the trading rules driven by recent findings or
some technical indicators, but rather lets the data-driven algorithm pick the assets
automatically. The second approach thus involves machine learning and usually
includes the following steps:

• Data preprocessing

• Labeling the data

• Splitting the data into train and test set

• Mapping the data to features

• Classifying the data

• Evaluating the model, adjusting the hyper-parameters

This Chapter focuses on the second approach and goes through all of these steps.
For each one of them there is a dedicated section that explains importance, methods
used and particular problems that arose during this study. The last section presents
the classification results and the problem of running standard machine learning al-
gorithms on the financial data.

3.1 Data Normalization

The data used in the classification is stock prices as described in Section 4.2. Each
raw data point is represented as the time series of daily stock close prices during the
formation period which is usually defined to be approximately 6 or 12 months. The
reason why it is not exactly e.g. 12 months is because all the data points must have
the same length and thus its length is fixed to 20 ∗ f , with f number of months.

The stock prices are sampled at the end of each month from the 1st of January
1985 until the 1st of June 2018 from all the stocks which have data available at the
time of sampling and f months prior to that. As we will see in Section 3.3 some time
periods will be omitted, and after omitting them there are around 400000 data points
available.

After collecting the raw data points the next step is the data normalization. Fol-
lowing the explanation about log returns by Morera 2008, I used the log prices. Fur-
thermore I had to normalize the data so that all the time series have the similar scale
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FIGURE 3.1: Two randomly picked stocks with very different returns.
Stock shown in orange has return of around 45% while the stock

drown in blue has return of only 27% for the period of 240 days.

because otherwise they would not be comparable with one another and thus the
classification algorithm may learn the wrong information about the data.

For example: we can’t simply compare a stock that is in range 100− 200 USD
(e.g. Apple stock) with the stock that lies in the range 5− 10 USD like some smaller
companies. See Figure 3.1.

When normalizing the stock log-prices, there are important things to be taken in
the account: these time series are not stationary and we must not lose the slope and
curvature magnitude of the log-prices within the formation period.

Thus I tried a few ways to normalize the prices:

• Standard Scaler: x(t) = x(t)−µ(x)
σ(x) , with µ average stock log-price in the for-

mation period and σ its standard deviation. This method fails because when
normalized with the variance of the stock log-price, the trend gets suppressed
since all the data points will have the same variance of the stock prices (do not
confuse it with the volatility of the stock that is computed from the variance
over the returns). Example is given in Figure 3.2a.

• Min-max Scaler: x(t) = x(t)−mint(x)
maxt(x)−mint(x) . It has the same effect as the standard

scaler but it scales the prices to be in the fixed range [0, 1].

• Factor scaler: one option is x(t) = x(t)
µ . This preserves the magnitude of the

trend in the formation period, and it also reduces the scale of the prices so they
can be compared with each other. This gives similar results as dividing it by
the norm, which was proposed by Hassani, Soofi, and A. A. Zhigljavsky 2010.
Example is given in Figure 3.2b.

3.2 Labeling

Labeling the data is often considered to be a straight-forward task, but in the case of
financial markets, it gets a bit more complicated. For example, the simplest approach
would be to split the stocks in two classes based on the returns during the holding
period h with label(i) = sign(rh

i ).
This simple approach is not very suitable because it would induce a very noisy

split among the stocks where 0.1% of returns over the coming month(s) could change
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(A) Stocks scaled with standard scaler (B) Stocks scaled with factor scaler

FIGURE 3.2: Example of different normalization methods. Standard
scaler fails to preserve the relative magnitude of the stock returns,
while the factor scaler keeps the distinction between the stocks with

higher returns and those with lower returns.

the class. Since the stocks prices are considered to be a Brownian motion most of the
time, the split would be too noisy for the classification.

Other possibility is to split the stocks in three classes: −1: strong negative re-
turns, 0: small absolute returns and +1: strong positive returns. The next thing is
to decide on the threshold τ i.e. what return is considered strong. Choosing the
threshold τ to be constant, we can label the stocks as following:

yi =


−1 if rh

i < −τ

0 if − τ ≤ rh
i ≤ τ

+1 if rh
i > τ

(3.1)

Even this approach is not very suitable because the volatility of the stocks changes
over time. Thus in the periods of calm market, many stocks will be classified as
0 even though their movement is predictable. Also in the very uncertain periods,
many stocks will be classified as −1 or +1 without any predictive power over them.
Thus the threshold should be dynamic as proposed by M. d. Prado 2018. It should
depend on the current volatility of the stock. This also allows to better classify both
the stocks that have historically had very low volatility as well as the stocks with
higher historical volatility.

Thus the following simple-adaptive labeling is used:

yi =


−1 if rh

i < −σM
i

0 if − σM
i ≤ rh

i ≤ σM
i

+1 if rh
i > σM

i

(3.2)

with σM
i the monthly volatility of the stock i over the formation period.

Beside this, M. d. Prado 2018 introduces another idea for labeling that he calls
triple-barrier method. It basically implicitly introduces stop-loss and take-profit
orders by labeling the data according to the threshold line (either upper or lower)
that prices reach first. I have also tried this method, but the results were mostly
worse than with the simple dynamic-threshold-approach from above, except in one
case that I will explain in Chapter 5.

The last important thing to note about the class labeling is that the classes were
unbalanced, i.e. there were always more positive samples than negative ones. This
is expected since the average stock returns are grater than zero. In order to correct
for this, I have also tried to set the lower threshold in equation 3.2 to −σM

i /2. The
results were worse and thus I discarded this change in the coming sections.
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3.3 Train/Test split

In order to evaluate the model and to tune the hyper parameters of the model, one
must split the data between the train and test data. It is often done with the k-fold
Cross Validation (CV). CV also assumes that the data is drawn independently from
identical distribution (IID) which is often the case, but not in the financial markets.
Thus the standard CV fails here.

The train and test sets have to be split in such a way that there is no leakage
between the two. This means that the information that is contained in the training
set should not be contained in the test set and vice versa. To prevent this, there are
two things that should be done as proposed by M. d. Prado 2018:

• Purging: remove all the points in the training set whose labels overlap in time
with labels of test set

• Embargoing: remove points from training set that come just before the point(s)
in test set

Hence I have split the data in the following 5 sets:

1. Jan 1985 - Dec 1990

2. Jan 1992 - Dec 1997

3. Jan 1999 - Dec 2004

4. Jan 2006 - Dec 2011

5. Jan 2013 - May 2018

In this split there is always one year skipped between the sets which is also at least
as long as the formation time. One year is also substantially bigger than the length
of the holding period, used for labeling.

3.4 Features

The most challenging task in machine learning part of the study was to represent the
stock prices time series in the feature space that would allow the classifier to exploit
the information about slope and curvature in the stocks prices. The features had
to represent the slope and curvature in some way, as this was the main goal of the
study: to find out if these two elements have potential predictive power.

To create the features, I have started from the wavelet transforms (WT) and MS-
SSA. As explained in Section 2.2.2 wavelet transform can be used to estimate the
slope and curvature. Similar applies to MS-SSA, it can approximate the slope and
curvature as explained in Section 2.3.

Furthermore, I have tried to extract the information from WT and MS-SSA and
represent it in a meaningful way, so that each feature can be interpreted and ex-
plained. As we shall see in the following subsections, running different methods for
estimating the feature importance is much more useful if we can actually understand
what each feature represents. This is also a check of our feature mapping and testing
of our hypothesis around the feature construction. If we can explain the more impor-
tant features, this confirms that we have constructed the features the right way. If the
features importance is not as expected, we shall question our idea behind choosing
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these features. Finally, interpreting the features also helps to understand the model
better.

Also it is important that number of features stays relatively small in order to
reduce the over-fitting as much as possible. For example, in the cases where I used
WT, I have always used WTMM (see Section 2.2.4) to reduce the number of potential
features.

I have tried many different ways to represent the data in feature space, but here
I will present only some of them for which I thought would make the most sense.
Each subsection corresponds to one approach of obtaining the features and they are
conceptually different. Also, each of these approaches would yield a set of features
from which I tried to find a subset of the most important ones.

3.4.1 WTMM Vectorized Approach

First set of features is a straight-forward representation of time-scale plane from the
wavelet transform. After running the wavelet transform, I extracted the local ex-
treme points with WTMM to reduce the redundancy. Later I vectorized the time-
scale matrix and concatenated the vectors obtained with WT with DoG and LoG.

Before the vectorization, I wanted to reduce the noise in the data by sub-sampling
the time points and the scales. I have sub-sampled the time by splitting time axis into
ranges of 10 time points each and then taking the value with the highest amplitude
as the representative for the each time range. Further I have sub-sampled the scales
by taking only the values at the scales 1.3i, ∀i s.t. amin ≤ 1.3i ≤ amax. This reduced
the redundancy across the scales, but still did not remove lots of information.

When formation period is 12 months, the signal length is 240 (since I counted
that each month has 20 trading days). The number of scales is thus 240/2 = 120.
After sub-sampling there were 24 ∗ 16 ∗ 2 = 768 features in total.

From these 768 features many will be removed in the pre-processing step. First
of all using the variance threshold, the features that are always 0 (usually the ones
outside of CoI) are removed. Further, to reduce the noise from the prediction, I have
further removed the features that correspond to the scales below 20. The reason for
this is that the time span that influences these features is very small and hence not
something that holds on the long run.

This set of features did not yield good results. Not only that the classification
results with random forests were poor, but these features failed all the feature im-
portance tests. I first tried the Mean Decrease Impurity (MDI) (see Louppe et al. 2013
for more details) and it showed that features at very low scales were much more
important than the ones at the higher scales, which is counter-intuitive since these
features have only local impact. This implies that random forests learned mostly
noise. Mean Decrease in Accuracy (MDA) with negative log loss scoring was also
very low, and often negative. Beside these two, I also tested the features with Mul-
tiSURF Relief method by Urbanowicz et al. 2018, but the findings were comparable
to the previous ones.

