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Summary

This thesis addresses three important aspects of price dynamics of publicly
traded assets. For one, the emergence of a trending price is studied, result-
ing from the myopic optimization of socially influenceable investors, leading to
the destabilization of prices and the growth of bubbles. My second contribu-
tion focuses on the volatility of price dynamics and, more generally, on the
volatility of dynamic macroscopic observables, governed by a large number of
interconnected units under the influence of a rapidly varying external signal.
Whereas the first two contributions explore the first and second moment of
collective/price dynamics via theoretical studies, my third contribution is an
empirical study investigating the autocorrelation of daily price returns and its
dependencies on other macroscopic variables such as volatility, long-term price
movements and illiquidity.

My first scientific contribution consists of a financial market model, where
the behavior of trading agents, interconnected by their social network, and the
resulting price dynamics are investigated. Agents invest according to their opin-
ion on future price movements, which is based on three sources of information,
(i) public information, i.e. news, (ii) information from their social network
and (iii) private information. In order to form the best predictor of future
price movements, agents are continuously adapting their trading strategy to
the current market regime by weighting the news and information from their
peers according to their recent predicting performance. Paradoxically, it is their
myopic adaptation to the current market regime which leads to a dramatic am-
plification of the price volatility and the occurrence of a bubble, followed by
a crash. The model offers a simple reconciliation of the two opposite (herd-
ing versus fundamental) explanations for the origin of crashes within a single
framework and shows that a crash is not a reaction to an extreme negative news
event, but a sudden correction of an unsustainable high price. More general,
this model shows that even with bounded rational and adapting agents, bubbles
and crashes emerge naturally.

By reducing the complexity of the previous model, but keeping the same
three basic influences, it is possible to apply this model to a very wide range of
systems, generalizing the interpretation of the individual agent from an investor
to any bistable entity, susceptible to its surrounding, a common and varying
driving force and independent noise sources. This model, which is based on the
kinetic Ising model, is a priori a physical model but can easily be related to so-
cial systems via the derived equivalence between the Ising model and a discrete
choice model with social interactions. It is found that, independently of the
shape of the driving force, increased levels of fluctuations in the macroscopic
dynamics are observed for an intermediate noise strength (or coupling strength,
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depending on the setup). Whereas for periodic forcing, the peak in the fluctu-
ation amplitude corresponds to a pronounced amplification of the signal, with
a strong correlation between the macroscopic dynamics and the driving force,
this correlation is completely destroyed if the system is driven by a stochas-
tic signal. This shows that even though these fluctuations are induced by the
common forcing, the macroscopic dynamics have an endogenous origin. As an
example of a system where this phenomenon can be observed, the social sys-
tem of stock markets is proposed, explaining not only the excess of volatility
observed in stock prices, but also the apparent absence of correlation between
news and price changes and the persistence of volatility during times of crises.

The last part of this thesis contains an empirical study, motivated by the
question of whether investors behave differently in different market regimes.
For individual stocks traded on the New York Stock Exchange, I investigate
the dynamics of the cross-sectional average of the first order autocorrelation
of their daily returns and show that changes in the average autocorrelation of
returns strongly correlate with prior changes in the cross-sectional volatility
and market trends. It is found that return autocorrelation relates negatively to
past volatility changes and positively to past market trends. This observation,
which is a market-wide phenomenon, is persistent for over 20 years of data
and also present in individual stocks. In contrast to the existing literature
on return autocorrelation, illiquidity and bid-ask bounce can be rejected as
driving forces behind the return autocorrelation dynamics. A behavioral origin
of the phenomenon is proposed, where high volatility and bear markets lead
to uncertainty and panic, reflected in overreacted behavior on a daily scale,
whereas low volatility and bull markets lead to overconfidence, identified by
price momentum.
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Kurzfassung

Diese Dissertation behandelt drei wichtige Aspekte der Preisdynamik von öf-
fentlich gehandelten Wertpapieren. Zum einen wird das Erscheinen von Preis-
trends behandelt, die aus einer kurzsichtigen Optimierung von sozial beein-
flussbaren Investoren hervorgehen und zur Destabilisation von Preisen und zur
Bildung wirtschaftlicher Blasen führen können. Meine zweiter Beitrag richtet
sich auf die Volatilität von Preisen oder, im Allgemeinen, die Volatilität der
makroskopischen Dynamik von Systemen die aus einer Sammlung von vie-
len untereinander verbundenen Einheiten bestehen und beeinflusst durch ein
schnell variierendes externes Signal sind. Im Gegensatz zu den beiden ersten
Beiträge, die dem ersten und zweiten Moment der Dynamik von Renditen oder
kollektiven Systemen gewidmet sind, besteht mein dritter Beitrag aus einer
empirischen Studie, welche die Abhängigkeit der Autokorrelation täglicher Ren-
diten von gehandelter Wertpapier gegenüber andern makroskopischen Variablen
untersucht, wie zum Beispiel Volatilität, langfristige Preisänderungen oder Illi-
quidität.

Um die Preisdynamik und das Verhalten von Agenten, die in ein soziales
Netzwerk eingebunden sind, zu erforschen, wird ein Börsenmodell vorgestellt
indem Investoren ein Wertpapier handeln und der Preis durch Angebot und
Nachfrage verändert wird. Die Agenten investieren bezüglich ihrer Meinung
zu bevorstehenden Preisänderungen. Diese Meinung basiert auf drei verschie-
denen Informationen, (i) öffentliche Informationen, i.e., Neuigkeiten, (ii) Infor-
mationen aus ihrem sozialen Netzwerk und (iii) private Informationen. Um die
Preisbewegungen möglichst gut voraussagen zu können, adaptieren die Agenten
kontinuierlich ihre Handelsstrategien indem sie die verschiedene Information-
squellen bezüglich ihrer rezenten Leistung gewichten. Paradoxerweise ist es ihre
kurzsichtige Anpassung an das herrschenden Marktregime das zu einer drama-
tischen Verstärkung der Preisfluktuationen und dem Aufkommen von Blasen
führt, die von einem Börsenkrach beendet werden. Unser Modell vereinigt
auf eine einfacher Art und Weise die zwei widersprüchlichen Erklärungen zum
Ursprung von Börsenkrachen (Herdenverhalten und Nachrichten bezüglich des
Fundamentalpreises) und zeigt, dass ein Krach nicht eine Reaktion zu extrem
schlechten Nachrichten ist, sondern eine plötzliche Korrektur eines übermässig
aufgeblähten Preises. Im Allgemeinen zeigt dieses Modell, dass auch mit ratio-
nalen und optimierenden Investoren, Börsenblasen und Krache ganz natürlich
entstehen können.

Durch das Vereinfachen des vorherigen Modells, indem nur die drei Grund-
einflüsse erhalten bleiben, ist es möglich das Modell auf eine breite Spannweite
von Systemen anzuwenden. So kann man die Interpretation vom einzelnen
Agent als ein Investor, auf jede beliebige bistabile Einheit verallgemeinern,
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welche von ihrem Umfeld, von einem gemeinen wechselnden Treiben und einem
unabhängigen Rauschen beeinflusst wird. Dieses Modell, welches auf dem dy-
namische Ising Modell basiert ist, ist also a priori ein physikalisches Mod-
ell, kann jedoch einfach auch für soziale Systeme verwendet werden durch die
Äquivalenz zwischen dem Ising Modell und diskrete Wahl Modell mit sozialen
Beeinflussung. Wir dokumentieren, unabhängig von der Natur der treiben-
den dynamischen Kraft, dass für intermediär Intensitäten von Rauschen (oder
Wechselwirkung) ein starkes Ansteigen der Fluktuationen der makroskopischen
Dynamik. Für eine periodisch treibende Kraft entspricht dieses Maximum an
Fluktuationen dem Verstärken des Signal, mit einer ausgeprägten Korrelation
zwischen dem Signal und der makroskopischen Dynamik. Diese Korrelation wird
jedoch stark verringert wenn das System einem aperiodischen Treiben unterliegt.
Dies zeigt, dass obwohl die Fluktuationen durch das gemeine Treiben ausgelöst
wird, sie ein endogenen Ursprung haben. Als Beispiel für ein System wo dieses
Phänomen beobachtet wird, schlagen wir den Finanzmarkt vor, womit nicht
nur die übermässig Volatilität von Preisen erklärt werden kann, jedoch auch die
Abwesenheit der Korrelation zwischen Neuigkeiten und Preisänderungen, sowie
die anhaltende Volatilität in Krisenzeiten.

Der letzte Teil dieser Dissertation enthält eine empirische Studie, angeregt
durch die Frage, wie und ob Investoren ihr Verhalten in verschiedenen Markt-
phasen verändern. Für individuelle Wertpapiere die auf dem New York Stock
Exchange gehandelt werden, untersuche ich die Änderungen des querschnit-
tlichen Mittels der Autokorrelation ersten Grades täglicher Renditen und zeige,
dass diese Änderungen stark korreliert sind mit vorhergehenden Änderungen
der querschnittlichen Volatilität oder des Preises. Die Renditenautokorrela-
tion Änderungen sind negative proportional zur vergangenen Änderungen der
Volatilität, und positive proportional zu vergangenen Preisänderungen. Diese
Beobachtung, welche ein marktweites Phänomen ist, besteht anhaltend seit
über 20 Jahren und wird auch für individuelle Papiere gefunden. Im Gegen-
satz zu der bestehenden Literatur zum Thema von Renditenautokorrelation,
kann Illiquidität und Geld-Brief-Sprung als Ursache verworfen werden. Ein
Erklärung aus der Verhaltensökonomie wird vorgeschlagen, in der eine hohle
Volatilität und fallende Preise zu Unsicherheiten und Panik führen, was in
Überreaktioen während dem täglichen Handeln wiedergespiegelt wird, woge-
gen niedrige Volatilität und steigende Preise zu übermässigem Selbstvertrauen
und scheinbarer Sicherheit führen, was sich durch einen Trend im Preis zeigt.
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Chapter 1

Introduction

Financial markets serve a multitude of purposes and are of paramount impor-
tance in open economies. Among others, they facilitate the raising of capital for
companies, allow for the transfer of risk and liquidity, enable international trade
and give private persons the possibility to expose themselves to the dynamics of
national and international economies. It is, however, the emergence of a price
and its dynamics due to the collective acting of large numbers of individuals,
which is investigated in this work. As such, financial markets are global polling
instruments, which give researchers the opportunity to study human behavior in
their quest to make profitable investments. Even though this work concentrates
on equity markets, the general concepts derived and studied here, also apply to
markets in general.

As this manuscript is a cumulative thesis, i.e., a collection of research pa-
pers, the major part of my scientific contribution is concentrated in three self-
contained papers, of which two are already published in peer-reviewed journals.
In order to put my work into context, the papers are preceded by an extended
literature review. The outline of the thesis is as follows:

� The objective of Chapter 2 is to derive the basic concepts on which the
models of Chapter 4 and 5 are based. Thematically, Chapter 2 is divided
in two parts. In the first part, from Section 2.1 to Section 2.3, the Boltz-
mann framework is derived from first principles and applied to solve the
Ising model under the mean-field approximation. In the second part of
Chapter 2, the origins of the discrete choice models are introduced and the
relation between discrete choice models with social interactions, and the
Ising model is shown. The Ising model was originally developed to explain
the magnetic properties of ferromagnets, but can also, by reinterpreting its
components in the context of decision makers exposed to a binary choice,
be considered as a simple model of describing the competition between
the ordering force of imitation or contagion and the disordering impact of
private information or idiosyncratic opinions that promotes heterogeneous
decisions.

� Chapter 3 contains an extended review on the scientific literature on bub-
bles and crashes, and related subjects such as momentum, the overreaction-
underreaction phenomenon and imitation among analysts and institu-
tional investors. Both theoretical models, as well as empirical studies
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1. Introduction 2

are summarized, revealing the rich and diverse research that was per-
formed on this subject. The reviewed empirical studies validate the basic
assumptions upon which the models in Chapter 4 and 5 are build.

� A simple model of bounded rational agents, is presented in Chapter 4,
which focuses on the emergence of bubbles and consequential crashes, and
investigates how their proximate triggering factor might relate to their fun-
damental origin, and vice versa. Agents invest according to their opinion
on future price movements, which is based on three sources of information,
(i) public information, i.e. news, (ii) information from their friendship
network and (iii) private information. Agents continuously adapt their
trading strategy to the current market regime by weighting each of these
sources of information according to its recent predicting performance. It is
found that bubbles originate from a random lucky streak of positive news,
which, due to a feedback mechanism of these news on the agents strategies
develop into a transient collective herding regime. After this self- amplified
exuberance, prices reach an unsustainable high value, which is corrected
by a crash. These ingredients provide a simple mechanism for the excess
volatility documented in financial markets. Paradoxically, it is the at-
tempt for investors to adapt to the current market regime which leads to
a dramatic amplification of the price volatility. A positive feedback loop
is created by the two dominating mechanisms (adaptation and imitation)
which, by reinforcing each other, result in bubbles and crashes. The model
offers a simple reconciliation of the two opposite (herding versus funda-
mental) proposals for the origin of crashes within a single framework and
shows that even with rational and adapting agents, bubbles and crashes
can naturally emerge.

� In Chapter 5, a novel phenomenon of an increased level of fluctuations
is presented, which is found for the collective dynamics of a system com-
posed of many bistable units in the presence of a rapidly varying external
signal, and intermediate noise levels. The archetypical signature of this
phenomenon is that –beyond the increase in the level of fluctuations–
the response of the system becomes uncorrelated with the external driv-
ing force. Numerical simulations and an analytical theory of a stochastic
dynamical version of the Ising model on regular and random networks
demonstrate the ubiquity and robustness of this phenomenon, which is
argued to be a possible cause of excess volatility in financial markets, of
enhanced effective temperatures in a variety of out-of-equilibrium systems,
and of strong selective responses of immune systems of complex biological
organisms.

� An empirical study, inquiring investors behavior in different market regimes,
is presented in Chapter 6. For individual stocks traded on the New York
Stock Exchange, the dynamics of the cross-sectional average of the first
order autocorrelation of their daily returns is investigated and it is shown
that changes in the average autocorrelation of daily returns strongly corre-
late with prior changes in the cross-sectional volatility and market trends.
It is found that return autocorrelation relates negatively to past volatility
changes and positively to past market trends. This observation, which is a
market-wide phenomenon, is persistent for over 20 years of data and also



1. Introduction 3

present in individual stocks. In contrast to the existing literature on return
autocorrelation, illiquidity and bid-ask bounce can be rejected as driving
forces behind the return autocorrelation dynamics. A behavioral origin of
the phenomenon is proposed, where high volatility and bear markets lead
to uncertainty and panic, reflected in overreacted behavior on a daily scale,
whereas low volatility and bull markets lead to overconfidence, identified
by price momentum. In order to address the non-stationarity of some of
the analyzed time-series, a very powerful and yet intuitive method had
been developed and is used to compute meaningful correlations between
time-series with various memories.

� An overall conclusion is given in Chapter 7, summarizing my contributions
to the fields of finance and physics.



Chapter 2

The Ising model and
random utility

In the field of thermodynamics and statistical mechanics, the objective is to an-
alyze systems composed of a large number of simple microscopic units (particles,
magnetic moments, ... ) and to make statements about the system’s macro-
scopic properties and dependencies. The familiarity of physicists with studying
the macroscopic properties of many-body systems despite the many unknowns
on the micro-level is one of the main reasons for their interest in social sciences,
especially finance where there is an abundance of data to test models against.

This chapter is divided into two parts. In the first part the foundations of
the Ising model will be reviewed. In order for the chapter to be self-consistent,
the Boltzmann formalism will first be introduced, which constitutes the basics
of statistical mechanics. This introduction will be kept as concise as possible,
as statistical mechanics is not the subject of this thesis. For detailed treatment
of the subject, see the book by Greiner et al. (1995) or Reif (1965).

In the second part of this chapter, the concepts of random utility models
and discrete choice with social interactions are introduced and their relation to
the Boltzmann formalism and the Ising model is established. The framework
reviewed in the chapter constitute the basis of the models studied in Chapter 4
and 5, and of a rich and long list of models of the social and economic sciences,
investigating the behavior of interacting agents (Schelling, 1971; Föllmer, 1974;
Galam and Moscovici, 1991; Blume, 1993; Brock, 1993; Kirman, 1993; Lux, 1995;
Orléan, 1995; Durlauf, 1999; Brock and Durlauf, 2001; Michard and Bouchaud,
2005).

2.1 Boltzmann statistics and the Canonical En-
semble

The exact state of any system, which specifies all its properties, is characterized
by its position in phase space. A 3-dimensional (3D) system composed of N
particles has a phase space of 6N dimensions, as every particle is fully described
by its position (3D-vector) and its momentum (3D-vector). For a grid of spins
(magnetic moments), which can take the values of ±1, the phase space is a set
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2. The Ising model and random utility 5

of 2N micro-states.
In order to compute the probabilities to find the system in a certain position

in phase space, different kinds of systems can be considered, grouped by their
level of openness. They can be completely closed, i.e. isolated, such that the
phase space is constrained by the available energy. The ensemble containing all
micro-states with that particular energy is called the micro-canonical ensemble.
The next level of openness is achieved by submerging the system in a heat
bath, keeping it at a constant temperature and allowing for the exchange of
energy between the heat bath and the system. The ensemble of micro-states,
unconstrained by their energy, is called the canonical ensemble. By allowing the
system to not only exchange energy, but also particles with its surrounding, the
set of micro-states is called the grand canonical ensemble. As the Ising model is
defined with a fixed temperature and constant number of spins, we will focus on
the canonical ensemble and derive the probabilities for its different micro-states.

Via the exchange with a heat bath1, a system can take any amount of en-
ergy. A situation where the system has given all its energy to the heat bath
is possible, as well as the situation where the system has absorbed all of the
heat bath’s energy, although the likelihood of these configurations is, as we will
see, very small. A priori every single micro-state, a particular position in phase
space, is equally likely to occur. We will however find that, given some con-
straints, certain macroscopic characteristics are more likely to occur as they can
be obtained by a larger number of micro-states.

Let us consider N identical systems (replicas) composed of N units, whose
phase space is either discrete or, if continuous, divided into small same-sized
and numbered cells. Let ni be the number of replicas that are in phase space
state (or cell) i and which have the energy ei. Then

N =
∑

i

ni, (2.1)

where the summation is performed over the entire phase space. As N is consid-
ered large, pi = ni/N , is the probability for finding a system in state i. Even
though in general, due to the heat bath, the system can take any amount of
energy, in equilibrium however, the system will have an average energy, given
by

U = 〈ei〉 =
∑

i

piei =
1

N
∑

i

niei. (2.2)

For a certain arrangement of the systems {ni} = {n1, n2, . . .}, we can enu-
merate the systems and compute the number of different possible configurations.
As there are exactly N ! permutations of all the systems and ni! for every state,
the number of rearrangements of {ni} are

W{ni} =
N !∏
i ni!

. (2.3)

It is said that a system, described by Eq. (2.3), obeys Boltzmann statistics.
Given that every elementary phase space state (or cell) has the same proba-
bility, the arrangement that maximizes W corresponds to the most probable

1The heat bath is considered large compared with the size of the system.
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distribution. For large integer n, Stirling’s approximation,

lnn! = n lnn− n, (2.4)

can be used to simplify the factorials of Eq. (2.3), leading to

lnW{ni} = N lnN −N −
∑

i

[ni lnni − ni]. (2.5)

To find the extrema under constraints of Eq. (2.1) and (2.2), the method of
Lagrange multipliers is used, such that

Λ{ni} = lnW{ni}+ λ(
∑

i

ni −N )− β(
∑

i

niei −NU) (2.6)

has to be maximized with respect to {ni}. Here the minus sign in front of β is
arbitrary, but it will be advantageous in the following section. Differentiating
Eq. (2.6) and equating it to zero returns

dΛ{ni}
dni

= − lnni + λ− βei = 0

⇔ ni = eλ e−βei (2.7)

Using Eq. (2.1), we find that eλ = N/∑i e
−βei , leading to

pi =
ni
N =

e−βei∑
i e
−βei , (2.8)

where e−βei is called the Boltzmann factor, and

Z =
∑

i

e−βei (2.9)

is the canonical partition function, where the letter Z comes from the German
word Zustandssumme. The Lagrange multiplier β relates to the average energy
in the system (via Eq. (2.2)), which depends on the temperature for thermody-
namic systems. As constant temperature is assumed due to the heat bath of the
canonical system, as such the average energy of the system will also be constant.
The connection between the Boltzmann framework and thermodynamics is real-
ized by identifying that β = 1/kT , which is the subject of the next section. The
intuition behind Eq. (2.8) is that the probability of a system having a certain
amount of energy decreases exponentially with the energy, with a rate inversely
proportional to the given temperature.

2.2 Relation to thermodynamics

From the second law of thermodynamics, we know that for constant volume V
and number of particles N (

∂S

∂U

)

V,N

=
1

T
, (2.10)

where S is the entropy of the system, defined by Boltzmann as

SB = k lnW, (2.11)
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with k the Boltzmann’s constant and W the number of micro-states correspond-
ing to a given macro-state. Boltzmann’s entropy is defined only for isolated
systems in equilibrium, i.e., system in the micro-canonical ensemble, where ev-
ery micro-state is equally probable to be occupied by the system. However for
system where exchanges are allowed, not all possible micro-states are equally
probable, as seen in the previous section for the case of a system able to ex-
change energy with a heat bath. Gibbs introduced a generalized formulation of
entropy, given by

S = −k
∑

i

pi ln pi, (2.12)

which is valid for any ensemble and where pi is the probability of the system
being in the micro-state i of the 6N -dimensional phase space and having the
energy ei. Boltzmann’s formulation, for the micro-canonical ensemble, can be
recovered by using uniform probability across states (pi = 1/W, ∀i) and that
the summation is performed over all W micro-states.

Now substituting the probabilities computed in Section 2.1, the entropy can
be rewritten as

S = −k
∑

i

pi ln pi

= −k
∑

i

e−βei

Z

(
− βei − ln(Z)

)

= kβ
∑

i

eie
−βei

Z
+ k lnZ

∑

i

e−βei

Z

= kβU + k lnZ (2.13)

It can be shown that
∂ lnZ

∂β
= −U (2.14)

and combining Eq. (2.10), Eq. (2.13) and Eq. (2.14) yields

1

T
=

∂S

∂U

= kβ + kU
∂β

∂U
+ k

lnZ

∂β

∂β

∂U

= kβ, (2.15)

relating the results from the ensemble theory with thermodynamics.

2.3 Ising model

2.3.1 Introduction

Ernest Ising, together with his adviser Wilhelm Lenz, proposed the Ising model
in 1925 as a simple model for ferromagnetic behavior (Brush, 1967). Real ferro-
magnets have a complicated structure and have to be studied via band theory.
The Ising model, on the other hand, offers a strongly simplified approach, which
still embodies the main qualitative features of a ferromagnet. The model con-
sists of a large number of magnetic moments connected by a regular grid in d
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dimensions, i.e. a hypercube. The magnetic moments, called spins, can only
take two values (±1), which represent the direction in which they point (up
or down). Each spin interacts with its direct neighbors and with an external
magnetic field, leading to a Hamiltonian given by

H = −J
∑

i,j∈<i,j>
sisj − h

N∑

i=i

si, (2.16)

where si are the different spins, h is the external magnetic field, J > 0 is
the interaction strength for a ferromagnet and < i, j > represents the nearest
neighbors. The number of nearest neighbors depends on the dimension of the
system and will be referred to by z = 2d.

Not only was the Ising model used to study the behavior of ferromagnets,
but since its introduction it was increasingly used as a toy model of phase
transitions, with the average magnetization being the order parameter. In one
dimension, the model does however not experience a phase transition at finite
temperatures, but must be cooled down to zero temperature (T = 0) for the
average magnetization to be different from zero. The intuition behind this
result is that for any finite temperature it is possible for a single spin to divide
the infinite long chain into two regions of opposite magnetization, destroying
any finite magnetization. This fact demotivated Ising to continue his research
on the model. Later it was however shown that in two dimensions the model
experiences a transition at finite temperatures, which was confirmed by the
seminal paper of Onsager (1944), who was able to exactly solve the model in
2D. There exists no closed form solution for three dimensions, which is thought
to be impossible to derive. The behavior under 3D is, however, also well known
as many partial or approximate solutions can be developped.

Knowing the Hamiltonian and that the Ising model is kept at a constant
temperature, the partition function of the canonical ensemble of Eq. (2.9) is to
be used, yielding

Z =
∑

s1=±1

∑

s2=±1

. . .
∑

sN=±1

e−βH , (2.17)

with β = 1/kT and the energy of the system given by the Hamiltonian. Due
to the nearest neighbor interaction, a lot of work is required to further use
Eq. (2.17) without any approximations.

On simple approximation is to neglect spin interaction, i.e. J = 0. In this
situation the spins are independent from each other and the system can be
described by a single particle Hamiltonian,

H = −hsi. (2.18)

As the probabilities for the spin values are given by Eq. (2.8), the average
magnetization is given by

〈s〉 =
e+βh − e−βh
e+βh + e−βh

= tanh(βh), (2.19)

where no phase transition can be observed.
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2.3.2 Mean-field approximation

An alternative method to study the Ising model is the mean-field approximation,
where the influence of the neighbor spins is simplified by replacing their value by
an average magnetization. The here derived mean-field Ising model is inspired
by Kadanoff (2000).

The approximation is performed by neglecting feedback effects between the
spins and separating one particular spin i from the rest, which is performed by
rearranging the Hamiltonian of Eq. (2.16) into

H = −Jsi
∑

j∈<i,j>
sj − hsi + c

= −si
(K
z

∑

j∈<i,j>
sj + h

)
+ c, (2.20)

where j sums over the neighbors of si and c absorbs the contributions of all other
spins to the Hamiltonian, which are independent of and do not ifluence spin i.
The coupling strength J was replaced by K/z, such that the dimensionality of
the system does not change the impact of the neighbor-interaction relative to
the magnetic field. Identifying the influence of spin i as an effective field

heff =
K

z

∑

j∈<i,j>
sj + h (2.21)

Eq. (2.20) can be rewritten as

H = −si heff + c. (2.22)

As spin i is only controlled by its effective field, heff, the probability for finding
the spin i in either direction can be computed via Eq. (2.8), yielding

p(si) =
e−βsiheff

∑
si=±1 e

−βsiheff
, (2.23)

such that spin i’s average value over different realizations is given by

〈si〉 = tanh(β heff). (2.24)

By replacing the sj in Eq. (2.21) by their average 〈sj〉, which assumes that their
fluctuations are well behaved, and by assuming that the system is translationally
invariant (i.e., every spin is equivalent) such that 〈si〉 can be replaced by the
ensemble average, the famous Ising model mean-field solution is obtained,

m =
1

N

N∑

i

si = tanh(β heff)

= tanh(β Km+ β h). (2.25)

The accuracy of Eq. (2.25) will increase with z, as that means that the average
will be computed based on more spins, decreasing its fluctuations and increasing
the likelihood of being a good representation of the entire system. In the case
of infinite-range interaction, where every spin is connected to every other spin,
the mean-field approximation is exact.
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In the following sections, discrete choice models and the concept of random
utility models will be introduced. As such, this paragraph indicates the split
of the chapter in physics and social sciences. As will become clear in the last
section of this chapter, these two subjects, which a priori seem distinct from
one another, have some common intersection opening the possibility to apply
the wealth of knowledge of physical models to social and economic models.

2.4 Discrete choice models

Discrete choice models are used to model a situation, where a decision maker
has to select one choice out of a set of n alternatives. Compared to the standard
economic setup, where agents can choose an amount from a continuous value
(e.g., the amount of money invested in the stock market, given a set of explana-
tory variables), a different framework is needed for a discrete set of choices (e.g.,
taking the car, bus or bike for commuting, given a set of explanatory variables).
For an in-depth treatment of the subject of discrete choice models,see to the
book of Train (2003).

First the concept of random utility will be introduced, which is used to derive
the most prominent dicrete choice models, the Probit and the Logit model. A
stronge resemblence between the Logist model and the Boltzmann statistics will
be observed. Later, a binary choice model of socially interacting agents will be
introduced, and its equivalence with the Ising model will be shown, creating
a connection between studies on Ising-like systems and collective behavior of
social decision makers.

2.4.1 Random Utility

A Random Utility Model (RUM) is the standard framework used for the model-
ing of discrete choice scenarios. The decision maker has to choose one alternative
out of a set X of n possible ones. For each alternative, x ∈ X, the decision maker
obtains the utility (payoff) U(x). The decision maker will choose the alternative
which maximizes his/her utility.

On the other side, the researcher who wishes to model the decision maker’s
behavior does not know the exact utility attached to the various alternatives.
Instead he/she possesses a set of attributes and explanatory variables describing
the decision maker and its surrounding. These variables are used to compute
the representative utility, V (x), which obviously is not identical to the utility
perceived by the decision maker, V (x) 6= U(x). The utility can be decomposed
as

U(x) = V (x) + ε(x), (2.26)

where ε(x) captures all factors which are not included in V (x), i.e., the un-
observed utility. This decomposition is fully general as ε(x) is defined as the
difference between the modeler’s representative utility and the decision maker’s
real utility. As ε = {ε(x) | x ∈ X} is unknown to the researcher, it will be
assumed random, hence the name, random utility model.

The probability for the decision maker to chose x over all other alternatives
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Y = X − {x} is given by

P (x) = Prob
(
U(x) > U(y) , ∀y ∈ Y

)
(2.27)

= Prob
(
V (x)− V (y) > ε(y)− ε(x) , ∀y ∈ Y

)

=

∫

ε

I
(
V (x)− V (y) > ε(y)− ε(x) , ∀y ∈ Y

)
f(ε)dε, (2.28)

where f(ε) is the multivariate distribution of the unknown factors and I(·)
the indicator function. The various discrete choice models are obtained by
different assumptions of f(ε). It is assumed that the ε are i.i.d., such that their
distribution sets the discrete choice model.

2.4.2 Probit model

While studying the relation between physical stimuli and induced psychological
sensation, Thurstone (1927) was the first to introduce a discrete choice model.
The aim of his study was to investigate the answers of participants to binary
questions (e.g., which of the two weights is heavier?), leading to the law of
comparative judgment. Participants are exposed to two stimuli x1 and x2, whose
intensity is given by V (xi). Due to neuronal or mechanical irregularities, the
sensation perceived by the participants amounts to

U(xi) = V (xi) + εi, i ∈ {1, 2}, (2.29)

where εi is a noise term, which was assumed to follow a normal distribution.
The assumption of the normal distribution is not take out of some ulterior
motive nor is it based on any knowledge of the “measurement error”. This
choice seems however intuitively valid as, after the central limit theorem, the
normal distribution results from the repeated summation of a random variable
from any distribution whose variance is defined.

Participants were asked to select the stimulus with the highest intensity.
Given Eq. (2.29), the probability of selecting stimulus x1 is

p(x1) = Prob( max
i∈{1,2}

U(xi))

= Prob(U(x1) > U(x2))

= Prob(V (x1)− V (x2) > ε2 − ε1)

= Fn(V (x1)− V (x2)), (2.30)

where Fn(x) is the cumulative distribution function (CDF) of the random vari-
able ε2 − ε1, which is also normal by construction. A similar formalism can be
derived for more than two choices, resulting in a probability given by Eq. (2.28),
where f(ε) represents the normal distribution. In case all εi are i.i.d., this dis-
crete choice model is referred to as the probit model.

2.4.3 Logit model

The most prominent discrete choice model, the logit model, is based on Luce’s
choice axiom and was introduced by Luce (1959). Suppose that X represents
the complete set of possible choices and S ⊆ X, a subset of these choices. If for
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any element x ∈ X there is a finite probability of being chosen, pX(x) ∈]0, 1[,
then Luce’s choice axiom is defined as

pX(x) = pS(x)pX(S), (2.31)

with pX(S) the probability of choosing any element in S from the set of X.
The axiom states that the probability of choosing one possibility over another
from a set of alternatives is not affected by the addition or removal of other
alternatives, leading to the name of “independence from irrelevant alternatives”
(IIA), which is how the axiom is referred to in more recent literature. That this
relation follows immediately from Eq. (2.31), can be seen by rewriting Eq. (2.31)
for any other element y ∈ X and equating the last factor in the RHS, leading
to

pS(x)

pS(y)
=
pX(x)

pX(y)
. (2.32)

The assumption of IIA is valid in many scenarios, but inconsistencies arise when
alternatives are added to the pool, which are very similar to choices already
available, a situation which is of no concern in this work2.

Another important formulation of the axiom can be found by rewriting
Eq. (2.31) as

pS(x) =
pX(x)∑
y∈S pX(y)

, (2.33)

where PX(S) is replaced by the sum of the probabilities of all elements in S.
As proven in Luce (1959), a set of probabilities satisfies the Choice Axiom if
and only if there exists a set of numbers {v(x)}, which attach a weight to every
alternative, such that

pS(x) =
v(x)∑
y∈S v(y)

, (2.34)

for every x ∈ S ⊆ X. The weights {v(x)} are uniquely determined by the set
of probabilities {pX(x)} up to a multiplication by a constant.

Marschak (1959) showed that probabilities, specified by IIA, are consistent
with random utility models, i.e. that the weights in Eq. (2.34) can be obtained
from a function of the representative utility V (x), such that the probabilities
of Eq. (2.34) can be expressed in the form of a random utily model as given
by Eq. (2.27). One way of obtaining the weights of Eq. (2.34) is by setting
v(x) = eV (x). As an example of the simple case of S = {x, y}, the probability
for choosing x is

p{x,y}(x) =
eV (x)

eV (x) + eV (y)

=
1

1 + e−(V (x)−V (y))

= Fl(V (x)− V (y)), (2.35)

where Fl(x) is the CDF of the logistic distribution. Here the similarity between
Eq. (2.35) and Eq. (2.30) it to be noted, indicating that if the difference between

2The problem was fist mentioned by Debreu (1960) and is now known under the name of
the “red bus, blue bus” problem.
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the random terms of the utilities U(x) and U(y) is distributed according to a
logistic distribution, the resulting probabilities are consistent with IIA.

More generally, it was Holman and Marley (as cited in Luce and Suppes
(1965)) who showed that if the unknown utility, ε(x), is distributed according
to the double exponential distribution, also called the Gumbel distribution,
which has a CDF given by

FG(x) = e−e
−(x−µ)/γ

(2.36)

with µ and γ > 0 constants, then the difference of the unknown utility will be
logistically distributed and the resulting model will be equivalent to IIA for any
choice scenario, not only pair comparison.

The other direction was proven by McFadden (1974), who showed that if
the probability satisfies the IIA condition, then the unknown utility has to be
distributed according to the Gumbel distribution.

