
Institut für Integrierte Systeme

Integrated Systems Laboratory

Department of Information Technology and
Electrical Engineering in collaboration with the

Department of Management, Technology and Economics

Winter Term 2014

MultiCorePricer:

A Monte-Carlo Pricing Engine
for Financial Derivatives

Master Thesis Project

Miguel Angel Benjamin Guerrero
miguelg@ee.ethz.ch

January, 2015

Advisors: D-ITET: Harald Kröll, Marcus Hildmann, Lukas Bruderer

D-MTEC: Donnacha Daly

Professor: Prof. Dr. Qiuting Huang, Prof. Dr. Didier Sornette

Acknowledgements

I would like to thank Prof. Qiuting Huang and Prof. Didier Sornette for the opportunity to
do my Master thesis at the Integrated Systems Laboratory and Chair of Entrepreneurial
Risks. I also thank Harald Kröll, Donnacha Daly, Marcus Hildmann and Lukas Bruderer
for their continued patience and guidance throughout the course of this work. This
project would not have been possible without them.

� Miguel Guerrero

ii

Abstract

When the computation power of a high-end workstation cannot match the Monte-Carlo
workload of pricing a portfolio of structured products, it is time to consider high-
performance solutions. These are often software solutions, achieved by a distribution
of computational workload over more or faster processing units. However this project is
concerned with hardware-acceleration, whereby computational tasks are conducted with
dedicated hardware architectures rather than as a set of software instructions executed
on a processing core.

The project's goal was to implement a structured product pricer on a commercially
available FPGA and to provide an analysis of the solution in terms of computational
acceleration versus a software solution. The main goal was to design a slim and e�cient
architecture allowing for high parallelization and throughput by allowing a pricing error
at a level acceptable for practical applications.

The model chosen for the simulation of the product's underlying assets was the multivari-
ate geometric Brownian motion which represents the well known Black-Scholes model.
While this is no longer the most widespread model in use, it allows for easy calibration to
analytic prices of European options and can readily be extended by more sophisticated
models. The backbone of this model, and practically every other �nancial model, is the
use of normally distributed random numbers. Highly sophisticated models have been
proposed to generate such numbers. The approach of this project, however, was to use
a more simple generator, based on the central limit theorem, to reduce used area and
attain a higher speed.

The results of this thesis show that the chosen components are more than �t for a Monte-
Carlo pricing engine. A high speed-up ranging from 550 to 1450 was achieved versus a
one core software solution. Using autonomous "Cores" to simulate paths in parallel, the
design has a good portability and can be migrated to boards with higher capabilities
to increase the pricing speed. A batch pricing program has been implemented onto the
processing system to demonstrate a possible way of using this system in a real world
application.

iii

Contents

1. Introduction and problem statement 1
1.1. Structured Products . 1
1.2. E�cient Monte-Carlo Methods . 2
1.3. Hardware Acceleration . 3
1.4. Financial Instruments . 4

1.4.1. Call Option . 4
1.4.2. Barrier Call Option . 5
1.4.3. Worst-of Barrier Call Option . 6
1.4.4. Put Options, Best-of, Up/Down-and-In/Out 7
1.4.5. Contract Example: Multi Barrier Reverse Convertible 7

1.5. Project Details . 7
1.5.1. Project Description . 7
1.5.2. Project Goals . 8

2. Related Work 11

3. Theoretical Background 13
3.1. Simulating an Asset . 13

3.1.1. Black-Scholes Model . 13
3.1.2. Heston Model . 14
3.1.3. Geometric Brownian Motion (GBM) 14
3.1.4. Correlated Wiener Process . 15

3.2. Gaussian Random Number Generator (GRNG) 16
3.2.1. Box-Muller Method . 16
3.2.2. Cumulative Distribution Function Inversion Method 17
3.2.3. Ziggurat method . 17
3.2.4. Central Limit Theorem . 17

3.3. Uniform Random Number Generator (URNG) 19
3.3.1. Linear Feedback Shift Registers (LFSR) 19
3.3.2. Combined Tausworthe Generator 20

iv

Contents

3.4. Pricing . 21
3.5. Summary . 24

4. Hardware Architecture 25
4.1. Programmable Logic . 26

4.1.1. I/O Interface and Storage . 26
4.1.2. Core . 26

4.2. Combined Tausworthe Generator . 28
4.2.1. Controller . 30

4.3. Processing System . 33
4.3.1. Batch Pricing . 33
4.3.2. Pricing Flow . 33

5. Results 36
5.1. Utilization . 36
5.2. Precision . 36

5.2.1. Black-Scholes Comparison . 37
5.2.2. Worst-of Barrier Call Option Comparison 39

5.3. Speed-Up . 41

6. Conclusion & Outlook 43

A. MultiCorePricer 2015 Datasheet 45
A.1. Electrical characteristics . 45
A.2. Applications information . 45

A.2.1. I/O interface . 45
A.2.2. Storage address map . 46
A.2.3. Basic usage . 48

B. Detailed Block Diagram and Code Overview 49
B.1. Block diagram . 49
B.2. VHDL code overview . 49
B.3. Matlab pricing script . 51

C. MultiCorePricer 2015 Simulation Data 54
C.1. Black-Scholes Comparison . 54
C.2. Worst-of Barrier Call Option Comparison 55
C.3. Speed-Up . 56

D. Presentation Slides 60

v

List of Figures

1.1. High Performance Computing (HPC) alternatives ranked by increasing
throughput capability . 3

1.2. Call option payo�/pro�t pro�le . 5
1.3. Down-and-out barrier call option payo�/pro�t pro�le 6
1.4. Example contract of a multi barrier reverse convertible [1] 9
1.5. Example contract of a multi barrier reverse convertible [1] 10

3.1. PDF of n added URNs . 18
3.2. Convergence error and standard deviation of CLT GRNGs with order 3,

8 and 12. 19
3.3. Example of a 8 bit LFSR with maximum periodicity 28−1 and irreducible

polynomial x8 + x6 + x5 + x4 + 1. 20
3.4. Example showing three numbers generated by a Tausworthe generator

using word-length L = 8 and a shift value s = 6. 20
3.5. General form of a Tausworthe generator using a primitive trinomial. . . . 21
3.6. Combined Tausworthe generator with periodicity 288 and bit width 32. . . 22
3.7. Flowchart of the product simulation . 23

4.1. Simpli�ed design overview . 25
4.2. Simpli�ed Core block diagram . 27
4.3. Mean convergence error of six products using di�erent GRN bit widths . . 28
4.4. Combined Tausworthe generator . 28
4.5. Central Limit Theorem GRNG using 3 additions 29
4.6. Iteration Block . 31
4.7. Seed generator built out of three combined Tausworthe generators 35

5.1. Average absolute error and average error for call options 38
5.2. Average absolute error and average error for worst-of barrier call options . 40

B.1. Detailed block diagram . 53

vi

List of Figures

C.1. Time series of the historical data used for the Black-Scholes comparison . 55

vii

List of Tables

1.1. Structured products turnover in November 2014 for a selection of banks . 2

5.1. Hardware usage of di�erent components 37
5.2. Speed-ups and computation times for pricings using 214 simulated paths . 42

A.1. List of input signals, their content and format (integer and fractional bit
width (negative value means fractional point outside of the word), signed
or unsigned) . 47

C.1. Pricing precision for a single asset call option 57
C.2. Pricing precision for the worst-of barrier call option (errors in absolute

value) . 58
C.3. Speed-ups and computation times of pricings using 214 simulated paths

for di�erent product setups . 59

viii

Chapter 1
Introduction and problem statement

This chapter gives an insight into the market of structured products and what importance
they have within the Swiss market based on up to date �gures of their size and volume.
An example product is given at the end of the chapter.

The next part introduces the current setups used in banks and �nancial institutions that
are used to evaluate these products and how this project comes into play as part of the
recently started adoption of FPGA computing in this �eld.

The �nancial product addressed by this project, the worst-of barrier option, will then
be presented and its pricing explained. Finally the project description and goals are
given.

1.1. Structured Products

A core task of investment banking is the search for possibilities of creating new �nancial
instruments. This task is typically ful�lled by combining already existing components
to create new �nancial instruments. A prominent group of newly introduced �nancial
instruments are termed structured products. These are products which are based on
multiple underlying assets and are tailored to meet speci�c expectations and �t a certain
risk pro�le. As a result they can have arbitrary non-linear payo� pro�les depending on the
movement in price of their underlyings [2]. They are engineered from traditional assets
such as bonds, shares and derivatives. Through the countless possible combinations of
di�erent underlyings, practically every imaginable market scenario can be covered. As
they enable small investors to speculate on very speci�c market scenarios they have seen
an increasing popularity in recent years.

In October 2014 structured products had a volume of 202 billion Swiss francs in custody
accounts at banks in Switzerland representing 3.69% of the total securities volume [3].

1

1. Introduction and problem statement

Table 1.1 shows the �ve banks with the highest trading turnover made with structured
products in November 2014 [4].