Because of above mentioned finding about the features, this set of features was
excluded from the further study.

3.4.2 WTMM Bifurcations Approach

In this approach I tried to represent the ridge lines on the time-scale plane in a more
structured way than just vectorizing the plane. As we will see in Section 3.6 this way
of representing the prices time series gave the best results.
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Since the number of ridge lines is not fixed and varies for different time series,
I could not represent all of them, but I chose the ones I though might be the most
important ones. These include:

• The ridge line that stretches up to the largest scale. This ridge line contains the
slope or curvature that persists over the longest period of time in the formation
time series. In the plots it called top ridge line.

• The first ridge line right from the top one that stretches to the longest scale.
In figures it is called snd. Rational for using this ridge line is similar as for
top. Also since it is at the right of the top, it includes more recent stock price
information.

• The right-most ridge line. Here called rm. Reason for using this ridge line is
that it contains the information about the most recent slope or curvature in the
prices.

Similar as with the number of ridge lines, the branching and size of each ridge
line is not constant. It varies a lot. Thus I could not have vectorized the ridge lines (it
would also be too noisy), but I had to chose a small and constant number of features
per ridge line. Here I tried to describe the height (in scale) of the tree, width (in time)
and the branching. To describe these properties, I have used the following list of
features for each of the above mentioned ridge lines:

• l left-most position of the ridge line at the lowest scale.

• spread distance (in time) between the left- and the right-most positions at the
lowest scale

• strahler Strahler number. It describes the branching of the tree. It was used
by Arenas et al. 2004 to analyze social networks, by Ehrenfeucht, Rozenberg,
and Vermeir 1978 to analyze L-systems and by many others.

• a the maximum scale the ridge line reaches.

• b the time shift at the maximum scale

• wt wavelet transform coefficient at the largest scale

• n_h number of branches at scale a/2

• n_qr number of branches at scale a/4

• p_pos percentage of positive wavelet transform coefficients at the whole ridge
line

The Figure 3.3 shows an example of WTMM bifurcations and some of the fea-
tures that are extracted from it. To these features I have also added the return during
the formation time (called f_ret). With 2 different WTs (with DoG and LoG), 3 dif-
ferent ridge lines and 9 different features per ridge line, total number of features is
2 ∗ 3 ∗ 9 + 1 = 55.

Among all these features, the least useful ones were those of the second biggest
ridge line. Also, in more than 10% of the training data, they were the same as rm
features, which implied that on the right side of the top ridge line there was only
one ridge line left. Thus I have decided to remove snd features.
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FIGURE 3.3: Example of features used to represent WTMM bifurca-
tions. Green ridge line represents the longest (here named top) ridge
line, the red one is the second longest (here called snd) and the purple
ridge line is the right-most ridge line. On the example of the second
longest ridge line, l, spread, a, b and wt featurs are shown. The rest

of the features could not be visualized.

The MDI and MDA of the rest of the features uncovered some interesting proper-
ties of the features. First of all, both MDI and MDA have confirmed that past return
is among the most important features which is expected, since momentum strategies
are undoubtedly profitable. MDI and MDA have further shown that wavelet coeffi-
cients at the maximum scale a of ridge lines are also the most important ones along
with the past returns.

These finding are encouraging since they show that wavelet coefficients at high
scales potentially have predictive power over the future returns. The importance of
all features is presented in Figures 3.4 and 3.5.

3.4.3 Past Returns

Beside the methods involving wavelet transform, I tried a different, more simple
method. Here I used the recent returns spanning from different number of months as
features. More precisely, I used 12 features, r(1), r(2), ..., r(12) with r(i) = p(t)

p(t−i) − 1
and p(t) the stock price at the end of formation period and p(t− i) stock price at the
end of the i-th month before the end of formation period.

The inspiration for this set of features came from Ardila-Alvarez, Forro, and Di-
dier Sornette 2015, since the Γ factor defined there is dependent on a specific set of
the features r(i) defined here.

I have analyzed the MDI and MDA of the features. MDI did not show any
specifics of the features, which can be explained by the fact that the features are
highly correlated, so the importance gets spread over multiple features, which is
called substitution effect. On the other hand, MDA was able to show the importance
of three features: r(1), r(5), r(12). When I ran RFs with only these three features, the
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FIGURE 3.4: Feature importance for WTMM Bifurcations feature set:
Mean Decrease Impurity.

FIGURE 3.5: Feature importance for WTMM Bifurcations feature set:
Mean Decrease Accuracy with negative log-loss.
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FIGURE 3.6: Feature importance for "past returns" feature set. Left:
Mean Decrease Impurity. Right: Mean Decrease Accuracy with nega-

tive log-loss.

results stayed the same. So I have removed the other 9 features in order to reduce
the amount of potential noise. Feature importance is plotted in Figure 3.6).

3.5 Classifying Stocks

After all the above steps have been done, the model can now be trained on one of
the specified feature sets. For this classification task I chose to use two different
classifiers: random forests (RF) and multi-layer perceptron (MLP).

3.5.1 Random Forests

The reason why I picked RFs is that it is commonly used on the financial markets
data (see M. d. Prado 2018, Kumar and Thenmozhi 2010, Patel et al. 2015, Giovanni,
Giorgia, and Paola 2010) and it is easy to understand (in contrast to neural networks,
see for example Szegedy et al. 2014) and it offers several good features.

Random forest is an ensemble method. It combines many decision trees that are
known for over-fitting, over subsets of bootstrapped data and bootstrapped set of
features. This way RFs reduce over-fitting by reducing the variance of the estimator.
Also the RF can return the classification probability defined as fraction of trees that
voted for the selected class rather than just a label. This will later be used in the
backtests to pick the stocks with higher classification probability.

One of the main advantages of the RF is that it is easy to set its hyper-parameters.
Number of trees in the forest is one of the most important parameters and because
each tree is trained on a different bootstrapped subset of the data with replacement,
it is basically very difficult to over-fit the RF by increasing the number of trees. Thus
I have picked the number of estimators in my experiments to be 2000.

Further important parameters are max_features (as named in scikit-learn1) and
split criterion. max_features is the number of features considered when building a
single tree. As stated by M. d. Prado 2018, this number should be as low as possible
in order to force distinction between the trees. Also the parameter should not exceed
the

√
n_ f eatures as stated by the inventor of random forests Breiman 2001. Thus I

tried values of 1 and 4 (there was not visible difference between 4 and
√

n_ f eatures).
Criterion for split could be either entropy or gini coefficient. I have tried to run RF
with both of these and there was not any notable difference between the two, so I
picked the entropy.

Finally, we must account for the imbalance of the data. Around 60% of the data
in any sub-set belongs to the class with strong positive returns. Adjusting for this
is done by setting parameter class_weight='balanced_subsample', which weights

1http://www.scikit-learn.org/, Last accessed on the 28th of August

http://www.scikit-learn.org/
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the bootstrapped samples inversely proportionally to the number of instances per
class in the bootstrapped subset.

3.5.2 Multi-Layer Perceptron

Multi-layer perceptron (MLP), a simple version of neural network is a powerful clas-
sification/regression tool and has gained lots of popularity recently, especially in
computer vision, natural language understanding and time series forecasting (see
LeCun, Bengio, and Hinton 2015 and references therein). Beside the popularity of
the neural networks, I chose to use it because of the complex dependences among
the features which may be poorly captured by the RFs with small number of boot-
strapped features per tree. However, unlike in the publications mentioned above,
the neural network used here is much more simple and consists only of the fully-
connected layers.

I have tried it on the WTMM bifurcation features and on the past returns features
as these two sets of features seemed to best represent the data.

In the case where I used WTMM bifurcations features the input layer had 37 neu-
rons and two hidden layers with 500 neurons each. In the case where the features
were the past returns, the input had only 3 neurons and two hidden layers with 250
neurons each. Beside these two configurations, I have tried various other configu-
rations, with up to 4 hidden layers. However, the networks with more layers did
not perform well since the number of input features was very small and the size of
the training data was also not too big. Also changing the number of neurons signif-
icantly in the first two layers worsen the results. Each layer includes bias variable
and uses ReLU activation function (see Glorot, Bordes, and Bengio 2011) except the
output layer, that uses softmax activation function in order to return the probabili-
ties rather than hard encoded labels. Same as with the RFs, these probabilities will
be used in the backtests to pick stocks with higher predicted probability.

To reduce the potential over-fitting of the MLP, I have introduced a dropout in
each hidden layer with probability of keeping the neuron at 50% in the larger net-
work and 90% in the smaller network. These values were picked by empirically
testing values from 50%− 100%. An additional regularizer I used is L2 regularizer
with coefficient α = 1e− 5 added to both hidden layers. The reason why I used the
regularization so heavily is the big amount of noise in the financial data and thus I
wanted to prevent the MLP from learning the noise.

The network was trained with ADAM optimizer (see Kingma and Ba 2015s) on
the batches of size 64 with maximum of 200 epochs, that was more than enough
since the early stopping was, on average, activated at around 100− 150th epoch.

3.6 Classification Results

This section presents the results of classifying the stocks according to the labeling
defined in Section 3.2. Since the combination of possible labeling, feature sets, clas-
sifiers, and its hyper-parameters spans a huge set of possible outcomes, I will only
present some of the results that are worth mentioning, neglecting those that were
well below acceptable.

Before proceeding with the results, it is important to mention what the good re-
sults should look like. Since the data are the stocks prices and the goal is forecasting
the future direction of prices, having any results that are constantly outperforming
the random algorithm are considered good. In other words, as soon as the model
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can pick stocks better than random generator, it can make money. So achieving more
than 50% accuracy, but constantly is already good. Also, it is worth noting that the
score in the range of 80% or 90% (that is usually seen in other applications) is most
probably impossible since it would mean that the model is highly confident money
machine. Also the models that are better than random are also in contrast with the
Efficient Market Hypothesis and could be explained by various psychological phe-
nomena of market participants (see Section 1.2 for more details).