Next, the relation between the random utility model and IIA via Gumbel
distributed unobserved utilities will be derived. Eq. (2.27) can be rewritten as

p(x) = Prob
(
U(x) > U(y) , ∀y ∈ Y

)

= Prob
(
V (x)− V (y) > ε(y)− ε(x) , ∀y ∈ Y

)
. (2.37)

From the RHS of Eq. (2.37) together with their i.i.d. character, it follows that
it is the difference of the unobserved utilities that sets the probability. As such
the mean of the unobserved utilities, is of no importance and the parameter µ,
which controls the mean of the Gumbel distribution can be set to zero without
loss of generality. With µ = 0, the distribution of random utility is left with one
tunable parameter γ, which controls its variance, given by (πγ)2/6. By using
the definition of the CDF, Eq. (2.37) can be written as

p(x) = Prob
(
V (x)− V (y) + ε(x) > ε(y) , ∀y ∈ Y

)

=

∫ ∞

−∞




n∏

y∈Y
e−e

−(V (x)−V (y)+ε(x))/γ


 fG

(
ε(x)

)
dε(x), (2.38)

where fG(x) = 1
γ e
−x/γe−e

−x/γ
, the probability density function of the Gumbel

distribution with µ = 0. Performing a change of variable, u = e−ε(x)/γ , together
with the corresponding adaptation of the integration borders, Eq. (2.38) can be
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rewritten as

p(x) =

∫ ∞

−∞




n∏

y∈Y
e−e

−(V (x)−V (y)+ε(x))/γ


 1

γ
e−ε(x)/γe−e

−ε(x)/γ
dε(x)

=

∫ ∞

0


∏

y∈Y
e−e

−(V (x)−V (y))/γu


 e−udu

=

∫ ∞

0

e−
(
u
∑
y∈Y e

−(V (x)−V (y))/γ
)
e−udu

=

∫ ∞

0

e−u
(

1+
∑
y∈Y e

−(V (x)−V (y))/γ
)
du

=
1

1 +
∑
y∈Y e

−(V (x)−V (y))/γ

=
1

1 + e−V (x)/γ
∑
y∈Y e

V (y)/γ
. (2.39)

Now, by multiplying both sides of the ratio by eV (x)/γ , keeping in mind that
Y = X − x, the well known logit formulation can be recovered,

p(x) =
eV (x)/γ

∑
y∈X e

V (y)/γ
, (2.40)

which obviously fulfills IIA and defines the probabilities for the logit model.
Interestingly Eq. (2.40) bears a strong resemblance to Eq. (2.8), derived in
Section 2.1, which specifies the probability of finding the system in a state i
with energy ei at a given temperature. As such, the maximization of entropy
together with the constraint on the average energy is equivalent to maximization
of the representative utility in a discrete choice system, where the “temperature”
is proportional to the standard deviation of the unobserved utility, which tunes
the scale of the unboserved utility.

2.4.4 Discrete choice with social interaction

The different variables which influence the utility of the decision maker have not
been considered up to this point. As will be discussed in Section 3.5.2, there
exist many scenarios in which individuals are positively influenced by the people
around them, a behavior for which there are strategically rational as well as
psychological reasons. Even if the intrinsic utility for one alternative is strongly
heterogeneous among the entire population, the strong desire for conformity in
humans (as well as other social animals) can result in the majority choosing
that one alternative. In case of social influence, the total utility of the decision
maker’s alternatives will depend on the choices of the decision maker’s group of
reference.

Consider a population of N decision makers who are interacting among each
other and have to take an individual choice out of a set of n alternatives. As
introduced in Section 2.4.1, decision makers will select the alternative which
maximizes their utility. Under social influence, the simplest form for the utility
of choice x for individual i, denoted xi, will consist of three terms,

U(xi) = v(xi) + S(xi, µ
e
i (x−i)) + ε(xi), (2.41)
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where µei (x−i) represents the set of agent i’s expectation, at the time of his de-
cision making, on the choices taken by his surrounding (excluding i). There are
three terms contributing to agent i’s total utility of choice x: the private utility,
v(xi), which can be estimated by explanatory variables; the social utility, given
by S(x, i, µei (x−i)); and the unobserved utility, represented by ε(xi) as intro-
duced in Eq. (2.26). The formulation of the total utility of socially interacting
decision makers as given in Eq. (2.41) is in agreement with the proposed utility
in a prominent theoretical study of discrete choice with social interaction by
Brock and Durlauf (2001), which also influenced the general structure of this
section.

The simplest, and also the most common, discrete choice scenario is the
one where the decision maker has to choose between two alternatives (go-
ing to university: yes/no, having a child: yes/no, US presidential elections:
Democrats/Republican, ... ), resulting in a binary choice model with x ∈
{−1,+1}. For simplicity, it is assumed that every acquaintance is equally im-
portant and that all decisions makers are acquaintances of each other such that
µei (x−i) will be approximated by

x̄ei =
1

N − 1

N∑

j 6=i
xei,j , (2.42)

where xei,j represents agent i’s expectation of agent j’s choice. As such, x̄ei
denotes the average choice of the population as expected by agent i.

On the basis that the decision makers long for conformity, the simplest form
that their social utility term can take is

S(x, i, x̄ei ) = Jxix̄
e
i , (2.43)

such that they get positive social utility when xi and x̄ei have the same sign.
The next simplest alternative is

S(x, i, x̄ei ) = −J
2

(xi − x̄ei )2

= Jxix̄
e
i −

J

2
(1 + (x̄ei )

2, (2.44)

where they want to minimize their distance to the concensus and where the fact
that x2

i = 1 was used. By comparing Eq. (2.43) and Eq. (2.44), it is noted
that even though they differ in level, the dependence of xi coincides and as
such, similar behavior is expected. Due to this similarity only Eq. (2.43) will
be considered for this work, see Brock and Durlauf (2001) for further detail on
Eq. (2.44).

For the private utility, v(xi), a first choice is a linear relation, such that
v(xi) = xih + k. The parameters h and k are assumed to be the same for
every agent and to be measurable by the modeler. The external incentive or
influence of one alternative (like news or advertisement campaign) is represented
by h, whereas k is a constant utility. As agents compare their alternatives and
choose the alternatives that maximize their utilities, a constant utility will have
no impact on their decisions and can be disregarded, leading to a measurable
private utility of

v(xi) = xih. (2.45)
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Combining the different approximations, the decision maker’s utility, given
by Eq. (2.41), yields

U(xi) = xih+ Jxix̄
e
i + ε(xi)

= xi(h+ Jx̄ei ) + ε(xi), (2.46)

which can be identified as a random utility model (Eq. (2.26)) where the first
term in Eq. (2.46) represents the representative utility. Together with the as-
sumption of IIA, such that the unobserved utility is distributed according to a
Gumbel distribution, the probability of choosing xi, computed via Eq. (2.40),
is

p(xi) =
e

1
γ xi(h+Jx̄ei )

∑
xi=±1 e

1
γ xi(h+Jx̄ei )

. (2.47)

Comparing Eq. (2.47) to Eq. (2.23), the probability of a spin of the Ising model,
an equivalence between the binary choice model with social interactions and
the Ising model becomes apparent. With the assumption of global interactions
and rational expectations of decision makers (x̄ei =

∑
i xi/N), the behavior of

the average choice is described by exactly the same framework as the mean-
field Ising model of Eq. (2.25). Due to this equivalence, the results obtained in
Chapter 5, which are framed for an audience of physicists, could equally well
be targeted to the social science community by using the framework presented
here.

2.4.5 Probit vs. Logit model

The probit model and the logit model are the two most prominent models to
study discrete choice scenarios. As was documented above, both are random
utility models (i.e. can be described by Eq. (2.26)) where the unobserved utility
for the probit model is distributed according to a normal law, emerging from the
central limit theorem, while the stochastic term in the utility of the logit model
follows a Gumbel distribution, a consequence of Luce’s choice axiom (IIA).
The different distributions for the unobserbed utility is their only distinction.
As the difference between the logistic distribution (resulting from the difference
between two Gumbel distributed random variables) and the normal distribution
is very small, with slighty more tail events in the former case, it is empirically
very hard to distinguish between the models and there are no a priori theoretical
reasons to prioritize one before the other in most cases.

Among these two models, the logit model enjoys a stronger popularity among
researchers. The reason for this is found in the closed form solution of the
resulting probabilities (for the probit function the error function has to be used),
which also simplifies the parameter estimation via log-likelihood.

As both binary choice models in Chapter 4 and 5 use a stochastic utility
term which is normally distributed, they are probit models. However as stated
above, similar results would be found for the logit model.



Chapter 3

Economic Bubbles and
Related Literature

Economic bubbles and crashes are frequently discussed, but still controversial
topics in the financial world and literature. Bubbles, being defined as intermit-
tent regimes –persistent on the time-scale of years– of increasing over-valuation
of assets, and crashes, the rapid –on the scale of days to months– deflation of
high prices, bringing the price closer to its fair value, are strange beasts. Ac-
cording to the mainstream financial models and theories of the second half of
the 20th century, they are sheer impossible, ignoring, among others, the events
occurring in the Octobers of 1929 and 1987, as well as the beginning of 2000,
and the phenomenal increase of stock prices that preceded these events.

The basic assumption of these models is the efficient markets hypothesis
(EMH), which is one of the pilars of modern economics and finance, and consti-
tutes the Null Hypothesis for any newly proposed model or empirical analysis.
The EMH states that “prices fully reflect all available information”, an idea,
which was independently developed by Paul A. Samuelson (1965) and Eugene
F. Fama (1965a,b). It is a beautiful, elegant and bottom up approach, which
is closely related to the wisdom of the crowd. In this framework, markets are
interpreted as platforms, where all investors can submit their opinion on the
real and fundamental value of the traded asset, resulting in a price, which is
a combination of all the information pooled together. Unsophisticated traders,
who are willing to exchange assets at a different price, would either not find a
counter-party or would be exploited by more sophisticated investors and would
die out in the long run, leaving free markets populated by only fully rational
investors. As such, according to the EMH, a free market is self-cleaning, reflects
all available information and prices only change as novel information about the
asset’s value is revealed.

Unfortunately, detailed studies of financial market crashes concluded that
they could not find any revelation of information that could explain the price
movements in the previously mentioned October crashes of 1929 and 1987, nor
is there evidence for such news events concerning the price drop of internet
related companies in 2000, or the devaluation of financial institutions at the
end of 2007. The general explanation behind the dramatic price drops is that
they are corrections of a previously grossly overpriced asset class, which expe-

17
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rienced a buildup in the preceding years, i.e., a economic bubble. Moreover,
bubbles are not an phenomenon exclusively reserved for financial markets, some
famous historical examples are the Dutch Tulip Mania (1634-1637), the Mis-
sissippi Bubble (1719-1730), the South Sea Bubble (1720), the British Railway
Mania (1840s). Details about these bubble are elaborated by Sornette (2003).
Besides the fact that the EMH is unable to explain bubbles and crashes, there
are other statistical regularities, such as “excess volatility”(Shiller, 1981), mo-
mentum, overreaction and reversal (Jegadeesh, 1990; Bondt and Thaler, 1985;
Jegadeesh and Titman, 1993) which are inconsistent with this framework (West,
1988). Building on anecdotal evidence, popular books like Galbraith (1954) and
Kindleberger (1978), acknowledge bubbles and crashes and see their origin in
human irrationalities, leading to overoptimism, fads and manias.

Next, I will review the academic literature and present a non-exhaustive
list of models and empirical studies, which aims at explaining the existence of
bubbles and their underlying origins. The structure of the review was partly
influenced by two other reviews on this subject, namely Brunnermeier (2008)
and Kaizoji and Sornette (2010).

3.1 Rational bubbles

Under the hypothesis of symmetric information, it is impossible for bubbles to
exist in a financial market where finite maturity assets are traded by agents
with rational expectations (Tirole, 1982). However, rational bubbles can exist
in models with infinite maturity assets. Blanchard and Watson (1982) show
that rational agents may be invested in a bubble if its growth is fast enough
to remunerate the risk of the bubble bursting. The setting for such bubble is
however very restrictive, as the permuted inception of a rational bubble can
only be at the first date of trading (Diba and Grossman, 1988b) and the price
must not have an upper bound.

Empirical testing for such bubbles is a problematic task. Diba and Grossman
(1988a) find no evidence that stock prices contain rational bubbles, while West
(1987) can reject the null hypothesis of no bubbles. The inconclusiveness of
empirical evidence is confirmed by Flood and Hodrick (1990) and Evans (1991),
who acknowledge the difficulty to detect explosive patterns of bubbles due to
poorly specified models and the linearity of economic methods not adapted
to this issue. Another criticism of such rational bubble models is its reliance
on the backward induction of investors to compute the value of the asset, a
propriety, which is not found in experiments (McKelvey and Palfrey, 1992)
where participants play the centipede game (Rosenthal, 1981), an iterative two-
person game. A formal criticism is reported by Lux and Sornette (2002), who
show that models of rational bubbles, as introduced by Blanchard and Watson
(1982), exhibit returns whose tail-distribution is described by a power-law with
an exponent smaller than 1, which is at odds with empirical evidence.

Dropping the symmetric information hypothesis allows for models with het-
erogeneity in agent’s knowledge. In this setup, asset prices, for one, reveal the
scarcity of the asset, and second, constitute the aggregated information of all ac-
tive agents. Under asymmetric information, it might be that not every investor
is aware of the bubble if assets are persistently overvalued. Another possibility
is that every agent knows that prices exceed fundamental values but not ev-
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eryone knows that all other agents are aware of it. Such models are based on
the “greater fools” phenomenon, (Kindleberger, 1978; Kindleberger and Aliber,
2005) where investors hold overpriced assets in hopes of selling them to greater
fools before the bubble bursts. As an example of the existence of a rational bub-
ble under the assumption of asymmetric information and short sale constraints,
the model of Allen et al. (1993) is referred to.

3.2 Heterogeneous Beliefs and Limited arbitrage

In order for a market to be efficient, every new piece of information has to be
immediately be incorporated into the market. This is, however, only possible
if investors can react to positive, as well as negative news. If short-selling pos-
sibilities are limited or non-existent, the hands of rational investors are bound,
leaving them unable to fulfill their “duty” and correct the mis-prices created by
unsophisticated market actors. In this scenario, bubbles can persist.

A description of the various limits of arbitrage is given by Shleifer and Vishny
(1997). The principal tool for rational investors to act against an overpriced
asset is to short-sell the asset. As this practice is more strongly regulated than
for long positions, a majority of private investors are not able to to express
their views during a bubble, leaving the price-correcting trading to institutional
investors. However, as reported by Almazan et al. (2004), a large majority of
mutual funds are also not permitted to sell short. Furthermore, 79% of US
equity mutual funds do not use derivatives, according to Koski and Pontiff
(1999), suggesting that the practice of synthetically creating short position is
not used by such funds either.

Under the reasonable assumption of limited arbitrage and investors with het-
erogeneous beliefs, there exists a large number of models generating an inflation
of prices (Lintner, 1969; Miller, 1977; Jarrow, 1980; Chen et al., 2002; Duffie
et al., 2002; Hong et al., 2006). The basic mechanism behind these models is
that investors have very diverse expectations of future cash flows of the traded
assets, but because of the short sales restrictions, not every investor is able to
incorporate his information into the price. With the short sales restrictions, the
conditions for a free market are no longer fulfilled, corrupting the wisdom of
the crowd effect of aggregating information by sampling the opinion of a large
number of investors. It is the exclusively sampling of the optimistic population
that pushes the price above its fundamental value.

This mechanism is considered among the most convincing to explain the
irrational exuberance behind the rise of the Internet related stock prices. The
regulation of holding newly IPOed shares, which the majority of Internet com-
pany shares were, for a minimum period of 6 months, keeping the owners from
closing their positions and stoping the increasing prices of these stocks. For
a large number of companies this lockup expired in the spring and latter half
of 2000, which can be interpreted as a removal of short sales restrictions and
which, according to Cochrane (2002) and Ofek and Richardson (2003) resulted
in the beginning of the correction of the overpriced industry.

A related mechanism for the persistence of overvalued assets is risk aversion.
Rational, but risk averse, investors could restrain from heavily arbitraging in-
flated prices as shorting is riskier and costlier then long positions. It may be that
it takes a long time till the price pressure is big enough to bring the price back
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to fundamental levels, or it may be that, by luck, the irrational expectations
become right and then the arbitrageurs would take major losses.

3.3 Consciously Ridding the Bubble

Another type of model to investigate the persistence of bubbles and their ter-
mination was introduced by Abreu and Brunnermeier (2003). They assume
rational investors, who, sequentially realize that the price is in a bubble, which
will eventually collapse. They know that one single arbitrageur will not be able
to bring prices down to fundamental values, but they do not know how many
other investors are aware of the bubble. Based on his knowledge, the investor
has two ways of reacting to this situation. He can either immediately bet on
falling prices and not profit from the subsequent run-up, or decide to temporar-
ily ride the bubble, while taking the risk of not getting out in time before the
bubble bursts. As the bubble will only collapse if the number of arbitrageurs
exceeds a threshold, investors face a synchronization problem and they try to
forecast when other investors will attack the bubble. In this setup, a bubble
can persist even when a large number of market actors are aware of it and a
small and insignificant news event can trigger a crash, as it helps traders to
synchronously engage their arbitrage strategies.

The strategy of riding a bubble, instead of acting against it, as is proposed
by this model, was confirmed by the empirical studies of Brunnermeier and
Nagel (2004) and Griffin et al. (2011). They found that, during the Internet-
bubble from 1997 to March 2000, hedge funds were not only heavily invested
in technology stock, but that they were also aware of their over-valuation as
they reduced their potions as the bubble’s end was in sight. Such evidence
questions the stabilizing effect of rational investors on prices, and shows that
sophisticated traders can profit from deviating, as well as returning prices to
fundamental values.

Similar findings are reported by a survey from Shiller (1987) immediately
after the 1987 crash. It is reported that investors were aware that the market
was overvalued, which however did not stop them from being exposed to it.
Many investors showed a strong overconfidence in their capacities, as they were
convinced of being able to predict the market, i.e. getting out in time.

3.4 Positive feedback trading

In contrast to previously mentioned models, where bubbles emerge because in-
vestors had very high hopes for future cash flows or where they know prices were
inflated but predicted further growth, this section is concerned with a class of
models, where positive feedback traders, momentum traders, or “noise traders”
as they were introduced by Kyle (1985) and Black (1986), are responsible for
the persistent deviation of the fundamental value. These agents are not aware
of a bubble, nor do they estimate future cash flows, instead they engage into
trend-following investments, decoupled from any fundamental value1. This kind

1Generally, noise traders are traders, which base their trading decision on invalid informa-
tion, i.e. which is not helpful to predict future cash flows, such as past price movements and
technical analysis.



3. Economic Bubbles and Related Literature 21

of strategy does not necessary have to be irrational. It may result from stop-loss
orders, liquidation of positions to meet margin calls or investors’ risk aversion
rapidly declining with increasing wealth (Black, 1988; Leland and Rubinstein,
1988).

3.4.1 Experimental evidence and existence of momentum

On the other hand, evidence for the affinity of humans to engage in trend-
following behavior was found in an experimental study by Andreassen and Kraus
(1990). They asked their participants, who had some training in economics, to
bet on future price movements of authentic stock price patterns. When, over
some period, stock prices did not significantly change, subjects predicted mean-
reverting patterns, where a positive return is followed by a negative one, and
vice versa, such that the price remained at the same level. If, however, there
was an apparent trend in the price time series, subjects intuitively changed
their strategy and predicted a continuation of the trend. As these results were
virtually universal among all participants, trend-following behavior appears to
be a widespread phenomenon. Similar results were found by Offerman and
Sonnemans (2004), who report that subjects mistook randomly appearing trends
as a sign of positive autocorrelation.

Besides these technical and behavioral reasons for the existence of positive
feedback trading, there is also statistical evidence that stocks exhibit momen-
tum behavior at intermediate horizons. For companies traded on the New York
Stock Exchange, Jegadeesh and Titman (1993) find that the strategy of shorting
past losers and buying past winner stocks gives economically significant prof-
its for six to twelve moths after the portfolio creation. Winners and losers are
defined as the top and bottom decile of the last six-month returns. Similar
results are found for stocks of European stock exchanges (Rouwenhorst, 1998)
and emerging stock markets (Rouwenhorst, 1999). Beside momentum at inter-
mediate horizons, stock price dynamics show a long-term reversal at time-scales
of 3-5 years (Bondt and Thaler, 1985). Similar results are found by Cutler
et al. (1990), who confirm positive return autocorrelation for returns up to one
year for markets for stocks, bonds, foreign exchange, and various real assets,
and negative return autocorrelation for returns on stocks, bonds, and foreign
exchange on a time-scale of ∼ 2 years. The subject of momentum in returns
followed by price reversals will be covered in more detail in the introduction of
the paper presented in Section 6.2.

3.4.2 Models with momentum traders

In the following, additional models are discussed, which are able to generate
deviations from fundamentals, due to feedback trading, and subsequent price
reversal. The aim of these model is, among others, to explain the observed
positive mid-term and negative long-term return autocorrelation. Although
bubbles and crashes, which constitute the extreme case of this stylized fact,
are not explicitly mentioned in these studies, I still believe that they give some
valuable insight into the underlying of these phenomena.

Investigating the effect of positive feedback traders, de Long et al. (1990)
proposed a model studying the interaction between positive feedback traders and
rational investors, resulting in a price inflation and a subsequent reversal. In this
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model, rational investors, who obtain information to estimate the fundamental
value of the asset, are aware of the presence of positive feedback traders and
their investment strategy. As such, they drive the price up, over its fundamental
value, knowing that the noise traders, who are solely attracted by the price
increase and are unaware of its real value, will buy the asset anyways. At the
last period of this 3-period model, the asset’s real value is revealed, bringing the
price down to it fundamental value. This model shows that rational speculators,
who are usually thought to stabilize prices, can have a destabilizing effect on
prices when interacting with feedback traders. Another model which assumes
feedback traders is proposed by Cutler et al. (1990). In that set-up, noise traders
are able to make some profit, which is in contrast to de Long et al. (1990), where
feedback traders are badly exploited.

Similar to the previous model, in that the deviation from the fundamental
value is created by feedback trading, but different in its underlying origin, is
the under- and overreaction model of Daniel et al. (1998). In their representa-
tive agent model, they investigate the price dynamics resulting from the trading
of quasi-rational individuals, whose decision process is explicitly modeled and
based on well documented psychological biases. These biases are overconfidence
about the precision of private information, and biased self-attribution, the fact
that people react asymmetrically to new information. They tend to credit them-
selves for past success and blame external factors for failures, or as put by Langer
and Roth (1975): “Heads I win, tails its chance”. Given the assumption of over-
confidence, investors will overreact to their private information. If their private
information is confirmed by public information, their confidence is further in-
creased leading to an even stronger overreaction and generating momentum.
Once public information starts contradicting their initial private information
and signalling the deviation from the fundamental value, the confidence in their
private information is only slowly decreased and they are underreacting to the
public news. This underreaction results in a slowly reverting of the price back
towards the fundamentals.2

Hong and Stein (1999) proposed a market model where two types of agents
interact, “newswatchers” and “momentum traders”. Both types are bounded
rational, as every type relies exclusively on his type of information, which is
private information and past price changes, respectively. The model is based on
an initial underreaction of the newswatchers as information gradually diffuses
across the population of newswatchers and is slowly integrated into the price.
This slow integration creates a drift, which attracts the momentum traders.
Their trading activity eventually leads to an overreaction of the price to the
news and a deviation from the fundamentals. The reversal corresponds to the
unwinding of momentum traders positions, which happens endogenously com-
pared to de Long et al. (1990), where prices are just forced back to fundamentals
on a terminal date.

A modern incarnation of market model with rational and noise traders is
prosed by Kaizoji et al. (2011), where noise traders not only indulge in short
term momentum trading, but are also subjected to social imitation, a mechanism
that will be introduced in Section 3.5. Intermittened bubbles are witnessed for
large enough populations of noise traders, who can push the price from from its

2Another model, which is also based on psychological evidence (conservatism bias) is stud-
ied by Barberis et al. (1998), where investors over- and under-react to different types of news
and oscillate between two states, mean-reverting and trending.
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fundamental value. During the bubble regimes, the momentum strategies are
found to be protable.

3.4.3 Empirical evidence of positive feedback trading

In contrast to Daniel et al. (1998), where the momentum strategy is a result of
two behavioral biases, de Long et al. (1990) and Hong and Stein (1999) assume,
a priori, the presence of momentum traders, whose behavior is crucial for their
results. Although not completely unchallenged (Lakonishok et al. (1992) only
finds evidence for herding in small stocks), the majority of investor behavior
studies finds evidence for such a trading strategy, confirming the validity of the
momentum traders as an ingredient in financial market models.

Analyzing quarterly buying and selling imbalances of mutual funds, Klemkosky
(1977) finds that after two months of abnormally positive stock returns, large
buying imbalances followed and one month or more of abnormally negative re-
turns engendered a large selling imbalances, i.e. a text-book example of momen-
tum trading. Grinblatt et al. (1995) report that of their sample of 155 mutual
funds over the period of 1975-1984, 77% of the mutual funds were momentum
investors and that on average, funds that invested on momentum, realized signif-
icantly better performance than other funds cf. Wermers (1999). For individual
security and NYSE portfolio, Sias and Starks (1997) find that daily return au-
tocorrelations are an increasing function of the level of institutional ownership,
evidence that institutional investors and funds engage into momentum trading.
Also Nofsinger and Sias (1999) document intra-period momentum trading, and
that this strategy is successful as “stocks institutional investors purchase sub-
sequently outperform those they sell” in the following two years. Contrasting
these intra-period momentum trading results, is the study of Sias et al. (2001),
which states that the positive correlation between returns and changes in insti-
tutional holdings originates primarily from the price pressure exercised by the
institutional trading.

Badrinath and Wahal (2002) observe significant differences in trading prac-
tices among different types of institutions, but report that generally institutions
act as momentum traders when they enter stocks, i.e. exactly what is needed
to fuel a bubble. Dennis and Strickland (2002) document that, on days when
the overall market experiences large movements, the magnitude of a company’s
stock return, with the same sign as the market, is positively related to institu-
tional investors’ ownership in that company. Also the turnover of these stocks
is positively related to institutional ownership, indicating that institutional in-
vestors sell (buy) more then private investors when the market drops (rises).

A nice clearcut result is reported by Griffin et al. (2003), who state that,
“Based on the previous day’s stock return, the top performing decile of securities
is 23.9% more likely to be bought in net by institutions (...) than those in
the bottom performance decile.” Using quarterly data, Cai and Zheng (2004)
confirm that stock returns Granger-cause institutional trading, and that this
is especially true for purchases. The success of this trading strategy is also
confirmed as “the stocks with heavy institutional buying (selling), experience
positive (negative) excess returns over the previous 12 months”. Also in the
Taiwan market, institutional investors are found to engage in momentum trading
(Chen et al., 2008). Further evidence for momentum trading is reported by Sias
(2004), where it is stated that institutional demand is only slightly related to
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past returns, but strongly related to lagged institutional demand. This finding
suggests that there might be a different or additional mechanism behind the
creation of mid-term return momentum and bubbles, namely that investors
imitate each other. This mechanism will be discussed in the next section.

3.5 Herding

Herding, in the context of financial economics, refers to economic agents’ be-
havior of imitating each others, i.e., the opinion and actions of an agent are not
entirely motivated by her own private information and conviction, but mainly
by the opinion and actions of agents in their surrounding. This mechanism is
thought to be an important mechanism behind the growth and collapse of a bub-
ble. As herding investors disregard some of their information, this information
will not be incorporated into the price, making it possible for prices to deviate
from fundamentals. Besides the price not reflecting all available information,
unsubstantiated rumors and false news may impact the price and be amplified
via the positive feedback mechanism of herding3. This behavior can lead to
self-fulfilling prophecies, as supply and demand impact prices, confirming, on
the short run, investors’ opinions. On the long term however, prices will return
to their fundamental value, when investors’ irrational exuberance has to face
economic reality.

The original meaning of herding, moving together, is found in nature as the
default behavior of a large group of animals, ranging from sardines to grasshop-
per, and from buffaloes to lemmings4. But also the copying of specific actions is
widely documented for a variety of tasks, such as foraging, diet choices, means of
avoiding predators and selection of mates (Gibson and Höglund, 1992; Dugatkin,
1992; Dugatkin and Guy, 1992; Giraldeau, 1997; Pennisi, 2010). It is even sug-
gested that, in the early evolution of humans, the ability to imitated innovative
complex behavior was selected for (Blackmore, 2000), which may have promoted
the development of our comparably large brain (Dunbar, 1998).

The tendency of humans to blend in and imitate their social environment
is also well documented in psychology. Already early experiments showed that,
within a group, individuals often abandon their own private signal to adopt the
opinion shared by the majority. For instance Sherif (1937) asked participants to
report the movements of a point of light in darkened room without any point of
reference. In fact, the point was not moving at all, but when participants where
in groups, they quickly, without any discussion, came to a consensus (differing
across groups) on the amount of movement. Afterwards, interviews revealed
that the participants were unaware of the group’s influence on the final decision.
A similar experiment was conducted by Asch (1952), where subjects had to
compare the lengths of line segments. When they were alone most participants
gave correct answers, but when in a group, where all other members were asked

3Due to its intrinsic sequential character, in order to copy an action, it has to be performed
first, herding creates a positive feedback mechanism.

4Although the stories of Lemmings committing mass suicide are just urban legends, whose
origin goes back to the 1958 Disney film “White Wilderness”, where Lemmings are shown to
jump in large numbers off a cliff into certain death. In this movie, the Lemmings “jumped” off
the cliff, not because they were blindly following their fellow rodents, but because they were
launched off the cliff using a turntable, as was reported by a documentary of the Canadian
Broadcasting Corporation in 1983.
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to give the same wrong answer, subjects frequently agreed with this wrong
answer. Generally, subject were aware of the correct answer, as they reported
in later interviews, but were afraid to contradict the group. The fact that social
influence currupts the “wisdom of the crowd” effect was also shown in a recent
experiment by Lorenz et al. (2011). Participants were asked factual questions,
whose answers they could reconsider after having seen partial or full information
about the responses of other subjects. Their initial “wise” answer gets distorted
by this information, letting them converge towards wrong answers.

The reason for this change of opinion are manifold. In the situation of
incomplete knowledge, it may be rational for an agent to change her opinion,
as the group’s opinion is potentially based on more information, increasing its
likelihood of being correct. Another reason may be the human’s innate wish
for conformity and the urge of belonging to a group, decreasing the chances
for discrimination and the distribution of a potential penalty over the whole
group. Recent results from empirical psychology point to an additional reason.
Zaki et al. (2011) find that observing the choices of others, changes the internal
preferences of the observer, such that the change of opinion is not a conscience
rational decision, but a subconscious change of preferences. Similar results are
reported by Edelson et al. (2011).

The fact that herding in the context of financial markets is real and has im-
portant consequences was also acknowledged by Jean-Claude Trichet, President
of the European Central Bank, who said about the incentives and behavior of
fund managers that, “Some operators have come to the conclusion that it is
better to be wrong along with everybody else, rather than take the risk of being
right, or wrong, alone . . . By its nature, trend following amplifies the imbalance
that may at some point affect a market, potentially leading to vicious circles of
price adjustments and liquidation of positions” (Trichet, 2001).

3.5.1 Theoretical models of rational herding

Contrarily to the intuition, of labeling herding as an irrational and counter-
productive behavior, the following studies show that imitating one’s peers may
be the optimal choice, both in terms of profitability and sustainability (i.e., keep-
ing your job and reputation). Here, these various mechanisms behind herding
behavior will be elaborated and put in the context of financial markets.

Informational herding

One of the best-known models of information-based herding is the informational
cascades model (Bikhchandani et al. (1992); Banerjee (1992); Welch (1992)).
These occur in a setup, where every agent has only limited information and has
to choose one of several alternatives. Agents choose sequentially and see the
choices of the agents prior to them. As every agent has different information, it
becomes rational to choose the alternative, which attracted the majority, even
if this choice stands in contradiction with the agent’s own information. “An
informational cascade occurs when it is optimal for an individual, having ob-
served the actions of those ahead of him, to follow the behavior of the preceding
individual without regard to his own information”, according to Bikhchandani
et al. (1992).
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This mechanism is best illustrated by the example of a hungry tourist, look-
ing for a good restaurant. While strolling around in a city, unknown to him,
he arrives at a place with many restaurants. One of these is packed with peo-
ple, who look like locals to him, while the other restaurants are sparsely filled.
Although his tourist-guide states that one of the little occupied restaurants is
the best place in town, he will still go to the packed place, as, so he thinks, the
locals surely know where to find the best food. Even though the tourist’s choice
is completely based on the choices of his surrounding, while ignoring all his
private information, it is still a rational choice, which could lead to the optimal
outcome. It might be that the tourist-guide is out-dated or that the reviewer
had a bad day when he was rating the restaurant. If, however, every costumer
in the restaurant took his decision based on its popularity at the time, the final
population is entirely controlled by the first few guests and the occupancy of
the restaurant is not necessarily related to the quality of its food.

A similar argument can be constructed for investors selecting a stock to in-
vest in, where either the opinion of the investor’s entourage or the latest changes
of the stock price represents its popularity. The latter scenario is equivalent to
momentum trading, which was discussed in the previous section, whereas the
former constitutes the basis of a class of financial market models that will be
introduced in Section 3.5.3.

There is, however, a major difference between choosing a restaurant and
picking a stock. The tourist knows, as soon as he has finished his meal, whether
his choice was the right one. For an investor on the other hand, it is not so clear-
cut as the value of a stock equals the discounted future cash-flows, which is never
known with certainty. What he however sees, is the dynamics of the price since
his transaction. If the direction of the price change is in agreement with his
prior opinion, he feels confirmed that his opinion was right. This mechanism,
which will be investigated in the main section of the next chapter (Section 4.2),
creates an herding-induced positive-feedback process and leads to self-fulfilling
prophecies.

An important consequence of the sequential character of the setup is that
once the informational cascade has occurred, any new choice is uninformative for
later observers, as his private information is ignored, leading to an information
blockage. Once a blockage occurs, any choice of newly arriving agents is on no
benefit to others.

Reputational herding

In their seminal paper, Scharfstein and Stein (1990) propose a model of repu-
tation based herding of fund managers. Outside observers infer the managers’
ability from their investment choices and the resulting payoffs. They assume
that competent managers should have similar choices, while for incompetent
ones, independent noise should be observed. As the managers themselves are
unsure about their own ability, it is rational for them to copy each other, even if
it contradicts their private information. Collective bad payoffs will be attributed
to bad economy or bad circumstances, while taking losses and the competition
making profits out-weights the opposite situation if loss of reputation is to be
avoided. Herding of risk averse managers is found to be rational in many models
if information is costly (Gumbel, 2005), and if managers are compared relative
to each other (Zwiebel, 1995; Maug and Naik, 2011).
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An example of such a behavior can be found in the strong adpotion of CDOs
and CDSs into the portfolios of many bank and funds during the rising retail
pricees in the US from 2003-2006. During that period, these derivatives gen-
erated extraordinary profits, such that private investors went to funds, which
offered these great rates. Even managers, who were aware of the potential dan-
gers of a large exposure to such assets, were forced to invest in then, in order
to compete with other funds who had less objections. As such, comparing fund
performances with each other does not only lead to herding among managers,
but also to trading strategies which are only myopically optimal and can re-
sult in a destabilized market, a subect which will be treated in more detail in
Section 4.2. Besides, Prendergast (1993) shows that subordinate managers are
incentivised to make recommendations consistent with the prior beliefs of their
superiors.