Issuer Trading Turnover Percentage of the Number of

(in Mio. CHF) Total Turnover Trades

UBS 486.96 27.64% 11'644

Vontobel 423.39 24.03% 26'725

ZKB 319.67 18.14% 10'431

Julius Bär 164.67 9.35% 4'285

Credit Suisse 71.99 4.09% 1'518

Table 1.1.: Structured products turnover in November 2014 for a selection of banks

1.2. E�cient Monte-Carlo Methods

The pricing of structured products relies on the prediction of price distributions of the
underlying assets. Analytical formulas have been developed for simpler products based
on various assumptions on the statistics of price movements. The classic example of
this is the Black-Scholes formula for the pricing of options. In complex cases however, a
closed-form expression for fair value pricing does not exist and can only be achieved via
numerical methods such as Monte-Carlo simulations [5, 6, 7, 8].

Due to the complexity of structured products, the development of fair value pricing
requires a considerable amount of work. An example for this are certain barrier products
which only impose losses when a lower price barrier is crossed by an underlying. For
certain cases this is very unlikely and a sophisticated algorithm is required to capture
�uctuations from these events.

Two approaches exist to overcome these challenges of accurate Monte-Carlo pricing. The
�rst is sophisticated signal processing, the second brute force using high performance
computing. Sophistication uses advanced techniques from statistical signal processing
such as importance sampling which enable a probabilistically consistent pricing under
reduced complexity Monte-Carlo simulations. This family of e�ciency improving esti-
mation methods is called variance-reduction [9, 10]. Their industrial application is limited
however, as every new structured product may require its own Monte-Carlo framework
which would clearly be undesirable when institutions may have thousands of such prod-
ucts on their books.

Under the assumption of good stochastic models for the underlying price processes, it
can be assured that Monte-Carlo simulations generate accurate prices by increasing the
number of simulated future prices and by reducing the simulation step size. This approach

2

1. Introduction and problem statement

quickly runs into the computational limits of conventional CPUs, which is where high
performance computing becomes attractive. This trend can also be seen in banks and
other �nancial institutions investing heavily in grid computing for Monte-Carlo pricing.

Many models have been proposed to capture the essence of market dynamics. The sim-
plest is the (multivariate) Geometric Brownian Motion (GBM). GARCH models capture
the fact that volatility changes over time. Local- and stochastic volatility models cali-
brate the process to the volatility surface implied from options market. The focus of this
project was on the GBM model. While this is clearly not the best model for pricing,
given the non-normality of observed market dynamics, it allows the easy calibration to
analytic prices of European options. The work developed here can be readily extended
to more sophisticated models

1.3. Hardware Acceleration

Today high performance computing has become ubiquitous in banks and other �nancial
institutions burdened with processing data at higher frequencies and asset-valuation/risk-
assessment of ever more complex and divers portfolios [11, 12]. Typical applications in-
clude dynamic multi-period portfolio optimization, portfolio risk measurement via mod-
eling and large scale simulation, data-mining, low-latency trading and, concerning this
project, batch jobs for option pricing.

Figure 1.1 shows alternative solutions for high performance computing. Parallelization
using Multi-core processors and/or multi-threading is the most straightforward route to
faster computation [13, 14]. Distributed solutions using PC- or virtual machine clusters
are very popular in �nancial institutions, as they can leverage existing IT infrastructure.
More recent advances in graphic cards have lead to the development of numerous ap-
plications in �nance exploiting the ability of these specialized processors (GPUs) to do
certain matrix-based computations, for example in option pricing [15], at high speeds.

CPU Multicore

CPU
GPU FPGA ASIC

Grid

Computing

Increasing Processing Power

Figure 1.1.: High Performance Computing (HPC) alternatives ranked by increasing
throughput capability

3

1. Introduction and problem statement

The mentioned solutions can be considered software solutions as the pricing algorithm
instructions are executed on many fast processing units. By contrast it is possible to move
from software to hardware and implement what is known as hardware acceleration by
performing the computations at the logical bit level in silicon. Implementing algorithms
in silicon in the form of an application speci�c integrated circuit (ASIC), however, is
costly and most often only proves worthwhile for high volume applications such as ICs
used in consumer products. The use of a �eld programmable gate array (FPGA), which
enables �exible silicon recon�guration at low costs, represents an intermediate solution.

FPGAs are increasingly applied in �nancial settings for low latency trading [16], credit
derivatives and -risk [17, 18], option pricing [19, 20], and other Monte-Carlo applications
[21, 22, 23, 24]. There are, however, only a few publicly available citations, commercial or
academic, on the use of FPGA technology for batch pricing of structured products ([25] is
one example). Given the large and growing market for these products, the huge processing
power required for accurate pricing using Monte-Carlo methods and the computational
acceleration available through the appropriate use of FPGA hardware, a more thorough
examination of this area is called for and is given by this project.

1.4. Financial Instruments

This section introduces �rst one of the most basic �nancial instrument, the call option,
goes to the barrier call option and �nally to the worst-of barrier call option with which
this project is concerned. The valuation of these instruments is explained for each one
and observations concerning their Monte-Carlo simulation are made.

1.4.1. Call Option

A call option is a �nancial contract which gives the buyer the right but not the obligation
to buy an agreed quantity of an underlying asset at a speci�ed time, called maturity, for
a speci�ed price, called strike price. Depending on the style of the option (European,
American, Asian) it can be exercised during or on maturity or depends on the underlyings
development. For this project the only style considered was the European option which
can only be exercised on the maturity date. To compensate for the risk the issuer takes,
the buyer has to pay a premium, also known as the price of the option. An investor
who buys a call option expects the price of the underlying to go above the options strike
price, to be able to buy it for a lower price than its current one and sell it for a pro�t.

The payo� of this �nancial product then solely depends on the underlyings price at
maturity whereas the pro�t additionally depends on the premium which was paid for the
option. The corresponding pro�les can be seen in �gure 1.2. At maturity the payo� is
either zero, if the underlying's price lies on or below the strike price (option will not be
exercised), or the underlying's price minus the strike price, if it lies above the strike price.
To determine the expected payo�, a high number of simulations of the underlying's price

4

1. Introduction and problem statement

0

Asset Price

at maturity

Strike

Price

Payoff line

Profit line

Option

Price

Figure 1.2.: Call option payo�/pro�t pro�le

have to be performed and the mean of all their payo�s has to be taken. This expected
payo� of the option is then used by �nancial institutions to set the price of the product,
in this project it is assumed to be the same.

Statement 1: The payo� of a European call option only depends on the simulated
underlying's price at maturity.

From the �rst statement it can be concluded that it is not necessary to consider any price
other than the maturity price of each simulated path. As it is possible to accumulate the
weighted payo�s to determine their mean, it isn't even necessary to store them during
simulation.

1.4.2. Barrier Call Option

The barrier call option is a more exotic o�shoot of the normal call option which meets
more speci�c expectations in an investor's portfolio. It has a barrier level, prede�ned by
the issuer, which, when reached by the underlying's price, either springs the option into
existence or extinguishes an already existing option. Because of these more restrictive
conditions, a barrier option is cheaper than a similar option without barrier and therefore
provides the insurance value of an option without charging as much premium.

This project is mainly concerned with down-and-out barrier call options which are call
options which get extinguished if their underlying's price falls on or the below their
barrier level (barrier event). Their payo� and pro�t pro�le can be seen in �gure 1.3.
The only di�erence to the previously presented call option pro�le is the barrier, de�ned

5

1. Introduction and problem statement

0

Asset Price

at maturity

Strike

Price

Payoff line

Profit line

Option

Price

Barrier

Figure 1.3.: Down-and-out barrier call option payo�/pro�t pro�le

as a percentage relative to the underlying's initial price, which acts as a knock-out that
extinguishes the option if the underlying's price falls on or below the barrier at any
point during the product's lifetime. If such a barrier event occurs the payo� immediately
becomes zero and the initially paid premium is lost as the option can no longer be
exercised at maturity.

Statement 2: A down-and-out barrier option's payo� becomes zero if a barrier event
occurs.

From the second statement it can be concluded that a running price simulation can be
aborted if the price falls at any point on or below the barrier.

1.4.3. Worst-of Barrier Call Option

The worst-of barrier call option is a multi-asset version of the barrier call option and
belongs to the category of structured products. It is fairly simple to derive its pricing
process from the previously presented ones. To determine its payo� the same principles
as with the barrier call option are used with the addition that the payo� is determined by
the underlying with the lowest price at maturity, relative to its initial price. Therefore an
additional minimum check has to be performed over all underlyings at the end of a price
simulation. Even though there are multiple underlyings the barrier level is the same for
all underlyings and is taken relative to the corresponding initial price. A barrier event
occurs if any underlying's price touches or falls on a barrier and causes the optionality
of the product to become void.

6

1. Introduction and problem statement

The architecture presented in this thesis was designed for the pricing of products using
three underlyings, as the great majority of these products are de�ned for this number of
underlyings.

1.4.4. Put Options, Best-of, Up/Down-and-In/Out

There are a great variety of products with reversed or altered behaviour to the presented
worst-of barrier call option which serve very di�erent market expectations like the use of
put options as underlyings which have the reversed payo� pro�le of the call option, the
best-of style whose payo� is determined by the best performing underlying, the up style
barrier option with the barrier above the initial price, the in style option which instead
of extinguishing on a barrier event is inactive until an event and can only be exercised
if the event occurs. These product variants, however, only need minor adjustments in
the pricing engine and can be easily derived from the presented design. This coincides
with this projects fundamental concept of using a very speci�c architecture for a single
type of product with a speci�c style to achieve the highest possible throughput. In a real
world application this would simply lead to having di�erent FPGAs assigned to the task
of pricing of di�erent products.