As explained in Section 3.3, the data is split into 5 subsets. Thus the tables pre-
sented here will include separate results for each of the subsets. For each subset, the
tables will include precision and recall for each class as well as weighted average
over both classes. The metrics are defined as follows for the positive class, but the
analog applies for the negative class:

• Precision: TP
TP+FP is a fraction of points that are classified correctly among all

the points that are classified as a positive class. The main aim in this study is
to achieve precision greater than 0.5 for each class because that means that the
predictions of a model are most of the time correct.

• Recall: TP
TP+FN is the fraction of correctly classified samples of the positive class.

High recall means that most training points got classified correctly. This metric
is a bit less important than the precision, but should anyway be considered
together with the precision.

with TP the number of true-positive samples. FP false-positives, TN true nega-
tives and FN false negative samples.

3.6.1 Precision-Recall Trade-off

When adjusting the hyper-parameters of a model, there is a trade-off between pre-
cision and recall. Usually, when one metric increases, the other one drops. Here the
goal is to aim for higher precision while keeping recall in a reasonable range. The
reason for this is the following: aiming for higher precision means that the model
predicts the samples more accurately, but less often. Having higher recall means
that the model predicts a class more often, but less accurately.

Since the biggest issue here was achieving > 50% precision for the negative class,
I will illustrate the precision-recall trade-off on the example of the negative class.
High precision and small recall means that the model predicted the negative class
rarely, but when it did, it was more accurate. This meant that stocks were shorted
less often, but when shorted, their future returns were more likely to be negative.

On the other hand, if the precision was low, but the recall was high, that meant
that more stocks would be shorted, but also they were more likely to go up in the
future. Since there is no rule that states that portfolio had to short stocks every time,
it was more reasonable to aim for higher precision.

3.6.2 Results

WTMM Bifurcations with RF

Good set of features turned out to be the one described in Section 3.4.2. Structuring
the information about the ridge lines turned out to be far more informative then
just stacking the WTMM coefficients in the vector. This section shows the results
obtained with this set of features and with random forest classifier.
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The results were obtained by varying two things: (1) max_features parameter
of RF by setting it to either 1 or 4 and (2) by changing the labeling to either simple-
adaptive or triple-barrier labeling.

First I compared the the two values of max_features with simple-adaptive label-
ing. The results are presented in Table 3.1 for max_features=1 and in Table 3.2 for
max_features=4. We can notice that weighted average precision in both cases was
> 50% which is already an encouraging start. However, on some data sets (namely
2 and 3) the precision of the negative class was worse than random.

Since the precision of negative class obtained with max_features=1 outran the
other setting for every data set, I have decided too keep max_features=1 when using
simple-adaptive labeling in the backtests later.

Test Set Class Precision Recall

13-18
-1 0.51 0.033
+1 0.597 0.987

Avg: 0.562 0.594

06-11
-1 0.754 0.006
+1 0.53 0.998

Avg: 0.635 0.53

99-04
-1 0.437 0.031
+1 0.605 0.974

Avg: 0.538 0.60

92-97
-1 0.363 0.031
+1 0.649 0.97

Avg: 0.548 0.64

85-90
-1 0.649 0.026
+1 0.598 0.990

Avg: 0.619 0.60

TABLE 3.1: Classification results with WTMM bifurcations features
for different data sets. Simple labeling and RF with max_ f eatures = 1.

Avg denotes the weighted average of the two classes.

Furthermore I have tested the triple-barrier labeling on this set of features and
empirically found that max_features should be 4 since the results with max_features=1

were much worse. The Table 3.3 shows the results. Here we can again see that the
weighed average precision is above 50%. Also test sets 1 and 5 have precision of
negative class less than 50%, but test sets 2 and 3 have higher precision this time.
The important difference here is that the recall of negative class is much higher: it
is in the range of 7% to 17% compared to 1% to 3% for simple-adaptive labeling.
This implies more robust results and a potential increase in the precision if higher
confidence threshold is used in the backtests. Thus, this setting will also be subject
to backtest later.

WTMM Bifurcations with MLP

Beside random forest, I have tried classifying the data with WTMM bifurcation fea-
tures with multi-layer perceptron. The results are presented in Table 3.4. Even
though average weighted precision was always above 50%, the precision of the neg-
ative class was worse than with the random forest. On the other hand, the recall was
much higher indicating that the model predicted negative class much more often
than with random forests. Since the recall was overall good relative to the random
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Test Set Class Precision Recall

13-18
-1 0.472 0.06
+1 0.598 0.955

Avg: 0.546 0.592

06-11
-1 0.729 0.025
+1 0.533 0.992

Avg: 0.625 0.536

99-04
-1 0.415 0.059
+1 0.605 0.945

Avg: 0.530 0.594

92-97
-1 0.351 0.056
+1 0.648 0.943

Avg: 0.544 0.63

85-90
-1 0.57 0.049
+1 0.60 0.975

Avg: 0.588 0.60

TABLE 3.2: Classification results with WTMM bifurcations features,
simple labeling and RF with max_ f eatures = 4. Avg denotes the

weighted average of the two classes.

Test Set Class Precision Recall

13-18
-1 0.471 0.178
+1 0.559 0.839

Avg: 0.52 0.544

06-11
-1 0.574 0.072
+1 0.505 0.947

Avg: 0.539 0.509

99-04
-1 0.475 0.137
+1 0.555 0.877

Avg: 0.519 0.545

92-97
-1 0.403 0.16
+1 0.599 0.841

Avg: 0.521 0.568

85-90
-1 0.49 0.111
+1 0.587 0.917

Avg: 0.546 0.78

TABLE 3.3: Classification results from WTMM bifurcations features,
triple-barrier labeling and RF with max_ f eatures = 4. Avg denotes

the weighted average of the two classes.

forest, and the precision robustly increased with the increase of the predicted prob-
ability for every data set (which was not the case with random forest), I think it can
still yield good results. Hence I decided to include MLP in the backtest.

Past Returns

When using the past returns as features, the best results were obtained with multi
layer perceptron as a classifier and simple labeling. The results are presented in
Table 3.5. The average weighed precision is fairly above 50% and the recall for the
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Test Set Class Precision Recall

13-18
-1 0.402 0.726
+1 0.584 0.263

Avg: 0.51 0.451

06-11
-1 0.472 0.827
+1 0.533 0.176

Avg: 0.505 0.483

99-04
-1 0.384 0.16
+1 0.601 0.831

Avg: 0.515 0.565

92-97
-1 0.33 0.243
+1 0.64 0.737

Avg: 0.534 0.563

85-90
-1 0.416 0.755
+1 0.622 0.275

Avg: 0.538 0.470

TABLE 3.4: Classification results from WTMM bifurcations features,
multi-layer perceptron with two hidden layers of width 500, L − 2

regularizer α = 1e− 5 and simple labeling.

negative class is much higher this time. Also, when considering only the samples
with higher predicted probability (i.e. > 53%), the precision constantly increases,
especially for subsets from year 2006 until today and reaches precision of above 50%
for both classes. So overall the MLP has outperformed the RFs with a big margin for
this type of features. Also this type of features seemed to have the best precision-
recall trade-off from all the other feature sets. These results will also be backtested.

Test Set Class Precision Recall

13-18
-1 0.409 0.256
+1 0.595 0.747

Avg: 0.519 0.548

06-11
-1 0.48 0.63
+1 0.543 0.391

Avg: 0.513 0.504

99-04
-1 0.408 0.364
+1 0.607 0.646

Avg: 0.526 0.534

92-97
-1 0.364 0.654
+1 0.67 0.38

Avg: 0.525 0.477

85-90
-1 0.424 0.173
+1 0.598 0.840

Avg: 0.527 0.569

TABLE 3.5: Classification results with past returns features with sim-
ple labeling and MLP with two hidden layers of width 500.
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Summary

Overall the classification precision is above 50% for all presented results. The prob-
lems are, however, the often low recall for the negative class and precision smaller
than 50% for the negative class. The especially low negative class precision can be
noted in the test set for years 1992-1997 and sometimes for the test sets 1985-1990 and
1999-2004. However, in most of the cases the precision increases when only points
with higher returned probability are considered (that is very useful when backtest-
ing).

Low recall with random forests implies that the strategy would barely ever short
the stocks. Also if precision of the negative class is below 50% it means that, when it
does short, it would be better off without shorting. This can lead to strategy returns
that are similar to the market returns but with negative abnormal return. How-
ever, if the precision increases robustly with the increase of probability threshold,
the strategy could be able to trade with profit on both sides of trades. Finally, the
real assessment of these results will follow after the backtest.
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Chapter 4

Backtesting

4.1 Introduction

This study tries to discover if it is possible to exploit the acceleration factor in the
stock markets. As in any other study that does research on the trading strategies,
backtesting is the most important tool.

It is essential to understand what is the purpose of the backtesting and even
more, it is essential to understand what is not the purpose of backtesting. Back-
testing is a tool to run a trading strategy on the past data to see what would have
happened if we invested in the history. Under the assumption that the backtest was
without any errors (which most often is not the case, see Bailey and M. L. d. Prado
2014 and Harvey, Liu, and Zhu 2016), the results still do not guarantee anything for
the future.

But there are some good sides of backtesting as argued by M. d. Prado 2018. For
example, it can help us discard bad strategies. It can also help when deciding on
bet sizing. Further, it can be used as a scenario tester. For example we can backtest
the strategy on some historic (but also synthetic) extreme scenario to see how would
the strategy behave in such environment. Anyway we should be very careful when
backtesting and this is the reason why I devoted the whole chapter to this topic.

This chapter starts with the information on the data that I used for backtest-
ing. Further it describes how I construct the portfolio of stocks independently of the
trading strategy. Finally it goes deeper in the main concepts of backtesting and the
hidden dangers of it.