The behavior of analysts is considered by Trueman (1994). He shows that,
even without justifiable information, they are likely to make their current earn-
ing forecasts close to prior earnings expectations and to those previously an-
nounced by other analysts, as investors interpret this as a good analysis. The
less skillful the analyst is, the stronger his bias. Similar behavior is predicted
by the model of Graham (1999), which is validated by investigating analyst’s
reactions to a recommendation newsletter using thirteen years of data. Also for
firm managers, it may be better to make investment decisions consistent with
the market’s “prejudices” (Brandenburger and Polak, 1996), even when they
have superior information telling them otherwise. This behavior arises from the
willingness to please investors and share-price maximization, which however,
favors the short-term.

Investigative herding

Investigative herding refers to the situation where information is investigated
only if the analyst believes that others also consider this information to be
important, similar to the Beauty Contest of Keynes (1936).

In the seminal paper on investigative herding, Brennan (1990) proposed a
model, where acquiring costly information only pays off if investors coordinate
and move the price in the direction of the new information, giving an advantage
to whose who respond fast. Otherwise, the costly information might end up
useless and the investor will not be able to sell the asset at a profit. A similar
model is investigated by Froot et al. (1992), where they show that for short-term
investors, it can be profitable to learn what other informed investors know and
to trade on this information, even if it is only spurious information. Hirshleifer
et al. (1994) find a tendency to herd in a situation where some traders receive
information before others. The choice of focusing on information regarding
either long-term or short-term can also be a result of herding, according to
Holden and Subrahmanyam (1996)

3.5.2 Empirical evidence of herding

Having presented a large variety of models containing agents that indulge in
some sort of herding, here, a selection of studies is reviewed, which reports
strong evidence for such a behavior among economic agents.
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General herding evidence

As the empirical studies on momentum trading, reported in Section 3.4, inves-
tigate the changes in the portfolios of institutional investors given prior market
movements, the data at the disposal of these researchers also enables them to
search for herding evidence. Evidence of herding can take several forms, such
as portfolio changes of one fund leading to similar changes in an other fund,
or that funds perform the same changes at the same time, or that the disper-
sion between the portfolio of different funds is too small as to be explained by
independent enterprises.

For instance Grinblatt et al. (1995), which find strong evidence for momen-
tum investors, also report that funds tended to buy and sell the same stocks at
the same time, even though their evidence is relatively weak. Wermers (1998)
find stronger evidence of funds simultaneously buying the same stock in the
1975-84 period, especially stocks with high past returns. The fund’s herding
behavior is found to be profitable, as the stocks that were bought as a herd,
significantly outperformed during the following quarters those, which were sold
as a herd. Also sequential herding is documented, as he finds that, for pop-
ular stocks, some groups of funds imitate the future portfolio choices of other
funds. In a different study on mutual funds from 1975 through 1994, Wermers
(1999) reports little herding in average stock, but much higher levels of herding
in small and growth stocks. This is in line with the predictions that herding is
more likely to occur if fundamental value estimation is harder and when there
is more uncertainty. Confirming his previous result he finds that, while herding,
the purchases significantly outperform the sold assets.

Also other studies document copying behavior of funds (Sias and Starks,
1997) and acting in synchronicity (Nofsinger and Sias, 1999; Dennis and Strick-
land, 2002). Very clear evidence that institutions indulge in informational herd-
ing, i.e., inferring information from each other trades, is found by Sias (2004)
for the period from 1983 to 1997. They state that, “institutional demand is
more strongly related to lag institutional demand than lag returns”. Similar
results are found for the Taiwanease market, where Chen et al. (2008) report
that institutional investors follow each other into and out of the same securities.
Such findings are confirmed by Demirer et al. (2010), who in addition find that
herding is stronger in bear markets, i.e., panic fueld herding.

Detailed herding evidence

To show that the previous studies are not a result of spurious herding, where
the different funds had similar portfolios because they reacted to the same in-
formation and not because of any interaction, the following studies investigate
the behavior of analysts and investors in more detail, such that spurious herding
can be excluded.

By studying the relative tightness of analysts earning forecast distribution in
the 1985-1987 period, Olsen (1996) finds that the majority (52 to 72 %) indulge
in herding, with herding behavior even increasing with the unpredictablity of
future earnings. Analysts’ earnings prediction are shown to be biased towards
the consensus forecast, seen in the decreased dispersion of their opinions. A
tendency for optimistic predictions is also observed, as analysts are more likely
to herd towards the consensus and disregard their private information, if their
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private information is pessimistic. Also De Bondt and Forbes (1999) find “exces-
sive agreement” among analyst predictions. Analyzing U.K. companies between
1986 and 1997, their evidence supports overoptimism, overreaction and “a sur-
prising degree of consensus relative to the predictability of corporate earnings”.
Chevalier and Ellison (1999) report herding among younger managers, as they
avoid unsystematic risk and are invested into popular sectors. Evidence that
herding is negatively related to experience is also found for analysts by Hong
et al. (2000); Clement and Tse (2005). Minimizing the risk of a bad reputa-
tion at the start of a career, is thought to be the main reason for this herding.
Herding also increases with the difficulty of the task, as is reported by Kim and
Pantzalis (2003) for analysts-data of the 1980-98 period.

Sequential herding, i.e. cascading, of analysts is reported by Welch (2000),
who shows that security analysts’ recommendations are significantly influenced
by previous recommendations. The influence is stronger the more recent the
past recommendation is. It is also shown that their recommendations correlate
with the prevailing consensus forecast and that the strength of the consensus’
influence is independent of its accuracy. This leads to the conclusion that the
herding towards the consensus is not based on fundamental information but on
short-lived information, i.e., analysts herd after noise. In contrast to previous
studies, Welch (2000) finds that consensus-herding is significantly stronger in
bull markets and towards an optimistic consensus, consistent with the overall
optimistic bias of analysts reported in other studies. Stronger herding during
“good times” leads to a poorer information aggregation such that these times
represent a fertile ground to grow bubbles, with a valuation based on thin air.

Further evidence for herding among analysts is provided by Guedj and
Bouchaud (2005), who document over-optimism and very small variance of fore-
casts compared with forecasting errors. These effects were particularly strong
during the early nineties and the Internet bubble.

Let us now turn our attention to investors and fund managers. In one of
the earliest of such studies, Shiller and Pound (1989) asked institutional and
individual investors, “How do investors develop interest in and receive impor-
tant information, leading to decisions about investments?”. Many investors
reported that personal contacts had brought their attention to stocks they re-
cently bought. Generally they found that direct interpersonal communications
had a strong impact on investors’ trading decisions. As for analysts, herding, as
well as trend-following behavior, is more common in younger and inexperienced
fund managers, as was found by Greenwood and Nagel (2009), who investigated
managers behavior during the dot-com bubble.

Having provided evidence of herding of analysts above, Brown et al. (2009)
show that mutual funds are sensible to analysts reports and herd into and out
of the stocks that are up- and down-graded in analysis consensus predictions.
Besides inducing changes in funds holdings, analysts’ revisions also impact the
market, as stocks traded by herds of mutual funds exhibit a price impact in the
same quarter, together with a price reversal in the following quarter, showing
the potential price destabilizing effect of analyst information when overused by
fund managers.

Another great study on herding and word-of-mouth propagation of informa-
tion, with similar results as the survey by Shiller and Pound (1989), is the study
of Hong et al. (2005). They find that for fund managers living in the same city,
changes in their portfolio are correlated, i.e. the probability of buying (selling) a
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certain stock significantly increases if an other manager in that city has bought
(sold) the same stock. They can rule out local preferences, as the correlated
portfolio changes also appear for companies far away from the managers’ home.

3.5.3 Herding-based models of financial markets

In the context of the models presented in this section, herding refers to social
interaction, the situation where the opinion and actions of individuals are pos-
itively influenced by those of their reference group. Social interactions can ex-
plain self-reinforcing behavior and may lead to multiple equilibria in the absence
of external coordination. Besides, in certain situations, small exogenous influ-
ences on systems composed of interacting individuals may cause large changes
at the aggregate level. With the exception of one model (Shiller et al., 1984), the
models presented here are based on the Ising model (cf. Chap. 2), which arises
from the binary choice setup (buy/sell), the peer-interaction among investors
and the adjustable interaction strength or variance of the random term of their
utility. For additional information on such and related models, Hommes (2006,
2008) reviews the literature of interacting agents in economics and finance.

One of the first models, incorporating social interaction, was introduced by
Schelling (1971) and aimed at explaining the racial segregation in residential
areas. He showed that even small racial preferences can lead to pronounced
residual segregation. Social interaction was also found to be of crucial impor-
tance in the adoption of norms and habits (Schelling, 1973). For the majority
of academics in the field of financial economics, it was Shiller et al. (1984) who
first proposed a model of stock price dynamics which incorporates social interac-
tion, leading decisions based on “animal spirits”, as suggested by Keynes (1936),
like “fads”, where economic decisions are not correlated with economic reality.
Among others, he affirms the importance of social interaction by pointing to its
well documented effects in psychology and the impact of such behavior on stock
prices, leading to excess volatility and extend deviations from the fundamentals.
His affirmations were later confirmed by West (1988).

However, already ten years before Shiller et al. (1984), but not very known
in the finance community, Föllmer (1974) analyzed the outcome of “Random
economies with many interacting agents”, although with less emphasis on the
psychological origin or evidence of the contagious nature of opinions. His model
of an economy, with agents governed by random preferences whose probability
depends on the agent’s environment, is inspired by contemporary research in
physics and probability on interacting particle systems, with these final results
being based on the Ising model. He shows that even short range interactions
may propagate through the whole economy and give rise to price instabilities.

In a similar vein, Blume (1993) and Brock (1993) develop models with inter-
acting agents facing discrete choices. Also the model by Kirman (1993), which
was inspired by the puzzling behavior of foraging ants and aims at explaining
epidemics and herding behavior in financial markets, follows the same scheme.
If agents (or ants) are given the choice between two opinions (optimistic versus
pessimistic or two different food sources), while being influenced by a randomly
selected fellow agent (or fellow ant), a persistent and asymmetric distribution
of opinions emerges, with the maximum suddenly switching between the two
alternatives.

Other modes, directly building on the Ising model in the ferromagnetic state
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and investigating financial bubbles and crashes are proposed by Lux (1995);
Kaizoji (2000); Kaizoji et al. (2002) among others. These are either static mod-
els (Kaizoji, 2000), relating to the multiple equilibria and hysteresis characteris-
tic under external forcing of the Ising model, or dynamic models, including some
kind of repulsion from the fixed points, such that the system can overcome a
predominant opinion in one direction and switch between attractive fixed point
(Lux, 1995; Kaizoji et al., 2002). These systems usually show periodic dynamics,
with the majority switching between overly optimism and overly pessimistic.

An application of the Ising model to empirical data of opinion shifts is pre-
sented by Michard and Bouchaud (2005). Although not for financial data, they
show how collective opinions can abruptly change (adoption of the birth con-
trol pill, cell phones, applause in concerts), when exposed to a slowly changing
and weak signal, similar to the large response of the magnetization of the Ising
model, relative to a weak change in the external magnetic field.

Similar to the previously presented models, in that it is inspired by the
Ising model, Chapter 5 contains the study of a model which can be interpreted,
among others, as a financial market model or opinion dynamics model. How-
ever, compared to all previous studies which either do not consider any external
influence or a slowly varying driving force, the influence of a rapidly varying
external signal will be considered, representing the constant flow of news, which
economic agents are subjected to. In that setup a new phenomenon, which we
call noise-induced volatility, will be identified, which is proposed as an explana-
tion for the excess volatility found on financial markets (Shiller, 1981), together
with the observed weak predictive power of news onto price dynamics (Parr,
1985; Cutler et al., 1989; Joulin et al., 2008).

3.6 Experimental evidence

Besides undoubtable evidence from general experiments of humans adopting
the opinion of, and being influenced by, their surrounding, either consciously
(Asch, 1952; Lorenz et al., 2011) or unconsciously (Sherif, 1937; Zaki et al.,
2011; Edelson et al., 2011) as presented in the begining of Section 3.5, there
exists also experimental studies specifically targeting the emergence of bubbles
in the price of a good.

In their experimental exchange, Smith et al. (1988) study the price dynamics
of a risky asset, traded via a double-auction setting by their participants. At
every time-step of its finite life-time, the asset pays a random dividend, whose
distribution and expected value are well known to the participants, such that
the asset’s fundamental value is monotonously decreasing in time. Despite the
homogenous knowledge among the participants of its payoff-structure, there is
intensive trading and prices initially rise, and surmount the asset’s fair value.
For the majority of their experimental price evolutions, they witness bubbly dy-
namics, which can be separated into three phases: (i) an initial rally, exceeding
the fundamental price, (ii) a cooling off of the rally and (iii) a crash towards the
end of the assets lifetime. Subsequent studies show that these bubbles persist
even if short-sales are possible, if trading fees are introduced and if participants
have an economic background. In other words, even if subjects are given the
opportunity and incentives to fight the bubble, they still persist.

It was thought that the “greater fool” hypothesis and the lack of common
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knowledge are the reasons behind the intensive trading and the emergence of
the bubble. In order to test this hypothesis, Lei et al. (2001) performed a
similar experiment, where participants did not have the possibility of reselling
a purchased share, rendering speculative trading impossible. Even in this setup
bubbles and crashes are observed and are attributed to irrational elements in
participants behavior as lack of common knowledge of pure speculation can be
ruled out.

3.7 Concluding remarks

In the previous sections, a wealth of literature was presented, which either pro-
vide empirical evidence or theoretical models for the existence and underlying
origins of bubbles, as well as their weakened manifestation, price momentum. To
underline the impact of the preveiling consensus on an asset’s value, in contrast
to its fundamental value, I point to an interview with Eugene F. Fama (2007),
conducted on November 2. 2007, i.e., at the top of the real eatate and credit
bubble. In this intervew, Fama states that “The word bubble drives me nuts”,
and that he does not acknowledge the internet bubble, nor that the crashes of
1927 and 1987 contradict the EMH. When asked whether the housing markets
are efficient, he replied that he does not know, but says that, when people are
buying a house, “they look around very carefully and they compare prices”,
implying that his guess would be an affirmation of their efficiency. One year
later, the S&P 500 had lost 36% of its value.

This statement of Prof. Fama shows the importance of the results docu-
mented in experiments such as Zaki et al. (2011), Edelson et al. (2011) or Lorenz
et al. (2011), where social interaction makes people honestly believe that the
majority is right, corrupting the wisdom of the crowd effect, and as such, also
the efficiency of a free market.



Chapter 4

A model of myopic
adapting agents

4.1 Introductory comments

My contribution to the literature of bubble formation and origin of financial
crashes is presented in Section 4.2. It contains the full paper, as it is published
in the Journal of Economic Behavior & Organization (Harras and Sornette,
2011). The paper is self-contained with introduction and conclusion, rendering
an additional introduction superfluous. In Section 4.3, additional comparisons
with previously discussed models are performed and further evidence for the
validity of our assumptions and conclusions are provided.

33
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4.2 The paper

Journal of Economic Behavior & Organization 80 (2011) 137– 152

Contents lists available at ScienceDirect

Journal  of  Economic  Behavior  &  Organization

j ourna l ho me  pag e: www.elsev ier .com/ locate / j ebo

How  to  grow  a  bubble:  A  model  of  myopic  adapting  agents

Georges  Harras ∗,  Didier  Sornette
Department of Management, Technology and Economics, ETH Zurich, CH-8001 Zurich, Switzerland

a  r  t  i c  l  e  i n  f  o

Article history:
Received 11 November 2010
Accepted 2 March 2011
Available online 21 March 2011

JEL classification:
G01
G14
D84

Keywords:
Stock market
Crash
Bubble
Herding
Adaptation
Agent-based model

a  b  s  t  r  a  c  t

We  present  a simple  agent-based  model  to study  the  development  of  a bubble  and  the
consequential  crash  and  investigate  how  their  proximate  triggering  factor  might  relate  to
their  fundamental  mechanism,  and  vice  versa.  Our  agents  invest  according  to their  opin-
ion on  future  price  movements,  which  is based  on three  sources  of  information,  (i) public
information,  i.e. news,  (ii)  information  from  their  “friendship”  network  and  (iii)  private
information.  Our  bounded  rational  agents  continuously  adapt  their  trading  strategy  to  the
current  market  regime  by  weighting  each  of  these  sources  of information  in  their  trading
decision  according  to its  recent  predicting  performance.  We  find  that  bubbles  originate  from
a  random  lucky  streak  of positive  news,  which,  due  to a feedback  mechanism  of these  news
on  the  agents’  strategies  develop  into  a transient  collective  herding  regime.  After  this  self-
amplified exuberance,  the price  has  reached  an  unsustainable  high  value,  being  corrected
by a crash,  which  brings  the  price  even  below  its fundamental  value.  These  ingredients
provide  a simple  mechanism  for the  excess  volatility  documented  in financial  markets.
Paradoxically,  it is the  attempt  for investors  to adapt  to  the  current  market  regime  which
leads to  a dramatic  amplification  of  the  price  volatility.  A positive  feedback  loop  is created
by the two  dominating  mechanisms  (adaptation  and  imitation)  which,  by  reinforcing  each
other,  result  in bubbles  and  crashes.  The  model  offers  a  simple  reconciliation  of the two
opposite  (herding  versus  fundamental)  proposals  for the origin  of  crashes  within  a  single
framework  and  justifies  the  existence  of  two populations  in  the  distribution  of  returns,
exemplifying  the  concept  that  crashes  are  qualitatively  different  from  the  rest  of the  price
moves.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Bubbles and crashes in financial markets are events that are fascinating to academics and practitioners alike. Accord-
ing to the consecrated academic view that markets are efficient, bubbles, being temporally persistent, self-reenforcement
deviations of the price from the fundamental value, are impossible. And crashes should only result from the revelation of
a dramatic piece of information. Yet in reality, there is a large consensus both from professionals (Dudley, 2010; Trichet,
2010) and academia (Shiller, 2000; Abreu and Brunnermeier, 2003) that bubbles do exist, and even the most thorough post-
mortem analyses are typically inconclusive as to what piece of information might have triggered the observed crash (Barro
et al., 1989).

It is often observed that crashes occur soon after a long run-up of prices, referred to as a bubble. A crash is thus often the
burst of the bubble. There is a vast amount of literature aiming at characterizing the underlying origin(s) and mechanism(s)
of financial bubbles (Abreu and Brunnermeier, 2003; Kaufman, 2001; Sheffrin, 2005; Shiller, 2000; Sornette, 2003a)  but
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there is still no consensus in the academic community on what is really a bubble and what are its characteristic properties.
Bubbles do not seem to be fully explained by bounded rationality (Levine and Zajac, 2007), speculation (Lei et al., 2001)
or the uncertainty in the market (Smith et al., 1988). Finally, there is no really satisfactory theory of bubbles, which both
encompasses its different possible mechanisms and adheres to reasonable economic principles (no arbitrage, equilibrium,
bounded rationality, etc.).

Most approaches to explain crashes search for possible mechanism or effects that operate at very short time scales (hours,
days, or weeks at most). Other mechanisms concentrate on learning an exogenously given crash rate (Sandroni, 1998). Here,
we build on the radically different hypotheses summarized in (Sornette, 2003a)  that the underlying cause of the crash should
be found in the preceding months and years, in the progressively increasing build-up of a characteristic that we refer to
as ‘market cooperation’, which expresses the growth of the correlation between investors’ decisions leading to stronger
effective interactions between them as a result of several positive feedback mechanisms. According to this point of view,
the proximal triggering factor for price collapse should be clearly distinguished from the fundamental factor. A crash occurs
because the market has entered an unstable phase towards the culmination of a bubble and any small disturbance or process
may reveal the existence of the instability. Think of a ruler held up vertically on your finger: this very unstable position will
lead eventually to its collapse, as a result of a small (or an absence of adequate) motion of your hand or due to any tiny whiff
of air. This is the proximal cause of the collapse. But the fundamental cause should be attributed to the intrinsically unstable
position.

What is then the origin of the maturing instability? Many studies have suggested that bubbles result from the over-
optimistic expectation of future earnings and history provides a significant number of examples of bubbles driven by such
unrealistic expectations (Kindleberger and Aliber, 2005; Sheffrin, 2005; Sornette, 2003a).  These studies and many oth-
ers show that bubbles are initially nucleated at times of burgeoning economic fundamentals in so-called “new economy”
climates. This vocable refers to new opportunities and/or new technological innovations. But, because there are large uncer-
tainties concerning present values of the economies that will result from the present innovations, investors are more prone
to influences from their peers (Hong et al., 2005), the media, and other channels that combine to build a self-reflexive cli-
mate of (over-)optimism (Umpleby, 2007). In particular, these interactions may  lead to significant imitation, herding and
collective behaviors. Herding due to technical as well as behavioral mechanisms creates positive feedback mechanisms,
which lead to self-organized cooperation and the development of possible instabilities or to the “building of castles in the
air”, to paraphrase Malkiel (1990).  This idea is probably best exemplified in the context of the Internet bubble culminating
in 2000 or the recent the CDO bubble in the USA peaking in 2007, where the new economies where the Internet or complex
derivatives on sub-prime mortgages building on accelerating real-estate valuations.

Based on these ideas, the present paper adds to the literature by providing a detailed analysis of how the proximate
triggering factor of a crash might relate to its fundamental mechanism in terms of a global cooperative herding mechanism.
In particular, we rationalize the finding of Cutler et al. (1989) that exogenous news are responsible for no more than a third
of the variance of the returns and that major financial crises are not preceded by any particular dramatic news.

In a nutshell, our multi-period many agent-based model is designed as follows. At each time step t, each investor forms an
opinion on the next-period value of a single stock traded on the market. This opinion is shaped by weighting and combining
three sources of information available at time t: (i) public information, i.e. news, (ii) information from their “friendship”
network, promoting imitation and (iii) private information. In addition, we  assume that the agents adapt their strategy,
i.e., the relative importance of these different sources of information according to how well they performed in the past in
predicting the next-time step valuation.

The a priori sensible qualities of our agents to gather all possible information and adapt to the recent past turn out to
backfire. As their decisions are aggregated in the market, their collective impact leads to the nucleation of transient phases
of herding with positive feedbacks. These nucleations occur as a result of random occurrences of short runs of same signed
news. Our main findings can thus be summarized as follows: rallies and crashes occur due to random lucky or unlucky streaks
of news that are amplified by the feedback of the news on the agents’ strategies into collective transient herding regimes.
In addition to providing a convincing mechanism for bubbles and crashes, our model also provides a simple explanation for
the excess volatility puzzle (Shiller, 1981).

Before presenting the model and its results, it is useful to compare it with the relevant literature and related models.
A related line of research aims at developing a theory of “convention” (Orléan, 1984, 1986, 1989a, 1989b, 1991, 1995),
which emphasizes that even the concept of “fundamental value” may  be a convention established by positive and negative
feedbacks in a social system. A first notable implementation by Topol (1991) proposes a model with an additive learning
process between an ‘agent-efficient’ price dynamics and a mimetic contagion dynamics. Similar to our own  set-up, the
agents of Topol (1991) adjust their bid-ask prices by combining the information from the other buyers’ bid prices, the other
sellers’ ask prices and the agent’s own efficient price corresponding to his knowledge of the economic fundamentals. Topol
(1991) shows that mimetic contagion provides a mechanism for excess volatility. Another implementation of the concept
of convention by Wyart and Bouchaud (2007) shows that agents who use strategies based on the past correlations between
some news and returns may  actually produce by their trading decisions the very correlation that they postulated, even
when there is no a priori economic basis for such correlation. The fact that agents trade on the basis of how the information
forecasts the return is reminiscent of our model, with however several important differences. The first important conceptual
change is that Wyart and Bouchaud (2007) use a representative agent approach (in contrast with our heterogeneous agent
framework), so that effect of imitation through the social network is neglected. The second difference is in the agent’s
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calculation of the correlation to adapt their strategies. In Wyart and Bouchaud (2007),  agents’ strategies are controlled
by the correlation between the news and the return resulting immediately from their aggregate action based on those
news (taking into account the agents’ own impact). Our agents’ strategies are determined by the correlation between their
information and the return one time step later, which embodies the more realistic situation, in which a postion first has to
be open and then closed a time step later for the trade’s payoff to be observed.

Another closely related line of research is known as “information cascades”. According to (Bikhchandani et al., 1992), “an
informational cascade occurs when it is optimal for an individual having observed the action of those ahead of him, to follow
the behavior of the preceding individual without regard to his own information”. In these models, agents know that they
have only limited information and use their neighbors actions in order to complement their information set. Bikhchandani
et al. (1992) showed that the fact that agents use the decisions of other agents to make their own decision will lead with
probability 1 to an informational cascade under conditions where the decisions are sequential and irreversible. This model
was later generalized by Orléan (1995) into a non-sequential version, where informational cascades were still found to be
possible.

The concept of information cascades is not new in modeling bubbles. Chari and Kehoe (2003) developed a model where
agents try to compensate their uncertainty about the a priori fixed payoff of an asset by observing all other agents’ actions.
In our model, agents are also using the opinions of their neighbors to determine how to act but the reason behind this is
different. Our agents are not so much interested in the fundamental value of the stock, but more in its future directions.
They try to buy the asset before its price rises and sell before it falls, making profit from the difference in the price. The
true underlying equilibrium value is not the only important information to them, and they are more clever than purely
fundamental value investors. They recognize that fundamental value is just one component among others that will set the
market price. They include the possibility that the price may  deviate from fundamental value, due to other behavioral factors.
And they try to learn and adapt to determine what are the dominant factors. In principle, they should be able to discover
the fundamental value and converge to its equilibrium. But it is a fact that they do not in some circumstances, due to the
amplification of runs of positive or negative news in the presence of their collective behavior when sufficiently strong. In the
“information cascade” set-up, one assume that the “truth” exists, that there is a true fundamental price or a correct choice
to be made which is exogenously given, and agents have no influence on the outcome. In our model however the outcome,
whether selling or buying a stock was the right choice, is endogenously emerging from the aggregated choices of all agents.
There is no a priori right or wrong answer, it is decided during the process. Moreover, the strength of the influence of her
neighbors onto a given agent is not constant in time. This influence by the social environment evolves in time according to
its past relevance and success.

A model for the formation of a boom followed by a crash was  also developed by Veldkamp (2005),  where the price of
an unknown company can rise only slowly due to infrequent news coverage. If the company performs well resulting in a
slow boom, its susceptibility towards news increases as the media become more aware of the successful company so that,
eventually, a single piece of bad news can induce a sudden crash. Although the subject of research is the same, we  show how
a boom can also be formed with news not being constantly positive and that a single piece of bad news does not necessarily
lead to the burst a bubble.

The endogenization of the sources of information onto the decisions of the agents is inspired by the model of Zhou and
Sornette (2007),  which focuses on herding and on the role of “irrational” mis-attribution of price moves to generate most of
the stylized facts observed in financial time series. Similarly to their model as well as many other artificial financial market
models investigating the interaction between trading agents, our model is based on the Ising model, one of the simplest
models describing the competition between the ordering force of imitation or contagion and the disordering impact of
private information or idiosyncratic noise that promotes heterogeneous decisions (McCoy and Wu,  1973).

Our paper is organized into four sections. In Section 2, the detailed working of the model is presented. The results are
shown and discussed in Section 3 and Section 4 concludes.

2. The model

2.1. General set-up

We consider a fixed universe of N agents who are trading (buying or selling) a single asset, which can be seen as a stock,
the market portfolio or any other exchange traded asset. This asset is traded on an organized market, coordinated by a
market maker. At each time step, agents have the possibility to either trade or to remain passive. The trading decision of a
given agent is based on her opinion on the future price development.

To form their opinion, agents use information from three different sources: idiosyncratic opinion, global news and their
network of acquaintances. In order to adapt their decision making process to the current market situation, they are weighting
the different information sources by their respective past predicting performance. Limited to these sources of information,
our agents act rationally, i.e., they use all information available to them to maximize their profits. Since they use backward
looking adapting strategies with finite time horizons, our agents are boundedly rational, with limited competence, resources
and available time.

A limitation of the model is to assume that agents do not have access to more liquidity than their initial wealth and that
generated by their investments. Moreover, our universe has a fixed population, so that there is no flux of new “foreign”
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investors that may  be attracted in the later stage of a bubble, and who could inflate it up further (Sornette and Zhou,
2004; Zhou and Sornette, 2006, 2008). We  thus purposefully remove one of the mechanisms, namely the increasing credit
availability and credit creation (Caginalp et al., 2001), which has often been reported as an important ingredient to inflate
historical bubbles (Galbraith, 1997; Sornette, 2003b; Kindleberger and Aliber, 2005). This allows us to focus on the role of
decision processes with conflicting pieces of information in the presence of local adaptation.

2.2. Three sources of information

At every time step, agents form anticipations concerning the future price movements based on three sources information.
A first source of information of a given agent is her private information, εi(t), which may  reflect the unique access

to information not available publicly or the idiosyncratic, subjective view of the particular agent on how the stock will
perform in the future. The private information is different for every agent, is taken uncorrelated across agents and time: the
innovations εi(t) are normally distributed (εi(t) ∼ N(0, 1)) and i.i.d.

A second source is the public information, n(t). Public information includes economic, financial and geopolitical news
that may  influence the future economic performance of the stock. To capture the idea that the public news, n(t), is fully
informational with no redundancy (Chaitin, 1987), we take n(t) as a white Gaussian noise with unit variance, uncorrelated
with the private information {εi(t), i = 1, . . .,  N} of the agents. Although news are generated as a stationary process, we will
see that their impact on the agents evolves because of the adaptive nature of the agents’ strategies.

The third source of information for a given agent is provided by the expected decisions of other agents to whom she is
connected in her social and professional network. With limited access to information and finite computing power (bounded
rationality), it can be shown to be optimal to imitate others (Orléan, 1986; Roehner and Sornette, 2000). Moreover, there
is clear empirical evidence that practitioners do imitate their colleagues (Hong et al., 2005). In our model, agents gather
information on the opinions of their neighbors in their social network and incorporate it as an ingredient into their trading
decision.

Incorporating agent interaction in the opinion formation process leads to dynamics described by models derived from the
Ising model. Many earlier works have already borrowed concepts from the theory of the Ising models and of phase transitions
to model social interactions and organization (e.g. Follmer, 1974; Callen and Shapero, 1974; Montroll and Badger, 1974).
In particular, Orléan (1984, 1986, 1989a, 1989b, 1991, 1995) has captured the paradox of combining rational and imitative
behavior under the name “mimetic rationality,” by developing models of mimetic contagion of investors in the stock markets
which are based on irreversible processes of opinion forming.

2.3. Opinion formation

Using the three sources of information described in the previous section, the opinion of agent i at time t, ωi(t), consists
of their weighted sum,

ωi(t) = c1i

J∑

j=1

kij(t − 1)Ei[sj(t)] + c2iu(t − 1)n(t) + c3i�i(t), (1)

where �i(t) represents the private information of agent i, n(t) is the public information, J is the number of neighbors that agent
i polls for their opinion and Ei[sj(t)] is the expected action of the neighbor j estimated by agent i at time t.1 The functional
form of expression (1) embodies our hypothesis that an agent forms her opinion based on a combination of different sources
of information. This is a standard assumption in the social interaction literature (Bischi et al., 2006; Brock and Durlauf, 2001)
and decision making theory (see for instance Körding, 2006).

To take into account the heterogeneity in trading style and preferences of traders, we  assume that each agent i is char-
acterized by a triplet of fixed traits, in the form of the weights (c1i, c2i, c3i) she attributes to each of the three pieces of
information (social network, news and idiosyncratic). The values (c1i, c2i, c3i) for each agent are chosen randomly from three
uniform distributions over the respective intervals [0, C1], [0, C2] and [0, C3], at the initialization of the system. In Section
2.4, we will extend this heterogeneity by allowing for different risk aversions.

In order to adapt to the recent market regime, each agent can modify the weights she attributes to the information from
each of her neighbor j, via the factor kij(t), and to the public news, via the factor u(t). The factors kij(t)’s and u(t) are updated
such as to give more weight to an information source if it was  a good predictor in the recent past, and to decrease its influence
in the inverse case (more details in Section 2.7). The idiosyncratic term is not weighted and has a constant impact on agents
actions.

Finally, for simplicity, our agents live on a virtual square lattice with J = 4 neighbors, with periodic boundary conditions.
The reported results are not sensitive to this topology, and hold for random as well as complete graphs.

1 We use a sequential updating mechanism with a random ordering. In this way, when agent i polls her neighbors, she has a mix  of opinions coming
from  those who have already updated theirs and those have not yet. This procedure can be thought of as a device to account for the large distribution of
reactions times of humans (Vazquez et al., 2006; Crane et al., 2010).
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2.4. Trading decision

Until now, we have introduced heterogeneity between agents through their three personal traits (c1i, c2i for c3i), unique
to each agent, on how they combine information to form their opinion. Another important well-documented heterogeneity
is that different people have different risk aversions. We  capture this trait by assuming that each agent is characterized by
a fixed threshold ωi, controlling the triggering of an investment action, given her opinion level ωi(t). An agent i decides to
go long (buy a stock) if her conviction ωi(t) is sufficiently positive so as to reach the threshold: ωi(t) ≥ ωi. Reversely, she
decides to go short (sell a stock) if ωi(t) ≤ −ωi. Thus, we  assume symmetric levels of conviction in order for a trade to occur
either on the buy or sell sides. The parameter ωi captures one dimension of the agent’s risk aversion: how much certitude
she needs to break her hesitation and move into the market. The larger her threshold ωi, the larger certitude about future
price movements the agent requires in order to start trading. Each agent is characterized by a different ωi, drawn randomly
from a uniform distribution in the interval [0,  ˝].

As previously discussed in Section 2.1,  our agents are liquidity constrained. The portfolio of an agent i at time t is the
sum of her cash cashi(t) and of the number stocksi(t) of the single asset that is traded in our artificial market. When an agent
decides to buy, she uses a fixed fraction g of her cash. When an agent decides to sell, she sells the same fixed fraction g of
the value of her stocks. The fact that g is much smaller than 1 ensures time diversification. Our main results do not change
significantly as long as g does not approach 1. Our agents are not allowed to borrow, because they can only buy a new stock,
when they have the cash. Reciprocally, we impose short-sell constraints, in the sense that an agent can only sell a stock she
owns. Thus, our model is related to the literature investigating the role of short-sale constraints (Miller, 1977; Chen et al.,
2002; Ofek and Richardson, 2003).