1.4.5. Contract Example: Multi Barrier Reverse Convertible

Figures 1.4 and 1.5 show an example contract of a multi barrier reverse convertible [1].
It's payo� is explained in the contract. This kind of products are built out of zero coupon
bonds and a worst-of option. The buyer of the product e�ectively sells the issuer a worst-
of down-and-in put option. Therefore to price this product it is necessary to price the
corresponding down-and-in put option.

1.5. Project Details

1.5.1. Project Description

For this project, a Zynq-7020 FPGA was used to accelerate the pricing of a portfolio of
multi-asset barrier call options in a Monte-Carlo framework. The concepts used for the
implementation on the FPGA are explained in chapter 3. As a �rst step, the Monte-
Carlo framework was implemented in Matlab. It was then analyzed which parts of
the framework were suitable for hardware implementation. For the hardware blocks a
dynamic range analysis and �xed-point simulation was performed in order to obtain the
groundwork for the golden model. The golden model was then used as a reference during
the implementation of the pricing engine in hardware description language (VHDL).
The core part of this project involved the digital design of the pricing engine and an

7

1. Introduction and problem statement

empirical assessment of the computational acceleration of a hardware implementation
over a conventional software approach.

1.5.2. Project Goals

The following goals were targeted for this project:

• Theory and simulation goals

� Understanding the basics of stochastic models for asset price time-series in
�nancial markets, particularly correlated geometric Brownian motion.

� Understanding the nature of multi-basket structured products, and how they
are priced in a Monte-Carlo framework.

� Monte-Carlo pricing framework in Matlab

� Pricing of call options and multi-asset barrier products in Matlab and deter-
mining the dynamic range of parameters.

� Hardware/software partitioning of the pricing framework for the identi�cation
of suitable blocks for hardware acceleration.

� Exploit parallelism and de�ne proper interfaces.

� Extraction of a hardware model in form of a detailed block diagram.

� Implementation of a �xed-point version of the pricing engine in Matlab which
serves as a golden model for the subsequent VHDL implementation.

• Hardware goals

� Pricing engine in VHDL with a relative error of 1% or less. Implementation
of a functionally veri�ed synthesizable VHDL design.

� An FPGA portation of the VHDL code on the Zedboard, a development board
for the Xilinx Zynq.

� Empirical assessment of the achievable hardware speed-up over software im-
plementation of structured product pricing engine (comparison with Matlab
implementation, as well as any available published �gures).

8

1. Introduction and problem statement

5.125% p.a. Multi Barrier Reverse Convertible on Nestle, Novartis, Roche
Continuous Multi Barrier Observation

Final Fixing Date 12/03/2015; issued in CHF; listed on SIX Swiss Exchange

This Product is collateralised in accordance with the terms and conditions of the SIX Swiss Exchange Ltd Framework Agreement for Collateral
Secured Instruments. More detailed information regarding the collateralisation can be found in the section: "Information about Collateralisation"
This document contains a summary of information of the Product and is for information purposes only. Only the Final Termsheet in English
language together with the Programme containing all further relevant terms and conditions, as amended from time to time, shall form the
entire documentation for this Product (“Product Documentation”).
This Product is a derivative instrument. It does not qualify as unit of a collective investment scheme pursuant to art. 7 et seqq. of the Swiss
Federal Act on Collective Investment Schemes (CISA) and is therefore neither registered nor supervised by the Swiss Financial Market Supervisory
Authority FINMA. Investors do not benefit from the specific investor protection provided under the CISA.

I. PRODUCT DESCRIPTION
Profit

0
Final Fixing Level

Underly
ing Product

NO Barrier Event

Barrier Level

Product
Barrier Event

Market expectation
Underlyings trade sideways to slightly higher.
The Barrier Event will not occur.

Product description
This Product offers the Investor a Coupon Rate regardless of the performance of the
Underlyings during lifetime whilst combined with a conditional downside protection. If no
Barrier Event has occurred, the Investor will receive the Denomination at the Redemption
Date. If a Barrier Event has occurred but all Underlyings close above their Initial Fixing Level
at the Final Fixing Date, the Investor will still receive at the Redemption Date a Cash
Settlement which equals the Denomination. Otherwise the Investor will receive at the
Redemption Date either a round number (i.e. Conversion Ratio) of the Underlying with the
Worst Performance or, as the casemay be, a Cash Settlement in the Settlement Currency,
as further described under Redemption.

Underlying

Conversion
Ratio

Barrier Level
(55.00%)*

Initial Fixing Level
(100%)*

Bloomberg
Ticker

Related
Exchange

Underlying

NESN VXSIX Swiss
Exchange

NESTLE SA-REG .667817.1331CHF.6056CHF

NOVN VXSIX Swiss
Exchange

NOVARTIS AG-REG .000020.5027CHF.0050CHF

ROG VXSIX Swiss
Exchange

ROCHE HOLDING
AG-GENUSSCHEIN

.31316.1287CHF.40158CHF

Product Details

14911903Swiss Security Number
CH0149119031ISIN
EFNBTSIX Symbol
100.00%Issue Price
CHF 10'000'000 (can be increased at any time)Issue Size
CHF 1'000Denomination
CHFSettlement Currency
5.125% p.a.
The Coupon Rate is split in two components for Swiss taxation purposes:

0.220% p.a.Interest Component
4.905% p.a.Option Premium Component

Coupon Rate

* levels are expressed in percentage of the Initial Fixing Level

Coupon Amount
CHF 51.25
20/03/2013

Barrier Level Roche
(55.00%)

Barrier Level
Novartis (55.00%)

Barrier Level Nestle
(55.00%)

ACT
IVE

Barrier Observation
09/03/2012 -
12/03/2015

First Exchange
Trading Date
20/03/2012OVE

R
Subscription End
Date 09/03/2012

Final Fixing Date
12/03/2015

Coupon Amount
CHF 51.25
20/03/2015

Coupon Amount
CHF 51.25
20/03/2014

CK78: 3b304c25-b929-49ae-bfb5-5d11981db41d

Brandschenkestrasse 90, P.O. Box 1686, CH-8027 Zurich
+41 58 800 1111 termsheet@efgfp.com www.efgfp.com

Yield-Enhancement ProductsTermsheet as of 12/03/2012
SSPA Product Type: 1230COSI (Collateral Secured Instruments)
Collateralised Derivatives

Figure 1.4.: Example contract of a multi barrier reverse convertible [1]

9

1. Introduction and problem statement

The Coupon Amount(s) per Product will be paid in the Settlement Currency
on the respectiveCoupon Payment Date(s). Following Business DayConvention
applies.

CHF 51.25 paid on 20/03/2013
CHF 51.25 paid on 20/03/2014
CHF 51.25 paid on 20/03/2015

Coupon Amount(s) and
Coupon Payment Date(s)

Dates

09/03/2012 14.00 CETSubscription End Date
09/03/2012Initial Fixing Date
20/03/2012Issue Date
20/03/2012 (anticipated)First Exchange Trading Date
12/03/2015 / Exchange market closeLast Trading Day/Time
12/03/2015 (subject to Market Disruption Event provisions)Final Fixing Date
20/03/2015 (subject to Settlement Disruption Event provisions)Redemption Date

Redemption

The Coupon Amount(s) per Product will be paid in any case at the respective Coupon Payment Date(s). In
addition the Investor is entitled to receive from the Issuer on the Redemption Date per Product:

If a Barrier Event has NOT occurred, the Investor will receive aCash Settlement
in the Settlement Currency equal to:
Denomination

Scenario 1

If a Barrier Event HAS occurred andScenario 2
a. If the Final Fixing Level of the Underlying with the Worst Performance is

at or below the respective Initial Fixing Level, the Investor will receive
a round number (i.e. Conversion Ratio) of the Underlyingwith theWorst
Performance per Product. Any potential fractional Conversion Ratio
entitlements (Fraction of Underlyings) will be paid in cash, based on
the Final Fixing Level.

b. If the Final Fixing Level of the Underlying with the Worst Performance is
above the respective Initial Fixing Level, the Investor will receive aCash
Settlement in the Settlement Currency equal to:
Denomination

Official close of the respective Underlying on the Initial Fixing Date on the
Related Exchange, as determined by the Calculation Agent.

Initial Fixing Level

Official close of the respective Underlying on the Final Fixing Date on the
Related Exchange, as determined by the Calculation Agent.

Final Fixing Level

The lowest performance of the respective Underlyings whereby each
performance is calculated by dividing the respective Final Fixing Level by the
respective Initial Fixing Level, as determined by the Calculation Agent.

Worst Performance

A Barrier Event shall be deemed to occur if at any time on any Exchange
Business Day during the Barrier Observation Period the level of at least one of

Barrier Event

the Underlyings' prices has been tradedat or below the respective Barrier Level,
as reasonably determined by the Calculation Agent.
09/03/2012 - 12/03/2015Barrier Observation Period

General Information

EFG Financial Products (Guernsey) Ltd., St Peter Port, GuernseyIssuer
EFG International AG, Zurich, SwitzerlandGuarantor
(Rating: Fitch A with negative outlook, Moody’s A3 with stable outlook)
EFG Financial Products AG, Zurich, SwitzerlandCollateral Provider
EFG Financial Products AG, Zurich, SwitzerlandLead Manager
EFG Financial Products AG, Zurich, SwitzerlandCalculation Agent
EFG Financial Products AG, Zurich, SwitzerlandPaying Agent
Relevant Fees (as defined in article 26 of the General Terms and Conditions
which are a part of the Programme)

Distribution Fees

SIX Swiss Exchange; traded on Scoach Schweiz AGListing/Exchange
Listing will be applied for.
Daily price indications will be available from 09:15 - 17:15 CET on
www.efgfp.com, Thomson Reuters [ISIN] and Bloomberg [ISIN] Corp or on EFGZ.