4.2 Data

Since the backtesting is extensively dependent on the data, it is of utmost importance
to have clean and reliable data. For that reason I have used the database of stock
prices that was maintained and cleaned by Chair of Entrepreneurial Risks at ETH
Zurich. The data was provided by Thomson Reuters1.

The timespan of that data I used here was from the 1st of January 1985 until the
1st of June 2018. For this time span I had access to around 23000 stocks that have
lived in some time point within the timespan. These are the American stocks traded
at NYSE, AMEX and Nasdaq stock exchanges.

On these 23000 stocks I have applied the following filters:

• Use the stocks whose closing prices are at least $5 at the trading time.

• Remove the stocks whose daily trading volume is below 100000 during the
formation period.

1www.thomsonreuters.com Last accessed on the 13th of August 2018

www.thomsonreuters.com
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• Remove the stocks that existed only for less than 300 trading days.

After removing the stocks according to these filters, I was left with 14402 stocks
that I could have traded at some point in time. Applying these filters is common in
the academia (e.g. L.-W. Chen, Yu, and Wang 2018 and Ardila-Alvarez, Forro, and
Didier Sornette 2015) as it adjusts for the extreme cases and survivorship bias.

4.3 Portfolio Constructions

This section shall give an overview on the portfolio construction and its main fea-
tures. The similar concept was used by L.-W. Chen, Yu, and Wang 2018 and it orig-
inates from Jegadeesh and Titman 1993. The following paragraphs describe some
important features of the portfolio.

4.3.1 Main Features

First of all, this is a fully-invested zero-investment portfolio. It means that for every
dollar invested, portfolio buys $1 of stocks and sells $1 of stocks. This means that the
cash proceedings from short selling are not used for long positions, which is more
conservative than in the practice.

Second important thing is the concept of overlapping sub-portfolios. If the holding
time is h months, this means that there are h sub-portfolios, and each month only
one of them is re-weighted. The daily portfolio return is then equal to the average of
the daily returns over h sub-portfolios. The overlapping sub-portfolios increase the
power of the tests as mentioned by Jegadeesh and Titman 2001.

Third the portfolio supports both equal weights and market weighted weights.
Equal weights are defined as follows: the weight of a long asset is wl = 1/Nl and
the weight of a short asset is ws = −1/Ns for Nl and Ns being the number of long
and number of short assets respectively. Market weighted portfolio means that the
weight of an asset is proportional to the market cap of the stock at the beginning of
the holding period.

Finally it is important to mention that the transaction costs are not included in
the backtesting (in the case when portfolio is re-weighted only on the monthly basis).
This might be seen as a drawback of the backtest, but it keeps the implementation
simple and it is in most cases not included in the academic papers (for example it
was neither included in L.-W. Chen, Yu, and Wang 2018 nor L. Chen, Kadan, and
Kose 2012). Also, since the re-weighting is done only once a month on the part of
the stocks and only on the liquid stocks, the transaction costs should not be too big
(it is bit above 1% according to Moskowitz 2000).

It is important to note that this portfolio construction is independent of trading
strategy. This is also the way I implemented my portfolio backtester. Any strategy
can be plugged in it to get the results. The strategy would only have to return the
list of long and short positions (and optionally weights scale) at the given date from
the given investment universe. The portfolio backtester would then compute the
historic performance of the strategy.

4.3.2 Additional Features

In addition to the portfolio described above I have added the three more features to
try to control the risk. These are (1) constraint on the maximum absolute weight of
an asset, (2) stop-loss and take profit orders and (3) weights scaling. However, these
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risk measures will be included only in certain backtests. More on this follows in the
Chapter 5.

Max Weight

In the case of a market-weighted portfolio when only a small number of stocks are
traded, it happens often that some stock are over-weighted leading to the very low
number of effective stocks in the portfolio. For example, three, four stocks with the
biggest market cap can have total weight of above 90%. This reduces the diversifi-
cation of the portfolio. For that reason I have introduced a constrain that maximum
absolute weight should not exceed 10%.

Stop-Loss

Further measure to control the risk in the portfolio is to prevent the extreme losses.
Here the positions that make losses above certain threshold (usually related to the
past volatility of the stock) are immediately closed. This prevents excessive losses,
but it also limits the profits. The reason why I included take profit here is related
to the labeling of the data (see Section 3.2). If this feature is used, depends on the
labeling used in machine learning strategies and will be specified in Chapter 5.

Dynamic Weights Scaling

Since this study focuses on momentum strategy and its augmented version with
acceleration factor, there are substantial losses at certain periods. I.e. the returns
of momentum strategies are negatively skewed and have periods of prolonged and
excessive losses that are not suitable for many investors. This effect was studied
in many papers, but Barroso and Santa-Clara 2015 and Daniel and Moskowitz 2016
were among the first ones to propose the solutions to mitigate these losses. Since
the results were remarkably good, I have introduced this concept in my portfolio
backtester. In short, the authors try to aim for the target risk of the strategy by
scaling the expected returns. This is mathematically expressed as:

wscaled =
σtarget

σ̂
wunscaled (4.1)

where wunscaled, wscaled are the weights of the strategy before and after scaling,
σtarget is the target volatility which I have set to 12% annualized rate, same as by
Barroso and Santa-Clara 2015, and σ̂ is the volatility of the unscaled portfolio. This
type of dynamic scaling will be refered to as CVOL (constant volatility) later.

Beside rescaling the weights to achieve the desired volatility, I have also tried a
few variations that take the past returns into account. These variations are inspired
by Black 1976 and his leverage effect that states that stocks with negative recent returns
have increase in volatility. Thus, maybe by using the (negative) past returns, one can
react quicker than with the past volatility.

The basis of all variations is the monthly target return of rtarget = 1% and average
monthly return over the past m months:

rpast(t) = 21 ∗
21∗m
∑
i=1

r(t− i)
21 ∗m

(4.2)

Further, the portfolio weights are dynamically rescaled in one of the following
ways:



42 Chapter 4. Backtesting

FIGURE 4.1: Three different functions used in the dynamic weights
rescaling of the portfolio based on the past return of the strategy.

• ReLU: wscaled(t) = relu( rpast(t)
rtarget

)wunscaled(t) with relu being a modification of
rectified linear unit used as activation function in multi-layer perceptron (see
Section 3.5.2. The difference to standard relu is that here I have introduced an
upper limit of 1.4. Reason for choosing exactly this limit is so that it aligns with
the logistic function presented below.

• ReLU Extended: it is similar as ReLU, but the function is symmetric with re-
spect to the origin. This type of dynamic weights scaling did not seem to have
improved strategy returns, so these results will me mostly omitted.

• Logistic: wscaled(t) = f ( rpast(t)
rtarget

)wunscaled(t) with f (x) = c ∗ 1
1+exp(−x) a scaled

logistic function. Constant c = 1
0.713 is introduced so that f (1) ≈ 1. This

induces an upper limit of ≈ 1.4 to the portfolio leverage.

The different functions presented here have different effect on (de-)leverage of
the portfolio. ReLU and logistic functions have both upper and lower limit. In prac-
tice this means that portfolio is never leveraged by more than 40% which is in a
reasonable range. Similar applies to the extended ReLU, but since it has negative
values, it means that in the extreme cases, portfolio is inverted, i.e. what used to be
long positions now becomes short positions and vice versa. It is also worth men-
tioning that CVOL has no upper limit on the leverage, but in the most extreme cases
it does not exceed 250%. Figure 4.1 shows the three functions used for dynamic
weights rescaling based on the past returns.

However, during the backtesting of various strategies that will be presented in
Chapter 5, where I tried all of the above mentioned rescaling methods, only CVOL
was successful, while the others (i.e. ReLU, ReLU Extended and Logistic) did not im-
prove cumulative PnL of any strategy. For this reason, only CVOL will be presented
in Chapter 5.
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4.4 Dangers of Backtesting

4.4.1 Common Fallacies

As mentioned in the introduction of this chapter, backtesting is an essential tool
in the financial research, but it comes with many traps and dangers that are often
neglected by the researchers. In this section, I will give a brief overview of some of
the most common fallacies in backtesting as listed by M. d. Prado 2018, Luo et al.
2014. For each one of them I will also explain if and how do I deal with it, and if not,
why not. These include, but are not limited to:

1. Survivorship bias Limiting the universe of assets to only those assets that are
currently present. This neglects all the assets that did exist during the historic
time over which we run a backtest, but are not part of the universe anymore.
For example ignoring stocks that went bankrupt and were thus delisted is a
big error since the backtest results are then biased towards the stocks that have
survived all the crises. I avoid this bias since the data set I used also includes
the stocks that have existed at least in some point in time within the used times-
pan.

2. Lookahead bias Using data that was not available at that specific time point.
In my specific case, one example would be to calculate wavelet transform at
bigger scales up to the time point T. This would then include the information
on the signal beyond time point T. I avoid this bias as explained in Section
2.2.3.

3. Storytelling Justifying the results rather than trying to achieve the results based
on the previously made assumptions on causality. Since I am trying to exploit
previously defined factor of acceleration, I believe that I did not fall into this
trap.

4. Data mining and data snooping Using the test data in the training step. I
have implemented both purging and embargoing in order to make sure that
there are no overlaps between the train and test data. See Section 3.3 for more
details.

5. Transaction costs Ignoring or miscalculating the transaction costs. These costs
include explicit costs and implicit costs. Explicit costs are the fixed trading costs
set by the exchange and the broker. Implicit costs can only be derived when
trading book is available. For more details see Keim and Madhavan 2018. Since
the complexity of calculating the transaction costs and the time limits for this
study, I did not include these costs explicitly, but as mentioned above, they
should not take a big part of the profits.

6. Outliers Getting the positive results based on the few outliers stocks whose
performance might have never happened. Since I use more than 14000 stocks
and base my decision on at least 1000 to 2000 stocks every time, I believe that
the performance is not notably influenced by any single stock.