These rules can be summarized in terms of the direction si(t) of the trading decision and the volume vi(t) (in units of
number of stock shares) of the agent i:

if ωi(t) > ωi : si(t) = +1 (buying)

vi(t) = g.
cashi(t)
p(t − 1)

if ωi(t) < −ωi : si(t) = −1 (selling)
vi(t) = g · stocksi(t),

where p(t) is the price of the asset at time t. When an agent is buying assets, her order volume vi(t) is determined by her
available cash and by the stock share price p(t − 1) at the previous time step (the main results remain unchanged if agents
would use the expected p(t) instead). Our agents are submitting market orders, such that the price to pay to realize an order
is the new price p(t) determined by the market maker. This new price is determined by the price clearing mechanism that
aggregates the excess demand after all the traders have submitted theirs decisions.

2.5. Price clearing condition

Once all the agents have decided on their orders, the new price of the asset is determined by the following equations:

r(t) = 1
� · N

N∑

i=1

si(t) · vi(t) (2)

log [p(t)] = log[price(t − 1)] + r(t), (3)

where r(t) is the return at time t and � represents the relative impact of the excess demand upon the price, i.e. the market
depth. Similar to Beja and Goldman (1980) and Wyart and Bouchaud (2007),  we neglect all higher order contributions in
expression (2) and use a linear market impact function, as a rough approximation at time scales significantly larger than the
tick-per-tick time scales for which nonlinear impact functions are observed (Plerou et al., 2002).

Expressions (2) and (3) can be interpreted in two ways. One is that the trading is performed through a market maker,
disposing of an unlimited amount of cash and stocks. Agents submit all their market orders to the market maker, who, after
adapting the price to the excess demand, executes all the agents’ trades. Because the market maker adapts the price before
he executes the trades, he has a competitive advantage and gets on average a significant positive return for his service.

An alternative interpretation is that the trading style of our agents is midterm to longterm trading, excluding high-
frequency traders like hedge-funds and such. Once our agents have absorbed their information and taken a trading decision,
the price has already changed due to faster agents using similar trading information.

2.6. Cash and stock positions

We  assume a frictionless market with no transaction fees. Once the return and the new price are determined by the
market clearing Eqs. (2) and (3),  the cash and number of stocks held by each agent i are updated according to

cashi(t) = cashi(t − 1) − si(t)vi(t)p(t) (4)
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stocksi(t) = stocksi(t − 1) + si(t)vi(t). (5)

2.7. Adaptation

As described above, agents have pre-existing heterogeneous beliefs on the reliability of the three different sources of
information, quantified by their three traits c1/2/3i. In addition, we assume that agents adapt their belief concerning the
credibility of the news n(t) and their trust in the advice Ei[sj(t)] of their social contacts, according to time-dependent weights
u(t) and kij(t), which take into account their recent past performance. Specifically, an agent estimates the value of a source of
information by the correlation between the source’s prediction and the realized return. For their strategy to be adapted to the
current market regime, agents prioritize recent data in their calibration of the correlation. This prioritization of recent data
is supported, first, by behavioral findings stating that individuals tend to overweight recent information and underweight
prior data, second, by practitioners, who calibrate their trading strategies with recent data. The implementation of this
prioritization is achieved by a standard auto-regressive update:

u(t) = ˛u(t − 1) + (1 − ˛)n(t − 1)
r(t)
�r

(6)

kij(t) =  ̨ kij(t − 1) + (1 − ˛)Ei[sj(t − 1)]
r(t)
�r

(7)

Choosing 0 <  ̨ < 1 and with 0 < �r,2 the correct prediction of the sign of the realized stock return r(t) from a given information
source tends to reinforce the trust in that source of information, all the more so, the larger the return (scaled by its volatility
�r) and the larger the strength of the signal. The time scale 1/|ln(˛)| sets the memory duration over which past performance
continues to impact the adaptive trust coefficients u(t) and kij(t). The update of u and kij via Eqs. (6) and (7) is performed at
every time step.

3. Results of the model

3.1. General properties

Our model is an idealized “test tube” representation of a financial market and given the simplifications put into the
model, we do not aim at reproducing faithful statistical characteristics of realistic price dynamics. Our objective is to obtain
an understanding of how the interplay of news, herding and private information can lead to the formation of bubbles and
crashes. We  first point out a few properties of the model, that derive straightforwardly from our set-up.

Because we model a closed system, with no new influx of money or stocks after the initial endowment of cash(0) and
stocks(0), there cannot be any money/wealth creation in the long run.3 As a consequence, the price trajectory has an upper
and lower bound.4 The constraints on cash and stocks tend to push the price back to its initial value, p(0) = 1, such that the
price performs a mean-reverting random walk5 around its initial value, which will be refereed to in the following as the
equilibrium price.

The adaptive process of our agents essentially consists in looking for persistent sources of information, which impact on
the returns. In more detail: for a trade to be profitable, an agent has to first acquire a number of asset (at time t), then its
value has then to increase in the following time step, explaining the offset of one time step between the information source
and the realized return in Eqs. (6) and (7).  The return r(t + 1) is however influenced by the information sources at time t + 1,
and not by those at time t, on which agents based their prediction of r(t + 1). This means that, for an information source
to have some real predicting power, it must have some persistence (cf. Appendix A for a more detailed explanation of this
mechanism).

3.2. First results

In our simulations, we fix the number of agents in the system to N = 2500, the market depth to � = 0.25, the maximal
individual conviction threshold to  ̋ = 2.0, the fraction of their cash or stocks that investors trade per action to g = 2 %, the
initial amount of cash and stocks held by each agent to cashi(0) = 1 and stocksi(0) = 1, and the memory discount factor to

 ̨ = 0.95, corresponding to a characteristic time of 1/|ln(˛)| ≈ 20 time steps. The news are modeled by i.i.d. Gaussian noise.
Setting C1 = C2 = C3 = 1.0, Fig. 1 shows a typical realization of the time evolution of the log-price log [p(t)], the one-time-
step return r(t), the prediction performance of the news, u(t) and the ensemble average of the prediction performance of
the neighbors, 〈kij 〉 (t). The middle right panel shows the distribution of returns with clear evidence of a non-Gaussian fat
tail structure. The lower right panel shows the absence of correlation between returns together with the presence of non-

2 �r is in fact �r(t), with �r(t)2 =  ̨ · �r(t − 1)2 + (1 − ˛) · (r(t − 1) − 〈 r(t) 〉 )2 and 〈 r(t) 〉 =  ̨ ·〈r(t − 1) 〉 + (1 − ˛) · r(t − 1).
3 Strictly speaking, the model suffers however from a slight money destruction due to the price setting mechanism with the market maker in which the

log-price change is linear in the excess demand. But the number of purchased stocks depends on the real price (=exp(log-price)). Therefore, a rapid increase
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Fig. 1. This figure shows a typical realization of the major observables of the system. These observables are the time evolution of the price p(t) (upper left
panel),  the one-time-step return r(t) in black with clear evidence of clustered volatility (upper right panel) together with the news, n(t), in the background
in  red, the news weight factor u(t) (middle left panel) and propensity 〈kij 〉 (t) to imitate (lower left panel). The middle right panel shows the distribution of
returns:  the linear-log scales would qualify a Gaussian distribution as an inverted parabola, a double-exponential as a double tent made of two  straight lines;
in  contrast, one can observe a strong upward curvature in the tail of this distribution, qualifying a fat-tail property compatible with a stretched exponential
or  power law. The lower right panel shows the absence of correlation between returns together with the presence of non-negligible correlation of the
volatility (here measured as the absolute value of the returns). Note the positive value of the correlation of the volatility up to a time about 25 time steps,
followed by a small negative value up to 80 time steps. The time scale of the correlation of volatility is set by the memory factor  ̨ = 0.95 corresponding
to  a characteristic time scale of 20 time steps. These results are obtained for C1 = C2 = C3 = 1.0, and frozen weights attributed by the agents to the three
information sources drawn out of a uniform distribution from 0 to C1, C2, C3, respectively. The histogram and the correlation data are computed out of a
realization with 6 × 104 time steps.

negligible correlation of the volatility (here measured as the absolute value of the returns), which confirms the clear evidence
of clustered volatility in the time series of one-time-step returns.

While the perceived predicting power of the news, u(t), fluctuates around its mean value of 0, it should be noted that
it exhibits significant non-zero values, indicating that agents sometimes give a lot of importance to the news. If the agents
were fully aware of the i.i.d. properties of the news, they would not use them.6 But because of the adaptive nature of their
strategy to the current market regime, agents do not use the complete price and news time series to update their trust into
the news, but only recent data points.7 Due to the use of a finite data set, the i.i.d. news may  occasionally show persistence,8

leeding to an increase of u(t) as consequence. The statistical fluctuations associated with the random patterns that are always
presents in genuine noise is misinterpreted by the agents as genuine predictability. It is the local optimization, that makes
the agents see causality, where there is only randomness (Taleb, 2008).

The lower left panel of Fig. 1 shows the average propensity to imitate, which also fluctuates around 0. But, the amplitude of
these fluctuations is much reduced compared to those of u(t). This is because each agent updates individually her propensity
to imitate her neighbors according to (7),  so that the statistical average 〈kij 〉 (t) is performed over the whole heterogenous
population of agents, compared with no average for u(t) which is common knowledge to all agents.

followed by a slow decrease of the price decreases the total wealth of the system, by the concavity of the logarithmic function. This effect is essentially
negligible.

4 The upper bound is reached once agents have exhausted all their cash. The lower bound is then the agents are all in cash.
5 The increments of the walk are however not distributed according to a normal law, but to a distribution with fatter tails (cf. Fig. 1) due to the adaptive

strategies of the agents.
6 Recall that the return r(t + 1) is influenced by the news at time t + 1 on which agents based their prediction of r(t + 1), and not by those at time t. Because

the  news have no true persistence, they can not have true predictive power.
7 The weight of a data point in the update of u(t) decreases exponentially with increasing age with a time scale ∼1/|ln(˛)|.
8 Our agents do not have a PhD in Econometrics and they do not perform proper statistical tests of their hypotheses.
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˛  = 0.95, � = 0.25, g = 0.02.

The crucial parameters of our model are the parameters C1, C2, C3, which control the level of heterogeneity and the a
priori preference for the three different types of information. Changing these parameters changes the way the agents behave
in ways that we now explore systematically.

3.3. C1-dependence

Each agent is endowed with a fixed individual preference level, c1i, controlling how much she takes into account the
information stemming from the actions of their neighbors. This level is different from agent to agent, and is drawn from a
uniform distribution in the interval [0, C1]. Thus, the parameter C1 sets the maximal and mean (= C1/2) innate weight, that
agents give to their social influences.

Fig. 2 plots the evolution of several variables for three different values of C1, all other parameters, including the seed
of the random number generator, remaining the same. For vanishing propensity to imitate (C1 = 0), some price spikes can
be observed, which are generated by the news only, whose influence can be amplified by the positive feedback resulting
from adaptation that tends to increase the relevance that investors attribute to news after a lucky run of news of the same
signs. For C1 = 2.0, one can observe that these peaks are amplified due to the imitation now also contributing to the agents’
actions. For C1 = 4.0, a qualitatively different price evolution appears. For such large values of the maximal susceptibility
to their social environment, the price is driven to its extremes, its dynamics being only slowed down by the agents’ finite
cash and stock portfolio reaching their boundaries. We  show below that this extreme behaviors results from a self-fulfilling
prophecy, enabled through social interactions.

To better illustrate the effect of increasing C1, the third panel in Fig. 2 shows the average weight factor 〈kij 〉 (t)9 used by the
agents to assess the relevance of the information stemming from their neighbors. By increasing C1, agents are by definition
more susceptible to their neighbors’ opinions, making them more likely to act in the same way if they show some predictive
power. Consequently, since the price dynamics is governed by the aggregate demand, herding in opinions leads to persistent
returns, creating the very returns agents hoped for, which reinforce the prediction power of their neighbors in a positive
feedback loop. With 〈kij 〉 (t) and C1 large, the opinions of the agents are completely shaped by their social component, while
the news and their idiosyncratic term are essentially ignored. Due to this positive feedback loop, a small predictive success
of some agents can trigger an avalanche of self-fulfilling prophecies, leading to price dynamics completely unrelated to the
news and to large price deviations from the assets to its equilibrium value.

9 〈kij〉(t) = 1/(N · J)
∑N

i=1

∑J

j=1
kij(t).



4. A model of myopic adapting agents 42

G. Harras, D. Sornette / Journal of Economic Behavior & Organization 80 (2011) 137– 152 145

0 1 2 3 4 5 6 7
C

1

0

1

2

3

4

5

M
ax

(<
k i,j

>
( t

))

C
2
 = 0.5

C
2
 = 1.0

C
2
 = 2.0

0 1 2 3 4 5 6 7
C

1

-4

-2

0

2

4

M
ax

(r
un

s)

C
2
 = 0.5

C
2
 = 1.0

C
2
 = 2.0

Fig. 3. Impact of C2, the innate susceptibility to the news, onto the transition from the efficient to the excitable regime in function of C1, the innate
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3.4. The existence of two regimes

The existence of a bifurcation beyond which a new regime appears is documented in Fig. 3 (left), where the maximum
value of 〈kij 〉 (t), averaged over many realizations and simulated with the same parameters C2 = C3 = 1, is plotted as a function
of C1. One can observe a rather abrupt transition occurring at around C1 = 3. This transition is related to the phase transition
of the Ising model, on which our model is based. Due to the presence of the adaption induced feedback loops, and with
the dynamical character of 〈kij 〉 (t), the precise nature of this transition can not be asserted. The existence of this change of
regime explains the radical difference of properties shown in Fig. 2 for C1 = 0, 2 to 4. The jump in 〈kij 〉 (t) at C1 ≈ 3 is mirrored
by a similar transition in the values of the maximal draw-downs (sum of consecutive negative returns) and draw-ups (sum
of consecutive positive returns) as a function of C1 in Fig. 3 (right). For C1 > 3, a second regime is revealed where very large
price moves occur. These market events are fundamentally different from the price fluctuations in the regime for C1 < 3.
These large price changes are reminiscent of the “outliers” documented by Johansen and Sornette (1998, 2001) and Sornette
(2003a), and recently extended into the concept of “dragon-kings” (Sornette, 2009).

3.4.1. The efficient regime
For C1 < 3, agents do not attribute sufficient importance to their neighbors in order to trigger the feedback loop that would

lead to strong synchronized actions as occurs for large C1s. For small C1, the market is approximately efficient, in the sense
that there is no autocorrelation of returns, as shown in Fig. 1, and the price fluctuates rather closely around its equilibrium
value. While the major source of fluctuations are the news modeled as a Gaussian white noise process, the price fluctuations
develop strong non-Gaussian features, as a result of the combined effect of the adaptive process that tends to amplify runs
of same signed news and of the propensity to imitate that leads to small but non-negligible collective behaviors.

A first interesting conclusion can be drawn that our model provides a natural setting for rationalizing the excess volatility
puzzle (Shiller, 1981), through the adaptive process of our agents. It could be argued that our setting is too simplified and
unrealistic. But, how do real investors, traders, fund managers access the value their investment decisions? Necessarily by
performing some kind of comparisons between the realized performance and some benchmarks, which can be a market
portfolio, the results of competitors, the ex ante expectations, all the above or others. The adaptive process used by our
agents is arguably a simple and straightforward embodiment of the tendency for investors to adjust their strategies on the
basis of past recent performance, here on how well the news predicted the market returns. Because measurements are noisy,
the resulting estimation leads unavoidably to an amplification of the intrinsic variability of the news into a much strong
variability of the prices, i.e., to the excess volatility effect. Somewhat paradoxically, it is the attempt of industrious investors
to continuously adapt to the current market situation, which leads to the dramatic amplification of the price volatility. This
may  be thought of as another embodiment of the “illusion of control” effect, found in the Minority and the Parrondo games
(Satinover and Sornette, 2007a, 2007b, 2009), according to which sophisticated strategies are found to under-perform simple
ones.

3.4.2. The excitable regime
A population of agents characterized by C1 > 3, represents the situation in which many agents know that their idiosyncratic

information and the news are incomplete. In order to compensate for this lack of information, agents tend to imitate the
actions of successful acquaintances. Under these conditions, the average propensity to imitate, 〈kij 〉 (t), exhibits extreme
values, resulting in large price deviations from the equilibrium price and periods of persistent returns, as shown in Fig. 2.
In this regime, the market is in an excitable state. By imitating the opinions of recent winners who  profited from some
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departure of the market price from its equilibrium value, our agents tend to amplify this anomaly, further strengthening the
attraction of this strategy for other agents, eventually ending in a bubble and crash.

The triggering event responsible for the increasing weight that agents entrust to their neighbors’ opinions is nothing but
the random occurrence of a sequence of same signed news. As explained in Section 3.2,  the weight u(t) of the news in their
opinions is increased when the agents perceive a pattern of persistence in the news, which also induces persistent returns.
Then, the agents reassess their belief and give more importance to the news. Because the pattern of persistence of the news
is common knowledge, this tends to align the decisions and actions of the agents. As a consequence, their aggregate impact
makes happen the very belief that initially led to their actions, thus increasing the prediction power of the agents’ opinions.
As a whole, the agents see that the opinion of their friends is accurate, thus tending to increase their trust. This increase in the
propensity 〈kij 〉 (t) to imitate can lead to a cascade of trading activity, resulting in the rise of a bubble, as described in details
in the appendix. This scenario is a cartoon representation of the well-documented fact that many bubbles start initially with
a change of economic fundamentals. Translated in our agent-based model, this change of economic fundamentals is nothing
but the streak of same signed news that tells the story of an increasing market (for positive news). This small positive bias
can be sufficient to nucleate a process that eventually blossom into a full-fledged bubble. The corresponding amplification
of the news put the price on an unsustainable trajectory. This occurs especially when the system lives in the excitable state,
in which the price can easily overshoot the values implied by the good/bad news.

Once such a cascade has begun and the best strategy is to follow the herd, agents are, in the case of a bubble, buying
stocks at every time step and pushing the price up till they have no money left to further increase the price. At this point,
their predicting power decreases due to they decreasing impact on the returns and the cascade ends. As financial bubbles
feed on new money pouring in the market, the lack of new liquidity is a well-known factor of instability for financial bubbles
(Kindleberger and Aliber, 2005; Hussam et al., 2008). Following this buying phase, the portfolio of agents consists mainly of
stocks, biasing their actions towards selling. Now, some randomly occurring negative news are sufficient to trigger a reverse
cascade, the crash, leading to an overshoot of the price below its equilibrium value. This scenario provides a clear distinction
between the fundamental cause of the crash (the unstable high position of the price that has dried up all liquidity available)
and the triggering proximal factor (a random occurrence of a sequence of negative news). In line with many observations,
crashes in our model do not need a dramatic piece of negative information. Only a trickle can trigger a flood once the market
as a whole has evolved into an unsustainable unstable position.

Due to the symmetry between buying and selling in our model, the price can, starting from its equilibrium value, depart
in either direction, creating either a bubble (over-valuation of the asset over an extended period of time) or an negative
bubble (under-valuation of the asset). This deviation will then be ended by either a crash (fast drop in price after a bubble)
or a rally (fast appreciation after a negative bubble). In our analysis, we  concentrate on the case of bubbles followed by a
crash, because this is the more common scenario. The reason for this is twofold. First, in real markets, short-selling can occur,
but is not equally available to all market players. The second reason has behavioral origins. In a bullish regime, people are
progressively attracted to invest in financial markets, tending to push the price upward. Once invested, their attention is
more focused on the financial markets. Fear and greed often lead to over-reactions and possible panics when the sentiments
become negative, triggering herd selling which self-fulfills the very fears at their origin (Veldkamp, 2005).

Another interesting characteristic of the herding regime occurring for C1 > 3 is that it is very difficult to diagnose this
regime from the properties of the price recorded outside those transient episodes of booms or crashes. Indeed, outside these
special moments of “exuberance”, the market behaves as if in the regime C1 < 3. Bubbles and crashes do not belong to the
normal regular dynamics of the model. They are only experienced when certain conditions are fulfilled, as explained above,
that combine to create these transient instabilities. They can thus be considered as “outliers” in the sense of Johansen and
Sornette (1998, 2001),  or using a better more colorful terminology, they are “dragon-kings” (Sornette, 2009). The statistical
analysis of the distribution of f 〈kij 〉 (t) confirms this claim. Fig. 5 shows the appearance of an extremely fat tail in the
distribution of 〈kij 〉 (t) over the ensemble of different realizations as a function of time for C1 = 4, while its bulk remains
approximately identical to the distribution obtained for the smaller values of C1 below the critical threshold 	3.  This confirms
the existence of a class of transient regimes, the booms and crashes, which coexisting with the normal dynamics of the
prices.

The hidden nature of the regime associated with C1 > 3 and the random occurrence of triggering news lead to the prediction
that advanced diagnostics of bubbles and crashes should lead to numerous false alarms. Consider the study of Kaminsky
(1998), who has compiled a large list of indicators of financial crises, suggested by the fundamentalist literature on the
period from 1970 to 1995 for 20 countries. Out of the 102 financial crises in her database, she finds that the specificity of
the indicators is quite low: only 39% of the ex ante diagnostics coincided with a crisis, suggesting that fundamental reasons
should be expanded by behavioral ones to explain the emergence of crises.

We thus come to our second important conclusion: the present model provides a simple mechanism for the exis-
tence of two populations in the distribution of prices, exemplifying the concept that booms and crashes are qualitatively
different from the rest of the price moves. The second population of boom-crash (dragon-kings) appears when the
innate propensity to herd reaches a threshold above which a self-reinforcing positive feedback loop starts to operate
intermittently.
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Fig. 4. Same as Fig. 3, except that C2 is fixed at 1.0 and that the impact of ˛, which fixes the length of the time-span over which agents measure the predicting
power  of the different sources of information, is investigated. For larger ˛, the critical C1-value increases, the transition smoothens and the largest possible
〈kij 〉 (t) values is decreased. Other parameters are: N = 104, C3 = 1.0,  ̋ = 2.0, � = 0.25, g = 0.02.

3.5. C2-dependence

Fig. 3 displays the impact of C2, the a priori importance of the news, onto the transition from the efficient to the excitable
regime. Both panels show that the more the agents trust the news, the stronger C1 has to be for the system to become
excitable. With increasing C2-values, we also observe that the transition becomes smoother and the maximum 〈kij 〉 (t) is
decreased. This corresponds well to the intuition that, if traders are well informed and believe that the news correctly
describe the economy, such drastic over- and under-valuations are less likely to happen and a higher level of panic is needed
for a crash to happen.

3.6. ˛-Dependence

Although the presence of the ˛-parameter is crucial, its specific value (within a certain range below 1) has only a minor
importance. Recall that  ̨ sets the time-scale of the market regime, since it controls the length of the time series that is
used to estimate the predicting power of the different information sources. The fact that  ̨ < 1, i.e. that agents’ strategies are
designed to identify local market regimes is the reason that makes them possible in the first place. It is the local adaptation,
which is the true origin of a bubble and a subsequent crash.

Fig. 4 shows the impact of  ̨ on the transition from the efficient to the excitable regime. The closer  ̨ is to 1, the larger
the critical C1 for which the system becomes excitable. With a larger memory, the growth of the propensity 〈kij 〉 (t) to
imitate is more limited because the agents see now much better the bigger picture and are less easily carried away by a
temporal coordination of their neighbors. Changing ˛ leaves the maximal drawn-downs and -ups unchanged because, once
an coordination of the agents starts, the only way to stop it is via the drying up of their cash/stock-reservoir.
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3.7. Alternative clearing condition

We have played with variations of the implementations of the clearing conditions with different market maker’ strategies.
For instance, when the market make is adapting the price after (rather than before) the exchange of assets with the agents,
we find the same qualitative results and bubbles and crashes occur by the same mechanism. With such an price clearing
condition however, news bear real predictive power, destroying the efficiency of the market.

In general, the present model is very robust with respect to changes in the different ingredients. As long as agents can
interact and are locally optimizing their strategies, bubbles and crashes do appear.

4. Conclusion

In this paper, we have addressed two major questions:

- Why  do bubbles and crashes exist?
- How to they emerge?

We approached these questions by constructing a model of bounded rational, locally optimizing agents, trading a single
asset with a very parsimonious strategy. The actions of the agents are determined by their anticipation of the future price
changes, which is based on three different sources of information: private information, public information (news) and infor-
mation from their neighbors in their network of professional acquaintance. Given these information, they try to maximize
their usefulness by constantly scanning the market and adjusting the weight of the different sources to their opinion by the
recent predicting performance of these sources. In this way, they are always adapting their strategy to the current market
regime, such that they can profit from an opportunity if it arises.

We find that two regimes appear, depending on how strong the agents are influenced by their neighbors (controlled
by the parameter C1). In the regime of small C1s, the low herding/efficient regime, agents are sometimes more influenced
by the news and sometimes more by their neighbors, but due to the small level of trust they put into their neighbors by
default, they do not get carried away in over-imitating their neighbors if the latter, for a short time interval, seem to be
good predictors. The returns are mostly driven by the global and idiosyncratic news. The resulting market is approximately
efficient, with the price not deviating much from its equilibrium value.

We find that the return distribution is however quite different from that describing the exogenous news. Our simple
agents are able to transform the string of independent normally distributed news (both for the global and idiosyncratic
news) into a return distribution with fatter than exponential tails, showing a clear sign of excess volatility. Also clustered
volatility and a non-zero autocorrelation in the volatility of the returns are observed while the returns themselves remain
uncorrelated, in agreement with the absence of arbitrage opportunities (at least at the linear correlation level). These different
properties show that our simple model can reproduce some important stylized facts of the stock market, and can motivate
the possibility to test its prediction in other market regimes.

By increasing C1 above a certain critical value, the system enters a second regime where the agents give on average
more importance to their neighbors’ actions than to the other pieces of information. By increasing the awareness of their
neighbors’ actions, agents are more likely to coordinate their actions, which increases the probability that the direction of
the return results in the predicted direction, which then again increases their trust in these successful predicting neighbors.
Due to this positive feedback loop, the average coefficients 〈kij 〉 (the dynamic trust of agent i in agent j) can surpass a critical
value and the agents’ opinions are dominated by only this information term, resulting in series of consistently large same-
signed returns. Because the agents are always trying to maximize their returns, it is rational for the agents to follow the
majority and to “surf” the bubble or the crash. This regime is characterized by large deviations from the equilibrium price
resulting from a coordination of the agents’ actions due to their local adaptation of their strategy to the mood of the market.
Not only is it rational to follow the herd, we have also showed (in the appendix) that the agents who are early imitators of
their successful neighbors in the early stage of a bubble/crash are those who  will accumulate the largest wealth among all
the agents after the market has returned to its normal regime.

We showed that the origin of these large deviations from the equilibrium price nucleate from the news. A random
occurrence of a sequence of same signed news pushes the price in one direction and starts the coordination process of the
agents. This situation is reminiscent from the mechanism for the initiation of real world bubbles, where an innovation leads
to a period with a majority of positive news, which also move the market. Because the reason of the positive market move is
an innovation, the agents are not entirely sure of its intrinsic value and seek advice from some of their professional collegues.
If those colleagues tell them that they made large profits with this asset and they trust these colleagues, they will follow
their advice, resulting in the same kind of behavior as produced by our model.

By following each other’s actions, the agents push the price up, beyond its equilibrium value, up to an unsustainable level.
Once the hype has cooled of and the agents have invested all their cash into the stock, just a little push by negative news
can cause the price to collapse, resulting in a crash, without any apparent reason.

By increasing the prior propensity C1 to imitate to a high value, the average behavior and properties of the dynamics of the
model is unchanged. Outside of these large price variations occurring during rare bubbles and crashes, the dynamics looks
similar to that documented in the low C1 regime, i.e., appears to function like an efficient market. Therefore, attempting to
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Fig. A.1. Time series of several key variables showing the response to the news for C1 = 1 (efficient regime) and C2 = C3 = 1.0. Upper left panel: a portion
of  the price time series with a drop and rebound. Upper right panel: a magnification of the upper left panel around the increased volatility. Middle left
panel: the time series of the returns. Middle right panel: the weight u(t) of the news showing a fast growth over the time interval in which the news are all
negative, followed by a decay over a time scale given by 1/ln(˛) ≈ 20 time steps. Lower left panel: The average weight 〈kij 〉 (t) of the propensity to imitate
also  exhibits a fast acceleration followed by a slower decay. Lower right panel: the time series of news, generated as a white noise, which can nevertheless
exhibit  runs of same-sign values.

estimate the value of C1 just from the normal price dynamics is essentially impossible. The occurrence of a bubble/crash is an
event that has drastically different statistical characteristics than the normal price fluctuations, exemplifying the occurrence
of “outliers” (or “dragon-kings”) that have been documented empirically for financial draw-downs (Johansen and Sornette,
1998, 2001; Sornette, 2003a).
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Appendix A. Detailed analysis of the emergence of a bubble

To clarify the mechanisms leading to the dynamics of the here presented model, we now illustrate some details on the
micro-scale dynamics of the model. First we will go step-by-step through an occurrence of increased volatility, shown in
Fig. A.1, with the system being in the efficient regime and explain in detail the relationships between the different variables.

Second, we will investigate the emergence of a bubble in the excitable regime and compare it to the dynamics resulting
from the same stream of news in the efficient regime in Figs. A.1 and A.2.

A.1. Step-by-step description of the dynamics in the efficient regime

Fig. A.1 displays the dynamics of the key variables around the time t = 800, where the price suddenly, crashes, rebounds
and then slowly relaxes to its pre-existing level. An increase of u(t), the news’ performance and 〈kij 〉 (t), the average weight
used by the agents to assess the relevance of the information stemming from their neighbors, is occurring at the same time.

The origin of this burst can be traced back to the random occurrence of a sequence of same signed news, shown in the
lower right panel of Fig. A.1. Recall that we assume that the news are independently and identically distributed. Thus the
dip structure in the news’ realization is purely “bad luck”, i.e. a stream of small bad news impact the market. The response
of the agents to these run of bad news develops as follows. The observation of the news n(t) gives the agents an information
about the next return r(t + 1), but in order to profit from this insight, the agents have to act before t + 1, i.e. they use n(t) to
buy or sell at time t. Therefore, a burst of activity, which has its origin in the news, can only occur if the sign of the news is,
by chance, the same for several time steps as it is the case from t = 799 to 809.
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Fig. A.2. Time series of several key variables showing the response to the news for C1 = C2 = C3 = 1.0 (efficient regime, in black) and C1 = 4 with C2 = C3 = 1.0
(excitable regime, red dashed). We  can observe that the random occurrence of persistence in the news stating around t = 930, initiates a bubble if agents
give  too much weight to their neighbors’ actions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of  the article.)

Let us report minutely the micro dynamics of the model to better understand this burst of activity. At t = 799, the news
turns out to be negative, which suggests to the agents that the price may  drop from t = 800 to 801. To prevent their portfolio
from losing in value from time t = 800 to 801, some agents reduce their exposure to the market and sell a fraction gof their
assets at t = 799. If enough agents listen to the news, as it is in this case, this selling will result in a negative return from
t = 799 to 800. Then at t = 800, the news is, by chance, again negative resulting again in a negative return from t = 800 to 801.
This negative return confirms the negative news from t = 799, leading agents to increase u(t), the weight they attribute to
the news.

The exponential growth of the weight u continues as long as the sequence of negative news goes on, further amplifying the
impact of the news on the agents’ decision and therefore on the price. Note that the average weight 〈kij 〉 (t) of the propensity
to imitate also exhibits a fast acceleration. This is due to the fact that the agents find that imitation is also a good predictor of
the returns, since a majority of agents are following the news and are trading into the same direction. By this process, there
is an amplification of the response of the whole herd to the exogenous news. When the run of bad news stops, it takes about
	1/ln(˛) ≈ 20 times steps for u to relax back to its previous value. In this example, the maximum of u(t) occurs at t = 807. At
t = 808, u decreases lightly due to the small amplitude of the news at t = 807. Once u has reached a certain level, the news
completely dominates agents opinion and thus also determines the returns.

At t = 810, the sequence of negative news is terminated by positive news, resulting in a large positive return due to the
large value of u(t). Furthermore, as the news at t = 809 predicted a negative return at t = 810, the predictive power of the
news seems to have decreased, having a a decrease of u(t) as consequence. Now that the news resumes its usual random
switching signs and it is no longer a good predictor of the return, u decreases exponentially.

This case study illustrates that the occurrence of bursts of price variations is nothing but the amplification of runs of
same-sign news, which leads to an exponential growth of the news weighting factor u, which itself increases dramatically
the sensitivity of the agents to all future news. This heightened sensitivity lasts over a characteristic scale determined by
the coefficient  ̨ governing the memory of the adaptation process (Eq. (7)). The process of agents’ adaptation to the news
and information from their neighbors, together with the random lucky or unlucky occurrence of runs of news of the same
quality, is at the origin of the occurrence of this period of increase volatility.

A.2. Efficient regime vs excitable regime

In Fig. A.2,  we plot the detailed dynamics during the nucleation of a bubble. The black continuous lines display the evolu-
tion of several variables with the system being in the efficient regime, i.e. C1 = C2 = C3 = 1.0. The red dashed lines represent the
same variables, with all parameters unchanged (including random seed), except that agents susceptibility to their neighbors’
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Fig. A.3. Magnification of the realization of the crash shown in Fig. A.2. Top to bottom: plots of the price, return, activity, news weight factor and average
imitation factor, as a function of time.

actions is increased (C1 = 4.0) such that the system is in the excitable regime. Fig. A.2 shows the detailed nucleation of the
bubble, whereas Fig. A.3 shows the dynamics on a larger time scale.

In the second panel on the left in Fig. A.2,  we plot the evolution of the return and witness a burst of volatility starting
around t = 930. The origin of this volatility can be attributed to a random occurrence of some ‘persistence’ in the news n(t),
as explained in the previous section. This persistence increases the news’ prediction power u(t) and, because all agents
are subject to the same news, agents’ actions tend to synchronize, inducing an increase of the prediction power of their
neighbors, 〈kij 〉 (t).

Up to t = 957, the dynamics of the system in the efficient regime only deviates marginally from those of the excitable
regime. After t = 957, their differences become apparent. In the excitable regime, where the neighbors’ influence is a stronger
factor in the opinion formation, the long string of positive news from t = 957 to 969 is able to increase the average interaction
weight 〈kij 〉 (t) up to a level high enough, such that the opinion of the agents, and therefore also their actions, are dominated
by their neighbors’. As a consequence, the price continues to increase even after the positive news sequence has ended. In
the efficient regime, on the other hand, the volatility of the returns, u(t) and 〈kij 〉 (t) return to their normal values after the
‘luck streak’ of positive news.

In the excitable regime, as a consequence of the strong propensity to interact, once a price rally or a crash is started, the
dominating impact of the herd both in the adaption process and in the price impact makes the price trend self-reinforcing
and basically independent of the sign of the news. This explains the very large amplitude of the price deviation compared
with the price in the efficient regime in Figs. A.2 and A.3.
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4.3 Finalizing Comments

Due to space limitations, Harras and Sornette (2011) could only cover a lim-
ited among of the literature related to financial bubbles and crashes models.
Next, further comparisons with selected models presented in Chapter 3 will be
performed and additional evidence for the validity of our assumptions and con-
clusions are provided. The model of Harras and Sornette (2011) will be referred
to as the HS-model.