Secondary Market

Secondary market prices are quoted clean; accrued Coupon Amount is NOT
included in the prices.

Quoting Type

Figure 1.5.: Example contract of a multi barrier reverse convertible [1]

10

Chapter 2
Related Work

To the best of the author's knowledge there has been so far no publication of an FPGA
architecture for option pricing using a random number generator solely based on the use
of the central limit theorem, which will be further explained in the next chapter.

An FPGA implementation for the pricing of multi-asset barrier options has been pre-
sented by Sridharan et al. [25] in 2012. The main di�erence to this work is their use of
the more sophisticated Heston model for the simulation of the evolution of an underlying
asset. They further realized designs for 4, 8, 16 and 32 underlying assets which require
more correlation operations compared to this projects.

Another conceptual di�erence is the arrangement of having multiple threads or simulated
product paths in a single core with each core having a scheduler in contrast to this project
where each core simulates a single product path and all cores have a single scheduler.
The amount of schedulers needed depends mainly on the products maturity time and ∆t
as these two parameters determine how many iteration steps have to be performed for
each for a price simulation.

To produce normally distributed random numbers two inversion-based random number
generators, as described by Cheung et al. [26], were used. The design was implemented
on a Stratix IV E530 FPGA on Novo-G. The speed-up they achieved from one FPGA
compared to one CPU for a product using four underlyings was 350. It is di�cult,
however, to use their results for a comparison as no exact product parameters are given,
as well as no absolute computation times.

Schryver et al. [27] also presented a pricing engine using the Heston model but focused
on developing an architecure with a low energy consumption. It prices a double barrier
knock-out option, which becomes void if either an upper barrier or lower barrier is hit.
They implemented their design on a Xilinx Virtex-5 device. Another di�erence to this
project is the split-up of the pricing process between the FPGA and PC where the FPGA
only simulates price pathes and sends the price of each path to the PC using USB. The

11

2. Related Work

Gaussian random number generator used was an inversion based non-uniform random
number generator [28].

Compared to a fully loaded 8-core Intel Xeon server running at 3.07GHz it saves 89%
of energy and is twice as fast. Compared to a Nvidia Tesla C2050 graphics card it has
a 35% speed up and save 60% energy. They additionally list the absolute computation
times of a single FPGA and a dual core CPU (Intel Core 2 Duo T7250 at 2.0GHz with
2GB RAM) pricing using 10 million simulated paths. The speed-up achieved in this
comparison was 25. As only one product is presented, however, it is di�cult to say if the
FPGA and/or CPU pricing engines bene�t from knock-outs caused by narrow barrier
levels. Finally they also list a table showing the hardware utilization of two variants of
their design, which is bene�cial to comparisons with other projects.

Tian et al. [29] presented an implementation of a single option pricing model using the
GARCH model, which they implemented on a 64 FPGA node supercomputer called
Maxwell [22]. Furthermore they explored log-normal price movements and correlated
asset Value-at-Risk calculations. The normal random number generator they used was a
Box-Muller generator using Tausworthe uniform random number generators. As Schryver
et al. they split-up the simulation of paths to the FPGA and averaging or other operations
to the host. Their target precision was 0.01%.

Separation of path simulation and processing of the generated data between the FPGA
and host, as done by Schryver and Tian is feasible if the FPGA, allows for high speed
communication, e.g. using a PCI connection. If this is not possible a loss of computation
time would occur, as the FPGA would have to wait until all data is read out, next to the
necessity of RAM to store the generated data. It is reasonable to do this if the pricing
process consists of more complex operations than simply taking the average of all prices
and contains costly operations like multiplications or divisions.

As also mentioned by other authors, comparison between di�erent publications is very
di�cult as both FPGA and PC hardware di�er and practically no publication gives ab-
solute computation times, only compuatation times of the FPGA relative to software.
Additionally the great number of existing mathematical models for �nancial markets
and the even greater number of existing algorithms for generating normally distributed
random numbers, make it very unlikely that any two publications will have implemen-
tations of these functions with similar complexity. Because of this it is also important
to give a comprehensive list of used logical slices, DSPs etc. of the components, even
though these metrics may di�er between FPGA producers. The comparison of absolute
computation time with board utilization would then allow for better comparison between
publications.

This thesis tries to achieve this by presenting its results in a table containing utilization
information for all component blocks, a list of absolute computation times and speed-ups
relative to the compared software implementation.

12

Chapter 3
Theoretical Background

This chapter introduces di�erent methods and theories used in the pricing of structured
products and emphasizes on those which were chosen.

3.1. Simulating an Asset

The �rst step to simulate any �nancial derivative is to choose a model which realistically
represents its performance. First a list of the most common models with a short descrip-
tion is given, then the reasons for choosing the model used in this project are given and
�nally the iterative algorithm is derived from the model equation.

3.1.1. Black-Scholes Model

The Black-Scholes model, introduced in 1973, is a mathematical model of a �nancial
market with certain derivative investment instruments. The Black-Scholes formula can
be deduced from the model and gives an estimate of the theoretical price of an European
option, ignoring any dividends paid during the option's lifetime. The model led to a
boom in the option market, but has the �aw that it assumes a constant volatility which
cannot be observed in real markets. Next to the constant volatility and zero dividend,
the following assumptions about assets and the market are made:

• Constant risk-free interest rate: the rate of return of the riskless asset (e.g. gov-
ernment bond) is constant.

• E�cient markets (asset movements cannot be predicted): the instantaneous log
returns of the asset price is an in�nitesimal random walk with drift, therefore a
geometric Brownian motion.

13

3. Theoretical Background

• No arbitrage opportunity: there is no way of making a riskless pro�t.

• The possibility of borrowing and lending any amount of the asset is given.

• The possibility of buying and selling any amount of the asset is given.

• Frictionless market: transactions in the market do not have any fees.

3.1.2. Heston Model

The Heston model, introduced in 1993, generalizes the Black-Scholes model and has
a stochastic volatility (instantaneous variance), modeled by a CIR process, which is
based on a geometric Brownian motion. The two stochastic processes have a correlation
which is usually taken to be negative: an increase/decrease of the asset price leads to a
decrease/increase of the volatility. The set of parameters for the Heston model have to
be determined using market observed prices of European options for various strike prices
and maturities, it uses therefore implied volatilities. When this set of parameters have
been determined, the model can be used to price European, American or more exotic
options.

Because of the additional e�ort necessary to precisely calibrate a pricing engine using
the Heston model to have realistic parameters and the resulting increase in computation
time consumed to generate a pool of comparison prices for the FPGA engine, the simpler
Black-Scholes model was chosen for this project. This also allows for an evaluation of the
used Gaussian random number generator (GRNG) on a model using only one stochastic
process before tackling a more complex model using two stochastic processes.

3.1.3. Geometric Brownian Motion (GBM)

The geometric Brownian motion, modeling the price movement of an asset in the Black-
Scholes model, is a stochastic process in which the logarithm of the randomly varying
quantity follows a Brownian motion with drift. The stochastic di�erential equation de-
scribing the GBM is:

dSt = µSt dt+ σSt dWt , (3.1)

where St is the asset price at time t, µ is the percentage drift, σ is the percentage volatility
and Wt is a Wiener process or Brownian motion.

Solving this equation results in a log-normally distributed random variable, with initial
value S0 from which a sample of the asset price at any time t can be generated:

ln
St
S0

=

(
µ− 1

2
σ2

)
t+ σWt (3.2)

14

3. Theoretical Background

From this, the formula for an iteration step follows:

St = St−∆t · exp((µ− σ2

2)∆t︸ ︷︷ ︸
drift

+σW∆t(t))︸ ︷︷ ︸
diffusion

(3.3)

whereW∆t(t) is the increment of the Wiener process at time t and is therefore a normally
distributed random variable. Further the exponential function's input parameters can
be subdivided into a drift and di�usion part, with the drift part being constant.

To price multi-asset products it is necessary to simulate correlated assets. This can be
done using a multivariate GBM, with each price process observing:

dSit = µSit + σSit dW
i
t , (3.4)

This extension requires the use of correlated Wiener processes of the following form:

E(dW i
t dW

j
t) = ρi,jdt , (3.5)

where ρi,j is the correlation coe�cient between asset i and j.