7. Shorting Shorting in the practice is not as straight forward as it seems. Here I
only change the sign of the weight of the short position in the portfolio, but in
the real life, there are few questions that arise when short-selling the assets. For
example, if the given stock is available for borrowing, what is the borrowing
cost etc. All these factors may change in different regimes of the stock market.
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Here I neglect these factors because of the complexity. But, since I also neglect
the interest rate on the cash proceedings from shorting the stocks, I can safely
assume that this interest would cover the borrowing cost.

Beside these there are many other things that are mostly ignored in the research
world. As stated by Sarfati 2015, these include ignoring some risks, failing to un-
derstand hidden exposures, some practical aspect (e.g. order executions). All these
things are very important in the practice but are mostly ignored in the academic
world. For example, none of the papers mentioned in the Section 1.3.1 avoid all of
the pitfalls mentions here.

In my opinion, the academic world neglects many aspects in backtests for two
main reasons. First, some errors are hard to adjust for and would tremendously
increase the complexity of research. For example, calculating the exact transaction
costs or knowing the availability of stocks for shorting.

Second, the authors of the academic papers often find it hard to "hold-out" (as
stated by Bailey, Borwein, et al. 2014) from good results. They have run many trials
and of course at some point they came to good conclusions (Bailey, Borwein, et al.
2014 also state that it does not take many trials to come across a profitable outcome)
and see it as an opportunity to publish it.

4.4.2 Backtesting After the Research

As stated by M. d. Prado 2018:

“Backtesting while researching is like drinking and driving. Do not re-
search under the influence of a backtest.“

Following on this rule, I have decided to leave the backtesting for the very end
of the research. Backtesting while still researching leads to the selection bias. Selec-
tion bias means that when a backtest is repeated many times with different (hyper-)
parameters and features there must be at least one backtest with a good outcome.
Of course we will than choose that set of features and parameters that showed the
best results. However, since the backtest was run many times on the same data, sta-
tistically, good results could have appeared even though there was not underlaying
rational. Thus there is a high chance that it was a false discovery as most of the times
(see Bailey and M. L. d. Prado 2014, Bailey, Borwein, et al. 2014).

False discovery means that the results that seem good on the historic data will
probably be very different in the future. So to avoid a false discovery as much as
possible, there are a few things I tried to do before launching the first backtest. These
things are:

• Find good features: both from wavelet transform and singular spectrum anal-
ysis

• Split the data to reduce over-fitting as much as possible

• Understand the classifier and all the hyper parameters

• Understand different classification metrics

• Choose the best set of features and hyper-parameters

Finally when I found a sound set of features and hyper-parameters that I under-
stood and that I could explain, I ran the first backtest. I am aware that because of
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this approach I have probably missed the opportunity to show some better results,
but I am sure that the results I obtained this way have more significance, and the
probability that the results are false positive is substantially lower (as explained by
M. d. Prado 2018).
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Chapter 5

Results

This Chapter presents the results of the backtests of both machine learning strate-
gies defined in Chapter 3 and couple of manually defined strategies that will be
explained here.

Most of the strategies will employ CVOL dynamic weights rescaling method de-
scribed in Section 4.3. In the cases where the dynamic rescaling is used, the results
will be compared to momentum which is also dynamically rescaled. When the dy-
namic rescaling is applied on the daily basis, the transaction costs of 0.2% of the
weight change will be deducted every day.

For every strategy here I will present average annual return and Sharpe ratio
defined as ratio of average annual return over the average annual volatility. Fur-
thermore to better understand the source of the returns, the famous 3-Factor model
by Fama and French 1993 is used. Also since the acceleration will be used as an
augmented version of a momentum strategy, it is useful to see how much does the
momentum itself contribute to the overall returns of acceleration strategies. Thus,
I have augmented the 3-factor model with and additional risk factor: momentum.
As stated above, in the cases when dynamic weights rescaling is used, the momen-
tum factor is adjusted accordingly. Finally the augmented 4-factor model looks as
follows:

R(t) = α + βmkt(Rmkt(t)− R f (t)) + βSMBRSMB(t)

+ βHMLRHML(t) + βmomentumRmomentum(t)
(5.1)

with R(t) monthly strategy return at month t, (Rmkt(t) − R f (t)) market excess
return over a risk free rate at month t, RSMB(t) return of small minus big companies
at month t, RHML return of high book-to-market ratio minus low book-to-market
ratio stocks and Rmomentum(t) the returns of a momentum strategy at month t. Data
source of the Rmkt, R f , RSMB and RHML is the web site of Kenneth R. French1 since
it is the most commonly used data source for various factor models in academic
papers. The momentum return Rmomentums is obtained by running the momentum
strategy on the data used in this study (see Section 4.2) with formation and holding
period equal to those of the strategy being analyzed. If CVOL dynamic rescaling is
used, the same is applied on the momentum strategy when regressed.

Unless stated differently, R(t) is obtained from a zero-investment portfolio, with
market-weighted positions without stop-loss and take-profit triggers. The maxi-
mum weight per position cannot exceed ±10%. In the case when the number of
positions of the same sign n < 10, the cash is not fully invested, but only n ∗ 10% of
it is invested. This is sometimes the case in the machine learning driven strategies
where the number of short positions is very small.

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, Last ac-
cessed on the 13th of July 2018

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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5.1 Manually Defined Strategies

As mentioned at the very beginning, in Section 1.3.2, one of the main contributions of
this study, besides the machine learning driven strategy, is the novel approach used
to estimate the trend and acceleration. Thus it is very interesting to see how these
methods can be exploited in the search for stocks that exhibit notable acceleration in
prices.

Defining a simple strategy often turns out to be more profitable than machine
learning driven investing. This can possibly be caused by couple of factors. Firstly
it is easier to understand where the potential profits may be coming from. Secondly,
according to Efficient Market Hypothesis prices are moving in a random walk and
occasional pockets of predictability may be difficult for complex machine learning
models to distinguish in vast space of randomness. Hence it is definitely worth
trying out manually described trading strategies.

Each of the following subsections is devoted to one possible strategy. It includes
the explanation of the strategy, motivation for using it and the results obtain with it.
The strategies are based on the wavelet transforms and singular spectrum analysis
described in Chapter 2.

5.1.1 Acceleration with SSA and Quadratic Curve Fitting

First strategy I tried used Singular Spectrum Analysis (SSA) described in Section
2.3 to improve quadratic curve fitting described by L.-W. Chen, Yu, and Wang 2018.
This approach was inspired by Hassani, Zokaei, et al. 2009 who showed that growth
curve fitting is better if the signal is first smoothed with the SSA.

However the results obtained this way were not an improvement over the results
obtained by the original strategy by L.-W. Chen, Yu, and Wang 2018. The strategy I
tried was the same as the original one, except that the quadratic curve was fitted on
the signal that was reconstructed from the first two EOFs of SSA. Since no improve-
ment was achieved I omitted the results for this approach.

5.1.2 Acceleration with WTMM

Strategy

Inspired by the theory explained in Section 2.2.2 and importance of the WTMM fea-
tures described in Section 3.4.2, I have decided to further investigate the possible use
of wavelet transform coefficient at the largest scale of the longest and of the right-
most ridge line. Thus I have created a new trading strategy.

This trading strategy works as follows: first sort the stocks according to the
return in the past 12 months and split the stocks into three equally sized groups:
losers, neutral and winners. Further, sort the stocks according to (sign(wt) ∗ a, wt)
with a the largest scale of the ridge line and wt the wavelet coefficient at the largest
scale at that ridge line. Split the stocks according to this sort in quantiles where Q1
are the stocks with lowest (sign(wt) ∗ a, wt) and Q5 are the stocks with the highest
(sign(wt) ∗ a, wt). Finally buy the winners in Q1 and sell the losers in Q5.

What ridge line is picked in the second sort depends on the version of the strat-
egy: it is either the longest ridge line or the right-most ridge line. The longest ridge
line captures the stocks whose change in returns is spread over the longest time-
span in the formation period. The right-most ridge line in combination with past
returns captures the stocks whose positive (or negative) returns are concentrated
mostly around the recent time periods.
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FIGURE 5.1: Cumulative PnL of the "Acceleration with WTMM" strat-
egy for holding period f = 12 months, gap periods s = [0, 1] months

and holding periods h = [1, 3, 6] months.

Results for the right-most ridge line were slightly, but constantly (i.e. for different
formation and holding periods) better, which can be explained by the fact that more
recent returns are a better predictor of the future returns. Thus I will present only
the results from the right-most ridge line.

Finally I have tried the strategy that traded stocks only based on the second sort,
i.e. not considering the past returns. However, such strategy turned out to be un-
profitable. This is aligned with the study by L.-W. Chen, Yu, and Wang 2018 and L.
Chen, Kadan, and Kose 2012 where the authors also built their acceleration strategy
on top the momentum. This confirms that momentum is a necessary ingredient of
acceleration factor.

Results

Figure 5.1 shows the cumulative Profit and Loss (PnL) of the strategy for the for-
mation periods of 12 months, 0 and 1 gap months and 1,3 and 6 holding months.
Unlike some other strategies, this one is not sensitive to the gap month except in the
case when holding period is only 1 month. Also, similar to the others (e.g. L.-W.
Chen, Yu, and Wang 2018), holding period of 6 months yields the best results. These
finding are presented in Table 5.1.

Now, since the strategy exhibits the similar behavior as described by Barroso and
Santa-Clara 2015, I tried the CVOL and ReLU for dynamic weight rescaling with a
look-back of 6 months (results with look-back of 3 and 8 months were very similar).
The ReLU had a strong negative impact on strategy’s return and was thus omitted,
but the CVOL clearly outperformed the simple strategy (i.e. without dynamic rescal-
ing). The results are in Figure 5.2. The statistics of the CVOL version of the strategy
are presented in Table 5.2.