4.3.1 Comparison with selected models

One of the most important distinctions, compared to the models of positive
feedback trading (Sec. 3.4) and herding (Sec. 3.5.3), is that the agents in the
HS-model are not restrained to one specific strategy to which they have to stick
and which controls their behavior. They are given three sources of information,
where the impact of the news and social interaction are controlled by the agents
themselves. This is in stark contrast to the models of de Long et al. (1990);
Daniel et al. (1998); Hong and Stein (1999) or Kirman (1993); Lux (1995);
Kaizoji (2000), where the behavior of every type of agent is fixed by the modeler,
independent of the strategy’s performance.

Agents ability to adapt to different market regime leads to an other impor-
tant distinction, which is the dynamic, multi-regime, non-cyclic characteristic
of the HS-model. With the exception of the model by de Long et al. (1990),
which is only a three-period model, the previously listed models can generate
price dynamics of many time steps. However, these dynamics either only focus
on the absorption of one news event into the price (Daniel et al., 1998; Hong
and Stein, 1999), have a periodic nature (Lux, 1995; Kaizoji, 2000), or a quasi-
periodic nature, with agents switching symmetrically between an optimistic and
pessimistic view on the future (Kirman, 1993). None of these models is able to
generate, with one set of parameters, the crossover from an efficient market to
the emergence of a bubble and crash, back to the efficient market regime, as
the HS-model is able to (cf. Fig. 2 for C1 = 4). Nor are their models able to
reproduce the major stylized facts as show in Fig. 1.

Of the previously mentioned models, the HS-model is closest to the model
by Hong and Stein (1999) in terms the bubble (or momentum) growing mech-
anism. For both, it is the news induced price pressure in one direction, which
creates a temporary momentum or convergence in opinions, that leads to prof-
itable trend-following or herding. This self-reinforcing behavior lets the price
significantly deviating from its fundamental value. Hong et al. assume slow
diffusion of news across investors but do specifically state the mechanism be-
hind this diffusion. One way such a percolation of news could be achieved is
via cascading investors, enabled by social interaction. Such an interpretation
reveals an additional connection between the two models. The major difference
between the models, is that for Hong et al., the slowly diffusing news is build
by hand into the model, whereas the herding mechanism in the HS-model is
only a possibility to the agents, in most situation they will not indulge in such
a trading behavior. The bubbling prices are not build in, but emerge out of the
myopic adaption of the investors. Consequently, we provide a different ultimate
reason behind the bubble (or the medium-term momentum), which only occurs
if the news push of a several time-steps into the same direction, not for every
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release of a news piece of information as for the Hong et al. model1.
For the discussed bubbles and crashes models based on social imitation and

the Ising model (Kirman, 1993; Lux, 1995; Kaizoji, 2000), their bubbles and
crashes are symmetric, and often periodic, deviations from the fundamental
price, one in the positive the other in the negative direction. Both phenomena
have the same time-scale and the same underlying origin. This is not the case for
these phenomena in the HS-model, where bubbles are slowly building up, fueled
by over-optimistic investors, and the crash happens suddenly and as result of
the unsustainable and bloated price.

4.3.2 Additional empirical evidence

As shown in Section 3.5, one of the basic assumptions of the model, social
influence of investors and analysts, is well confirmed by empirical data, so the
is resulting momentum trading (c.f. Section 3.4). More specifically, the update-
mechanism that agents give more weight to peers with higher predictive power
in the past is confirmed by Welch (2000). He reports that the influence that one
analyst has on others increases with the accuracy of his predictions of future
security returns and that this influence is stronger the more recent his revisions
were, which is exactly what Eq. (6) describes.

The interpretation that the regime, where agents give a lot of importance
to their well-performing neighbors (C1 > 3), corresponds to situations of high
uncertainty is not only in agreement with rational models on herding, but also
with empirical evidence. Several studies show that the degree of herding de-
creases with seniority (Clement and Tse, 2005; Hong et al., 2000; Greenwood
and Nagel, 2009), which by considering age as a proxy for uncertainty, confirms
the interpretation. This is clear as older investors, having already dealt with a
larger variety of situations, will feel more secure, than an rookie, experiencing
it for the first time. The same is true for uncertain periods in time, as faced
with the emergence of a “new economy” in the late 90s, a lot of fund managers
and analysts are reported to having increased their tendency for herding (Guedj
and Bouchaud, 2004; Greenwood and Nagel, 2009; Griffin et al., 2011).

The range, over which investor compute their correlations (controlled by α),
in order to estimated the predictive power of an information source, is crucial for
the emergence of bubbles. It is the fact that they conceive a random fluctuation
as a genuine signal, which starts the overreaction to a temporary trend in the
news. This behavior is also found in experiments, where the participants are
found to generalized a pattern based on a very small sample (Andreassen and
Kraus, 1990; Offerman and Sonnemans, 2004).

The fact that the paper restricts itself to positive bubbles can be further
justified by the empirical evidence of an optimistic bias in analysts earning pre-
dictions (cf. Section 3.5.2) and the limitations on short selling (cf. Section. 3.2),
making positive deviations from the fundamentals much likelier then persistent
undervaluations. An addition piece of evidence comes from Welch (2000), who
shows that herding towards the consensus (which has a positive bias) is stronger
during bull markets.

1This criticism is not entirely fair, as the model of Hong et al. is not aimed at explaining
bubbles and crashes but momentum and reversal, a phenomenon with is more common. By
assuming that bubbles are a case of amplified momentum, the models become comparable,
although not in every point.
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Evidence that a string of successive positive news will create a positive mo-
mentum in returns, which exceeds the period of positive news, is been reported
by Lakonishok et al. (1994) and La Porta et al. (1997). Although these studies
document momentum and not bubbles, the evidence points in the same direction
then the conclusion of the HS-paper.

Also the mechanism behind the crash can be confirmed by empirical evi-
dence. As the experiments by Smith et al. (1988) find that the period before
a crash is characterized by a deceleration where participants realized the over-
valuation. At this point a small price drop can destabilize the bubble and lead
to a fast correction of the price. Also the end of the housing bubble in the US
seems to have the same origin as predicted by the HS-model, that the bubble
stops growing once investors liquidity drys up, as it was the reduction of for-
eign capital influx and the increase of interest rates of the Federal reserve that
marked the end of the increasing real Estate prices.



Chapter 5

Noise-induced volatility

5.1 Introductory comments

In the previous chapter, a model of adapting agents under the influence of their
social network, global news and private information was studied. As that model
was designed to represent investors, interacting on a financial market, the agents
were characterized by features special to that environment, such as a certain
risk aversion and an amount of cash and assets. More importantly, due to the
strong competition in the financial world, they were constantly adapting their
strategy to the environment. In this chapter, a far simpler model will be studies,
only keeping the same three basic influences, together with the random utility
approach. By simplifying the model, it is possible to apply it to a very wide
range of systems, generalizing the interpretation of the individual agent from an
investor to any entity susceptible to its surrounding and a common driving force.
Examples are magnetic spins, neurons in the brain, immune system activity or
voting individuals.

The originating idea leading to this paper was the explanation of the phe-
nomenon of excess volatility (first studies by Shiller (1981)) and is treated in
Section V.b of the paper. There it is shown that the proposed model is not only
able to generate strong price fluctuations, largely exceeding the amplitude of
the news (or dividend flows in the scenario of Shiller (1981)), but also that this
fluctuation amplification has an endogenous origin leading to a small correla-
tion between news and price variations, a property also seen in financial markets
(Parr, 1985; Cutler et al., 1989; Joulin et al., 2008).

The model studies in Section 5.2 has effectively two parameters, the ampli-
tude of the private information, given by the standard deviation D of the noise
term, and the coupling strength k, controlling the impact of the surrounding on
the single unit. Given that the work was aimed at, and published in, a physics
journal, the model is studied with D being the control parameter. The reason
for this is that the noise term’s standard deviation can be related to the tem-
perature of the system (cf. Eq. (2.40) and it discussion), which is the natural
control parameter in such systems. However, very similar results could be ob-
tained by studying the system in function of the coupling strength, k. In that
case, the name of the phenomenon would change from noise-induced volatil-
ity to interaction-induced volatility, leaving the entire conclusion of Section 5.2

53
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unchanged.
Without further ado, here is the paper, as it was published in Physical

Review E: Statistical, Nonlinear, and Soft Matter Physics.
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5.2 The paper
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Noise-induced volatility refers to a phenomenon of increased level of fluctuations in the collective dynamics of
bistable units in the presence of a rapidly varying external signal, and intermediate noise levels. The archetypical
signature of this phenomenon is that—beyond the increase in the level of fluctuations—the response of the system
becomes uncorrelated with the external driving force, making it different from stochastic resonance. Numerical
simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular and random
networks demonstrate the ubiquity and robustness of this phenomenon, which is argued to be a possible cause
of excess volatility in financial markets, of enhanced effective temperatures in a variety of out-of-equilibrium
systems, and of strong selective responses of immune systems of complex biological organisms. Extensive
numerical simulations are compared with a mean-field theory for different network topologies.
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I. INTRODUCTION

Noise has effects a priori unexpected on the organization
of complex systems made of interacting elements, as shown
by stochastic resonance (SR) [1], coherence resonance [2],
noise-induced phase transitions [3], noise-induced transport
[4], and its game theoretical version, the Parrondo’s Paradox
[5]. SR occurs in a system when a small applied (subthreshold)
periodic signal is amplified by the addition of noise and the
maximum of amplification is found for intermediate noise
strengths. More generally, SR refers to the situation where
noise and nonlinearity combine to increase the strength in
the system response. Among others, SR was shown to appear
in optical [6] and magnetic systems [7,8], and was thought
to be relevant in various fields, ranging from Earth climate
[9] and the dynamics of ice ages [10], to neurobiology
[11,12] and visual perception [13]. Generally SR is studied
in bistable systems, where the amplification of a subthreshold
periodic signal is achieved through the synchronization of
noise-induced interwell hopping of the dynamic variable and
the driving signal. The signal is maximally amplified when
the level of noise is such that the Kramers time, which is the
intrinsic lifetime associated with the noise-induced transition
between the two stable states, equals half of the period of the
external forcing. The bistability of the dynamic variable can be
given either explicitly [14]—for low dimensional systems—or
emerge from the interaction of the many constituents as for
the magnetization in the Ising model in the ferromagnetic case
[15,16]. However, systems of many interacting constituents
may depart from the paradigmatic setting of SR, as there is
no interwell hopping for the macroscopic observable, and thus
the bistability is only preserved at the microscopic level.

The Ising model, driven by a periodic signal, has been
extensively studied in the realm of the kinetic Ising model
and dynamical phase transitions [15–20]. When a spatially
extended Ising system—for temperatures below the Curie
temperature—is forced by a weak periodic influence, the mag-
netization performs dynamics around its nonzero equilibrium
fixed point, resulting in a nonzero time-averaged magnetiza-
tion. For a given temperature, by increasing either the field
strength or the period of the signal, the system becomes able
to hop between the two symmetric equilibrium fixed points

inducing a zero average magnetization. The nature of this
transition, from a nonzero to a zero average magnetization, can
be manifold and depends on the control parameter. For weak,
subthreshold forcing strength and finite-size systems—where
interwell hopping is enabled by the fluctuations—SR is at the
origin of the transition. In large enough systems, such that
finite-size fluctuations can be neglected, and for intermediate
field strengths, they experience a dynamical phase transition
through a nucleation process [16]. For stronger forcing, the
transition is forced by the exogenous field, with no contribution
from endogenous factors.

In this paper, we investigate the behavior of systems
composed of many interacting constituents under the influence
of a time-varying external forcing. The Ising model framework
is used as a generic example of such systems. In contrast to the
classical SR studies, where the period of the periodic forcing
is of the order of the Kramers time, we are interested in much
faster signals. Additionally, aperiodic signals are included
to the external forcing, a setup much closer to real world
examples, which will yield some surprising differences to the
cases involving periodic forcing.

We find, for periodic and aperiodic signals alike, that for
intermediate values of the noise intensity, the system dynamics
shows a maximum in amplitude [8,21]. Interestingly, the
phenomenon of increased amplitude, which consists of an
amplification of the signal for a periodic forcing, morphs into
an increase of the system-wide fluctuations, uncorrelated with
the signal for an aperiodic forcing. We call this phenomenon
“noise-induced volatility” (NIV).

There are many examples of systems composed of a
large number of interacting units that are subjected to a
rapidly varying—periodic or aperiodic—common forcing. A
first example refers to the empirical observations of strong
amplifications of thermal noise into effective renormalized
temperatures by quenched heterogeneities in materials [22],
in organized flows in liquids [23] and in granular media near
jamming [24]. We argue that NIV also provides a conceptual
framework to model the immune systems of complex bio-
logical organisms, viewed as multistable complexes, which
switch their mode of operation under the influence of noisy
perturbations by pathogens and other stress factors [25–27].

011150-11539-3755/2012/85(1)/011150(10) ©2012 American Physical Society
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Another important application of the proposed mechanism
of volatility amplification can be found in financial markets.
The phenomenon of “excess volatility” [28] constitutes one of
the major unsolved puzzles in financial economics and refers
to the ubiquitous observation that financial prices fluctuate
with much larger amplitudes than they should if they obeyed
the fundamental valuation formula, linking the share price
of a company to its expected future dividends and discount
factors [29]. The model described below can be applied
to represent a market of interacting investors, where the
external forcing represents the news (i.e., the publicly available
information about the traded assets) that investors use to
update their estimates of the asset’s fair value. In addition
to the phenomenon of the increased volatility compared to the
news amplitude, our framework allows us to address two other
well-known phenomena of financial markets: namely, the fact
that the news is a poor predictor of future price changes [30]
and the phenomenon of clustered volatility, quantified by the
slowly decaying temporal dependence of volatility [31].

We document the phenomenon of noise-induced volatility
by numerical and theoretical calculations on a stochastic
dynamical version of the Ising model on fully connected,
regular as well as random networks, in the presence of rapidly
varying periodic and aperiodic signal. NIV also constitutes a
new indicator for an approaching phase transition [32].

This paper is organized as follows. In the following section,
we introduce the model studied and the measures chosen
to quantify the phenomenon studied. In Sec. III, we revisit
the case where the system is driven by a periodic forcing,
focusing on the case of fast signals, by means of Monte
Carlo simulations and by means of an analytical approach.
In Sec. IV, we present the main contribution of the paper:
the study of the system driven by an aperiodic forcing. In
Sec. V, we go beyond the fully connected case, focusing on
different network topologies and on a paradigmatic example
of this phenomenon: the excess volatility in financial markets.
Finally, Sec. VI presents a discussion and conclusions of the
obtained results.

II. MODEL DESCRIPTION AND
DIAGNOSTIC VARIABLES

Consider a system composed of N interacting units that
can be in one of two states: s = ±1. The units are updated
sequentially, randomly chosen at each unit micro-time δ =
1/N (i.e., N updates are equivalent to one time unit at the
macroscopic level, that is, one Monte Carlo step [33–35]).
The update of the state si of a given unit i from t to t + δ is
given by

si(t + δ) = sgn

(
f (t) + ξi(t) + K(t)

N∑
j=1

ωij sj (t)

)
. (1)

The value si(t + δ) is determined by three competing contribu-
tions: (i) a common external dynamic forcing term f (t) (force,
pathogens abundance, news); (ii) an annealed unit-specific
term ξi(t) that we will call noise (thermal fluctuations or
threshold, intrinsic susceptibility of a unit immune system
compartment, investor idiosyncratic opinion, or private infor-
mation); (iii) an interaction term between units controlled by

the amplitude K(t) (elastic coupling, feedback loops between
immune system elements, social impact).

The system’s behavior will be investigated under the
influence of two different types of external signals. To relate
to the existing literature, we will use a smooth periodic signal,
fp(t) = A sin(ωt), with period 2π/ω and strength A; this
implies that, when averaged over time, the standard deviation
of the signal is σfp

= A/
√

2. Along this paper, we denote by
signal amplitude the standard deviation of the signal σf . As a
periodic signal is a rather stylized and artificial setup, we will,
in a later section, also analyze the response of such a system
to a stochastic process. The simplest choice of a stochastic
process with tunable characteristic time scale is the Ornstein-
Uhlenbeck (OU) process, which has exponentially decaying
memory and is defined by dfap = −θfapdt + AdWt , with
0 mean, strength A, inverse time scale θ > 0 and Wt is a
Wiener process with normalized variance and zero mean. The
asymptotic solution of the OU process is

fap(t) = A

∫ t

−∞
e−θ(t−τ ) dWτ , (2)

which gives a signal amplitude σfap
= A/

√
2θ .

The noise term ξi(t) of each unit in Eq. (1) follows an
independent stochastic process, whose values are, at every
micro-time-step, drawn from the cumulative distribution func-
tion G(0,D), with zero mean (〈ξi(t)〉 = 0) and variance D2.
Thus, 〈ξi(t) ξj (t + nδ)〉 = D2δnδij . If f (t) = 0 and G(0,d)
corresponds to a logistic distribution, the dynamical rule
of Eq. (1) is equivalent to the kinetic Ising model with
Glauber dynamics (cf. appendix) where D2 is related to the
temperature.

In the interaction term in Eq. (1), the matrix of weights
ωij defines the network connectivity between units, both in
topology and relative strength. We assume that the interactions
between units are governed by connections that evolve much
slower than the dynamics of the whole system. This amounts
to considering a static network with fixed normalized weights∑

j ωij = 1. The effective coupling strength is given by
K(t), which may depend on time to reflect global softening-
hardening in rupture processes, evolving physiological states
of immune systems, and changes of social cohesiveness and/or
social influence in financial markets.

The macroscopic dynamics of the system is captured by the
instantaneous “magnetization”:

m(t) = 1

N

∑
i

si(t), (3)

which fluctuates around its time-average Q, which is computed
as

Q = 〈m(t)〉t = 1

T

∫ T

0
m(t)dt, (4)

where T is the duration of the simulation. We study the
normalized standard deviation:

σ̃ = σm

σf

=
√

〈[m(t) − Q]2〉t√
〈f (t)2〉t

, (5)

of m(t), describing the “volatility” of the system dynamics
scaled by the signal amplitude, σf . As the response of

011150-2
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the system to an external influence is not instantaneous,
the time-lagged correlation between the input signal and the
magnetization, defined by

ρ(τ ) = 〈[m(t + τ ) − Q]f (t)〉t
σmσf

, (6)

provides an additional insight on the level of synchronization
between the external influence and the overall system dynam-
ics at a lag of τ . The lag where the correlation is maximal will
be called optimal lag, τ ∗ = maxτ ρ(τ ).

In the case of the periodic signal, a common measure
in stochastic resonance research is the spectral amplification
factor (SAF) [36],

R = Sω[m(t)]

Sω[fp(t)]
= Sω[m(t)]

σ 2
f

, (7)

which is the ratio of the power spectrum density of the
magnetization Sω[m(t)] over the power spectrum density of
the driving signal, Sω[fp(t)] = σ 2

f = A2/4, both at the driving
frequency ω.

III. PERIODIC SIGNAL

A. Simulations results

First, we consider an homogeneous, complete, network
(ωij = 1/(N − 1)) and a constant coupling strength K(t) =
k = 1. The results reported below are not significantly different
for random graphs with large average connectivity or when the
connections allow for an unbiased statistical sampling within
the population. As previously said, we set G to be a Gaussian
distribution with standard deviation D, and zero mean. Even
though the system loses its equivalence to the kinetic Ising
model with Glauber dynamics, all the qualitative properties
of the system remain unchanged. Without external forcing
(A = 0), the system experiences, as for the equilibrium Ising
model, a continuous phase transition at Dc � 0.80k, separating
the ordered phase with two stable fixed points at ±Q(D),
from the disordered phase, with a single stable fixed point at
Q(D) = 0. For the equilibrium case (A = 0), the dependence
of Q(D) as a function of D is shown by the continuous line in
Fig. 1(b).

In Fig. 1(a), we plot the spectral amplification factor as a
function of noise strength for signals with different periods.
The symbols are obtained by simulations of the model with
106 units. We observe that, even for relatively small periods, an
increase of amplification exceeding one order of magnitude is
achieved for a broad range of intermediate value of noise,
the hallmark of stochastic resonance. Figure 1(b) shows
the average magnetization, Q(D), which is the usual order
parameter in the kinetic Ising model studies, for the same
signals as in Fig. 1(a). In Sec. III B, we will develop a theory
which shows that the global dynamics can be assimilated to
a motion within a potential that exhibits a transition from a
monostable to a bistable regime. For fast signals, Q(D) has
a value close to the equilibrium fixed point (continuous line),
suggesting that the dynamics of m(t) can be well described
as fluctuations around this stable (or metastable) point, i.e.,
m(t) performs intrawell dynamics. For slower signals, larger
fluctuations around the equilibrium fixed point are observed,
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FIG. 1. (Color online) (For periodic signals) Different measures
as a function of the standard deviation of the noise in Eq. (1), D, for
weak periodic signals with amplitude σfp

= 0.01. The period of the
signal is in the legend of (b). Symbols are obtained for simulations
with a system size N = 106 and the lines are the result of the
linear approximation presented in the main text. The vertical thin
dotted line indicates DT for ω = 2π/512, where the transition from
intra- to interwell dynamics occurs. The vertical thick dotted line
indicates the critical value of noise Dc, where the phase transition
takes place. For D ∈]DT ,Dc[, m(t) performs interwell dynamics. (a)
Spectral amplification factor R, as defined by Eq. (7). (b) Average
magnetization Q. For D < Dc, Q = 0 indicates that the system
performs interwell dynamics. (c) The normalized standard deviation,
σ̃p . (d) Instantaneous correlation between m and f , ρ(0), defined
by Eq. (6). (e) Correlation between m and f at the optimal lag. (f)
Optimal lag, τ ∗, normalized by the period of the driving force.

as Q(D) vanishes already for D < Dc, indicating symmetric
oscillations around m(t) = 0, i.e., m(t) performs interwell
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dynamics. By DT (A,ω,N ), we denote the threshold value of
the noise strength at which the potential barrier between the
two equilibrium fixed points become small enough, such that
the system performs interwell hopping and thus Q(D) goes to
zero. The noise strength threshold DT approaches Dc as either
ω or N are increased or A is decreased. In the opposite limits,
it will tend to zero.

Independent on the driving frequency, the maximum in the
amplification is always found at DT . For fast signals where
DT ∼ Dc, this maximum is observed at the equilibrium phase
transition. This happens in the presence of two competing
phenomena near the equilibrium phase transition: on the one
hand, a divergence in the susceptibility, making the system
very sensitive to small changes in the external influences; on
the other, critical slowing down, which inhibits the reaction of
the system. For slow signals, where DT < Dc, together with a
more abrupt vanishing of Q, a pronounced jump in the spectral
amplification factor R, defined in Eq. (7), is observed at D =
DT , where the response of the system is greatly increased by
the transition from intra- to interwell dynamics. For DT <

D < Dc, the amplification decreases with D, as the position
of the minimum (±m0(D)) approaches 0 for D approaching
Dc from the left.

Figure 1(d) shows the dependence of the correlation at
zero lag on the noise strength. A minimum of instantaneous
correlation is observed at the same values of D, where the
maximum in R occurs. This result confirms the existence of a
double peak of the non-normalized instantaneous covariance,
as was found by Leung et al. [7,8].

The effect of the signal frequency on the system behavior
is shown in Fig. 2, where we plot the amplification R as a
function of the period of the signal for different values of D. For
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FIG. 2. (Color online) For periodic signals with amplitude σfp
=

0.02/
√

2 and different values for the standard deviation of the
noise D specified in the legend. The spectral amplification factor
R as a function of the period, 2π/ω. Symbols are obtained for
simulations of a system with N = 9 × 104 and the lines represent
the linear approximation given by Eq. (15). Three regimes of R can
be identified as a function of the period: (1) increasing amplification
with increasing period, (2) plateau with intrawell dynamics, (3) for
D � Dc, stark increase of amplification due to interwell dynamics.
Similar results are found for larger system sizes, where the third
regime appears for larger periods as the finite-size fluctuations are
reduced.

D > Dc, where the macroscopic system dynamics is described
by a monostable potential, the dependence is composed of
two regimes. The first regime is where the amplitude of the
oscillations of m(t) increases with the period as m(t) is pushed
for longer durations into one direction, allowing for greater
deviations from the origin. For larger signal periods, R reaches
a plateau, which constitutes the second regime, where the
diffusive motion of m(t) is confined by the potential. The
same behavior is observed for D 
 Dc, where the potential
barrier between the two minima cannot be overcome by the
system, restricting the dynamics to intrawell motions. Finally,
for D � Dc, the dependence shows a transition into a third
regime. If the potential barrier is not too high compared with
the noise intensity and the finite-size fluctuations, the system
is able to perform interwell dynamics for large enough periods
of the external driving. These interwell dynamics are observed
as a second rapid increase in R. The period at which this
transition happens is the double of the Kramers time.

B. Analytical approach

In order to understand these results, we now develop a
mean-field theory, which becomes exact in the thermodynamic
limit and for weak signal amplitudes. As our system is
composed of many interconnected units, we can rewrite Eq. (1)
by replacing the interaction term by the global instantaneous
magnetization and by explicitly writing down Eq. (1) in the
form of

si(t + δ) =
{+1 if ξi(t) � −k m(t) − f (t)
−1 if ξi(t) < −k m(t) − f (t).

Averaging over multiple noise realizations, the expected value
for the state of the ith unit, at time t + δ is thus given by

〈si(t + δ)〉ξ = 1 − G(−k m(t) − f (t)) − G(−k m(t))−f (t))

= 1 − 2G( − k m(t) − f (t)), (8)

where G(θ ) is the cumulative distribution function of the noise
term ξi(t), i.e., G(θ ) = ∫ θ

−∞ dθ ′g(θ ′). Summing over all the
units and given that only spin i is updated over the micro-time-
step δ, we get that the updated instantaneous magnetization is
exactly

m(t + δ) = m(t) + 1

N
[si(t + δ) − si(t)]. (9)

By averaging over the complete population and identifying
1/N = δ as dt in the thermodynamic limit, Eq. (9) transforms
into a continuous process, which reads〈

dm(t)

dt

〉
= 〈si(t + dt)〉 − m(t). (10)

With ṁ(t) = 〈dm(t)/dt〉 and substituting Eq. (8) into Eq. (10),
we get

ṁ(t) = −m(t) + 1 − 2G( − k m(t) − f (t)), (11)

which constitutes a general closed form evolution equation for
the magnetization of the system.

From the point of view of the mean-field limit, the noise
ξi(t) can be either quenched or annealed, as the complete
noise is condensed into the last term in Eq. (11). For A = 0
(no external driving), the stationary solution of Eq. (11) gives
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the dependence of the equilibrium fixed point m0(D) as the
solution of the implicit equation,

m0(D) = 1 − 2G( − k m0(D)). (12)

This solution exhibits a supercritical pitchfork bifurcation as
a function of D, as expected for an Ising-like system, which
is displayed by the continuous line in Fig. 1(b). The critical
parameter is found equal to Dc = k

√
2/π , when ξi(t) is drawn

from a Gaussian distribution.
The emphasis of this paper is on the system’s reaction to

fast, subthreshold (A 
 1) signals, so that interwell dynamics
can be neglected. Thus, a perturbation expansion m(t) = m0 +
m1(t) up to first order yields

d

dt
m1(t) = −η(D) m1(t) + φ(D) f (t) + O

(
m2

1

)
, (13)

where φ(D) ≡ 2g(−km0), η(D) ≡ 1 − 2kg(−km0), and g =
dG/dξ . The dependence of φ and η as a function of the noise
strength is displayed by the dash-dotted lines in Fig. 1(b).
Based on Eq. (13), φ(D) can be interpreted as the attenuation
of the signal by the noise in the individual constituents of the
system as φ(D) � 1/k for any D. The value of φ(D) weights
the impact of the external forcing on the global dynamics.
The parameter η(D) can be understood as the strength of the
restoring force that tends to bring m(t) back to its equilibrium
value m0, after being driven away by the influence of f (t).
The larger η, the closer the dynamics of m(t) will be to m0

and the shorter will be the memory of m(t). The value of
η(D) controls the contribution of the endogenous part of the
dynamics. In the particular case where f (t) is constant, m1(t)
approaches the fixed point f φ(D)/η(D). Since φ(D) remains
finite when D passes through Dc, it is the vanishing of η(D)
at D = Dc and its smallness in the vicinity of Dc that is at the
origin of the amplified volatility. Based on Eq. (13), we can
now compute the approximate value of the different measures
for the external signals and compare them to the simulations
of the actual system.

For the periodic forcing, the dynamics of the magnetization
yields

mp(t) = Aφ

η2 + ω2
[−ω cos(ωt) + η sin(ωt)] + m0. (14)

Together with Eq. (7), this gives a spectral amplification factor
equal to

Rp = 4

A2

(
Aφ

η2 + ω2

)2
ω2 + η2

4
= φ2

η2 + ω2
. (15)

Figure 1(a) shows that, for fast signals (where DT � Dc),
the value of R obtained from this approximation matches well
with the simulation results. Deviations from the approximation
appear for slower signals when DT does not coincide with Dc

and nonlinear effects cannot be neglected anymore.
As can be seen in Fig. 1(a), the spectral amplification

factor can reach values above 100, showing that this system,
even without considering interwell dynamics, is able to
show remarkable reactions to a weak forcing. Two distinct
amplification mechanisms of subthreshold periodic signals can
be identified by comparing the simulation with approximation
results. The first mechanism, being present for finite and
infinite systems, is the increase of the output amplitude by

the decrease of the value of η: By reducing the restoring force
of m(t), such that it can be further displaced from m0, the
oscillation amplitudes are increased. The second mechanism
is the amplification through interwell jumps, which is only
present in finite systems, as a subthreshold driving force
cannot overcome the potential barrier without the existence
of a source of fluctuations, like finite-size effects. Note that in
the thermodynamical limit, where the approximation is valid
for any frequency, at Dc where η(Dc) = 0, it follows from
Eq. (15) that the fluctuations of m(t) for nonzero frequencies
will always be finite.

In addition to the spectral amplification factor R, we also
measure the normalized variance of m(t), σ̃ , which measures
the volatility of the dynamics, independent of the exact shape
of the power spectrum. This measure is convenient as it can be
used for comparison with the aperiodic signal, for which R is
not defined. From Eq. (14), the normalized variance of r(t) is

σ̃p
2 = 2

A2
〈mp(t)2〉t = 2

A2

ω

2π

∫ 2π
ω

0
mp(t)2dt = φ2

η2 + ω2
.

(16)

The equivalence between Eqs. (15) and (16) is due to the
use of a linear response approximation in the macroscopic
dynamics of the systems, neglecting the response at higher
order harmonics of the driving signal. As a consequence, the
approximation of the spectral amplification factor Rp is better
fitted by the simulations than σ̃p.

From Fig. 1(c), we see that the mean-field approximation
matches well the values of σ̃ obtained by simulations for
intermediate signal periods. For large periods, the interwell
dynamics destroys the match, and for fast signals (small pe-
riods), the finite-size fluctuations overshadow the fluctuations
induced by the signals.

The correlation between mp(t) and fp(t) is given by

ρp(τ ) = η cos(ωτ ) + ω sin(ωτ )√
η2 + ω2

, (17)

and, for the optimal lag, we obtain

τ ∗
p =

arctan(ω
η

)

ω
, (18)

which follows directly from Eq. (14). The correlation at zero
lag is shown in Fig. 1(d). As for the results of R, the simulation
results are well captured by the mean-field approximation for
high frequencies and deviate due to interwell dynamics for
lower frequencies. As was observed in [8], a dip in correlation
is observed for intermediate values of the noise amplitude.
This dip occurs at DT , concomitant with the maximum in
the amplification measured by R. This apparent contradiction
can be explained by the results shown in Fig. 1(f), which
plots the optimal lag between m(t) and f (t) normalized by
the period of the signal. At DT , m(t) and f (t) are maximally
lagged, reducing the correlation at lag zero. On the other hand,
the correlation at the optimal lag has a value close to one,
explaining the high amplification of the signal. This behavior
can also be found in the approximation, although there the
maximum of amplification and minimum of instantaneous
correlation is found at Dc as our approximation neglects
interwell dynamics. From Eqs. (17) and (18) it follows that,
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FIG. 3. (Color online) Size dependence of the maximal correla-
tion between the magnetization and the signal with σf = 0.01 and
different time scales for several noise intensities: D = 0.7 (solid
lines), D = 0.8 (dotted lines), D = 0.9 (dashed lines). Characteristic
time scales of the signal are specified in the legends. (top) Periodic
signals, where ρ(τ ∗) converges to 1 for any value of D in the
thermodynamic limit. The rate of convergence increases with the
signal period. (bottom) In case of aperiodic signals, the value of ρ(τ ∗)
does not converge to 1 in the thermodynamic limit and depends on
D and θ . At D = Dc, the maximal correlation ρ(τ ∗) is significantly
reduced compared to D 
= Dc.

in the thermodynamic limit, there exists an optimal lag τ ∗
p , for

which perfect correlation is achieved for any frequency and
any noise strength, i.e., ρp(τ ∗

p ) = 1.
However, perfect correlation is not achieved for any

frequency in finite systems as shown by the dependence of
ρ(τ ∗) in Fig. 1(e), where the deterioration of the correlation
with increasing driving frequencies is observed. The origin of
this effect lies in the finite-size fluctuations, which vanish in the
thermodynamic limit, as Fig. 3 (top) shows. ρ(τ ∗) converges
to 1 for infinite systems, at a rate of convergence depending
on D and the driving period.

IV. APERIODIC SIGNAL

We now turn our attention to the case where the com-
mon forcing is aperiodic. In this section, we will consider
an external force, which is described by the OU process
introduced in Eq. (2). Figure 4 illustrates the typical dynamic
behaviors of m(t) for different values of noise strengths D for
a single realization of the driving force fp(t). For D � Dc, the
magnetization fluctuates around mo(D) = 0, with increasing
amplitudes as D approaches Dc. The fluctuation amplitude
deceases again when m(t) performs intrawell dynamics for
D < Dc, where Q(D) 
= 0.