3.1.4. Correlated Wiener Process

To generate correlated Wiener processes for n assets, n correlated simulation paths must
be generated. For a set of GRNs to be correlated, the following equations must hold:

i∑

k=1

αi,kxk = εi 1 ≤ i ≤ n (3.6)

i∑

k=1

α2
i,k = 1 1 ≤ i ≤ n (3.7)

i∑

k=1

αi,kαj,k = ρi,j ∀ j < i (3.8)

where εi are the correlated GRNs, xi are some uncorrelated GRNs, ρi,j the correlation
coe�cients and αi,j the coe�cients required for the calculation of εi. It should be noted
that the GRNs must have unit variance and zero mean, as this will become important in
the next section. Writing these conditions in matrix form results in a particular matrix
decomposition called a Cholesky factorization. In the case of three assets it has the form:

A = LL∗ =




1 0 0

a2,1 a2,2 0

a3,1 a3,2 a3,2







1 a1,2 a1,3

0 a2,2 a2,3

0 0 a3,3


 (3.9)

15

3. Theoretical Background

where αi,j = αj,i. The correlation of the RNs then breaks down to �ve multiplications:



ε1

ε2

ε3


 =




1 0 0

a2,1 a2,2 0

a3,1 a3,2 a3,2






x1

x2

x3


 (3.10)

3.2. Gaussian Random Number Generator (GRNG)

Often used methods for producing non-uniformly distributed RNs out of uniform RNs
are the transformation, rejection and inversion methods presented here as well as the
central limit theorem, which is limited to generating GRNs.

3.2.1. Box-Muller Method

A common method used for GRNGs is based on the Box-Muller transformation, which

transforms a pair of uniformly distributed RNs into a pair of GRNs through the use of

trigonometric functions:

Z0 = R cos(Θ) =
√
−2 lnU1 cos(2πU2) (3.11)

Z1 = R sin(Θ) =
√
−2 lnU1 sin(2πU2) (3.12)

where U0 and U1 are independent random variables with a uniform distribution and Z0

and Z1 are the resulting independent random variables with a Gaussian distribution.

As most uniform random number generators (URNG) cannot take a zero state, the bit

width of the generated RN gives a limit to how close a number can be to zero, which

limits the resulting tail of the Gaussian distribution. For a RN with a bit width of 32, the

Box-Muller transform will produce a normal random variable with a standard deviation

up to 6.66.

√
−2 ln(2−32) cos

(
2π

232

)
= 6.66 (3.13)

An advantage of this method is, that it only needs one URN per GRN. Disadvantages
for the implementation on hardware are the high hardware cost and the dependence of
the bit width with the tail region making it impossible to have a small tail distribution
with a lot of subdivisions and vice versa.

16

3. Theoretical Background

3.2.2. Cumulative Distribution Function Inversion Method

CDF inversion methods work by applying the respective inverse CDF to an input sample
from a uniform distribution, therefore it produces one GRN per URN. For a continuous
distribution the integral of the PDF of the desired distribution has to be taken. Since
this is analytically impossible for most distributions, including the Gaussian distribu-
tion, an approximation has to be computed. One method of approximation is the use
of rational polynomials, however, these are not suitable for an area e�cient hardware
implementation. A more suitable implementation on hardware has been presented by
Cheung et al. [26]. It evaluates the ICDF via piecewise polynomial approximation and
look-up tables (LUTs) with a hierarchical segmentation scheme.

3.2.3. Ziggurat method

A popular rejection sampling algorithm for software implementations of GRNGs is the
Ziggurat method as it provides high quality RNs. It randomly generates a point in a
distribution slightly larger than the desired distribution, then tests whether the generated
point is inside the desired distribution. If this is not the case, the RN is rejected and
the process repeated. A typical value generated by the algorithm requires one random
�oating-point value and one random table index, followed by one table lookup, one
multiply operation and one comparison. In some cases, about 2% of the time for a
normal distributions, more computations are required. A drawback of this method is,
that not every input RN produces one GRN, as certain samples are rejected, which
requires special considerations for its use in a Monte-Carlo simulation.

An implementation optimized for FPGAs has been presented by Edrees et al. [30]. It has
a main and tail unit where the latter is used for the before mentioned 2% of cases where
the PDF of the distribution must be computed. By using a di�erent clock frequency
and/or sharing the unit across multiple generators they compensate for the infrequent
use of this component. This would also allow the e�cient integration for Monte-Carlo
simulations.

3.2.4. Central Limit Theorem

The central limit theorem (CLT) states that the arithmetic mean of a su�ciently large
number of independent and identically distributed random variables (i.i.d.), each with
a well-de�ned expected value and well-de�ned variance, will be approximately normally
distributed. This distribution approaches an ideal bell curve as the number n of added
RNs goes to in�nity. Both �gures in 3.1 represent the PDF of n added URNs ranging from
zero to one, with the left-hand distributions unchanged and the right-hand distributions
shifted and scaled to have a variance of one.

17

3. Theoretical Background

CLT methods are, however, seldom used for applications in need of high precision normal
distributions as a large n value is required to achieve a good bell curve approximation.
This can be seen in the right-hand �gure in 3.1, where the higher error in the tail region
of CLT distributions with a small n can be seen. Small n values additionally result in a
limited distribution range. It is, however, used in combination with other methods like
error correction as proposed by Malik et al. [31].

They derived the following formula for the variance of a CLT distribution:

V ar(x) = σ2
x =

nm2

3
, (3.14)

where ±m is the range of the URNs and n is the number of URNs added. They fur-
ther describe how the use of speci�c n values give a distribution variance which is a
power of two, transforming a costly scaling multiplication into a simple shift operation
in hardware.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

unscaled distribution

s
c
a
le

d
 p

ro
b
a
b
ili

ty

n = 2

n = 3

n = 4

n = 8

n = 12

−4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

10
0

scaled and shifted distribution

s
c
a
le

d
 p

ro
b
a
b
ili

ty
 (

lo
g
)

ideal

n = 3

n = 4

n = 8

n = 12

Figure 3.1.: PDF of n added URNs

Starting from the simplest version of a CLT GRNG using n=3 without error correction,
multiple Monte-Carlo pricings were performed and their precision analysed. As the
Monte-Carlo pricings have no analytical solution, the precision has to be determined
by running multiple pricings to �nd a convergence point for the price. Figure 3.2 shows
the average convergence point error and standard deviation of six product pricings using
di�erent CLT GRNGs.
Surprisingly the relative convergence point errors were far below the desired one percent
and the relative standard deviations are practically the same for all n values. A reasonable
explanation for this behavior is the fact that a CLT GRNG has mainly an error in the
tail region of its distribution. In the case of the Monte-Carlo pricing of a worst-of barrier
option this only amounts to errors in the GBM for very rare large movements during a
single iteration. It can therefore be assumed that a small error in the tail region of the
GRNG's distribution is negligible for the pricing of worst-of barrier options.

18

3. Theoretical Background

 1k 10k 20k 30k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

number of Path Simulations

re
la

ti
v
e

 a
b

s
o

lu
te

 c
o

n
v
.

e
rr

o
r

(%
)

Call Option with 1 year expiration time

 1k 10k 20k 30k
0

0.5

1

1.5

2

number of Path Simulations

re
la

ti
v
e

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Call Option with 1 year expiration time

n=3

n=8

n=12

n=3

n=8

n=12

Figure 3.2.: Convergence error and standard deviation of CLT GRNGs with order 3, 8
and 12.

As the simplest CLT GRNG using only three RNs already ful�lled the required precision,
it was chosen to be used in the architecture. It has the additional bene�t that the GRNs
generated have a variance of one and do therefore not require any scaling, which would
result in a hardware costly multiplication operation.

3.3. Uniform Random Number Generator (URNG)

This section describes the two URNGs considered for use in the GRNG and the reasons
for choosing the latter.

3.3.1. Linear Feedback Shift Registers (LFSR)

The �rst URNG considered was a LFSR, which is a shift register whose input bit is a
linear function, usually an exclusive-or (XOR), of single bits of its previous state. They
are often used to generate URNs in hardware, as they provide acceptable randomness
at moderate hardware cost. The initial state of the generator is called seed. As the
operation on the register is deterministic, the complete sequence generated by an LFSR
is determined by the current state, an LFSR used as an URNG therefore generates
pseudorandom numbers. As such the sequence repeats after a certain number of steps,
called periodicity, which has a maximum possible value of 2N−1, where N is the bit length
of the LFSR. To achieve the maximum periodicity it is necessary to use an irreducible
polynomial over a �nite �eld of order 2, which is achieved by using xor operations on
single bits of the shift register. An extensive list of irreducible polynomials is given by
[32]. Figure 3.3 shows an example of an LFSR with bit width 8, with the irreducible
polynomial x8 + x6 + x5 + x4 + 1 resulting in a maximum periodicity of 28 − 1.

19

3. Theoretical Background

bit 0

01111001

Figure 3.3.: Example of a 8 bit LFSR with maximum periodicity 28 − 1 and irreducible
polynomial x8 + x6 + x5 + x4 + 1.

As previous diehard tests with an 32-bit LFSR performed by Greisen [33] have shown to
fail, this URNG was dismissed and the more sophisticated URNG, presented in the next
section, was considered.

3.3.2. Combined Tausworthe Generator

The generator proposed by Tausworthe [34] generates pseudorandom numbers using a
linear recurrence modulo 2 of the following form:

xn = axn− + ...+ akxn−k mod 2, xi, ai ∈ {0, 1} (3.15)

which has the characteristic polynomial [35]:

P (z) = zk − azk− − ...− ak (3.16)

Fractional numbers from zero to one are then formed by taking blocks of the generated
bit sequence:

un =
L∑

i=1

xns+i−12−i (3.17)

where L is the word-length and s the shift value. An example of this principle can be
seen in �gure 3.4. This generator has a maximum possible periodicity of 2k − 1 if the
characteristic polynomial P is primitive, s0 6= 0, and s is coprime to p.