The results seem positive, especially for the longer holding period. For holding
period of 6 months, average annual return is 7.3%, while for the holding period of
1 month, average return drops to 5.8%. The results obtained with 6 months hold-
ing period are comparable to the plain momentum strategy (both with and without
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FIGURE 5.2: Cumulative PnL of the "Acceleration with WTMM"
strategy: comparison of the simp (no dynamical rescaling) and cvol
(CVOL rescaling) version after deducting the daily transaction costs.

h
f 1 3 6

12
Return 2.6% 2.9% 3.1%
Sharpe 0.19 0.24 0.28

(A) s = 0

h
f 1 3 6

12
Return 1.6% 2.6% 3.2%
Sharpe 0.11 0.22 0.30

(B) s = 1

TABLE 5.1: Average annual return and Sharpe ratio of the "Accelera-
tion with WTMM" strategy without dynamic weights rescaling. Re-
turns are shown for 12 formation months f , gap months s and holding
months h. Smaller formation periods were not tested since the right-
most WTMM ridge line depends only on the most recent stock prices,

meaning that the results would stay the same.

h
f 1 3 6

12
Return 5.8% 7% 7.3%
Sharpe 0.47 0.56 0.59

(A) s = 0

h
f 1 3 6

12
Return 3.6% 5.9% 7.1%
Sharpe 0.29 0.47 0.57

(B) s = 1

TABLE 5.2: Average annual return and Sharpe ratio of the "Acceler-
ation with WTMM" strategy with CVOL dynamic weights rescaling.
Returns are shown for 12 formation months f , gap months s and hold-

ing months h.
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Strategy Simple CVOL
α (in %) 0.04 (0.69, 49.2%) 0.7 (0.9, 36.7%)
βmarket 0.03 (2.18, 3%) 0.02 (0.97, 33.1%)
βmomentum 0.63 (52.0, 0%) 0.81 (45.5, 0%)

TABLE 5.3: 4-Factor Model of the manual strategy with WTMM right-
most ridge line for f = 12, s = 0 and h = 6 months. Numbers are
obtained over monthly returns. Numbers in brackets are t-statistics:

(t-value, p-value).

CVOL rescaling, see Tables A.1 and A.2). This can be explained by the possible abil-
ity of the strategy to detect an early stage of momentum, i.e. stocks that are yet to
have a substantial growth.

Although positive, the results should further be investigated for the source of
profits. Hence I regressed the returns with the 4-factor model explained above. The
results of the regression are shown in Table 5.3. Unfortunately, the regression shows
that most of the profits come from the momentum factor with only a very small
abnormal return present in the CVOL version of the strategy.

In summary, the best set of parameters yields 7.3% average annual return and
a Sharpe ratio of 0.59, which is better than backtested results of strategy by L.-W.
Chen, Yu, and Wang 2018 with the same set of parameters (including CVOL) that
yields average return of 5.2% and Sharpe ratio of 0.42. Even though WTMM fea-
tures showed to better define acceleration factor than fitting a quadratic curve, such
a factor did not seem to have a significant abnormal return over a more simple mo-
mentum strategy.

5.1.3 Acceleration with Exponential Weights

Strategy

The strategy described in this section is inspired by the influence of the right-most
ridge line, meaning that more recent wavelet coefficients can be better exploited.
Thus here I have tried to used the most recent information available from the wavelet
transform.

In contrast to the previosly defined strategy, here I did not use WTMM approach,
but I convolved the prices time series with normalized EOF-3 mean of the biggest
cluster discussed in Section 2.3.4. This is very similar to wavelet transform, but with
analyzing a signal at a single scale. The EOF-3 has length one third of the formation
time series length. I.e. for the formation time of 6 months, EOF-3 has length of
40 and for the formation time of 12 moths, EOF-3 has length of 80. The reason for
choosing the EOFs of these length comes from the study by Yiou, Didier Sornette,
and Michael Ghil 2000 where the authors used the embedding dimension of 1/3 of
the signal length which then generates EOFs of size 1/3 of the signal length.

The strategy was then defined as follows. First sort the stocks according to the
past return and split them into quantiles: Q1 are the loser and Q5 are the winners.
Further sort Q1 and Q5 according to the acceleration factor, which is here character-
ized as the exponential average of the most recent valid convolutions. The reason
why I chose the exponential average of the most-recent valid convolutions is that
it gives most of the weight to the most-recent 2nd derivative estimations and far
less weight do the less recent 2nd derivative estimations. The exponential weights
are presented in Figure 5.3. The stocks are further split into quantiles according to
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FIGURE 5.3: Exponential weights assigned to valid convolutions of
the 240 days stock price time series.

the above defined acceleration factor: Q1 are the decelerated stocks and Q5 are the
accelerated stocks. Finally the strategy buys the accelerated winners and sells the
decelerated losers.

Results

The results were obtained for the formation periods of 6 and 12 months, with 0
or 1 month gap and 1,3 and 6 months of holding period. The Table 5.4 shows the
statistics and Figure 5.4 plots the cumulative PnL for different formation, gap and
holding periods without any dynamic weights rescaling. Here we can notice one
interesting fact: this strategy works much better for the short holing period. Also, it
is more sensitive to the gap period than the "Acceleration with WTMM" strategy.

FIGURE 5.4: Cumulative PnL of the "Acceleration with Exponential
Weights" strategy for holding period f = [6, 12] months, gap peri-
ods s = [0, 1] months and holding periods h = [1, 3, 6] months. No

dynamic rescaling was used here.

Further, since this strategy, as well as the previous one, showed similar behavior
during and after big market crashes, I decided to dynamically rescale it with CVOL.



5.1. Manually Defined Strategies 53

h
f 1 3 6

6
Return 6% 6.7% 5.4%
Sharpe 0.28 0.41 0.37

12
Return 10.3% 7.8% 4.8%
Sharpe 0.45 0.40 0.28

(A) s = 0

h
f 1 3 6

6
Return 7.2% 5.1% 6%
Sharpe 0.34 0.31 0.42

12
Return 12.5% 4.6% 4%
Sharpe 0.57 0.24 0.25

(B) s = 1

TABLE 5.4: Average annual return and Sharpe ratio of the Acceler-
ation with Exponential Weighing strategy without dynamic weights
rescaling. Returns are shown for different formation months f , gap

months s and holding months h.

In this case, the CVOL did not improve the average annual return of the strategy,
but it did improve the Sharpe ratio and reduced the draw-downs. These results are
presented in Table 5.5.

h
f 1 3 6

6
Return 4.9% 6.9% 7.1%
Sharpe 0.40 0.57 0.58

12
Return 8.9% 8% 6.2%
Sharpe 0.72 0.64 0.50

(A) s = 0

h
f 1 3 6

6
Return 6.4% 5.6% 7.4%
Sharpe 0.53 0.46 0.61

12
Return 9.76% 5.5% 5%
Sharpe 0.79 0.44 0.40

(B) s = 1

TABLE 5.5: Average annual return and Sharpe ratio of the Accel-
eration with Exponential Weighing strategy with CVOL dynamic
weights rescaling. Returns are shown for different formation months

f , gap months s and holding months h.

The strategy clearly outperforms the plain momentum strategy (see Appendix
A for plain momentum returns). It has superior annual return and risk-adjusted
annual return in most of the configurations, i.e. for different formation, gap and
holding periods as well as with and without rescaling. Especially interesting are
the superior returns and risk-adjusted returns of the strategy without CVOL rescal-
ing, meaning that the proposed acceleration strategy carries much less risk than the
plain momentum one. The only case where the proposed acceleration strategy per-
forms a bit worse is for 12 months formation period, 6 months holding period and
with CVOL rescaling. However, as we shall see later, these cases are explained by
acceleration phenomena which provides other benefits to the strategy.

Finally, I have regressed the strategy’s returns with the 4-factor model to see how
much of the returns can be explained by the pure momentum strategy. The results

Strategy Simple CVOL
α (in %) 0.80 (3.5, 0.1%) 0.45 (3.34, 0.1%)
βmarket -0.13 (-2.46, 1.5%) -0.03 (-1.14, 25.3%)
βmomentum 0.96 (23.7, 0%) 0.64 (19.6, 0%)

TABLE 5.6: 4-Factor Model for EW strategy f=12 s=1 h=1. Num-
bers are obtained over monthly returns. Numbers in brackets are

t-statistics: (t-value, p-value).
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are presented in Table 5.6. Although the βmomentum is very high for both simple and
CVOL versions, the α is pretty high as well, meaning that big part of the returns
comes from the acceleration factor defined in the strategy.

With all the results presented about this strategy, probably the most interesting
is the drop of the strategy’s returns with the increase of the holding period. One
possible explanation can be that this strategy captures high profits that come at the
latest stage of overreaction (as described in Section 1.2). Thus these profits are not
sustainable on the long run as described by Xiong and Ibbotson 2015; Xiong, Idzorek,
and Ibbotson 2016 who claim that accelerated stocks tend to exhibit reversal in the
future.

Nevertheless the strategy shows high annual returns (both with and without
dynamic rescaling) and high abnormal returns (i.e. α), meaning that here defined
acceleration factor has a significant positive impact.

Since the strategy showed very positive results, I have decided to run a robust-
ness test in which I have changed the scale at which the convolutions were obtained.
This time instead of convolving the signal with a filter which is 1/3 the length of
the formation period, I tried the convolution filter of size α = 1/4 and α = 1/6 of
the formation period length. The results are presented in Tables B.1 and B.2. The
average annual profit did drop a bit, but the strategy was still very profitable. What
seems even more interesting, is that with the decrease of the filter length, longer
holding periods become more profitable than short holding periods. For example,
when filter of length α = 1/6 is used, the most profitable strategy is the one with
f = 12, s = 0, h = 3 with 9.0% annual return. Even steeper increase in profits with
longer holding periods can be noticed with formation period of 6 month, where the
profits change from 3.2% with h = 1 up to 8.3% with h = 6.

The robustness test shows that the strategy is profitable with convolutions at dif-
ferent scales. The scale affects the amount of holding months needed to extract most
of the future profit from the stocks. This implies that the scale controls at what stage
of the momentum is the position entered (see Figure 1.1 for different stages of mo-
mentum). Entering the positions based on the acceleration at larger scales is most
profitable in the close future, while entering the positions based on the estimated
acceleration the lower scales and lower formation periods needs longer holding pe-
riods for comparable returns.