We will compute the same observables as for the periodic
signal and investigate the differences. The formal solution of
the linearized version of the dynamics, Eq. (13), is given by

m1(t) = Aφ

∫ t

−∞
e−η(t−τ )

∫ τ

−∞
e−θ(τ−τ ′) dWτ ′ dτ, (19)

0 1000 2000
t

-0.6

-0.3

0

0.3

m(t)

FIG. 4. (Color online) For aperiodic signals: time evolution of the
magnetization m(t) for different noise intensities D obtained with the
same realization of the driving force f (t) and ξi(t). N = 104, σap =
0.04, θ = 1.0, k = 1.0, D = 2.0,1.0,0.8 (smaller to larger amplitude
of m(t)’s fluctuations), and D = 0.7 (bottom curve fluctuating around
m(t) = −0.6).

which describes the dynamics around m0. The normalized
variance of m1(t) described by Eq. (19) is now given by

σ̃ 2
ap = φ2

η (θ + η)
. (20)

In Fig. 5(a), we compare the normalized variance obtained by
means of numerical simulations with this theoretical result. We
find a very good agreement between the two for fast signals,
with the same deficits due to inter-well dynamics as for the
periodic case with slower signals. However, by comparing σ̃ap

for the aperiodic signal with the periodic case σ̃p, we observe a
major difference. Whereas for the periodic case, the volatility
of the dynamics shows a finite maximum value at Dc, the
volatility diverges if the system is driven by an aperiodic signal
as η(Dc) = 0. This divergence of the normalized volatility
σ̃ap is not to be understood as an explosion of the dynamics,
as m(t) cannot exceed [−1, + 1]. It reflects the immensely
amplified reaction to a weak external forcing, consistent with
the diverging susceptibility in equilibrium phase transitions.
The fact that this divergence is absent for a periodic forcing
stems from the discreteness of the power spectrum of the
input signal. It is worth mentioning that the good match
between the analytical approach—which becomes exact in the
thermodynamic limit—and the numerical simulations shows
that the phenomenon is not due to finite-size fluctuations, but
is an emergent property of the system.

The correlation between the forcing fap(t) and the magne-
tization, m(t + τ ), is given by

ρap(τ ) =
√

η2 + θη

η2 − θ2
[(η + θ ) e−θτ − 2θ e−ητ ] (21)

and is shown in Fig. 5(b) for zero lag, together with the
simulation results, which are found in good agreement. The
optimal lag for which ρap(τ ) is maximum occurs at

τ ∗
ap =

ln
(

η+θ

2η

)
θ − η

, (22)

yielding a maximal correlation of

ρap(τ ∗
ap) = 2

θ
θ−η

(
η

θ + η

) η+θ

2(θ−η)

. (23)
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FIG. 5. (Color online) For aperiodic signals: different measures
as a function of the standard deviation of the noise in Eq. (1), D,
for weak aperiodic signals with amplitude σfp

= 0.01. The inverse
of the signal’s time scale θ is given in the legend. Symbols are
obtained for simulations with a system size N = 106 and the lines
are the result of the linear approximation presented in the main
text. (a) Normalized standard deviation σ̃ , measuring the volatility
amplification. (b) Instantaneous correlation between m and f , ρ(0),
defined by Eq. (6). (c) Correlation between m and f at the optimal
lag. In contrast to the periodic signal, a system driven by an aperiodic
signal is not able to follow the signal, even at the optimal lag, which
is well described by the mean-field approximation. (d) Optimal lag
τ ∗ normalized by the time scale of the signal.

Here, we find the second major difference between the periodic
and aperiodic driving. For the periodic signal, it is always
possible to find a lag at which the correlation between the
forcing and the system’s response is perfect. For the aperiodic
signal (see Figs. 5(c) and 3 (bottom)), on the other hand, even
in the thermodynamic limit, the dynamics of the system can
be almost unrelated to the forcing. Perfect correlation is only
reachable for very slow signals, i.e., limθ→∞ ρap(τ ∗

ap) = 1.
Given that the forcing—an OU process—has a continuous
power spectrum, and that the response of the system is fre-
quency dependent, the spectrum of the macroscopic dynamics
is distorted when compared to the one of the forcing, which
has the effect of decreasing the correlation. Indeed, the system
is only able to follow the part of the signal spectrum with
frequencies lower than η(D), which describes the rate at
which the system can effectively react to external stimuli.
As with decreasing θ , the contribution of lower frequencies

in the signal’s spectrum is higher, the correlation for fixed D

increases with decreasing θ .
For D ≈ Dc, the volatility amplifies many times that of

the driving signal f (t). Concomitantly, ρ vanishes for every
value of the lag τ , indicating that the volatility of the system is
generated by an internal collective behavior. It is important to
note that, even though the system dynamics are endogenously
generated, they are initiated by an exogenous driving of the
system. This is further confirmed by the good agreement
between the approximation and simulations for fast signals.
It is the shadow of the diverging susceptibility together with
the vanishing rate of the reaction of the equilibrium model at
Dc, which is responsible for the observed NIV phenomenon.

V. EXTENSIONS OF THE PHENOMENON STUDIED

A. Different networks

To show that the NIV phenomenon, characterized by
the increase of volatility and decrease of correlation to the
aperiodic forcing, is robust with respect to the structure of
the network, Fig. 6 shows the normalized volatility σ̃ and
the maximum in correlation ρ(τ ∗) as a function of D (the
standard deviation of the noise term in Eq. (1)) for different
networks. We consider a two-dimensional regular grid with
Moore neighborhood and random small-world connections
with varying concentration pw. Changing pw from 0 to 1
interpolates between the regular two-dimensional (2D) lattice
and the completely random network. For each pw, the peak
in volatility is still concomitant with the vanishing of ρ at the
threshold value DT (pw). The noise intensity threshold DT (pw)
is increasing in pw, as larger global interconnection enhances
the cooperative organization, and larger noise is needed to
destroy the ferromagnetic state.

For one-dimensional (1D) lattices, the NIV phenomenon
is still present, with a minimum in the cross correlation and
a maximum in the volatility at DT . As is well known, the
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FIG. 6. (Color online) For an aperiodic signal: (top) the nor-
malized volatility σ̃ and (bottom) the correlation at optimal lag
ρ(τ ∗) as a function of the standard deviation of the noise D for
different small-world random connection concentrations pw of a
two-dimensional regular grid with Moore neighborhood. For pw = 0,
the network is a 2D regular grid with Moore neighborhood. For
pw = 1.0, the network is a random graph with an average degree,
d = 4. The other system parameters are N = 106, σf = 0.01, θ = 1,
k = 1.
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one-dimensional Ising model undergoes a first-order phase
transition at zero temperature, and DT converges to 0 in
the thermodynamic limit. Notwithstanding the absence of a
continuous phase transition, the susceptibility and relaxation
time still diverge, exhibiting an essential singularity at zero
temperature [37,38], which explains the survival of the NIV
phenomenon in 1D.

B. Excess volatility in financial markets

By the definition of our model given by Eq. (1), it is
clear that it is also interpretable as a model of opinion
dynamics, where si(t) is the opinion of agent i at time t ,
in line with the established literature on discrete choice [39].
The external forcing f (t) can be seen as the flux of news,
which is common to all agents, the noise εi(t) contains the
agents’ private information and the coupling term represents
the social interaction between agents. The dynamics of the
global opinion is then given by m(t).

When applied to the social system of financial markets, the
agents are investors and si(t) corresponds to their opinion on
whether the asset is over- or underpriced and hence to their
willingness to buy (+1) or to sell (−1). The global demand is
the given by m(t), which impacts on the price as

log[p(t + 1)] = log[p(t)] + m(t + 1)

λ
. (24)

Here λ represents the liquidity depth of the market, which
is assumed constant and m(t)/λ is the financial return r(t)
from period t to period t + 1. This equation expresses a linear
market impact of the demands, which is a common hypothesis
in stylized models of financial markets [40,41]. The results
below do not change qualitatively for more general nonlinear
impact functions [42].

To apply our model to the financial markets, we use the
coupling strength k instead of D as the control parameter.
Rather than assuming a fixed coupling strength for investors,
we propose that the impact of colleagues’ opinions on a given
investor may be slowly varying with time. This effect reflects
the fact that, in times of greater uncertainty, investors tend
to be more influenceable by their surrounding [43]. There
are many varying sources of uncertainty that impact financial
markets, including the economic and geopolitical climate and
past stock market performance. In the spirit of Ref. [44], all
these factors are embodied into the notion that K(t) undergoes
a slow random walk with i.i.d. increments K(t + δt) − K(t) ∼
N (0,σk), which is confined in the interval [k − �k; k + �k].
This later constraint ensures that social imitation remains
bounded. We could have used an Ornstein-Uhlenbeck process
or any other such confining dynamics, without changing the
crucial results presented below. More complex models of
sophisticated investors involve the strategic adaptations of
the traders’ propensity to imitate to the reliability of their
colleagues in recent outcomes [45–47].

By the mechanism of sweeping of the coupling strength
K(t) close to the critical coupling strength kc (for fixed noise
strength D) [48,49], we expect and find a transient burst of
volatility in response to the aperiodic driving force f (t) with
constant amplitude and time scale. Figure 7 shows a typical
realization, where the return r(t) exhibits transient bursts,
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FIG. 7. (Color online) (Upper panel) Sample dynamics r(t)
(black bursty line) when the coupling strength K(t) of the interactions
between agents undergoes a confined random walk (green) in
[k − �k; k + �k] with �k = 0.5 and step size σk = �k/

√
5000.

(Lower right panel) Quickly vanishing (respectively, long memory
of) the autocorrelation of r(t) (thin lines) [respectively, |r(t)| (thick
line)] for two values of k and of �k. (Lower left panel) NIV resonance
in the presence of a time varying K(t), with �k = 0.1 (circles),
0.2 (squares), 0.5 (diamonds). The other parameters are N = 104,
σap = 0.04, D = 1.

associated with excursion of K(t) in the neighborhood of kc.
The lower left panel of Fig. 7 shows the robustness of the
NIV phenomenon as a function of the average coupling k:
Even with a fluctuating K(t), a large volatility peak appears
for intermediate values of k. The lower right panel shows
very short-range correlations of r(t) but very long-range
correlations of the financial volatility |r(t)| (another equivalent
proxy for volatility), very similar to empirical observations of
financial returns [31]. Such long persistence of the volatility
can be traced back to the slow diffusive nature of K(t) in
line with the investors’ slowly changing trust in the economy.
From the previous section, it also follows that during times
of crisis and strong social interaction (k close to kc), the
dynamics is generated mostly exogenously, well in line with
the documented inability of news events to explain large price
movements [30].

VI. CONCLUSIONS

In this paper, we have investigated the behavior of a system
composed of coupled bistable units under the influence of a—
rapidly varying—common exogenous forcing and independent
noise sources. Independently of the shape of the driving
force, intermediate noise strengths trigger a strong level of
fluctuations of the macroscopic dynamics around the critical
value separating the ordered from the disordered phases. For
a periodic forcing, this peak corresponds to a pronounced
amplification of the signal, with a strong correlation between
the macroscopic dynamics and the driving force at the optimal
lag, the paradigmatic signatures of stochastic resonance.

When the driving force is aperiodic a similar peak appears,
but here the amplitude of the fluctuations exceeds by far those
observed for periodic signals. Coincidental with the increase
of fluctuations, the correlation between the driving force and
the system dynamics is completely destroyed. This shows that
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even though these fluctuations are induced by the common
forcing, the macroscopic dynamics has an endogenous origin.
This phenomenon of noise-induced volatility contrasts with
that of stochastic resonance, with the major difference being
that it is not the signal, but the fluctuations that are amplified.

Moreover, this phenomenon of noise-induced volatility also
constitutes a new indicator for the approaching of a phase
transition [32], and it applies to a broader range of real-world
systems due to the more common setup given of a coupled
system driving by an aperiodic forcing and its robustness with
respect to changes in the underlying network of interactions.

As an example of a system where this phenomenon can be
observed, we have proposed the social system of stock markets,
in which we have been able to not only explain the excess
of volatility observed in stock prices, but also the apparent
absence of correlation between news and price changes and
the persistence of volatility during times of crises.

APPENDIX: EQUIVALENCE TO THE KINETIC ISING
MODEL WITH GLAUBER DYNAMICS

A popular update mechanism in the kinetic Ising model
literature was introduced by Glauber [50]. In it, the probability
for a spin to flip is given by

pflip = 1

eβ�Ei + 1
, (A1)

where �Ei is the energy gained by the system through the spin-
flip and β = 1/kT . With si = ±1 and Ei = −si(

∑
j Kij sj +

f ), which is the energy of the state si , Eq. (A1) can be rewritten
as

pflip = psi→−si
= 1

esi2β[
∑

j Kij sj +f (t)] + 1
= 1

esi2β� + 1
, (A2)

where � = ∑
j Kij sj + f . With the transition rate given by

Eq. (A2), we can compute the probability of being in state si

at time t + δ by

p(si ; t + δ) = p(si ; t)psi→si
+ p(−si ; t)p−si→si

(A3)

= p(si ; t)

(
1− 1

esi2β�+1

)
+p(−si ; t)

1

e−si2β�+1

= [p(si ; t) + p(−si ; t)]
1

e−si2β� + 1

= 1

e−si2β� + 1
= p(si), (A4)

which is independent of time and gives us the probability of
finding spin i in state si . Equation (A4) can be rewritten as

si(t + δ) =
{+1 with Prob = (e−2β� + 1)−1

−1 with Prob = (e2β� + 1)−1

=
{+1 with Prob = 1 − F (−�)
−1 with Prob = F (−�), (A5)

where F (x) is the cumulative density function (CDF) of a
logistic distribution with zero mean and variance π2/12β2.

The model studied in this paper, defined by Eq. (1), can be
rewritten as

si(t + δ) =
{+1 if ξi(t) � −�

−1 if ξi(t) < −�

=
{+1 with Prob = 1 − G(−�)

−1 with Prob = G(−�), (A6)

with G(x) being the CDF of the probability density function of
ξi(t), with zero mean and variance D2. By direct comparison
of Eqs. (A5) and (A6), one can see that the model defined by
Eq. (1) is equivalent to the kinetic Ising model with Glauber
dynamics if the distribution of the noise is chosen to be a
logistic distribution.
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5.3 Finalizing Comments

The subject of an Ising model subjected to a changing magnetic field is a pop-
ular area of research in statistical physics. However, with the exception of very
few studies1 which consider a stochastic forcing, the majority of such studies in-
vestigate the system under periodic forcing only. Also, most studies concentrate
on slowly varying signal, which contrasts with our study, where the emphasis
is on rapidly varying external signals. These ingredients of a fast stochastic
driving, together with the very general set-up of the Ising model, or likewise a
discrete choice with social interactions, lead to a wide applicability of the model,
especially in the area of approaching phase transitions, which is used a lot in
ecology and the study of climate change.

In the context of financial markets, several studies confirm our conclusion,
that a large part of the volatility of prices can be traced back to noise traders.
For instance French and Roll (1986) show that the volatility in stock returns is
larger when the stock market is open compared to when it is closed, i.e., trading
generates volatility. Foucault et al. (2011) deliver an even clearer picture, as
they can show that specifically retail trading activity increases volatility, which
involves, in average, the least sophisticated investors on the exchange and the
most likely to indulge in momentum trading and herding.

1To the best of my knowledge there is one such study, namely the one by Hausmann and
Ruján (1997).



Chapter 6

Volatility-induced
overreaction

6.1 Introductory comments

Compared to the previous two chapters, which contained theoretical studies, the
paper presented in this chapter is an empirical study, investigating the depen-
dencies of the first-order autocorrelation of daily return. The study is applied to
price dynamics of equities, traded on the New York Stock Exchange over a time-
span of 21 years. The autocorrelation is estimated on moving windows, enabling
me to study its dynamics and relations to other moving window statistics, such
as volatility, illiquidity or market trend.

A priori one would assume, based on the EMH, that the return autocor-
relation, especially of daily returns, would fluctuate around zero in a random
fashion, as any significant autocorrelation should be arbitraged away. Surpris-
ingly this is not the case and among others, a strong correlation between the
volatility and return autocorrelation, both estimated on moving windows, is
observed.

The paper presented in the next section is not yet submitted to any journal,
and has also not been peer-reviewed. However, a thorough literature search on
the subject of return autocorrelation was conducted and no similar phenomenon
was found, such that I can say with strong confidence that the reported phe-
nomenon of volatility induced return autocorrelation is a novel and yet unpub-
lished finding. In order to refute the criticism of weak statistical treatment, an
extended list of robustness tests are performed. Also data-snooping can be ruled
out, as the phenomenon is highly persistent through-out the full time-span. A
systematic error in the data can also be rejected, as the results, obtained with
data from Bloomberg, were exactly replicated with data retrieved from Yahoo!
Finance, which is an alternative financial data provider1.

1For NYSE traded stocks, Yahoo! Finance get the price dynamics direct from the exchange.
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6.2 The paper
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Abstract

For individual stocks traded on the New York Stock Exchange, we investigate the dynamics
of the cross-sectional average of the first order autocorrelation of their daily returns and show
that changes in the average autocorrelation of returns strongly correlate with prior changes in
the cross-sectional volatility and market trends. It is found that return autocorrelation relates
negatively to past volatilty changes and positively to past market trends. This observation,
which is a market-wide phenomenon, is persistent for over 20 years of data and also present in
individual stocks. In contrast to the existing literature on return autocorrelation, we can reject
the illiquidity and bid-ask bounce as driving forces behind the return autocorrelation dynamics.
We propose a behavioral origin of the phenomenon, where high volatility and bear markets lead
to uncertainty and panic, reflected in overreacted behavior on a daily scale, whereas low volatil-
ity and bull markets lead to overconfidence, identified by price momentum. In order to address
the non-stationarity of some of the analyzed time-series, we have developed a very powerful
and yet intuitive method to compute meaningful correlations between time-series with various
memories.

Tags: autocorrelation, volatility, overreaction, herding, non-stationary process, leverage effect,
LeBaron effect, illiquidity, volume

1 Introduction

The autocorrelation of financial returns is a subject of great interest to academics and practitioners
alike. The existence of an exploitable autocorrelation would challenge the “Efficient Market Hy-
pothesis” (EMH), introduced by Samuelson (1965) and Fama (1970), which states in its weak form,
that it should be impossible to make abnormal economic profit, on a risk-adjusted basis, by trading
based on information contained in past price dynamics. This makes the return autocorrelation an
ideal candidate to investigate the validity of the EMH, while avoiding the joint hypothesis problem.

In the present study, the dynamics of the first-order autocorrelation of daily equity returns
is investigated. We find that future return autocorrelation is negatively related to past changes in
volatility and positively related to market trends. We propose a behavioral origin of the phenomenon,
where high volatility and bear markets are a sign of uncertainty and induce panic, leading to intra-
day overreaction via trend-following behavior. On the other hand, a decrease of volatility and a
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bull market, calms investors and induces overconfidence, resulting in smoother and persistent price
dynamics. In order to put our work into perspective, we first review the literature on the much
studied subject of return autocorrelation and its origins.

For individual stocks, studies on return autocorrelation generally have observed negative auto-
correlation on short time scales. Negative autocorrelations were found for daily stock returns of
individual companies at a lag of 2 to 13 days (French and Roll, 1986) and at the first lag for weekly
and monthly returns (Lehmann, 1990; Nam et al., 2006; Jegadeesh, 1990). On intermediate time-
scales, returns are found to be trending, as positive autocorrelations are found for three and twelve
months returns (Jegadeesh, 1990; Jegadeesh and Titman, 1993). On the long-term (3 to 5 years),
mean-reversion of the prices, i.e. negative return autocorrelation, is again observed (Bondt and
Thaler, 1985; Jegadeesh and Titman, 1993). Similar results are found by Cutler et al. (1990), who
confirm positive return autocorrelation for returns up to one year for markets for stocks, bonds,
foreign exchange, and various real assets and negative return autocorrelation for returns stocks,
bonds, and foreign exchange in the time-scale of ∼ 2 years.

For index returns, the structure of the return autocorrelation is slightly different compared to
individual stocks. Strongly significant positive autocorrelations are found for daily, weekly and
monthly returns for value- and equal-weighted indices (Lo and MacKinlay, 1988; Campbell et al.,
1997). This conversion from negative to positive return autocorrelation on small time-scales can be
explained by the cross-correlation between individual stocks, as larger capitalization stocks lead and
smaller capitalization stocks lag (Lo and MacKinlay, 1990).

On longer time-scales, index returns also show anti-persistence. Fama and French (1988) find
negative autocorrelation for 3-5 year returns with equal- and value-weighted portfolios. For national
stock market indices, Richards (1997) finds persistent returns on time scales smaller than one year
and negative return autocorrelation for larger time scales, with the strongest reversal for 3- and 4-
year returns. Similar results for equal- and value-weighted CRSP portfolios are reported by Poterba
and Summers (1989), who find positive autocorrelation for returns shorter than one year and negative
on the longer scale (∼ 8 years). Such results are confirmed by Chopra et al. (1992), who report
negative autocorrelation for 5 year returns.

The literature provides two explanations1 for the occurrence of negative autocorrelation in finan-
cial returns. The first one is overreaction to news, either due to momentum traders, who amplify the
actions of news-based traders (Hong and Stein, 1999) or behavioral reason such as overconfidence
(Daniel et al., 1998), pushing the price too far into one direction and leaving the stock over- or
under-valued after the excess demand has calmed off. It is the correction of the price in the opposite
direction, which then leads to the mean-reverting characteristic, i.e. negative autocorrelation, of the
returns. For the mean-reversion on the long time-scales, this seems to be a valid explanation as the
presence of positive autocorrelated returns on intermediate time-scales is a sign of trend-following
and herding behavior, leading to prices above or under their fundamental value.

The alternative explanation for the return reversals is given by the bid-ask bounce, making
negatively correlated returns a characteristic of illiquid assets. This alternative was shown to be
a valid explanation for the anti-persistence at short time-scales (daily to monthly) (Grossman and
Miller, 1988; Kaul and Nimalendran, 1990; Ball et al., 1995; Jegadeesh and Titman, 1995; Conrad
et al., 1997), where the negative autocorrelation disappears, once the bid-ask spread is controlled
for. This indicates that even with significant negative return autocorrelation, it is impossible for
regular investors (not for market makers) to make profit from this knowledge, an observation in line
with the weak form of the EMH.

A more elaborate way of investigating the return autocorrelation is to look at the conditional
autocorrelation, relating the structure of financial returns to other dynamical variables. In a more

1Earlier, non-synchronous trading was proposed as a third explanation. However, as the activity on stock markets
has increased tremendously this explanation does not hold for recent and future studies.
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recent study on autocorrelation in individual stock returns, Avramov et al. (2006) show a strong
relationship between weekly return reversal and prior illiquidity. Contrary to short time-scale price
reversals reported in the mid-90s, this negative autocorrelation is not a result of the bid-ask bounce,
as the spread for NYSE-traded stocks has decreased significantly in the last 20 years (Chordia et al.,
2001, 2008). The reversals are reactions to price pressures by non-informational demands, which is
too high compared to the availability of investors willing to take the other side of the trade. During
high price pressure periods, liquidity providers demand prices deviating from the security’s fair price,
to which the price will return after the price pressure is reduced. This intuition is confirmed by the
negative relation between (i) daily volume and subsequent autocorrelation (Campbell et al., 1993)
and (ii) trading activity and subsequent autocorrelation in weekly returns (Conrad et al., 1994).
Similar price reversions based on daily and weekly return have been documented by Nam et al.
(Nam et al., 2006), whose analysis is however unconditional.

The relation between autocorrelation and volatility for stock returns was first investigated by
LeBaron (LeBaron, 1992), who found a negative relationship between volatility and first-order return
autocorrelation in daily and weekly returns of indices. The relationship is investigated by relating
the volatility at a given day (or week), estimated by GARCH-like models, to the relation between
the returns at the same and next day (or week). Similar results for individual stocks and indices were
found in other studies (Koutmos, 1997; Booth and Koutmos, 1998; Venetis and Peel, 2005; Bohl and
Siklos, 2008), which employed a similar statistical approach. Contrarily to LeBaron’s original paper,
these studies also document negative autocorrelations, which they interpret as confirming evidence
for the model proposed by Sentana and Wadhwani (1992), a simple model, which can relate return
autocorrelation to the volatility-depended behavior of trend-following and fundamental investors.

Also, in the most recent study of the LeBaron-effect (Bianco et al., 2009), the relation between
volatility and autocorrelation is restricted to immediate impacts from the former to the latter,
comparing the t-to-t+1 return relationship with the volatility at time t− 1 and t. The study, which
is applied to the price dynamics of futures on the Standard and Poor 500 stock index from 1993
to 2007, states that the effect has significantly diminished for daily returns since LeBaron’s paper.
However, they find that serial correlation of 5-minute intra-day returns is negatively correlated with
expected volatility and positively correlated with unexpected volatility, a finding not completely
compatible with the feedback trading model of Sentana and Wadhwani (1992).

The main interest of the present study lies in the impact of various time-series on the dynamics
of the first order autocorrelation of daily returns. In contrast to previous studies, we will not
investigate the short-term impact but will focus on the low-frequency dependences of the intermittent
return autocorrelation. The dynamics of return autocorrelation are obtained by computing the
sample autocorrelation of daily returns within a moving-window and will be referred to as “local”
return autocorrelation. The proposed explanatory variables are volatility, returns, illiquidity and
transaction volume, in line with the existing literature. As all those variables, with the exception of
the returns, exhibit a long memory, it seems only natural that, in case of a genuine dependency, the
local autocorrelation dynamics is bound to exhibit slowly varying characteristics as well. By focusing
on time-scales of several months instead of days or weeks, we study the relation between different
regimes as opposed to the immediate impact from one onto another variable. Consequently, we do
not constrain ourself to cross-correlations at a fixed small lag, but take a more data-driven approach
and extend the possible dependencies from an explanatory variable onto the return autocorrelation
to greater lags.

Another difference to the existing literature lies in the fact that we not only consider the various
dependences independently for each stock, but that the main analysis will be performed on daily
cross-sectional averages, a procedure also employed in a study of liquidity and trading activity
(Chordia et al., 2001). By doing so, we investigate market-wide changes in the return structure and
their origins, which will not only significantly boost the observed signal, but also help to differentiate
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stock-specific from market-generic effects.
By computing the cross-correlation between the moving window time-series of return autocorre-

lation and volatility, a strongly significant negative correlation between volatility and autocorrelation
can be observed. However, in contrast to previous findings, the correlation is strongest if the mov-
ing return autocorrelation is lagged by 3-4 month with respect to the volatility, i.e. a change of
volatility will negatively impact the daily return autocorrelation 3-4 months later. The robustness
of the result is impressive, as it is consistent over time, over a large number of individual stocks
and robust with respect to statistical methods and their parameters. At zero lag, their correlation
is statistically insignificant, indicating that, by looking at the lower end of the spectrum of the
dynamics, we find a qualitatively different phenomenon to those reported in the existing literature.

The relation between price movements and moving window return autocorrelation yields a posi-
tive correlation at the 3-4 month lag. Given the impact of the volatility, this observation is however
not surprising as there is a strong negative correlation between past returns and future volatility, a
stylized fact known as the “leverage effect”(Black, 1976), which was however later found to not be
caused by leverage (Hasanhodzic and Lo, 2011; Hens and Steude, 2009). Much weaker and lagged
impacts onto return autocorrelation is observed for the moving window dynamics of illiquidity and
average transaction volume, leading us to the conclusion that, on the larger scale, the impact of
these two dynamics is by far outweighed by the volatility’s and market trend’s impact. In contrast
to the feedback model of Sentana and Wadhwani (1992), we propose a behavioral origin of the
phenomenon, well confirmed by our analysis.

The remainder of the paper is organized as follows. Section 2 presents the data and used metrics
to create the various moving-window time-series. A simple analysis, with some preliminary results,
and a motivation for the detailed analysis is given in Section 3. As many of the analyzed variables
have a non-negligible autocorrelation, which can create a spurious cross-correlation, we introduce in
Section 4 a novel and intuitive method to reduce the memory of the variables, which vastly simplifies
the investigation of dependencies between slowly varying variables. The main results of the analysis
are presented in Section 5 and their interpretation is given in Section 6. A detailed analysis of the
result’s robustness is shown in Section 7. Section 8 lists some possibilities for future research based
on our findings and Section 9 concludes.

2 Data and correlation measures

For this study, we use historical data of approximately 3000 stocks traded on the New York Stock
Exchange (NYSE) obtained from Bloomberg (Historical End of Day Data). We collected data for
open, high, low, close, closing ask, closing bid, volume and market capitalization2 from January 1.
1984 to September 9. 2011.

The stocks were selected by taking the union of all the stocks traded on the NYSE that populated
the Russell 3000 Index from 1995 to 2011. Stocks with incomplete data in the various fields were
removed. The data was considered incomplete when the time-series of any field contained consecutive
holes, which exceeded 20 days. Smaller holes in closing bid and ask where filled by the closing price,
holes in the other fields were filled by their previous value.

As the negative autocorrelation in daily and weekly returns was found to have its origin in the
bid-ask bounce, we control for the spread by computing the return autocorrelation based on the

2The Bloomberg Mnemonics for these fields are PX OPEN, PX HIGH, PX LOW, PX LAST, PX BID, PX ASK,
PX VOLUME, CUR MKT CAP.
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closing mid-price (pCM )

pCM (t) =
closing bid price(t) + closing ask price(t)

2

r(t) = log

[
pCM (t)

pCM (t− 1)

]
, (1)

which eliminates the bid-ask bounce.
As we are interested in investigating low-frequency dependence between different variables, we

will compute the cross-correlations within moving-window time-series, such that the fluctuations on
daily and weekly scales are averaged out and only the large-scale dynamics remain. The moving-
window mean and variance of the daily returns, r(t), with a window-size of ∆, are given by

µr(t,∆) =
1

∆

t∑

t′=t−∆+1

r(t′) (2)

σ2
r (t,∆) =

1

∆

t∑

t′=t−∆+1

(
r(t′)− µr(t,∆)

)2
. (3)

The measure’s value at time t is based on data from time t−∆+ 1 till t included. To estimate the
relation between two time-series x(t) and y(t), with t ∈ {1, . . . , T }, at a lag of τ , two measures of
cross-dependence are used in this study:

• Pearson product-moment correlation coefficient ρ(x, y, τ),

• Kendall’s τ rank correlation coefficient(Kendall, 1938; Kruskal, 1958), which we will denote as
Kτ(x, y, τ).

For the estimated cross-dependence to give meaningful results, x(t) and y(t) have to be stationary
time-series, a condition which is not satisfied for several of the analyzed time-series. In section
4, we will introduce a novel method to obtain stationary increments from these time-series, such
that meaningful cross-dependence can be computed. By ρ̃(x, y, τ) and K̃τ(x, y, τ), we denote the
cross-dependence between x and y, where the two time-series have first been subtracted by their
non-stationary mean, before estimating their cross-correlation.

As the objective of this study is to investigate the dynamical dependencies of the return autocor-
relation, the autocorrelation will be estimated in moving-windows over daily returns, similar to the
moving-window mean and variance of Eq. (2), respectively Eq. (3). The statistical measures based
on moving window estimates will be referred to as “local” estimates. In order to simplify some of
the expressions later in the text, we introduce the following syntax

x[t1, t2, ω] = {x(t1), x(t1 + ω), x(t1 + 2ω) . . . , x(t1 + nω)}, (4)

the subset of x, ranging from t1 to t2 in steps of ω, where n is specified by nω ≤ t2−t1 < (n+1)ω and
ω ∈ N+. To estimate the autocorrelation of the daily returns, we extend the previously introduced
correlation estimates with the addition of a third measure, the variance ratio, in order to test the
robustness of the results:

• the autocorrelation at lag τ , based on Pearson’s correlation coefficient is given by

Aρr(t,∆, τ) = ρ(r[t−∆+ 1, t, 1], r[t−∆+ 1, t, 1], τ) (5)

=
1
∆

∑t−τ
t′=t−∆+1

(
r(t′)− µr(t,∆)

)(
r(t′ + τ) − µr(t,∆)

)

σ2
r (t,∆)

(6)
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• the autocorrelation computed by the use of Kendall’s τ (Kendall, 1938; Kruskal, 1958), which
has to be corrected for a bias, that arises when the two input-samples are the same, but lagged,
time-series (Ferguson et al., 2000),

KτACr(t,∆, τ) = Kτ
(
r[t−∆+ 1, t, 1], r[t−∆+ 1, t, 1], τ

)
− 2

3(∆− 1)
(7)

• the variance ratio as introduced by Lo and MacKinlay (1988); Campbell et al. (1997)

VRr(t,∆, q) =
1

mσ2
r (t,∆)

t−q∑

k=t−∆+1

(
k+q∑

t′=k+1

r(t′)− qµr(t,∆)

)2

(8)

m = q(t− q + 1)(1− q

t
).

Due to its non-parametric nature and its independence with respect to the processes’ marginals3,
the autocorrelation based on Kendall’s τ (KτAC) is a very robust measure, which performs well for
heterogeneous time-series, and will be our measure of choice.4

The daily volatility is estimated by the method proposed by Yang and Zhang (2000), which uses
multiple periods of open, high, low, and close prices in historical time series. The local volatility,
estimated by this method using data from time T −∆+ 1 to T , will be referred to as σohlc(T,∆).
Again, very similar results are obtained with alternative volatility estimators, such as σ2

r or the non-
parametric scale estimator Sn, introduced by Croux and Rousseeuw (1992). For our main analysis,
we will use the logarithm of the volatility to reduce the tails of the distribution and work with a
variable which is closer to normal.

Another possible explanatory variable for the local autocorrelation is the absence of liquidity
(Avramov et al., 2006), estimated by the illiquidity measure introduced by Amihud (2002). This
estimator, which is also highly correlated with high-frequency measures of illiquidity, is based in
the ratio between the daily absolute price change and dollar value of trading volume. The average
illiquidity as a function of time is given by

illiq(t,∆) =
1

∆

t∑

t′=t−∆+1

|r(t′)|
phigh(t′)+plow(t′)

2 · volume(t′)
· 106, (9)

where the denominator estimates the dollar trading volume of day t′. The highest and lowest
transaction price of day t′ are given by phigh(t

′) and plow(t
′), whose average estimates the average

transaction price during day t′.
The different dynamic measures introduced in this Section have two common properties. First,

they are daily time-series in units of working days. Second, the measure’s value at day t is a
condensation of the information contained in the last ∆ working days, from working day t−∆+1 to
and including working day t. As such, they are backward-looking local statistical measures, allowing
us to analyze their dynamical properties instead of only investigating them on a global level. From
the moving-window characteristic follows that, for any t and t′ such that |t− t′| < ∆, the measures’
values at time-step t and t′ are obtained using partly overlapping information, creating mechanically
a memory over ∆ days. The simplest measure is µr(t,∆), which is the moving window average return
with a window-size of ∆ working days.

The main analysis of the relation between the different time-series will be performed on their
daily cross-sectional averages, i.e. the average of their daily value over all stocks. To test the

3Kendall’s τ is a copula measure of dependence.
4Very similar results are obtained with the other two autocorrelation estimators, as is shown in Figure 15.
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robustness of the results, the analysis will be repeated for different subsets of companies, grouped
by their market capitalization and for the individual stocks themselves. The different capitalization
groups are constructed on the first working day of every year and kept constant during that year.
The number of stocks per capitalization group changes with time, as old companies leave and newer
ones enter the exchange.

Once the different companies are grouped together, either in one or multiple groups, we can
consider the group as a portfolio and compute the equal-weighed daily returns5 of the portfolio and
get the moving autocorrelation of the daily portfolio returns. By comparing the average moving
autocorrelation of returns over many companies with the moving autocorrelation of the portfolio’s
returns, we can identify if the observed correlations are due to co-movements of the price, or co-
movements of the individual stock’s local autocorrelation.