11010010011000010111111000110101
︸ ︷︷ ︸

s
︸ ︷︷ ︸

L

Figure 3.4.: Example showing three numbers generated by a Tausworthe generator using
word-length L = 8 and a shift value s = 6.

20

3. Theoretical Background

The direct use of this generator would, however, require to perform s steps for each

random number un. L'Ecuyer [35] proposed the use of recurrences with a primitive

trinomial as characteristic polynomial:

P (z) = zk − zq −  (3.18)

with 0 < 2q < k, 0 < s ≤ k − q < k ≤ L, gcd(s, 2k − 1) = 1.

A generator of this form can be realized by the logic shown in �gure 3.5. It has, however,
two �aws. First, the characteristic polynomial has few nonzero coe�cients which leads
to statistical defects and second, the periodicity cannot exceed 2L, which, depending on
the word-length, might lead to repetitions of the same sequences during Monte-Carlo
simulations.

D Q

L

<< q

"111111110000"

<< s

>> k-s

L

k︷ ︸︸ ︷ L−k︷︸︸︷

Figure 3.5.: General form of a Tausworthe generator using a primitive trinomial.

L'Ecuyer [35] has shown how the combination of the output of three such Tausworthe

generators with a three-way XOR gate solves these problems. Figure 3.6 shows such

a combined Tausworthe generator. It is also the one used in the architecture. The

combined characteristic polynomial now takes the form:

Pcomb(z) = P(z) · P(z) · P(z) (3.19)

where Pi(z) is the characteristic polynomial of a single Tausworthe generator. It has now
many nonzero coe�cients, eliminating the �rst �aw. The second �aw of low periodicity
is solved by using Tausworthe generators of di�erent periodicity. Through this the peri-
odicity of the combined Tausworthe generator becomes the product of the periodicities
of the used generators. In the shown example this gives a periodicity of 288.

3.4. Pricing

Figure 3.7 depicts the process �owchart of a single path simulation. When a new path
simulation starts, the current prices of all underlying assets are set to one, representing
their relative initial value. A loop is then started which, if not interrupted, is repeated

21

3. Theoretical Background

D Q

32

<< 13

"0xFFFFFFFE"

<< 12

>> 19

32

D Q

32

<< 2

"0xFFFFFFF8"

<< 4

>> 25

32

D Q

32

<< 3

"0xFFFFFFFE"

<< 17

>> 11

32

32

Figure 3.6.: Combined Tausworthe generator with periodicity 288 and bit width 32.

until the product reaches maturity. Depending on ∆t and the time to maturity the
number of steps which have to be performed is:

N =
time to maturity

∆t
(3.20)

As N has to be an integer, ∆t is determined from of the prede�ned time to maturity
and number of steps and not the other way round.

This iteration loop is, however, immediately stopped if at any iteration step any price
of an asset falls on or below the prede�ned barrier level. When this happens a break
signal is sent out which represents a zero payo� for the current path simulation and a
new simulation is started. If this doesn't happen another check is performed which tests
whether the price of the worst performing asset lies on or below the prede�ned strike
price. If this is the case, again a break signal is sent out again representing a zero payo�.
If this is not the case the the simulated product has a payo� which is then sent out for
further processing.

To determine the actual price of the product the mean payo� of all simulated paths,
including zero payo�s, has to be taken.

22

3. Theoretical Background

Start new

Simulation

Perform one

iteration step

Was

the barrier

hit?

Have all

iteration steps been

performed?

Does the

worst performing

asset lie above the

strike price?

Send the end price

of the worst

performing asset

Start new

Simulation

Send

break signal

Send

break signal

No

No

No

Yes

Yes

Yes

Figure 3.7.: Flowchart of the product simulation

23

3. Theoretical Background

3.5. Summary

The model chosen to simulate the underlying assets is the Black-Scholes model, as it
facilitates the evaluation of the GRNG by its simpler calibration than more sophisticated
models. It was implemented as a multivariate geometric Brownian motion.

As simulations of the pricing engine had shown that a generator using the central limit
theorem with three added URNs already ful�lled the required pricing precision, this
very slim GRNG was chosen. To generate the necessary URNs a combined Tausworthe
generator built of three Tausworthe generators was chosen as it has good statistical
properties and a very high periodicity.

24

Chapter 4
Hardware Architecture

This chapter describes the individual components used in the architecture on a detailed
level. A simpli�ed overview of the architecture is given in �gure 4.1, for a more detailed
block diagram refer to appendix B. The complete design was implemented on a Xilinx
Zynq-7020 all processing system on a chip (SoC) with a developing environment featuring
a programmable logic (PL) and a processing system (PS).

AXI4 I/O

Interface

Storage and

Control

Seed

Generator

Memory

23 x 32 bit

MultiCorePricer 2015

Core Bank

Programmable Logic

Floating Point Pipeline

Processing System

Zynq-7020 SoC

GRNG

GRNG

GRNG

Iteration

Block
Apply

Correlation �x
2

�oat
ex 1

N

∑

Figure 4.1.: Simpli�ed design overview

25

4. Hardware Architecture

4.1. Programmable Logic

The programmable logic contains the pricing engine which performs the Monte-Carlo
pricing described in 3.4 and runs autonomous after the model parameters and start
signal have been sent by the processing system. This section gives a detailed description
of its components, along with their design considerations.

4.1.1. I/O Interface and Storage

To handle communication between the PS and PL an AXI4-Lite protocol is used with
a word width of 32-bit. The protocol was chosen as it is a more area-e�cient subset of
the well established and portable AXI4 protocol, which in contrast to the latter sends
only one data word per transaction. The AXI4-Lite is a better �t as there is only data
transfer at the start and end of a pricing. Another reason is that, after the initial setup,
most of the time only one parameter has to be changed for each new pricing.

The implemented storage, necessary to hold all pricing parameters, consists of a RAM
of 23 32-bit words (92 bytes) with the following memory distribution:

• 36B: 9 starting seeds for the seed generator

• 44B: constant model parameters

• 4B: request and acknowledge between prog. system and prog. logic

• 8B: output value

More details on the I/O interface and storage are presented in appendix A.

4.1.2. Core

The Core block is the main building block of the architecture, with the full design con-
taining 26 instantiations. Figure 4.2 shows a simpli�ed block diagram of a single core.
Each block generates a potential price for the de�ned product by simulating its evolution
using the iteration formula derived from the GBM model. As shown in chapter 3, each
simulation step of three correlated underlyings requires the generation of three GRNs
and correlating them.

26

4. Hardware Architecture

Gaussian Random

Number Generator

Gaussian Random

Number Generator

Gaussian Random

Number Generator
Apply

Correlation

Iteration Block

Model Parameters

Seeds

Seeds

Seeds

min(log(Sn))

Figure 4.2.: Simpli�ed Core block diagram

Bit Widths

To determine the ideal bit widths of all signals, various tests have been performed where
exterior or interior signals where quantized to certain bit widths. Tests were �rst per-
formed for di�erent bit widths of the GRNs. To evaluate the precision, the convergence
point of six di�erent worst-of barrier options were determined by running a high number
of pricings with the corresponding number of simulated paths per pricing. The mean
value of these pricings was then taken as the ground truth and the same was done using
quantized GRNs. For all quantizations, three integer and one sign bit were used, the
number of fractional bits is therefore the bit width minus four.

Figure 4.3 shows the convergence error for di�erent GRN quantizations and bit widths.
In the left-hand plot it can be seen that the convergence errors for di�erent bit widths
lie very close to each other. A slightly larger error can be seen for the 8 bit quantized
GRN, having only four fractional bits, implying that the low resolution in the Gaussian
distribution only has a small impact on the precision. The right-hand plot shows the
relative standard deviation of the pricing for di�erent numbers of simulated paths and
quantization. Here a perfect overlap occurs, showing that the standard deviation of the
pricing engine does not depend on the quantization of the GRNs.

The GRNs were the only signals whose bit widths were determined by statistical evalu-
ation. All other bit widths were determined by performing single path simulations with
quantized parameters, at �rst with zero drift, then with zero di�usion, and then with
nonzero parameters. For the drift part an acceptable error of 0.01% was pursued and
achieved, to have leeway to examine the GRNG's impact on precision.

A list of the input signals and bit widths can be found in appendix A. The signal bit
widths inside a core block can be seen in �gure 4.6.

27

4. Hardware Architecture

 1k 10k 20k 30k
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of Path Simulations

re
la

ti
v
e

 a
b

s
o

lu
te

 c
o

n
v
.

e
rr

o
r

(%
)

8bit

12bit

16bit

32bit

 0 10k 20k 30k
0

0.5

1

1.5

2

2.5

number of Path Simulations

re
la

ti
v
e

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

8bit

12bit

16bit

32bit

Figure 4.3.: Mean convergence error of six products using di�erent GRN bit widths

4.2. Combined Tausworthe Generator

Every core contains nine Tausworthe generators as URNGs, three for each GRNG. Fig-
ure 4.4 shows the implemented combined Tausworthe generator used for generating the
URNs. As described in chapter 3 the combined Tausworthe generator consists of three
Tausworthe generators and therefore needs three 32-bit seeds to start.