Possible explanation is the following. If, for example, strategy goes long (or
short) stocks with the highest (or lowest) 6 months lagged return and the highest
acceleration (deceleration) that is mostly based on the last month price moves, this
implies that most of the past 6 months returns actually come from the last month,
while the very little positive (or negative) returns were present 5 months prior to the
last month. It then seems that the strategy captured the very beginning of the under-
reaction and thus there is still a long positive (or negative) trend to come. Thus the
position will be most profitable if held for longer time.

On the other hand, if, for example, the strategy goes long (or short) the stock that
has the highest (or lowest) return in the past 12 months and the highest acceleration
(or deceleration) that is based on approximately the last 4 months, this can poten-
tially mean that stock is accelerating for quite some time already and it is probably
due to over-reaction. It means that such accelerating trend may last only for short
amount of time before the inflated price gets corrected. Hence such positions shall
not be held for long periods of time.

This explanation is supported by plots in Appendix B. There I have plotted the
normalized stock prices (so that each stock has price 1 at the start of formation pe-
riod) of the mean around different percentiles of stocks that are bought (or sold). For
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example top 5% shows the average normalized prices for the stocks whose buying
(or selling) signal is around strongest 5% among all the long (or short) positions in
the strategy. As expected, the stocks with 12 months holding period and filter size
1/3 of formation period (see Figures B.1, B.2) have the strongest returns in same
direction just after the end of formation period and then they either stall or reverse
(sometimes in case of accelerated losers). Further supporting evidence are the stocks
picked based on 6 months holding period and filter size of 1/4 of formation period
(see Figures B.3, B.4) whose returns continue (for accelerated winners) strongly in
the same direction for the next 7 months or prices stall (for some accelerated losers)
for the net 7 months. The above explanation is more evident for the accelerated
winners than for accelerated loser stocks.

Thus, acceleration effect can be seen as a parameter on when to enter the position
in a momentum based strategy. As shown above, this improves the results by adding
additional abnormal returns to pure momentum strategy.

5.2 Machine Learning Strategies

This section is devoted to analyzing the results of the strategies driven by the ma-
chine learning models. In total there are 4 strategies that I have decided to backtest.
Strategies defer in the feature space, classifier and type of labeling used. Overall,
the machine learning strategies did not yield satisfying results and have underper-
formed the manually designed strategies. This can be explained by the Efficient
Market Hypothesis and rarely appearing pockets of predictability, but more discus-
sion follows in the coming sections.

Strategies

Since the stock picking is done by the models, there are not much details here. Both
random forests and multi-layer perceptron return the probability of a stock going up
or down. This probability is used to sort the stocks and split in quantiles. Strategy
buys the stocks in the top quantile, but only those whose probability exceeds a cer-
tain threshold τ. It sells the stocks in the bottom quantile, but only if the probability
of belonging to class 1 is bellow threshold 1− τ. The threshold τ for random forest
classifier is 51% and for MLP is 53%. These values were picked empirically while
validating the test results of a classifier.

If the triple-barrier labeling was used, portfolio trades with stop-loss and take-
profit orders. Same as in the training step, the formation period f = 12, gap s = 0
and holding period h = 1.

Also because the data is split into 5 subsets (as described in Section 3.3) with 1
year gap in between to avoid snooping bias, each of these subsets is backtested with
a different model, trained on the rest of the data. Thus there is 1 year gap between
each of the datasets where PnL appears to be 0, but actually there is no information
for theses periods.

In practice, only the most recent subset (from 2013) shows the realistic results,
since for all the other subsets, the data from the future was used in the training step.
However, backtesting on the other subsets is a good practice as described by M. d.
Prado 2018 since in these cases backtest rather serves as a scenario tester to show
how would the model behave during different market regimes. For this reason, I
will present the results from all the subsets.

The four strategies that I have backtested are:

sornette
Highlight
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FIGURE 5.5: Cumulative PnL of the machine learning strategies.
For each of the 4 strategies, versions with and without dynamic
weights rescaling are shown: simp (no rescaling) and cvol (CVOL).
The 4 strategies are: mlp_WTMM_bif is multi-layer perceptron
with WTMM bifurcation features, mlp_ret is multi-layer perceptron
with past returns as features, rf_mf1 is random forest classifier with
max_ f eatures = 1, and WTMM bifurcation features and rf_mf4 is
random forest with max_ f eatures = 4 and WTMM bifurcation fea-

tures.

• random forest with max_ f eatures = 1, WTMM bifurcation features and simple
labeling

• random forest with max_ f eatures = 4, WTMM bifurcation features and triple-
barrier labeling

• multi-layer perceptron with WTMM bifurcation features and simple labeling

• multi-layer perceptron with past returns as features and simple labeling

Results

Figure 5.5 shows the cumulative PnL results of all four strategies and their dynamic
weight rescaling versions after subtracting the transaction costs. As we can see, none
of the strategies performed well enough over the whole time period. The results of
the 3 best strategies, i.e. excluding random forest with max_ f eatures = 4, WTMM
bifurcation features and triple-barrier labeling, are in Table 5.7 and the results from
4-factor regression are in Table 5.8.

The results were mostly disappointing as the average annual returns were very
low and the strategies seemed to behave somewhat randomly, often having negative
or insignificant abnormal returns. However, there is a very interesting steady posi-
tive trend appearing in the strategy modeled with MLP and past returns from year
2003 until today. During this period, the strategy had average annual return of 7.3%
and Sharpe ratio of 0.61 with CVOL. Monthly abnormal return was 0.55% (t-value
is 2.18 at 5% significance level) and the strategy was market and momentum neutral
with βmarket = 0.05 and βmomentum = 0.16 (t-value is 2.23 at 5% significance level).
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Strategy rf mf1 mlp WTMM bif. mlp ret
Avg. Return 4.7% 5.0% 3.8%
Avg. Volatility 11.4% 11.1% 11%
Sharpe Ratio 0.41 0.45 0.34

TABLE 5.7: Results of the three best machine learning strategies: rf
mf1 is the strategy trained with random forests and max_ f eatures = 1
with WTMM bifurcation features, mlp WTMM bif. is multi-layer
perceptron trained on WTMM bifurcation features and mlp ret is the
strategy trained with the multi-layer perceptron on the past returns
as features. All results are from the strategies with CVOL dynamic

weight rescaling.

Test Set Coefficients rf mf1 mlp WTMM bif. mlp ret

13-18
α (in %) 0.26 −0.20 0.67
βmarket 0.66 0.13 0.02

βmomentum −0.02 0.17 0.09

06-11
α (in %) 0.05 0.13 0.36
βmarket 0.62 0.50 0.00

βmomentum 0.06 0.14 0.20

99-04
α (in %) 0.28 0.19 0.04
βmarket 0.37 −0.33 0.27

βmomentum −0.03 −0.03 −0.31

92-97
α (in %) −0.14 0.41 −0.65
βmarket 0.51 0.50 0.00

βmomentum 0.08 −0.01 −0.02

85-90
α (in %) −0.43 0.00 0.90
βmarket 0.59 0.70 −0.15

βmomentum 0.03 0.00 0.43

TABLE 5.8: 4-Factor Model coefficients for the three best machine
learning strategies: rf mf1 is the strategy trained with random forests
and max_ f eatures = 1, mlp WTMM bif. is multi-layer perceptron
trained on WTMM bifurcation features and mlp ret is the strategy
trained with the multi-layer perceptron on the past returns as fea-
tures. All results are from the strategies with CVOL dynamic weight
rescaling. Numbers are obtained over monthly returns. For rf mf1
and mlp WTMM bif. only significant coefficients are βmomentum and
indeed for all the subsets. mlp ret doesn’t have and coefficient that is

significant over all 5 data subsets.
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FIGURE 5.6: Cumulative PnL of the two best machine learning
strategies without gap years: mlp_WTMM_bif_cvol is the strategy
modeled by MLP on the WTMM bifurcations features dynamically
rescaled with CVOL and mlp_ret_cvol is the strategy modeled with
MLP on features that present past returns and is dynamically rescaled

with CVOL.

What is even more interesting is that even without the dynamic rescaling, the strat-
egy did not suffer significant losses during the latest financial crises of 2008/2009.
Anyway the strategy did have losses in the period from 1992 until 1996, but should
anyway be further investigated in the future studies since the results show a great
potential that should be looked in more detail. The cumulative PnL plot after trans-
action costs were deducted without the gap years is presented in Figure 5.6.

The mostly poor results of the other machine learning strategies can be explained
by too much random movements in the stock prices that the models cannot distin-
guish from the useful information and thus cannot generalize well. Even though I
used couple of different techniques to reduce the noise in the learning step (in MLP:
dropout, L2 regularizer, in RF: small number of features per tree and wavelet trans-
form features were obtained at the large scales), the models were still unable to learn
the informative characteristics of the features.

The underlying issue was that these strategies did not identify the pockets of
predictability (as discussed in Section 2.1), but have rather learned mostly noise that
is most often present in the financial markets. Thus the big amount of noise and only
rare cases where acceleration had a predictive power significantly deteriorated the
performance of the models.

One experiment that supports this reasoning is the success of the manual strate-
gies over the machine learning ones. For example the strategy defined in Section
5.1.2 used only 3 features and was more successful. When I ran different classifiers
(with various hyper-parameters) on only these three features, the results were very
poor. Even more, when the labels are based on the 3 months forward returns, results
were even worse, while on the other hand the strategy from Section 5.1.2 performed
even better with 3 months holding period.

Another example is the relative success of the MLP with past returns. This model
had the least number of features (only 3), but it performed better than other ma-
chine learning strategies. Sadly, significantly reducing the number of features from
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the other sets of features did not work well since many of them were non-linearly
dependent.