3 Motivation

As stated in Section 1, most studies on return autocorrelation consider returns over periods longer
than one day. A reason for the lack of studies on the autocorrelation of daily returns might be that,
for anyone involved with financial markets, it seems “obvious” that such an autocorrelation should
be absent or spurious, as markets are thought, at least on the short term, to be very efficient. In this
section, we will show that even the simplest of analysis yields some indications that the structure
of daily returns is richer then usually presumed.

Fig. 1 displays the evolution of first-order autocorrelation of daily returns based on yearly es-
timates. In every panel, the full line shows the normalized histogram of KτAC(τ = 1) for all
available stocks, with the year being specified in the top left corner of the panel. The vertical full
lines indicate the 20th and 80th percentile of the histogram. In order to compare the measures of
the autocorrelation with the null hypothesis of zero autocorrelation, the dotted curves represent
the histogram of the first-order autocorrelation of the randomized returns, with the thin dotted
vertical lines indicating their 20th and 80th percentile. The randomization is implemented by mul-
tiplying the returns with random signs, which destroys the directional information but keeps the
heteroscedastic nature unchanged6. For every stock, the autocorrelation of 10 randomized return
realizations are measured, as to obtain smoother zero-hypothesis histograms.

By comparing the full lines from the real data with the dotted lines obtained from the random-
ized data, it becomes apparent that, for many years, there are strong deviations between real and
randomized data. The average autocorrelation, indicated by the red dashed-dotted vertical line, is
positive for 13 of the 21 years but also shows some strongly negative values, clustered around 2008,
where the most negative value is measured and the financial credit crisis peaked. Also around 2003,
where the dot-com crisis raged, a cluster of negative values is found. As indicated by the clustering
of negative and positive values, the dynamics of the yearly mean autocorrelation shows a significant
amount of persistence, with an autocorrelation of 0.47 at the first lag.

A preliminary investigation on the relation between return autocorrelation and volatility is per-
formed by linearly regressing the yearly autocorrelation mean onto the median of the yearly OHLC-
volatility, σohlc, of the same set of stocks. The regression results are shown in Table 1. The significant
negative slope (p-value = 0.03) confirms the intuition of the qualitative observation that negative
daily return autocorrelations coincide with financial crises. The result is robust in respect to other
autocorrelation estimators, c.f. Table 2 in the appendix for the regression results for Pearson’s

5Discretely discounted returns are used to compute the portfolio returns as continuously discounted returns cannot
be cross-sectionally averaged.

6Compared with reshuffled returns, which also destroys the heteroscedasticity, randomizing the signs of the returns
is a less invasive method.
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Figure 1: Normalized histogram of the first-order autocorrelation of daily returns, KτAC(τ = 1), for
all available stocks (thick full lines). At the top left corner of every panel, the first number specifies
the year (from first of January to last of December) over which the data is used for the autocorrelation
estimation. The second number gives the number of stocks used to compute the histogram. The
vertical full lines indicate the 20th and 80th percentile of the histogram. Dotted lines represent
the histogram of the same metric over the same time, but where the returns were randomized
by multiplying them by random signs. For every available stock, 10 randomized realizations of
returns are generated and their autocorrelation is computed. These distributions represent the null-
hypothesis of no return autocorrelation. The thin dotted vertical lines represents the 20th and 80th
percentile of the autocorrelation histogram of the randomized returns. The thick dashed vertical
line indicates KτAC(τ = 1) = 0 and the thin red dashed-dotted line the average autocorrelation of
that year. Fig. 17 displays the same information for Pearson’s autocorrelation.
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Estimate Std. Error t value Pr(>|t|)
Intercept 0.0273 0.0111 2.46 0.0237

Slope -1.1821 0.5015 -2.36 0.0293

Table 1: Results from the linear regression of the mean of the yearly Kendall’s τ autocorrelation
versus the median of the yearly volatility, σohlc. Residual standard error: 0.016 on 19 degrees
of freedom, multiple R-squared: 0.23, p-value: 0.03. In the appendix, the results for Pearson’s
autocorrelation are reported in Table 2, whose regression on volatility has multiple R-squared of
0.30 and p-value of 0.01.

autocorrelation with a p-value of 0.01.
From Fig. 1 and the positive autocorrelation of the dynamics of the yearly autocorrelation, it

follows that the return autocorrelation is a slowly moving process. Similar results hold for the
volatility, which was found to be a long-memory process (Ding et al., 1993; Liu et al., 1999)7. In
order to perform a more detailed analysis of the relation between volatility of daily returns and their
autocorrelation, a novel statistical method will be developed in section 4, which is able to handle
the slow moving dynamics of the time-series at hand.

4 Adaptive detrending of slowly moving time-series

4.1 Justification of the method

As noted in the previous section, the volatility and local return autocorrelation are measures with
a non-negligible memory, for which one has to correct, before computing cross-correlations be-
tween these processes that are not spurious (Yule, 1926; Granger and Newbold, 1974). One way of
correcting for memory of a stochastic process is to fit it by an ARMA-process and perform the cross-
correlation analysis on the residuals. However, one hypothesis behind any ARMA process is constant
(stationary) mean, which is not satisfied for the given time-series, at least not on the time-scale at
which our analysis will be done. An alternative approach is to compute the cross-correlations on the
first differences of the process, i.e. interpret the slowly moving time-series as unit root processes,
as adopted by studies investigating time-series such as volatility, illiquidity, bid-ask spread and so
one (Chordia et al., 2001; Hasanhodzic and Lo, 2011). However, as the unit-root can be rejected in
most cases, the first difference processes will have a negative autocorrelation at the first lag, leading
to deteriorating effects of the overall analysis.

The approach adopted in the present study is that the different time-series are not considered
as ARMA-processes nor as unit-root processes, but as processes that fluctuate around a slowly
evolving local mean. After estimating this local mean, deviations from that mean are interpreted as
innovations, on which the cross-correlation is estimated. This method is optimal for processes, which
are neither memory-less with constant mean, nor unit-root processes, but whose first differences
constitute a stationary process. In order to show the robustness of the results, the analysis is
repeated for the raw time-series, without any nonlocal demeaning and for their first-differences in
Section 7.

Another major difference to the general practice used with ARMA-like models is that the cali-
bration of our method will be based on past data only, transforming the method’s parameters into
dynamics variables. One advantage of this practice is that the local parameters are better adapted
to changing environments. A more important second advantage is that the results are as if they

7Here we report an autocorrelation of 0.59 at the first lag for the dynamics of the yearly σohlc.
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would come from live measurements, eliminating any hind-sight bias. This is very different from
the general practice with ARMA- or GARCH-like models for example, where the parameters of the
statistical methods are estimated over the full data set, taking the strong assumption of stationarity,
which we will not.

In the following, we will introduce our non-stationary demeaning procedure, which makes it pos-
sible to compare processes characterized by a long memory, like volatility or return autocorrelation,
with short memory processes, like returns.

4.2 Local mean with exponentially decaying weights

One way to estimate a local mean of a time-series is Eq. (2), which uses a uniform weighting over
∆ observations. An alternative way, which we will adopt to demean the various processes with
memory, is to use weights that decrease exponentially, the further they are in the past

µ̃x(t) = (1− α)

∞∑

t′=0

et
′ ln(α)x(t− t′) (10)

= α · µ̃x(t− 1) + (1− α) · x(t), (11)

with α ∈ [0, 1], which controls the memory of the moving average process, and −1/ ln(α) being
the characteristic memory length of the process. Eq. (11) gives a recursive way of estimating the
local mean. For α = 1, µ̃x(t) is equal to the global mean µx(t, t) of x[1, t, 1], which is the natural
extension for Eq. (10). Exponentially decaying weights in the estimation of a local mean is a well
used practice (Hamilton, 1994) and has the advantage that (i) recent data is given more importance
than past values and (ii) the impact of past data decreases continuously, resulting in smoother
dynamics compared to mean estimations based on homogeneous weights.

4.3 Demeaning of time-series

Once the local mean is computed, the demeaned time-series of x is given by

xµ(t) = x(t)− µ̃x(t− 1), (12)

which represent the time-series of innovations of x(t). Here, it is important to note that x(t) is
demeaned based on information up to and including time t− 1, which allows us to predict x(t) at
time t− 1, by estimating the deviation from the mean, xµ(t), and computing µ̃x(t− 1).

Our non-stationary demeaning method is finalized by the following criterion, which sets the
value of α in Eq. (10). As our objective is to retrieve the innovations from a slowly evolving process,
the optimal α, which will be denoted as α̂, is such that it reduces the memory of the demeaned
process. As a proxy for the memory of a time-series, we use the sum of its autocorrelation over the
first τα̂ lags8. We will consider the reduction of the memory of xµ(t) to be achieved when this sum
approaches zero. Again, as we do not want to use any data from the future for the calibration, α̂
will be estimated based on ∆α̂ time-steps in the past, where ∆α̂ is large compared with the intrinsic
time-scale of x(t). With this estimation procedure, optimal α will become a dynamic variable, α̂(t),
given by

α̂(t) = max

{
α :

τα̂∑

τ=1

Aρxµ(t,∆α̂, τ) = 0

}
(13)

= max

{
α :

τα̂∑

τ=1

Aρ(xµ[t−∆α̂ + 1, t, 1], τ) = 0

}
.

8We will set τα̂ ≫ ∆.
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In order to reduce unnecessary optimization, α̂(t) will only be updated every δα̂ time-steps and will
remain constant in between. From Eq. (13), it follows that α̂(t) = 1 when x(t) has no memory,
such that xµ(t) ∼ x(t) − µx(t, t) as ∆α̂ is large compared to the time-scale of x(t). Similarly, when
x(t) is a unit-root process, α̂(t) = 0 and xµ(t) reduces to the first-differences process of x(t). For a
process being characterized by fluctuations around a slowly evolving mean, so being neither white
nor brown, α̂(t) ∈ ]0, 1[.

For the analysis in this study, we set the range over which α̂ is estimated (∆α̂) to 1750 working
days, i.e. approximately 7 years, and the period over which the estimated α̂ will be used to compute
the local mean (δα̂) is set to 100 working days. The reported results are not sensitive to the exact
values of ∆α̂ and δα̂ as long as ∆α̂ exceeds the characteristic length of any of the involved time-series
and δα̂ is small enough, such that the used value of α̂ is up-to-date.

The number of lags of the autocorrelation over which α is optimized (τα̂) will be set such that
the maximal lag is approximately one year. The relation between the value of τα̂ and α̂ is weakly
positive. With larger τα̂, the autocorrelation of the demeaned time-series can go to zero in a slower
fashion, enabling slow motions of the time-series, which is equivalent to a longer memory, i.e. a
value of α̂ closer to 1. Due to their weak relation and the robustness of the method, the exact value
of τα̂ does not have an impact on the overall results.

4.4 Demeaning of moving window time-series

As noted earlier, the measures introduced in Section 2 are moving window daily time-series and,
as such, they have a minimum time-scale equal to the size of the moving window, ∆. On top of
this mechanically introduced memory, the time-series such as volatility and moving autocorrelation
also have an intrinsic memory as stated previously. If x(t) is a daily moving window time-series,
the spirious memory over ∆ time steps introduced by overlapping time windows is removed by
only considering the dependence measures every ∆th time-step9. As such, the complete time-series
of x(t) for t ∈ {0, . . . T } can be represented as the union of ∆ time-series, which increments in
time-steps of ∆ , i.e.:

x(t) =
∆⋃

i=1

x[i, T,∆]. (14)

The remaining memory in x[i, T,∆] is the time-series’ intrinsic memory, which will be removed by
the previously introduced method10.

As the optimal α(t) for every x[i, T,∆] (denoted as α̂i(t)) will be similar for all i, we choose to
estimate only 4 optimal α̂i(t) for i ∈ {∆

4 ,
2∆
4 , 3∆

4 ,∆} in order to minimize unnecessary computations.

For the computation of the local mean of x(t), we use the average α̂i, 〈α̂〉(t) = 1/4
∑4

i=1 α̂i∆/4(t),

µ̃x(t) =
(
1− 〈α̂〉(t)

) ∞∑

j=0

ej ln(〈α̂〉(t))x(t− j∆). (15)

Here it is to be noted that x is incremented in steps of ∆, such that only the intrinsic memory and
not the mechanically introduced memory is removed. Later, for the cross-correlation analysis, the
mechanical memory is of no concern, as only moving-window time-series with the same window-size
will be compared.

9Every ∆th element of a moving-window time-series, with window-size ∆, is estimated based on non-overlapping
windows.

10As x[i, T,∆] are incremented in steps of ∆ working days and the units of ∆α̂ and δα̂ are given in units of working
days, the values of these window-sizes will be adjusted to the rounded values of ∆α̂/∆ and δα̂/∆ before being used
in Eq. (13).
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The demeaned moving-window time-series will be computed as

xµ(t) = x(t) − µ̃x(t−∆), (16)

where it should again be noted that there is no intersection of the data used for the instantaneous
value of the measure, x(t), and the subtracted mean, µ̃x(t−∆).

As an example of the non-stationary demeaning, Figure 18 of the appendix shows the time-series
of the volatility and local autocorrelation with their local mean and α̂.

5 Cross-correlation analysis between moving window time-
series

As mentioned before, the time-series, for which the main cross-correlation analysis is performed,
are cross-sectionally averaged time-series, indicated by the 〈 〉 enclosing the variable names. The
cross-section is either taken over all valid stocks available to us, or over a group of stocks, grouped
by their market capitalization. These groups are reformed on the first working day of every year
and kept fixed for the rest of the year. By using cross-sectional averages, market-wide dynamics are
investigated as the idiosyncraticities of the individual stocks are averaged out and only the common
characteristics remain.

In this section, the majority of the analysis will be performed on moving-window time-series
with a window size of 55 working days. This size was found to be optimal for the present purpose
as it is large enough to give a reliable estimate of the local return autocorrelation and small enough
to witness its dynamics. The robustness of the results in respect to the window size is confirmed in
Section 7.

Fig. 2 displays the cross-correlation between various measures as a function of the lag τ between
the time-series. The colored full lines correspond to five different capitalization groups, from the
lowest capitalizations (red) to the highest (yellow). The thick dashed lines corresponds to the
cross-sectional average over all available stocks. The cross-correlations are estimated based on data
ranging from January 2. 1991 to September 9. 2011. As ∆α̂ = 1750, data from 1984 to 1991 is used
to compute the value of 〈α̂〉 and the local means at the start of 1991. The advantage of using daily
sliding windows time-series, instead of non-overlapping windows, results in a resolution of the cross-
correlation, that exceeds the window-size and in a major increase of available data leading to better
estimates and smoother lines. The time-series of the volatility and local autocorrelation are shown
in Figure 18 of the appendix. The 95% and 99% confidence intervals, indicated by the dashed-dotted
and dotted horizontal lines are however computed for cross-correlations of non-overlapping window
time-series, leading to wider ranges then necessary11.

Panel (a) of Fig. 2 shows the cross-correlation between the cross-sectional average of the local
first-order autocorrelation of daily returns and the cross-sectional average of daily logarithm of the
volatility, both non-stationarily demeaned and estimated in a moving window of 55 working days.
As the non-stationarily demeaned time-series are compared with each other, this plot illustrates the
impact of a deviation from the local mean in one variable onto the deviation from the local mean
of the other variable, not the relation between their absolute values, as was investigated in Table 1.
A strongly negative cross-correlation at τ ∼ −80 is observed with the minimum of −0.39 for cross-
sectional averages over all available stocks. This indicates that a change in the global volatility at

11The distribution of the cross-correlation for the null-hypothesis of no serial correlation in the direction of the
returns is shown in Figure 16, which confirms the exaggerated confidence bounds. The null-hypothesis is generated
by computing the return autocorrelation with the original returns, multiplied by a random sign so as to destroy the
memory of the direction and conserve their original heteroscedastic nature.
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Figure 2: Cross-correlation between non-stationarily demeaned cross-sectional averages of various
dynamic measures. The measures are: (a) return autocorrelation and volatility, (b) average-return
autocorrelation and average-return volatility, (c) return autocorrelation and return, (d) volatility and
return. The different time-series range from January 2 1991 to September 9 2011 and are estimated
with a window-size of 55 working days. The dashed black line corresponds to the cross-correlation
between measures cross-sectionally averaged over all available stocks, the colored lines correspond
to the different capitalization groups, from the lowest (red) to the highest (yellow) capitalizations.
Each capitalization group has on average 225 stocks. The dashed-dotted and the dotted horizontal
lines represents the 95%, respectively 99% confidence intervals. The average optimal characteristic
time-scale for the demeaning is 365 working days for 〈KτACr〉, and 135 working days for 〈σohlc〉.
For 〈µr〉, 〈α̂〉 = 1, meaning that it is demeaned by the average daily return over the last ∆α̂ days.
∆α̂ = 1750 and δα̂ = 100.

some given day gives rise to a change in the overall autocorrelation of daily returns in the opposite
direction approximately 80 working days later. This observation tells us that, when the average
stock volatility is increasing, the daily price dynamics will show an increase of anti-persistence,
approximately 4 month later. Inversely, a decrease of volatility, coincides with a later increase of
momentum and smoother daily price dynamics.

For τ ∼ −200 in Fig. 2(a), a maximum of cross-correction is observed. The origin of the
maximum, which does not exceed the 95%-confidence interval, is not entirely clear. One explanation
might be that this maximum is spurious, resulting from the sometimes too strong detrending, leading
to an negative autocorrelation of the return autocorrelation dynamics. Evidence for this hypothesis
is given by the rather large lag of 10 months and the weakened maximum in Figure 14, where the
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time-series are not nonstationarily detrended. This maximum will not be further analyzed in this
study.
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Figure 3: Cross-correlation between illiquidity (upper row), resp. volume (lower row), and return
autocorrelation (left column), resp. volatility (right column). The data spans the same period and
the results are obtained with the same methods as in Fig. 2.

As the analysis is performed on closing-mid-prices, the change of the return autocorrelation
cannot be attributed to the bid-ask bounce, as was the case for price dynamics up to the early 90s. An
alternative explanation of the dynamics of the local return autocorrelation could be that the negative
autocorrelation is associated with a drop of liquidity, as was found by Avramov et al. (2006). They
showed that the likelihood of weekly return reversion increased if the previous week was characterized
by low liquidity. Such a relation between return autocorrelation and illiquidity would manifest itself
as a significant negative cross-correlation at small negative lags (τ . 0). To test this hypothesis,
the cross-correlation between the moving window illiquidity, estimated via Eq. (9), and the return
autocorrelation is shown in Figure 3(a). As predicted, a negative cross-correlation minimum is found
for τ ∼ −50. The magnitude of the correlation is however statistically insignificant, leading to the
conclusion that, for the daily return autocorrelation dynamics, illiquidity is not the right explanatory
variable. The cross-correlation between volatility and illiquidity is shown in Figure 3(b), indicating
the volatility and illiquidity are correlated at lag 0, even though this correlation is relatively weak,
not exceeding the 99%-confidence interval.
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As volume can be interpreted as an alternative proxy for liquidity, the previous analysis is
repeated for moving window daily transaction volume in Figure 3(c) and (d). For the volume-
autocorrelation relationship, a similar shape as for the volatility-autocorrelation is observed, but
significantly weaker in magnitude. This can be explained by the well known instantaneous cross-
correlation between volume and volatility (Karpoff, 1987; Gallant et al., 1992; Jones et al., 1994),
which is displayed in Figure 3(d).

Consequently, we can reject the hypothesis that the dynamics of the daily return autocorrelation
have their origin in the changes of the overall market liquidity, as for lags around 0, the cross-
correlation between illiquidity, resp. volume, and return autocorrelation is indistinguishable from
zero.

The results for the returns of equal-weighted portfolios, based on the capitalization groups, are
shown in Fig. 2(b), where the cross-correlation between the moving-window autocorrelation and the
volatility of the portfolio returns is shown. The general shape of the cross-correlation as a function
of the lag is similar to those of Panel (a) but with a significant weaker negative correlation for
τ ∼ −80. This indicates that the phenomenon observed in Panel (a) cannot be entirely traced
back to the daily co-movement of stock prices but mainly arises through a common change in the
auto-correlation of the individual stock return as a reaction to an overall change in volatility. This
fact might also explain why this effect was not found by previous studies, which mostly concentrate
on index dynamics.

−0.50 −0.25 0.00 0.25 0.50

ρ̃(KτACr(t, 55, 1), logσohlc(t+ τ, 55))

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 (a) τ = −200
τ = −80
τ = 0
τ = 80

−0.50 −0.25 0.00 0.25 0.50

ρ̃(KτACr(t, 55, 1), µr(t+ τ, 55))

(b)

−0.50 −0.25 0.00 0.25 0.50

ρ̃(KτACr(t, 55, 1), µilliq(t+ τ, 55))

(c)

Figure 4: Histogram over all available stocks of the cross-correlation between various time-series
of individual stocks at different lags, specified in the legend. The different time-series range from
January 2. 1991 to September 9. 2011. All time-series are moving window processes with ∆ = 55
and are non-stationarily detrended with τα̂ = 5, ∆α̂ = 1750 and δα̂ = 100.

In order to investigate the importance of the synchronicity of the changes of the return struc-
ture across the individual stocks, we compute the cross-correlation between the non-stationarily
demeaned time-series independently for each available stock. Figure 4 displays the histogram over
all stocks of the cross-correlation value at different lags. The investigated lags are τ = −80, where
the minimum cross-correlation in Figure 2(a) is found, τ = 0 for instantaneous correction and
τ = −200, 80 to confirm the stationarity of the demeaned process. All single stocks are demeaned
in the same fashion. From Figure 4(a), which shows the histograms of the cross-correlation be-
tween return autocorrelation and volatility, a clear distinction between the cross-correlation values
at τ = −80 and the other lags at -200, 0 and 80 working days becomes apparent. From this ob-
servation, two conclusions can be drawn. First, the previously reported effect also exists at the
level of the individual stocks. Notwithstanding the strongly statistical significant negative aver-
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age cross-correlation, the magnitude of the individual cross-correlation is far inferior to the values
found for cross-sectional averages. This leads to the second conclusion that the dynamics of the
local return autocorrelation are similar across a majority of stocks, such that by taking the cross-
sectional average, the idiosyncraticities of the individual stocks are removed and only the common
market-overarching value of daily return autocorrelation remains. Figure 4(b), which investigates
the relation between returns and their autocorrelation at the same lags, will be discussed later in
this section.

Figure 4(c) confirms the insignificance of illiquidity to explain return autocorrelation as already
found from Figure 3. Also, on the individual stock level, for any lag, none of the histograms are
significant different from one another.
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Figure 5: Scatter-plot of local volatility at time t versus the local return autocorrelation at time
t+80 with ∆ = 50. Both are non-stationarily demeaned averages over all available companies. The
lines correspond to the 25, 50, 75 percentile lines, where the lines ranging from left to right are based
on equidistant volatility bins and the lines ranging from top to bottom are based on equidistant
autocorrelation bins. The time-series range from January 2. 1991 to September 9. 2011. The
time-series plot of the data plotted here is shown in Fig. 18(d) and (e).

As the main measure of cross-correlation used in this study is the Pearson product-moment,
the implicit assumption of a linear relation between the two compared time-series is taken. The
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non-parametric relation between volatility and return autocorrelation is shown in Figure 5. This
scatter-plot contains the same data as is used to compute Fig. 2(a) and displays the two time-
series, lagged by 80 days, which is the lag for which the strongest cross-correlation is obtained. The
three lines spanning from left to right are the 25%, 50%, 75% percentiles estimated on equidistant
volatility-bins and which indicate, for a given volatility change, the change of return autocorrelation
4 months later. A clear negative relation between the two variables is visible, with an approximately
linear relation at the origin, supporting the use of a linear correlation measure. Considering that
the positive deviations are larger then the negative ones for the volatility, the observed phenomenon
has a symmetric nature as an increase of volatility induces a decrease of return autocorrelation and
vice-versa.

The three lines spanning from top to bottom are the 25%,50%,75% percentiles estimated on
equidistant return autocorrelation bins. They indicate that, given a change of return autocorrelation,
what was the change of volatility 4 months ago. As such they investigate events in the past, i.e.
looking for an explanation once an autocorrelation change has occurred. This is complementary
information to the left-to-right lines, which investigate the predictability of the autocorrelation
change in the future for a given change of volatility in the present. From the negative slope of
both group of lines, we can conclude that changes of global volatility predict and explain changes
in the global return autocorrelation very well. However, from the postion of the percentile lines
it seems that the negative autocorrelation is better predicted by positive volatility changes as the
positive autocorrelation is better predicted by negative volatility changes, whereas the occurrence
of persistence in returns is well explained by a decrease of volatility in the past as the occurrence of
anti-persistence is explained by an past increase of volatility. In other words, these results point to
the conclusion changes in market volatility are better in predicting future anti-persitence of returns
and explaining past return persitence, then the other way around.
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Figure 6: Similar as Figure 5 for the local return autocorrelation versus past cross-sectionally
averaged ∆-day returns with τ = −85.

The relation between stock-returns and autocorrelation changes is displayed in Figure 2(c). As
the moving average return is computed from continuously discounted returns, µr(t,∆) is equivalent
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to log[pCM (t)/pCM (t −∆)]/∆, the scaled return over ∆ working days. Similar to Panel (a), there
is a significant cross-correlations for τ ∼ −80, with the cross-correlation reaching a value of 0.36
for τ = −85. Opposite to the volatility-relation, past returns are positively correlated with future
return autocorrelation, indicating that a positive price drift induces a momentum in future price
dynamics, while a large drop in the price results in anti-persistent return dynamics. From the non-
parametric analysis in Figure 6 follows that the predictive power of positive returns is weaker then
that of negative returns12, the explanatory power of returns is however approximately symmetric.

This result is not surprising, given the impact of volatility on return autocorrelation. The neg-
ative cross-correlation between past price movements and future volatility is a well known stylized
fact of equity markets, which was first observed by Black (1976). Figure 2(d) confirms this phe-
nomenon by the strongly negative cross-correlation between volatility and returns with a value of
−0.67 for τ = −15. As the return-volatility-phenomenon is already apparent on the daily scale, i.e.
the impact of the return on one day is observable in the magnitude of the return of the following
day, the employed analysis method, designed to investigate effect on larger time-scales, cannot make
a clear distinction between cause and effect. The reason for this is that for |τ | < ∆, the two win-
dows, measuring volatility and returns, are overlapping, which is the origin of the unusually strong
cross-correlation.

Also on the individual level, a positive relation between past returns and future return auto-
correlation is observed in Figure 4(b). The histogram for τ = −80 has a significant positive mean,
whereas the means for the other lags are indistinguishable from zero. Compared with the distri-
bution of the cross-correlation between volatility and return autocorrelation, the cross-correlation
between returns and return autocorrelation is however weaker, indicating the relative importance
of the volatility.

6 Interpretation of results

A popular model, which relates return autocorrelation and volatility, is the model proposed by
Sentana and Wadhwani (1992). Although the general outcome of the model, which predicts a
negative relation between volatility and return autocorrelation is partly confirmed by our results,
we are opposed to their proposed generating mechanism of this relation. In this section, we will
interpret our results and propose an alternative generating mechanism, although further analysis is
needed to reject definitely either one of the models. In the following, the Sentana-Wadhwani model
will first be introduced, and then discussed.

6.1 Sentana-Wadhwani model

The stock market model of Sentana and Wadhwani (1992) is based on the trading of two distinct
types of investors. One group is constituted of positive feedback traders (trend follower), who take
their trading decisions based on past stock price changes, ignoring any relation of the stock’s price
to its fundamental value. Their demand function for the shares is given by

Y (t) = γ r(t− 1), (17)

where Y (t) is the fraction of shares that feedback traders hold, r(t − 1) is the stock return in the
previous time-step and γ > 0 is the strength of the feedback.

12If the data set is restricted to the last 10 years, the predictive power of returns becomes approximately symmetric,
with similar future impacts close to the origin on return autocorrelation for positive and negative returns, shown in
Figure 19.
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The second group consists of smart money investors, who use all available information to estimate
future prices, resulting in a proportional demand for stocks in the form of

Q(t) =
Et−1[r(t)] − α

η(t)
, (18)

where Et−1[r(t)] represents their expectation of the next return, based on information available up
to and including time t− 1, α is the return on a risk free asset and η is the risk of holding the risky
asset. In their original paper, the authors do not put any restrictions on η, however we can safely
assume that η > 0, otherwise the smart money traders would act contrarily to their expectations.
It is assumed that this risk is a monotonous increasing function of the volatility, i.e.

η(t) = η
(
σ2(t)

)
(19)

with η′(·) > 0 and σ2(t) being the conditional variance of the returns in period t (formed at time
t− 1). Market equilibrium and conservation of available shares require that

Q(t) + Y (t) = 1. (20)

Sentana and Wadhwani (1992) assume rational expectations of the smart money traders, such that
their predictions about future returns are on average correct,

r(t) = Et−1[r(t)] + ǫ(t), (21)

with ǫ(t) being a zero-mean noise term. Combining this assumption with Eq. (17), (18) and (20)
yields

r(t) = α+ η
(
σ2(t)

)
− γ η

(
σ2(t)

)
r(t − 1) + ǫ(t), (22)

which determines the complete price dynamics.
From Eq. (22), it follows that the return dynamics exhibit autocorrelation as r(t) is partly

determined by r(t − 1), which enters the equation through the action of the feedback traders.
Surprisingly, the trend-following behavior of the feedback traders leads to a negative autocorrelation
of the returns, as past returns have a negative contribution (γ > 0) to future returns.

The origin of this counter-intuitive outcome can be traced back to the smart money traders
which can easily be illustrated by the following example. Let us assume that, in the last time-step,
the price dropped (r(t−1) < 0), which leads to Y (t) < 0, i.e. the feedback traders short the asset13.
This short-selling is enabled by the smart money traders, which have to take the opposite direction,
according to Eq. (20), leading to Q(t) > 1, which by rearranging Eq. (18) gives

Et−1[r(t)] > η(t) + α. (23)

Together with the assumed rational expectation of Eq. (21), α > 0 and η(t) > 0, the negative return
in time-step t− 1 results in a positive bias for the return in time-step t,

Et−1[r(t)] > 0. (24)

It follows from this example that it is the reaction of the smart money traders in the opposite
direction to the demands of the feedback traders that is at the origin of the negative autocorrelation
of the resulting return dynamics. The strengthening of anti-persistence by an increase of volatility
stems from the smart money traders’ requirement of larger returns in order to take a position in

13This is a very artificial assumption for general markets, as short-selling cannot be done for arbitrary volumes or
is simply not possible.
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risky times. This relation is also revealed in the previous example by Eq. (23), which shows that
the expected future return increases with volatility, given a previous negative return.

Besides the fact that negative return autocorrelation is put into the model by hand, via the
mechanical effect of Eq. (20) and the rational expectations of the smart money traders, there are
several other issues with the model of Sentana and Wadhwani (1992). Given that the behavior of
the feedback traders does not change in time (γ > 0), the model is unable to create a positive return
autocorrelation as that factors of r(t − 1) in Eq. (22) are both positive. However, as it is shown in
Fig. 1, for a majority of the yearly estimates the return autocorrelation is positive.

An other issue is that the model does not make any testable predictions on the mechanisms
leading to the autocorrelation. It just assumes rational expectations, a feature which is hard to
reject in the given circumstances. Next we will propose and alternative generating mechanism for
the return autocorrelation with easily testable predictions.

6.2 Alternative interpretation

Our interpretation of the dependence between prior volatility changes and posterior changes in the
return autocorrelation is more in line with the majority of the empirical literature reviewed in Section
1, relating negative return autocorrelation on a particular time-scale to overreaction on a smaller
time-scale. As such, we propose a micro-founded interpretation, where the return autocorrelation is
an emerging phenomenon of the interaction between many individual investors, in contrast to the
interaction of two homogeneous groups in the Sentana-Wadhwani model.

The results of Section 5 have shown that changes in the local daily return autocorrelation are best
explained by prior changes in local volatility. Neither illiquidity, nor transaction volume has a similar
explanatory power. The phenomenon is found for individual stocks, but the impact of volatility is
greatly amplified if cross-sectional averages are considered. As volatility is a sign of uncertainty, we
conclude that a sense of certainty, or the lack of it, qualitatively changes the behavior of investors.
The statistical insignificance of liquidity and volume, and the use of closing-mid prices leads us to
reject mechanical origins, in contrast to studies performed in the early 90s.

As our analysis is applied to changes with respect to the local mean of the variables, a large
positive value in 〈σohlc〉µ represents a sudden increase of market volatility, not only a high level of
absolute volatility but a shock to the system. Due to the cross-sectional averaging, the shock has a
market-wide nature, which is pointing to a global, instead of a company specific, crisis. If the higher
levels of volatility are persistent for several months that follow, indicating consistent uncertainty
about fundamental values and the possibility for an approaching change of regime, investors will start
doubting their standard pricing mechanisms and will be looking for alternative or additional sources
of information to form their trading decisions. By doing so, they will become more susceptible to the
opinion of their collegues, who might have additional information. They can obtain this information
either by direct interaction with their peers, leading to herding and possible informational cascades
(Bikhchandani et al., 1992), or by looking at recent market moves, which represent the opinion of all
active investors, thus leading to trend-following behavior. As during highly volatile periods, markets
move fast14, it is important for investors to gather this information as fast as possible, leading to
overreaction to news or continuation of price-movements on an intra-day time-scale. The excess
demand (supply) during one day will result in an overpriced (underpriced) asset at the close of the
market, making the reversal more likely the next day. As this reversal on the following day engenders
again trend-following by the same mechanism, the correction will be also amplified, resulting in an
underpriced (overpriced) asset. It is this daily over- and under-shooting of the price, due to intra-day
herding, which we propose as the origin of the negative daily return autocorrelation. An argument in

14Tautologies are tautological.
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favor of this hypothesis is the robustness of the results, when the return autocorrelation is not based
on close-to-close returns but on open-to-close returns, as reported by Figure 10. This confirms that
the phenomenon is still apparent if the close-to-open price changes is disregarded and that indeed
it is the trading activity during the day that pushed the price away from its “fundamental” value.

A decrease of volatility is followed by an increase of persistence in the price dynamics. Here the
known reasoning in terms of “underreaction”, as discussed in the introduction, is valid. A decrease
of volatility is a sign of reduced uncertainty asociated with the interpretation by traders that the
apparent problem has been solved, leading to a smooth transition to the new “fundamental ” price.
Simultaneously, the apparent reduction of uncertainty can lead to overconfidence of investors, who
are not often revising their opinion and keep following the current trend, possibly leading to the
growth of a financial bubble. In other words, the overreaction is now working on a different time-
scale.

An other way of describing the same interprestion, is to state that volatility changes are posi-
tively related to the frequency of information-updates of investors. In highly volatile periods, the
information-update-mechanism, which leads to momentum in the returns, works on small time-
scales, leading to intra-day-momentum. Whereas in periods of low volatility, the momentum-
generating process is active on larger time-scales as investors have more time to take their decision,
leading to persistence in day-to-day returns.