D Q

SetxDI

Seed0xDI

32

<< 13

"0xFFFFFFFE"

<< 12

>> 19

32

D Q

Seed0xDI

32

<< 2

"0xFFFFFFF8"

<< 4

>> 25

32

D Q

Seed0xDI

32

<< 3

"0xFFFFFFFE"

<< 17

>> 11

32

32

0

1

0

1

0

1

Figure 4.4.: Combined Tausworthe generator

28

4. Hardware Architecture

CLT Gaussian Random Number Generator

Every core contains three CLT GRNGs, one for each asset price simulation. As explained
in chapter 3 the GRNG works by adding three uniform RNs generated by the combined
Tausworthe generators. The implementation of the GRNG can be seen in �gure 4.5.

To have a mean value of zero it is necessary to subtract the maximally possible value
divided by two. In the case of n=3 the maximum value is a odd number making it
necessary to append a fractional bit. In the case of the topmost Tausworthe generator
in �gure 4.5 this requires the addition of three bits, one because the subtracted value
is 1.5 times the value 13 bits can hold, one for the additional fractional bit and one for
sign. Since the output of the upper adder is always negative, the bit width isn't increased
over the last adder. To have unit variance, the output has to be interpreted as having
two integer bits, 13 fractional bits and a sign bit, this gives the GRNG a range from
-2.9996337890625 to 2.9996337890625.

Tausworthe

Generator

SetxSI

Seed0xDI

Seed1xDI

Seed2xDI

SetxSI

RandxDOSeed00xDI

Seed01xDI

Seed02xDI

Tausworthe

Generator
Seed0xDI

Seed1xDI

Seed2xDI

SetxSI

RandxDOSeed10xDI

Seed11xDI

Seed12xDI

Seed20xDI

Seed21xDI

Seed22xDI

Tausworthe

Generator
Seed0xDI

Seed1xDI

Seed2xDI

SetxSI

RandxDO

1.5x(2^13-1)

1332

32

32

13

13

16

14

RandxDO
16

Figure 4.5.: Central Limit Theorem GRNG using 3 additions

Correlator

The correlator block performs the correlation of the GRNs by applying the Cholesky
matrix to the three GRNs, as shown in chapter 3, which, for the case of three underlying
assets, results in �ve multiplications.

29

4. Hardware Architecture

Iteration Block

The iteration block simulates the hypothetical evolution of the de�ned product by per-
forming the prede�ned number of iteration steps of the GBM model. As shown in 3.3,
the exponential's input can be split into a drift and a di�usion part. Substituting the
Wiener process increment Wn for

√
∆t εn, where εn is a correlated GRN, the iteration

formula then becomes:

Sn = Sn−1 exp
((
µ− σ2

2

)
∆t+ σ

√
∆t εn

)
(4.1)

Implementing this formula would however be very hardware costly and slow as for each
iteration step a multiplication has to be performed. To avoid this, the whole model
simulation is performed using the logarithm of the formula. An iteration step is then
de�ned by the following formula:

ln(Sn) = ln(Sn−1) + (µ− σ2

2 ∆t)︸ ︷︷ ︸
drift

+ (σ
√

∆t εn)︸ ︷︷ ︸
diffusion

(4.2)

With the exception of εn, which changes every clock-cycle, all formula variables are
constant. One iteration step now only consists of two additions and one multiplication.
Since all asset prices are computed relative to their initial prices, all ln(S0) values can be
set to zero representing a price of one or 100%.

Figure 4.6 shows the block diagram of the iteration block. The iteration block consists of
three iteration cells each consisting of a multiplier and two adders, a �nite state machine
denoted as FSM and logic for testing for the payout scenarios described in chapter 3. The
FSM is responsible for checking whether a barrier event has occurred, all iteration steps
have been performed and handling the corresponding request and acknowledge signals,
as well as sending the worst performing asset's price to the �oating point pipeline if its
end price lies above the strike price. After receiving an acknowledge signal the FSM
starts a new simulation.

The number of iteration steps is de�ned by the input signal NStpxDI. The SetxSI sig-
nal informs the FSM that all seeds of the corresponding GRNG have been set and an
initialization count is started which tells the FSM when the �rst GRNs arrive. Finally
there is the RestartxSI signal which let's the core immediately start a new simulation.
This functionality is needed to start a complete new product pricing and is normally sent
after a new parameter set has been written to the programmable logic.

4.2.1. Controller

The Controller block initializes the cores after all input parameters have been written
and is responsible for handling requests and acknowledges from all cores. Break requests
(signaling a barrier event) and normal requests (sent with a simulation price) are handled

30

4. Hardware Architecture

log(Strike)

0

1

SetxSI

LogStrikexDI

LogBarxDI

EpsxDI(0)

VolSdtxDI(0)

DriftxDI(0)

NStpxDI

AckxSI

BrkAckxSI

RestartxSI

Test for

Barrier Hit

Iteration Cell (0)

Iteration Cell (1)

FSM
15

18

18

21

28

32

EpsxDI(1)

VolSdtxDI(1)

DriftxDI(1)

Iteration Cell (2)
EpsxDI(2)

VolSdtxDI(2)

DriftxDI(2)

34

22

min
< log

(Strike)

FExxDO
25

ReqxSO

BrkReqxSO

Figure 4.6.: Iteration Block

separately with their own counter. Both request types are added up to have a total
simulation count. Break requests simply increase the break counter whereas a normal
request gets the simulated price sent to the �oating-point pipeline. If the total simulation
count reaches the prede�ned number of path simulations, the controller block writes the
result and output request into the corresponding registers.

Seed generator

Simulations of the pricing engine, using the combined Tausworthe generators, showed
that the choice of starting seeds for each generator is of signi�cant importance for the
performance of the Monte-Carlo pricing. The �rst attempt of simply increasing the
starting seeds of each generator by a �xed number showed a very poor performance
for small increments with the price converging to a completely incorrect value. Larger
increments of each seed returned better results but were still not satisfying. It was
therefore deemed necessary to develop a more sophisticated method.

To keep the number of starting seeds low and save startup time, an onboard seed gen-
eration scheme was chosen. Instead of using a complete new URNG, the existing one
was modi�ed. Three equal URNGs were stacked similar to the GRNG block, therefore
making nine starting seeds necessary. After the �rst URNs are generated, instead of
continuing the sequence, two new seeds are introduced from the URNs generated by the

31

4. Hardware Architecture

two other URNGs for each URNG. A more easily understandable block diagram of the
seed generator can be seen in �gure 4.7.

Global Counters

To check whether the prede�ned number of path simulations has been performed, two
global counters are implemented in the controller. A break counter which counts the
paths stopped by barrier events and worst performing assets ending below the strike
price, and an add counter which counts the number of added paths. The count of both
is summed up and checked against the requested number of path simulations. When
the total count surpasses it, an additional 45 clock cycles are run to make sure that the
�oating point pipeline is �ushed out. This is necessary because both the break and add
count are increased when a core sends the corresponding request, which means that the
sent price from a core has to go through the �oating point pipeline before the �nal price
is updated.

Floating Point Pipeline

The �oating-point pipeline consists of three Xilinx �oating-point IP blocks. The �rst
block computes the exponential function and has a single-precision �oating point (SP-
FP) number as input and output. As all simulation prices up to this point have been
computed as the logarithm of the price it is necessary to compute the exponential function
of them. The Xilinx �oating-point IP represents a slim and fast solution that doesn't
occupy any costly DSP slices of the FPGA. Logic before the �rst block converts the price
from a �xed-point number to a SP-FP number. The mantissa of 23 bits is a more than
su�ciently high precision to store the computed simulation prices.

The second block consists of a SP-FP subtracter which is used to subtract the strike
price, as the payo� is the di�erence of the end price to the strike price.

The third and last block is a double-precision FP adder which sequentially sums up all
weighted prices. Since the number of simulated paths is always set to a power of two,
the division of a simulation price by the total number of simulations is reduced to a
decrease of the exponent of the FP number. This subtraction and the conversion to a
DP-FP number are performed through logic between the second and third block. The
conversion to a DP-FP number is necessary as otherwise almost all fractional information
of a simulated path's price would be lost during addition for a high number of simulated
paths (220 ≈ 1e6).

32

4. Hardware Architecture

4.3. Processing System

The processing system runs a C program with pricing parameters (model simulation
parameters and product information) which are written to its header �le using a Matlab
script. The program handles the input and output to the programmable logic and sends
the pricing results to the host computer via UART after all parameter sets have been
priced.

4.3.1. Batch Pricing

To reproduce a practical application, two parameter change functionalities have been
implemented. The �rst changes all pricing parameters, allowing the recon�guration to a
di�erent asset set, barrier level, strike price etc. The second changes only one parameter,
the barrier level. Using the second method of only changing one parameter saves writing
cycles and therefore time. The barrier level parameter was chosen as it is, besides time
to maturity and strike price, a parameter which is de�ned by the issuer, with all other
parameters being derived from historical data. Other single parameter change functions,
including parameters derived from historical data, could be easily implemented. Such
single parameter change functions are useful to compute the so called "Greeks". These
are quantities representing the sensitivity of the price to di�erent parameter �uctuations
as volatility, time, risk-free rate and others.

4.3.2. Pricing Flow

After programming the PS and PL, the following steps are performed by the PS:

• Write starting seeds to PL

• Write pricing parameters to PL

• Write start signal to PL

• Poll the result ready register until it is one

• Read the result register

• Loop for the number of parameter sets -1:

� Write new parameter set

� Poll the result ready register until it is one

� Read result

• Return prices to host computer

33

4. Hardware Architecture

The initial writing process is broken into two stages, as the PL starts generating seeds
for the RNGs as soon as all starting seeds have been written. The pricing parameters are
distributed over multiple input words as all model parameters have di�erent optimized
bit widths. Additionally the last bit of the last written input word acts as a ready bit,
signaling the PL that all pricing parameters have been written and that it can start the
pricing.