It is also worth noting that many other published studies in the domain of fi-
nancial markets prediction have used more complex approaches. One approach is
using the raw time series as input to the RNNs (recurrent neural networks) as by
Bao, Yue, and Rao 2017. Another common approach is to use complex set of fea-
tures, often containing many technical and fundamental indicators about the stocks.
Some examples are: Abe and Nakayama 2018; Huerta, Elkan, and Corbacho 2013.
The reason why I did not use these two approaches in this study was because the
goal of the study was to explicitly employ momentum and acceleration. Thus all the
features, or the combination of the features, had to represent the momentum and
acceleration in some sense.

5.3 Summary

The various methods presented above yield different results ranging from from very
bad up to surprisingly good. Roughly speaking, the results can be split into man-
ually and machine learning driven strategies. Machine learning strategies are of
course more complex methods that are fully dependent on the past data. On the
other hand the manually driven investment relies on our belief of the potential
use cases of the acceleration factor and the derived investment decisions are con-
sequently more simple.

The manual strategies used novel approaches with wavelet transform to define
stock price acceleration. The first one, i.e. the one with WTMM bifurcations, was
profitable, but the returns were mostly attributed to the momentum strategy. The
second strategy that used exponential weight of the most recent wavelet coefficient
at specific scales showed good results and notable part of profits was attributed to
the acceleration itself. Also very important finding there was that such acceleration
factor can be used to fine-tune the momentum strategy. I.e. it can be used to decide
in what stage of momentum should the strategy enter the position.

Overall, since both strategies were built on top of momentum and as such have
behaved in a similar fashion as momentum, meaning that the strategies occasion-
ally suffered from big losses. In order to prevent that, I have used CVOL dynamic
weights scaling presented by Barroso and Santa-Clara 2015 in both strategies which
greatly improved the risk-adjusted returns. Other dynamic weights rescaling meth-
ods did not work out well and were thus ignored for the most part.

Further findings of this study are related to the machine learning methods that
were strictly restricted to exploiting acceleration related features. Even though they
might seem profitable at the first glance, the results were not good enough for the
real-life use. With machine learning strategies I faced two big issues. The first one
is that the stock price movements are most of the time random (which confirms
the Efficient Market Hypothesis), with only very small time windows of high pre-
dictability. Further big issue was stability of the results obtained with multi-layer
perceptron. Since MLP is stochastic model, the results vary with every run. Even
though I used various techniques to try to reduce instability of the results, the out-
come was still not stable enough.

However the positive outcome of the MLP with past returns as features shows
us that using less features and more simple features is better. Thus the further study
with past returns will be needed to uncover potentially useful characteristics of these
features.
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Chapter 6

Conclusion

6.1 Closing Remarks

This work tackled a difficult task of exploring relatively new concept in financial
markets: acceleration. First challenge was to define the acceleration. For this pur-
pose I have used the wavelet transform, wavelet transform modulus maxima and I
have tried, but without much success, to use singular spectrum analysis. Wavelet
transform methods, even though not a new concept, are rarely used in the field of
financial markets and were especially never used for describing acceleration or any
related notion. Thus this was a major contribution of this study.

After defining acceleration, next step was how to use it for trading. Here I ap-
proached the problem from two very different angles: (1) manually define a trading
strategy and (2) let the model learn the optimal trading strategy based on defined
acceleration.

Manually defining a trading strategy is more simple approach and consists of
understanding the underlying factors and finding ways on how to use these fac-
tors in a meaningful way. It also includes search through the vast space of possible
parameters in order to find the most profitable and robust trading strategy.

Machine learning driven investment, however, reduces the work of manually
searching through the vast space of possible parameters. On the other hand, trying
to create a predictive model for stock markets is a very challenging task, since many
commonly used techniques in machine learning fail when applied on the financial
time series. For example typical cross-validation, labeling and classification metrics
fail if not properly adjusted for this specific problem. Further problem with this task
was the lack of quality research papers, since most of the research in this area is pro-
prietary and most of the published work fails to recognize some of the weaknesses
faced by the developed methods.

Even though the machine learning was the biggest part of this study, the results
obtained with machine learning strategies were not satisfying. They rather uncov-
ered the unbeatable nature of the financial markets that confirms the well known
Efficient Market Hypothesis. On the opposite, more simple, manually driven strate-
gies, have not only shown some great profits, but have also uncovered the potential
use of the acceleration as a parameter for entering the momentum exhibiting posi-
tions at different stages: i.e. during the under- and over-reaction of market partici-
pants.

Overall this study combined many different fields of study. Most notably it in-
cluded the methods from signal processing, physics, quantitative finances and ma-
chine learning and data science. It showed how techniques that were originally
invented for different purposes can be applied in a completely different fields of
research to obtain useful insights about relatively new topics.
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6.2 Future Work

Despite the fact that this study was very diverse, in a sense that it combined many
different topics, there is still a lot of room for further research and potential improve-
ments. Here I will name only a few possible improvements that came to my mind
during the study, for which I lacked in time to try out.

First simple improvement would be to use dynamic volatility estimation pro-
posed by Daniel and Moskowitz 2016 for dynamic weights rescaling. The proposed
method more accurately estimates the current strategy volatility and can thus better
prevent potential losses of acceleration and momentum strategies.

Further idea that could potentially have a great impact on the machine learning
strategies is the detection of pockets of predictability. If these pockets could be reli-
ably detected, the models would be freed up from lots of noise and could thus better
learn the underlying dependencies between acceleration and future returns. How-
ever this is a very complex area of study and was thus out of the scope of this master
thesis.

Finally the few definitions of acceleration used in the manually defined strategies
presented here could be used on a boundless amount of different data: international
equity markets, derivative markets (especially futures since they are commonly used
in momentum trading) and even foreign exchange markets.
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Appendix A

Momentum Strategy Returns

h
f 1 3 6

6
Return -1.1% 1.2% 3.7%
Sharpe -0.06 0.08 0.27

12
Return 3.0% 3.7% 3.7%
Sharpe 0.18 0.23 0.25

(A) s = 0

h
f 1 3 6

6
Return 1.6% 2.7% 5.1%
Sharpe 0.10 0.18 0.40

12
Return 4.0% 3.4% 3.6%
Sharpe 0.25 0.22 0.24

(B) s = 1

TABLE A.1: Average annual return and Sharpe ratio of plain Momen-
tum strategy. Returns are shown for different formation months f ,

gap months s and holding months h.

h
f 1 3 6

6
Return 0.9% 2.9% 6.2%
Sharpe 0.07 0.22 0.50

12
Return 6.7% 7.4% 7.5%
Sharpe 0.54 0.59 0.61

(A) s = 0

h
f 1 3 6

6
Return 3.3% 4.2% 7.9%
Sharpe 0.26 0.34 0.64

12
Return 7.5% 7.1% 7.4%
Sharpe 0.60 0.57 0.60

(B) s = 1

TABLE A.2: Average annual return and Sharpe ratio of plain Mo-
mentum strategy with CVOL dynamic rescaling (with look-back of
6 months that is the same as with above defined acceleration based
strategies). Returns are shown for different formation months f , gap

months s and holding months h.
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Appendix B

Robust test for Acceleration with
Exponential Weights

h
f 1 3 6

6
Return 2.8% 5.2% 7%
Sharpe 0.23 0.42 0.57

12
Return 7% 8.3% 7%
Sharpe 0.56 0.66 0.56

(A) s = 0

h
f 1 3 6

6
Return 4.6% 5.3% 8.3%
Sharpe 0.38 0.43 0.68

12
Return 7.1% 4.8% 4.9%
Sharpe 0.57 0.39 0.39

(B) s = 1

TABLE B.1: Average annual return and Sharpe ratio of the Accel-
eration with Exponential Weighing strategy with CVOL dynamic
weights rescaling and convolving filter of size 1/4 of the formation
period. Returns are shown for different formation months f , gap

months s and holding months h.

h
f 1 3 6

6
Return 0.4 3.5% 6.4%
Sharpe 0.03 0.29 0.52

12
Return 5.9% 9.0% 7.5%
Sharpe 0.48 0.72 0.60

(A) s = 0

h
f 1 3 6

6
Return 3.2% 5.5% 8.3%
Sharpe 0.26 0.44 0.68

12
Return 5.8% 5.9% 6.8%
Sharpe 0.47 0.48 0.55

(B) s = 1

TABLE B.2: Average annual return and Sharpe ratio of the Accel-
eration with Exponential Weighing strategy with CVOL dynamic
weights rescaling and convolving filter of size 1/6 of the formation
period. Returns are shown for different formation months f , gap

months s and holding months h.
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FIGURE B.1: Averages of normalized stock prices around different
percentiles (according to past return and defined acceleration) that
are picked as long positions by the "Acceleration with Exponential
Weights" strategy with formation period of 12 months and filter size
1/3 of the formation period. Prices are plotted for formation period
(left of the vertical line) and for the coming 7 months (right of the

vertical line).
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FIGURE B.2: Averages of normalized stock prices around different
percentiles (according to past return and defined acceleration) that
are picked as short positions by the "Acceleration with Exponential
Weights" strategy with formation period of 12 months and filter size
1/3 of the formation period. Prices are plotted for formation period
(left of the vertical line) and for the coming 7 months (right of the

vertical line).
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FIGURE B.3: Averages of normalized stock prices around different
percentiles (according to past return and defined acceleration) that
are picked as long positions by the "Acceleration with Exponential
Weights" strategy with formation period of 6 months and filter size
1/4 of the formation period. Prices are plotted for formation period
(left of the vertical line) and for the coming 7 months (right of the

vertical line).
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FIGURE B.4: Averages of normalized stock prices around different
percentiles (according to past return and defined acceleration) that
are picked as short positions by the "Acceleration with Exponential
Weights" strategy with formation period of 6 months and filter size
1/4 of the formation period. Prices are plotted for formation period
(left of the vertical line) and for the coming 7 months (right of the

vertical line).
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