7 Robustness of the results

In this section, we will investigate the robustness of our results and show that they persist over time
and for independent companies, are insensitive to the employed statistical measures and can even
be recovered without any non-stationarily demeaning (albeit with smaller statistically significance).

7.1 Robustness of firm selection

The discussion of Figure 2 and 3 in Section 5 was based on the cross-sectional average over all
available stocks, displayed by the dashed black lines. Comparing this line with the colored lines,
which represent the cross-correlation of the time-series averaged over capitalization groups, indicates
that the dependencies also hold for subsets of all available companies. The similarities between the
colored lines is a strong argument for the generality of the phenomena, as the different lines are
obtained from non-intersecting sets of stocks, and thus are independent from each other. For all
panels in Figure 2, the capitalization of the company seems to have only a negligible impact on
the reported phenomenon, with the minimum in Figure 2(a) being only slightly less pronounced for
the group with the highest and lowest capitalizations. The same can be said for the maximum in
Figure 2(b). The differences between the capitalization groups are smallest for Figure 2(d), which
displays the well-known “leverage effect”. On the other hand, the weak similarities of the full lines
in Figure 3 confirm the minor importance of the liquidity and volume on return autocorrelations.

7.2 Robustness over time

An alternative evidence for the robustness of results is their persistence over time. In Figure 7, the
same kind of analysis is performed as in Figure 2 but, instead of computing the cross-correlations
for the whole 21-year period, the analysis is performed for 3 non-overlapping seven-year periods.
The periods, specified in the legend, range from January 1 of the beginning year to January 1 of
the ending year, except for 2012, which only ends September 9, 2011 and have been labeled 2012

21



6. Volatility-induced overreaction 88
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Figure 7: Cross-correlation analysis similar to Figure 2, but performed over three non-overlapping
seven-year periods. The periods, specified in the legend, range from January 1 of the beginning
year to January 1 of the ending year, or September 9, 2011 in the case of 2012. Only results for
time-series of overall cross-sectional averages are shown, capitalization groups plots can be obtained
from the author upon request. Figure 8 shows the same analysis but with 4-year periods instead of
7-year periods.

The cross-correlation between return autocorrelation and volatility, displayed in Fig. 7(a), shows
a minimum of cross-correlation at τ ∼ −80 for all three periods, re-enforcing the validity of the
results obtained for the entire 21-year period. For τ > 0, the results for the three periods do not
coincide, which could be explained by two reasons. First, the dependence for τ > 0 changes over
time, or second, these correlations are spurious.

More details are given in Figure 8, where the analysis is repeated for 4-year periods instead
of 7-year periods. From Fig. 8(a), one can deduce three observations. First, the negative cross-
correlation minimum at τ ∼ −80 is observed for every independent period. Even though the exact
position of the minimum varies, its existence cannot be doubted. Second, the cross-correlation for
τ ∼ 0 seems to be changing in time, as it is consistently positive for the 1992-2004 and negative for
2004-2012. And third, the two periods exhibiting the strongest minimum are those where markets
were in turmoil, with the dot-com bubble and crash in 2000-2004, and the housing and credit crisis
in the 2008-2012 period.

15Most likely an additional 3 months of data would not significantly change the results.
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Figure 8: Same as Figure 7, but with 4-year periods instead of 7-year periods.

The positive autocorrelation between market trends and future return autocorrelation, dis-
played in Fig. 7(c) and Fig. 8(c) does not show the same strength of persistence as the volatility-
autocorrelation relationship, as the maximum seems to be absent in the earlier periods. However
for later periods, from 2000-2012, the positive impact of large-scale returns onto investors behavior
seems to be persistent. Also the large-scale “leverage effect” shown in Fig. 7(d) and Fig. 8(d) is
absent in the early 90s, but very well developed latter on. Here, it is important to note that the
absence of this effect on the larger scale (with ∆ large compared to 1) does not imply its absence
at the daily scale (the effect is actually present at the daily scale).

From Figure 7(a) and 8(a), it follows that the cross-correlation values have a low statistical
significance, with a majority of lines not crossing the 95-percentile bounds. The reason for this is
however not that the signal is spurious or too noisy, as the minimum cross-correlation is around
-0.4, similar to Fig. 2(a), but that the period over which the cross-correlation is computed is very
small, such that the confidence interval becomes very large. The importance of the Figure is however
not undermined by this, as the very strong statistical significance of the phenomenon is shown in
Figure 2 and the objective of these figures is only to show its persistence over time.

The temporal evolution of the cross-correlations between volume and illiquidity is investigate
in Figure 9. For the illiquidity, Figure 9(a) shows that no apparent similarities between the cross-
correlations over the different periods can be observed, confirming the weak signal in Figure 3(a).
However for the 2005-2012 period, the significant negative minimum in the cross-correlation for
τ ∼ −40 might be an indication that the local illiquidity gained in strength, which is confirmed
by its correlation with the volatility. The maximum of the volatility-illiquidity cross-correlation at
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Figure 9: Volume Cross-correlation with ∆α̂ = 1750 and δα̂ = 100.

τ > 0 leads to the preliminary conclusion of the volatility impacting on the illiquidity, and not
the other way around. Figure 9(d) shows that the volume-volatility instant correlation is stable
and statistically significant over time, explaining persistent, but weak compared to the volatility,
negative cross-correlation between past volume and future return autocorrelation.
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7.3 Robustness with respect to the computation of returns

As all the return autocorrelations are computed based on closing-mid-price-to-closing-mid price
returns and we have proposed an interpretation based on intra-day trading effects, Figure 10 inves-
tigates the dependence of the autocorrelation dynamics of open-to-close returns,

roc(t) =
pclose(t)− popen(t)

popen(t)
. (25)
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Figure 10: Same as Fig. 2(a) and (c) except that the return autocorrelation is computed based on
open-to-close returns.

The recovery of the same dependencies with the same magnitude of cross-correlation is a first
confirmation of our interpretation. As the phenomenon in Figure 10 disregards price changes that
happen from the close of one day to the open of the exchange the next day, we can state with high
confidence that the origin of the reported phenomenon is found during trading hours.

7.4 Robustness over moving window size

Up to this point, all the cross-correlation analyses were performed with ∆ = 55 working days and
τα̂ = 5 working days. We found ∆ = 55 working days to be an optimal window-size, large enough
to minimize the errors in the return autocorrelation estimation and small enough to give a usable
temporal resolution for the cross-correlation analysis. In Figure 11 and 12, the cross-correlation
analysis are repeated with a smaller (∆ = 35) and a larger (∆ = 75) window-size in order to confirm
that the cross-correlation shapes do not depend on the specific parameters used to perform the
analysis. In Figure 11 and 12, τα̂ is adapted to the specific value of ∆, such that the maximal lag
over which α̂ is optimized is approximately one year.

7.5 Robustness over statistical methods

For the previous cross-correlation analysis, all time-series where demeaned by the method introduced
in Section 4. As this is a novel method, the truthfulness of the results might be doubted, interpreting
them as a consequence of the unorthodox demeaning method. In order to address these concerns,
Figures 13 and 14 show the cross-correlation analysis of the raw time-series, using simple methods
to address the long-memory characteristics of some of the time-series.
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Figure 11: Same as Figure 7, but with ∆ = 35 working days and τα̂ = 10 instead of ∆ = 55 and
τα̂ = 5. Cross-correlations are estimated over 7-year periods are displayed by full colored lines, with
the green horizontal lines representing the 95% and 99% confidence intervals. The black dashed line
is estimated over the full 21-year period, with black horizontal confidence intervals.

A standart alternative to correct for memory in the time-series is to perform the cross-correlation
on their first differences. As the time-series present a memory of ∆ days by construction of the
windows, the first difference time-series is computed as

diff
(
x(t,∆)

)
:= x(t,∆) − x(t−∆,∆). (26)

The full lines in Figure 13 shows the cross-correlation analysis estimated with all time-series un-
treated, except for the volatility, to which the first-differences transformation (Eq. (26)) is applied.
The dashed lines are obtained with the first-differences applied to the volatility and return autocor-
relation, leaving the average return untouched. From Figure 13(a) follows that, for any time-period
and when taking the first differences of the local autocorrelation or not, the negative minimum for
τ ∼ −80 is preserved in any setting. The exact location of the correlation minimum changes by
taking the first differences of the autocorrelation as taking the first differences of a non-unit-root
process distorts the time-series. However the great similitude between all the lines for τ < 0 confirms
that the reported phenomenon is not an artifact of the non-stationarily demeaning.

Another alternative to compute meaningful cross-correlation of long-memory processes is to es-
timate the correlation over a short time-scale, short enough such that the process can be considered
stationary. The full lines in Figure 14 report the cross-correlations between the raw cross-sectionally
averaged time-series, estimated on non-overlapping two-year periods. The black dashed lines repre-
sent the average cross-correlation over the obtained 20 cross-correlations estimated over the two-year
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Figure 12: Same as Figure 11, but with ∆ = 75 working days and τα̂ = 3.

periods. As the Pearson correlation estimator is a linear measure, the 95% and 99% confidence in-
tervals, indicated by the black horizontal lines, are based on 20 · 250/∆ data-points16.

Again, as for the first-difference alternative, a retarded impact of volatility onto return autocorre-
lation manifests itself, even in the most parsimonious of all cross-correlation analysis. As the dashed
black line in Figure 14(a) shows, not only is the volatility impact clearly visible, it is also highly
statistically significant. As for Figure 14(a), Figure 14(b)-(d) do not deviate from the previously
discussed results.

The distribution of the cross-correlation values, for the null-hypothesis of no serial correlation in
the direction of the returns, is analyzed in Section A the appendix, giving further evidence for the
validity of the used non-stationary detrending method.

7.6 Robustness over autocorrelation estimator

The measure of choice for the autocorrelation estimation in this study is the estimator based on
Kendall’s τ . Due to the daily returns’ heteroscedastic nature and fat tailed distribution, we found
this estimator best suited for our purposes. However, very similar results are found with alternative
estimators, such as the Pearson autocorrelation or the variance ratio introduced in Section 2.

The different autocorrelation estimators are compared in Figure 15, where the cross-correlations
between the local return autocorrelation and volatility, respectively market trends, are displayed.
Only negligible differences are noticeable, confirming again the validity of our results.

16Every year has approximately 250 trading days.

27



6. Volatility-induced overreaction 94

−220 −165 −110 −55 0 55 110 165

ρ
(
[diff]〈KτACr(t, 55, 1)〉 , diff(〈log σohlc(t+ τ, 55)〉)

)
vs τ

−0.4

−0.2

0.0

0.2

0.4

(a)

−220 −165 −110 −55 0 55 110 165

ρ
(
[diff]KτAC〈r〉(t, 55, 1) , diff(log σ〈r〉,RC(t+ τ, 55))

)
vs τ

−0.4

−0.2

0.0

0.2

0.4

(b)

−220 −165 −110 −55 0 55 110 165

ρ
(
[diff]〈KτACr(t, 55, 1)〉 , 〈µr(t+ τ, 55)〉

)
vs τ

−0.4

−0.2

0.0

0.2

0.4

0.6

(c)

−220 −165 −110 −55 0 55 110 165

ρ
(
diff(〈log σohlc(t, 55)〉) , 〈µr(t+ τ, 55)〉

)
vs τ

−0.6

−0.4

−0.2

0.0

0.2

0.4

(d)

1991-1998
1998-2005
2005-2012

Figure 13: Cross-correlation analysis similar to the one in Figure 7, but performed on raw time-series.
For the full lines, the first differences of the volatility is correlated with the untreated autocorrelation
and average return. The dashed lines are obtained by applying the first-differences to the volatility
and local return autocorrelation. The three colors represent the results for three non-overlapping
7-year periods, specified in the legend.
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Figure 14: Cross-correlations between the raw cross-sectionally averaged time-series (no demean-
ing performed on them), estimated on non-overlapping two-year periods. The black dashed lines
represent the average cross-correlation over the 20 two-year periods and the horizontal black lines
indicate the 95% and 99% confidence intervals.
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Figure 15: Same as the black dashed line of Fig. 2(a), resp. Fig. 2(c), with the addition of the return
autocorrelation time-series estimated with two alternative autocorrelation estimators, specified in
the legend. The autocorrelation estimator are based on: Kendall’s τ (KτACr) in blue, Pearson’s
correlation (Aρr) in red and variance ratio (VRr) with q = 2 in green. The cross-correlation is
estimated over the full 21-year period with ∆ = 55 and τα̂ = 5. As the lines almost perfectly overay
each other, the robustness in respect to the autocorrelation estimators is confirmed.
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8 Future Works

This study being the first to investigate the lagged effects of volatility changes onto price dynamics
and consequently investors behavior, there are multiple possibilities for extending the reported
results. As our proposed interpretation is based on intra-day herding as a reaction to increased
volatility, an analysis based on high-frequency data seems an obvious extension. Another interesting
question would be to differentiate between price reversals after positive or negative daily returns
and their dependence on past volatility, similarly to the study by Nam et al. (2006).

An alternative extension would be the implementation of simple trading strategies based on the
here presented results, as the presence of return autocorrelation in financial returns by itself is not
enough to reject the EMH. Only if this correlation leads to a profitable trading strategies with
abnormal risk-adjusted returns can a rejection of the EMH be claimed.

As this study only investigates the daily returns structure, a generalization of the time-scale of
the returns would also be highly interesting. Especially as the impact of the volatility is symmetric,
the trending of the price after a volatility decrease will also lead to an over- or under-valuation of
the company. This pricing error will at some point be corrected, creating a negative autocorrelation
of returns over larger time-scales. As a result, the dependence of the local autocorrelation of returns
at different time-scales might be very different from the presented results for daily returns. That
there extist a wealth of momentum and reversal phenomena at lower frequencies is confirmed by
the literature review in Section 1 and other recent studies, such as the one by Gutierrez and Kelley
(2008), where weekly returns are investigated and an interesting observation of reversal followed by
momentum is reported.

9 Conclusion

The impact of volatility changes and market trends on daily return autocorrelation is investigated
in this paper. A very strong negative relation between market-wide volatility changes and market-
wide daily return autocorrelation 3-4 months later is found. The robustness of the phenomenon
is phenomenal, as it is found in every analyzed sub-period and across all kinds of stocks. The
phenomenon is also not sensitive to estimation parameters or statistical methods, and it is even
found for autocorrelations based on open-to-close returns.

For the dependency of the market-wide price trend on the market-wide daily return autocor-
relation, a slightly weaker but still very strong positive relation is observed, also with a lag of 3-4
months. The weaker correlation is explained by the smaller robustness of that observation, which
is persistent over the last 12 years.

As neither illiquidity nor volume are strongly related to the return autocorrelation dynamics,
we can rule out a mechanical origin of the phenomenon and propose a behavioral explanation of
this effect. We state that long periods of increased volatility and falling prices diminish investors’
confidence and lead to insecurities regarding their trading decisions. As a result, investors try
to gather more information, either from direct interaction with their peers, leading to herding,
or by looking at recent market moves, which represent the opinion of all active investors, thus
leading to trend-following behavior. In regimes of high volatility, this information-gathering process
is performed through-out their daily trading activity, such that investors pursue intra-day trend-
following strategies, which leave the stock price over- or under-valued at the end of the day. This
over- or under-valuation increases the probability for a price correction on the following day, which
due to the same positive feedback mechanisms will under- or over-shoot the stocks’ “fundamental”
value again. The fact, that the same results are found for the autocorrelation of open-to-close
return, is a strong indication, that the origin of the volatility-return-autocorrelation dependency
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can be found in the intra-day behavior of traders.
It is found that the effect is approximately symmetric, such that for a decrease of volatility (an

increase of prices), an increase of momentum in daily price dynamics is observed. This means that
information takes more time to get absorbed by the price and that a trend following mechanism of
a longer time-scale is at work. This points to an exaggerated increase of investors confidence, which
clouds their view and leaves them unaware of a company’s overvaluation.

This study is inconclusive in respect to the possibility of rejecting the EMH, as no trading
strategies based on our results has been implemented. But even in the (likely) case of no abnormal
profits, the importance of our results is not diminished, as our focus is on the identification of a
volatility induced change of investor behavior, which is present, and persistent over at least 21 years
of data, independent of an opportunity for profit or not.

Acknowledgement: We are greatful to Vladimir Filimonov for constructive discussions and
Peter Cauwels for critical feedback on the manuscript.
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A Distribution of the cross-correlations under the
Null-Hypothesis

In section 5, it was stated that the confidence intervals given in this study are wider then necessary,
as the moving-window time-series were not only sampled every ∆th time-step but continuously,
increasing the number of available data points.

Here, we will investigate the distribution of the cross-correction values for the null-hypothesis
of no serial correlation in the direction of daily price movements. This will be done by repeating
the analysis of Figure 2, with the only difference being that the returns are multiplied by random
signs before the autocorrelation is computed, everything else being equal. By multiplying the
returns by random signs, only the directional information is destroyed, keeping the heteroscedasticity
intact17. A further consequence of this null-hypothesis cross-correction distribution generation is
that it adds to the evidence that the reported correlations are not simple artifacts of the non-
stationary demeaning. The obtained percentiles of the distributions as a function of the lags are
plotted in Figure 16.
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Figure 16: Percentiles of the cross-correlation distributions as a function of the lags. The cross-
correlations are estimated in the same fashion as Fig. 2 with the only difference being that the
returns are multiplied by random signs, before the local return autocorrelation is computed. The
percentiles are based on 512 realizations of randomized signed returns.

From Figure 16, the exaggeration of the confidence bounds is clearly visible, as for most of the

17This procedure is less invasive than reshuffling the returns.
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lags, the 99%-percentile of the cross-correlations with random signed return autocorrelations lie
inside of the 95%-percentile bounds as used throughout this study.

The absence of any clear extrema in the cross-correction is also a further confirmation of the
validity of our results, as the sign of the daily returns seems to be the crucial information to their
recovery.

B Bloomberg Mnemonics details

PX BID: If the market is closed, this will return the last bid from the last day the market was
open. If the market is open, and there is not a bid in the market, this will return ’N.A.’

PX ASK: If the market is closed, this will return the last ask from the last day the market was
open. If the market is open, and there is not an ask in the market, this will return ’N.A.’

PX LAST: Returns the last price provided by the exchange. For securities that trade Monday
through Friday, this field will be populated only if such information has been provided by the
exchange in the past 30 trading days. For all other securities, this field will be populated only
if such information was provided by the exchange in the last 30 calendar days. This applies
to common stocks, receipts, warrants, and real estate investment trusts (REITs).

CUR MKT CAP: Current monetary value of all outstanding shares stated in the pricing currency.
Capitalization is a measure of corporate size. Current market capitalization is calculated as:
Current Shares Outstanding * Last Price, Where ’Current Shares Outstanding’ is DS124,
EQY SH OUT, and ’Last Price’ is PR005, PX LAST. For companies which trade on multiple
regional exchanges, the Composite Ticker is used in the calculation of the market cap.

PX VOLUME: Trading benchmark calculated by adding up the value traded for every transaction
(price times shares traded) and then dividing by the total shares traded for the time period.
Volume Weighted Average Price (VWAP) can be used in conjunction with the VWAP Start
Time (PR313, VWAP START TIME) and VWAP End Time (PR314, VWAP END TIME)
overrides.

C Additional Material

Estimate Std. Error t value Pr(>|t|)
Intercept 0.0433 0.0180 2.41 0.0265

Slope -2.2995 0.8118 -2.83 0.0106

Table 2: Results from the linear regression of mean of the yearly Pearson’s autocorrelation unto
the OHLC-volatility median. Residual standard error: 0.026 on 19 degrees of freedom Multiple
R-squared: 0.30, p-value: 0.01
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Figure 17: Same as Fig. 1, with the only difference being that the autocorrelation is estimated using
Pearson’s autocorrelation.
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Figure 18: Time-series of the volatility and local return autocorrelation, estimated with ∆ = 55.
The non-stationary detrending is performed with ∆α̂ = 32∆ ∼ 1750 working days, δα̂ = 2∆ ∼ 100
working days, τα̂ = 5. Panel (a) (resp. (b)) show the cross-sectional average of the volatility (resp.
of the daily return autocorrelation) and its local average. Panel (c) displays their respective optimal
α and Panel (d) and (e) display the detrended volatility and return autocorrelation, which are used
to compute the cross-correlations of Fig 2.
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Figure 19: Similar to Figure 6 with the difference that the data plotted here ranged from January
1 2002 to September 9 2011.
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6.3 Finalizing Comments

Besides the puzzling long lag of 3-4 month between the volatility and the return
autocorrelation changes, a most interesting fact about the phenomena reported
in the previous section, is that they have not been found or published before,
given their persistence over more than the last two decades and the easy avail-
ability of the data2. One explanation might be the non-stationary character
to the time-series, which makes the analysis less straight forward with general
econometrics software. Another one might be the long lag, which is unlikely to
be predicted from first principles by a theoretical model on investor behavior.

As is stated in the paper, these findings open the door to many further
analyses. The most direct ones being based on, either constructing trading
strategies, which exploit the predictably of the return autocorrelation, or inves-
tigating intra-day data to confirm or reject the proposed mechanism behind the
overreaction.

Note that the mechanism responsible for the intra-day overreaction, de-
scribed in Section 6.2, is closely related to the volatility generating mechanism
studies in the previous chapter, specifically in Section V.B, where the NIV-
phenomenon is proposed as a model of excess volatility. As in the present
study, it is hypothesized that it is the perceived need for more information,
triggered by uncertainty, that initiates investors’ behavior of either imitating
the actions of their peers or trend-following trading strategies. Due to its gen-
eral setup, the NIV-model is unable to generate the negative autocorrelation,
which is observed as a reaction to the increased volatility and is due to features,
special to investors and financial markets. The daily price reversals originates
from the fact that, after the closing of the market, investor reevaluate the valu-
ations of their assets, observe possible deviations from their fair price estimates
and react accordingly the next day, pushing the price in the other direction.
The reason for which such information, concerning the fundamental value of an
asset, does not impact as strongly during trading hours can be found in the
diminished correlation between macroscopic dynamics and driving force, one of
the characteristics of the noise- or in this case, interaction-induced volatility.

In addition to the negative relation between lagged changes of volatility and
changes of the return autocorrelation, we also document a positive relation be-
tween lagged market trends and changes of the return autocorrelation. Whereas
our results focus on the autocorrelation of daily returns, similar results, but for
monthly returns, have been reported by Cooper et al. (2004). They study the
relation between lagged three-year market trends (indices going up or down) and
momentum in individual stocks. Significant profits are reported for momentum
strategies in the following six months only after up-markets, not after down-
markets. The momentum is then followed by a reversal in the long-run. These
results are perfectly consistent with our findings, as positive autocorrelation
on daily returns can result in positive autocorrelation on monthly returns and
negative autocorrelation on daily returns, which points towards mean reverting
prices, can result in statistical insignificant results.

It is worth mentioning that the return autocorrelation, which is the main
subject of this study, is a two-point statistic (comparing the returns at two dif-
ferent time-steps) and that there exist high dimensional dependence measures,

2The Yahoo! Finance data is provided for free.
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which are not covered here. An example of such a dependence is studies by Sor-
nette and Pisarenko (2008), who analyses a process with zero autocorrelation,
but a non-zero three-point dependence. Other examples of non-linear depen-
dencies are found in technical analysis (Brock et al., 1992), or simple pattern
analysis as performed by Zhang (1999) and Vandewalle et al. (2000).

Besides the novel method introduced to address the long memories of the
analyzed time-series, another method for data-analysis is used, which I never
saw in any other study, published or not, and which is of a striking simplicity.
I am referring to the scatter-plots of Figure 5, 9 and 19, with the horizontally
and vertically percentile lines, which allow to clearly distinguish between the
explanatory and the predictive power of the two lagged time-series. In the case
of Figure 6, the horizontal lines reveal information about the question: ‘Given
an change of x in volatility now, how will be the autocorrelation change in the
future?’, informing the research about the predictive power of the observable.
The vertical lines reveal information about the question: ‘Given an change of
x in the autocorrelation now, how well can it be explained by past volatility
changes?’, analyzing the ex-post explanatory power of the observable. In a
similar vein, it should also be noted not to equate correlation with regression
as documented by Warren (1971), as the correlation between two time-series
investigates their resemblance, whereas a well done regression from one onto
the other time-series investigates how much one changes in respect to the other
one.



Chapter 7

Conclusion

This thesis addresses three important aspects of price dynamics of publicly
traded assets. For one, the emergence of a trending price is studied, result-
ing from the myopic optimization of socially influenceable investors, leading to
the destabilization of the price and the growth of a bubble. My second con-
tribution focuses on the volatility of price dynamics and, more generally, on
the volatility of dynamic macroscopic observables, governed by a large number
of interconnected units under the influence of a rapidly varying external forc-
ing. Whereas the first two contributions explore the first and second moment
of collective/price dynamics via theoretical studies, my third contribution is an
empirical study investigating the autocorrelation of daily price returns and its
dependencies on other macroscopic variables such as volatility, long-term price
movements and illiquidity.

For both, the theoretical models as well as the interpretation of the phe-
nomenon observed in the empirical study, it is assumed that the environment of
the individuals influences their behavior. This environment can either be their
social environment, like colleagues and neighbors, or the past price movements,
which represent an aggregation of the opinions of all active investors. As it is
stated in Section 3.4 and 3.5, this assumption is well confirmed by empirical
studies, which show that investors are imitating each other and indulge in posi-
tive feedback trading. More generally, there is a wealth of experiments showing
that humans are very susceptible to their surrounding and are likely to change
their opinion, either consciously or unconsciously, to conform with the opinion
of the group.

A financial market model is presented in Chapter 4, where the price dynam-
ics and the behavior of trading agents, interconnected by their social network,
are investigated. Agents invest according to their opinion on future price move-
ments, which is based on three sources of information, (i) public information,
i.e. news, (ii) the aforementioned information from their social network and (iii)
private information. In order to form the best predictor of future price move-
ments, agents are continuously adapting their trading strategy to the current
market regime by weighting the news and information from their peers accord-
ing to their recent predicting performance. Paradoxically, it is their myopic
adaptation to the current market regime which leads to a dramatic amplifica-
tion of the price volatility and the occurrence of bubbles. The origin of these
large deviations from the equilibrium price are found to nucleate from the news.
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A random occurrence of a sequence of same signed news pushes the price in one
direction and starts the coordination process of the agents, developing into a
transient collective herding regime. The positive feedback loop is created by the
two dominating mechanisms (adaptation and imitation) which, by reinforcing
each other, result in a transient over-valuation of the price, up to unsustainable
levels. As such, crashes can be identified as a rapid price correction after an
inflation of prices via a socially induced irrational exuberance. The model offers
a simple reconciliation of the two opposite (herding versus fundamental) pro-
posals for the origin of crashes within a single framework and shows that a crash
is not a reaction to an extreme negative news event but a sudden correction of
an unsustainable high price. More general, this model shows that even with
rational and adapting agents, bubbles and crashes emerge naturally.

By reducing the complexity of the previous model, but keeping the same
three basic influences, it is possible to apply this model to a very wide range of
systems, generalizing the interpretation of the individual agent from an investor
to any bistable entity, susceptible to its surrounding, a common and varying
driving force and independent noise sources. This model, which is based on the
dynamic Ising model, is a priori is a physical model but can easily be related to
social systems via the equivalence between the Ising model and a discrete choice
model with social interactions, as is shown in Chapter 2. Due to its general
setup, an analytical treatment of the model is possible and is presented, together
with numerical simulations, in Chapter 5. It is found that, independently of the
shape of the driving force, strong fluctuations of the macroscopic dynamics are
found for intermediate levels of noise (or of coupling, depending on the setup), a
phenomenon which can be traced back to the presence of the unavoidable phase
transition in such systems.

For a periodic forcing, this peak corresponds to a pronounced amplification
of the signal, with a strong correlation between the macroscopic dynamics and
the driving force at the optimal lag, the paradigmatic signatures of stochastic
resonance. On the other hand, when the driving force is aperiodic, a similar
peak appears but here the amplitude of the fluctuations exceeds by far those
observed for periodic signals. Coincidental with the increase of fluctuations, the
correlation between the driving force and the system dynamics is completely
destroyed. This shows that even though these fluctuations are induced by the
common forcing, the macroscopic dynamics has an endogenous origin. This phe-
nomenon of noise-induced volatility contrasts with that of stochastic resonance,
with the major difference being that it is not the signal, but the fluctuations
that are amplified.

Moreover, this phenomenon of noise-induced volatility also constitutes a new
indicator for the approaching of a phase transition, and it applies to a broader
range of real-world systems due to the common setup given of a coupled system
driving by an aperiodic forcing and its robustness with respect to changes in
the underlying network of interactions. As an example of a system where this
phenomenon can be observed, we have proposed the social system of stock
markets, in which we have been able to not only explain the excess of volatility
observed in stock prices, but also the apparent absence of correlation between
news and price changes and the persistence of volatility during times of crises.

The last part of this thesis contains an empirical study, motivated by the
question of whether investors behave differently in different market regimes. To
investigate this question, the impact of volatility changes and market trends
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on daily return autocorrelation is investigated for a large number of individ-
ual stocks traded on the New York Stock Exchange. A very strong negative
relation between market-wide volatility changes and market-wide daily return
autocorrelation 3-4 months later is found. The robustness of the phenomenon is
phenomenal, as it is found in every analyzed sub-period and across all kinds of
stocks. The phenomenon is also not sensitive to estimation parameters or statis-
tical methods, and it is even found for autocorrelations based on open-to-close
returns. For the dependency of the market-wide price trend on the market-wide
daily return autocorrelation, a slightly weaker but still very strong positive re-
lation is observed, also with a lag of 3-4 months. The weaker correlation is
explained by the smaller robustness of that observation, which is persistent over
the last 12 years.

As neither illiquidity nor volume are strongly related to the return auto-
correlation dynamics, we can rule out a mechanical origin of the phenomenon
and propose a behavioral explanation of this effect. We state that long periods
of increased volatility and falling prices diminish investors’ confidence and lead
to insecurities regarding their trading decisions. As a result, investors try to
gather more information, either from direct interaction with their peers, leading
to herding, or by looking at recent market moves, which represent the opinion
of all active investors, thus leading to trend-following behavior. During high
volatility regimes, this information-gathering process is performed through-out
their daily trading activity, such that investors pursue intra-day trend-following
strategies, which leave the stock price over- or under-valued at the end of the
day. This over- or under-valuation increases the probability for a price correc-
tion on the following day, which due to the same positive feedback mechanisms
will under- or over-shoot the stocks’ “fundamental” value again. The fact, that
the same relations are found for the autocorrelation of open-to-close return,
is a strong indication, that the origin of the volatility-return-autocorrelation
dependency can be found in the intra-day behavior of traders.

It is found that the effect is approximately symmetric, such that for a de-
crease of volatility (an increase of prices) an increase of momentum in daily price
dynamics is observed. This means that information takes more time to get ab-
sorbed by the price and that a trend following mechanism over longer time-scales
is at work. This points to an exaggerated increase of investors confidence, which
clouds their view and leaves them unaware of a company’s overvaluation.

Last but not least, as the majority of the time-series involved have long
memories, bordering on non-stationarity, I have developed a powerful and yet
intuitive method to address this memory, such that meaningful correlations
between time-series can be computed.
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(15)), 3–55.

Brock, W. A., Durlauf, S. N., 2001. Discrete Choice with Social Interactions.
The Review of Economic Studies 68 (2), 235–260.

Brown, N. C., Wermers, R. R., Wei, K. D., Mar. 2009. Analyst Recommenda-
tions, Mutual Fund Herding, and Overreaction in Stock Prices. Social Science
Research Network Working Paper Series.

Brunnermeier, Nagel, S., 2004. Hedge Funds and the Technology Bubble. The
Journal of Finance 59 (5), 2013–2040.

Brunnermeier, M. K., 2008. Bubbles: Entry in New Palgrave Dictionary of Eco-
nomics. In: Durlauf, S. N., Blume, L. E. (Eds.), The New Palgrave Dictionary
of Economics. Palgrave Macmillan, Basingstoke.

Brush, S. G., Oct. 1967. History of the Lenz-Ising Model. Reviews of Modern
Physics 39 (4), 883–893.

Cai, F., Zheng, L., Sep. 2004. Institutional trading and stock returns. Finance
Research Letters 1 (3), 178–189.

Chen, J., Hong, H., Stein, J. C., Nov. 2002. Breadth of ownership and stock
returns. Journal of Financial Economics 66 (2-3), 171–205.

Chen, Y.-F., Wang, C.-Y., Lin, F.-L., Jul. 2008. Do Qualified Foreign Insti-
tutional Investors Herd in Taiwan’s Securities Market? Emerging Markets
Finance and Trade 44 (4), 62–74.

Chevalier, J., Ellison, G., 1999. Career Concerns of Mutual Fund Managers.
The Quarterly Journal of Economics 114 (2), 389–432.

Clement, M. B., Tse, S. Y., 2005. Financial Analyst Characteristics and Herding
Behavior in Forecasting. The Journal of Finance 60 (1), 307–341.

Cochrane, J. H., Jun. 2002. Stocks as Money: Convenience Yield and the Tech-
Stock Bubble. National Bureau of Economic Research Working Paper Series,
8987+.

Cooper, M. J., Gutierrez, R. C., Hameed, A., 2004. Market States and Momen-
tum. The Journal of Finance 59 (3).



BIBLIOGRAPHY 114

Cutler, D. M., Poterba, J. M., Summers, L. H., 1989. What Moves Stock Prices?
Journal of Portfolio Management 15 (2).

Cutler, D. M., Poterba, J. M., Summers, L. H., 1990. Speculative Dynamics
and the Role of Feedback Traders. The American Economic Review 80 (2),
63–68.

Daniel, K., Hirshleifer, D., Subrahmanyam, A., 1998. Investor Psychology and
Security Market Under- and Overreactions. The Journal of Finance 53 (6),
1839–1885.

De Bondt, W. F. M., Forbes, W. P., 1999. Herding in analyst earnings forecasts:
evidence from the United Kingdom. European Financial Management 5 (2),
143–163.

de Long, J. B., Shleifer, A., Summers, L. H., Waldmann, R. J., Jun. 1990. Pos-
itive Feedback Investment Strategies and Destabilizing Rational Speculation.
The Journal of Finance 45 (2), 379–395.

Debreu, G., 1960. Review of R. D. Luce, Individual choice behavior: A theoret-
ical analysis. American Economic Review 50, 186–188.

Demirer, R., Kutan, A. M., Chen, C.-D., Nov. 2010. Do investors herd in emerg-
ing stock markets?: Evidence from the Taiwanese market. Journal of Eco-
nomic Behavior & Organization 76 (2), 283–295.

Dennis, P. J., Strickland, D., 2002. Who Blinks in Volatile Markets, Individuals
or Institutions? The Journal of Finance 57 (5), 1923–1949.

Diba, B. T., Grossman, H. I., 1988a. Explosive Rational Bubbles in Stock Prices?
The American Economic Review 78 (3), 520–530.

Diba, B. T., Grossman, H. I., 1988b. The Theory of Rational Bubbles in Stock
Prices. The Economic Journal 98 (392), 746–754.
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