After �nishing pricing, the PL writes a result ready signal to a designated communication
register which is being polled by the PS. If other parameter sets are still left, the PS writes
a single or multiple parameters to the corresponding registers and an acknowledge signal
to the communication register, acting as a starting signal for the PL to commence a new
pricing.

34

4. Hardware Architecture

D Q

SetxDI

OSeed0xDI

32

<< 13

"0xFFFFFFFE"

<< 12

>> 19

32

D Q
32

<< 2

"0xFFFFFFF8"

<< 4

>> 25

32

D Q
32

<< 3

"0xFFFFFFFE"

<< 17

>> 11

32

32

0

1

0

1

0

1

TSeed0xDI

OSeed1xDI

TSeed1xDI

OSeed2xDI

Rand0xDO

D Q

SetxDI

OSeed0xDI

32

<< 13

"0xFFFFFFFE"

<< 12

>> 19

32

D Q
32

<< 2

"0xFFFFFFF8"

<< 4

>> 25

32

D Q
32

<< 3

"0xFFFFFFFE"

<< 17

>> 11

32

32

0

1

0

1

0

1

TSeed0xDI

OSeed1xDI

TSeed1xDI

OSeed2xDI

Rand1xDO

D Q

SetxDI

OSeed0xDI

32

<< 13

"0xFFFFFFFE"

<< 12

>> 19

32

D Q
32

<< 2

"0xFFFFFFF8"

<< 4

>> 25

32

D Q
32

<< 3

"0xFFFFFFFE"

<< 17

>> 11

32

32

0

1

0

1

0

1

TSeed0xDI

OSeed1xDI

TSeed1xDI

OSeed2xDI

Rand2xDO

Figure 4.7.: Seed generator built out of three combined Tausworthe generators

35

Chapter 5
Results

In this chapter the project results are presented. This includes a hardware utilization
analysis, the methods chosen to test precision and speed-up as well as a listing of the
achieved results.

5.1. Utilization

The design presented in this thesis was implemented on a Zynq-7020 SoC using the
Xilinx Vivado Design Suite v2014.1 with synthesis optimized for speed. Table 5.1 shows
the number and percentage of resources used by di�erent components. Looking at the
top �gure for the full architecture it can be seen that the maximum number of cores
is limited by the available DSP units on the Zynq-7020. Since the DSP slices of each
core are subdivided to the Correlator and the Iteration Block no absolute number of
DSP usage can be given for these components. Considering that the correlator performs
�ve multiplication operations and the iteration block only one, though with a higher bit
width, it can be assumed that the correlator uses about 80% of the 8 DSP slices. The
last row shows the �gures for the AXI4-Lite communication block and the control logic
from which can be seen that the overhead of hardware not used for pricing is less than
5% of the available hardware resources.

5.2. Precision

To evaluate the precision of the design, the convergence points (CP) of pricings of six
di�erent products performed by the FPGA have been compared to the corresponding
ground truth prices. The CP of the Monte-Carlo pricings have been determined by
simulating a total number of 225 paths for 214 and 217 path pricings. This means the

36

5. Results

DSP48 LUTs Registers

No. Pct. No. Pct. No. Pct.

Full Architecture 211 95.9% 41394 77.8% 41895 39.4%

All Cores (26) 208 94.5% 35663 67.0% 36868 34.7%

Single Core 8 3.6% 1372 2.6% 1418 1.3%

Single GRNG 0 0.0% 298 0.6% 306 0.3%

Correlator 68 0.1% 154 0.1%

Iteration Block 410 0.8% 346 0.3%

Float P. Pipeline 3 1.4% 2212 4.2% 3260 3.1%

Seed Generator 0 0.0% 2302 4.3% 267 0.3%

Comm. & Control 0 0.0% 1217 2.9% 1500 3.6%

Table 5.1.: Hardware usage of di�erent components

average price of 211 pricings using 214 paths and the average price of 27 pricings using
217 paths. The ground truth for the Black-Scholes comparison is the analytical solution
computed using Matlab's blsprice function. The ground truth for the worst-of barrier
options were computed by running a Matlab pricing script for a total of 224 paths, a
reduced version of the script can be found in appendix B.

5.2.1. Black-Scholes Comparison

Because of its design the architecture cannot price a single asset call option. To test
it against the analytical solutions of Black-Scholes pricings the design had therefore to
be modi�ed to ignore the output of the latter two simulated assets and ignore barrier
events. The errors of the CPs were computed for pricings using 214 and 217 simulated
paths. The simulation parameters were computed using selected historical data of the
SIX Swiss Exchange from 2010 to 2014 and a risk-free rate of 2% was used. Strike prices
were chosen from a range of 70% to 120% of the initial price. Each product setup was
evaluated with six di�erent stocks to derive the average error. For an extensive list of the
average error for di�erent product parameters and a list of the stocks used, see appendix
C.

Figure 5.1 shows di�erent average errors for pricings using 214 and 217 simulated paths
and di�erent strike prices. The left-hand plots show the average absolute error and
the right-hand plots show the average error. It can be seen in all �gures that there is
the tendency of a higher error for higher strike prices. This tendency will also be seen
for the worst-of barrier option for high barrier levels in the next section and will be
further explained there. Comparing the upper 214 path pricings against the lower 217

path pricings, it can also be seen that this higher error is reduced for pricings using

37

5. Results

more simulated paths. As with higher strike prices only a few simulated paths actually
contribute to the �nal pricing, since most end below the strike price and count as zero, this
observation points to statistical defects in the combined Tausworthe generator. Shorter
option maturity times also lead to fewer simulation paths surpassing the strike price
amplifying this e�ect, as can be seen for the half year maturity call option.

The right-hand plots reveal that there is a tendency for the CP error to be negative.
This behavior, if still existent after improvements in the URNG, could be characterized
to improve pricing by a post programmable logic correction. The overall average CP
error for the Black-Scholes pricing is 0.071%/0.047% for pricings using 214/217 paths.

70% 80% 90% 95% 100% 110% 120%
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Strike Price

A
v
e

ra
g

e
 A

b
s
o

lu
te

 C
o

n
v
e

rg
e

n
c
e

 E
rr

o
r

[%
]

Call Option Pricing using 2
14

 Simulated Paths

0.5 years

1 year

2 years

3 years

70% 80% 90% 95% 100% 110% 120%
−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

 0.00

Strike Price

A
v
e

ra
g

e
 C

o
n

v
e

rg
e

n
c
e

 E
rr

o
r

[%
]

Call Option Pricing using 2
14

 Simulated Paths

0.5 years

1 year

2 years

3 years

70% 80% 90% 95% 100% 110% 120%
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Strike Price

A
v
e

ra
g

e
 A

b
s
o

lu
te

 C
o

n
v
e

rg
e

n
c
e

 E
rr

o
r

[%
]

Call Option Pricing using 2
17

 Simulated Paths

0.5 years

1 year

2 years

3 years

70% 80% 90% 95% 100% 110% 120%
−0.50

−0.45

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

 0.00

Strike Price

A
v
e

ra
g

e
 C

o
n

v
e

rg
e

n
c
e

 E
rr

o
r

[%
]

Call Option Pricing using 2
17

 Simulated Paths

0.5 years

1 year

2 years

3 years

Figure 5.1.: Average absolute error and average error for call options

38

5. Results

5.2.2. Worst-of Barrier Call Option Comparison

Figure 5.2 shows di�erent average error plots for pricings using 214, 217 and 220 simulated
paths for di�erent barrier levels. The same historical data was used as with the Black-
Scholes pricings. An extensive list of the average errors for di�erent types and a list of
the stock-sets used can be found in appendix C.

As with the Black-Scholes pricing there is a higher error for pricings where only few
simulation paths contribute to the price as is here the case with higher barrier levels.
Contrary to Black-Scholes the CP error is higher for longer maturity times, this is be-
cause a longer duration enables more barrier hits reducing the number of simulations
contributing to the product price.

Despite the statistical defects of the Tausworthe generator and the use of a CLT Gaussian
distribution the standard deviation of pricings performed by the FPGA and software were
practically equal. The average standard deviation for di�erent product parameters can
be seen in the appendix list. It should �rst be noted that barrier values above 80% are
practically never used in any real products, but are useful to analyze the architecture's
behavior, the same can be said about barrier values below 50%. Because of this, they are
excluded in the overall precision calculation. Second, for the hypothetical 90% barrier
products a very high number of path simulations is necessary to have a low standard
deviation over multiple pricings. E.g. the relative standard deviation of a pricing using
217 paths, a 90% barrier and maturity of 2 or 3 years was always above 1%, a multiple of
the CP error. This means that pricings using multiple millions of simulated paths would
be necessary to have a more approximate CP ground truth and error �gure. Taking a
realistic range into account, the average CP error for a pricing with a barrier between
50% and 80% and maturity of 1 to 3 years is 0.074%/0.067%/0.059% for pricings using
214/217/220 paths.

As with the Black-Scholes pricing a certain error characteristic was found for the average
error, as can be seen on the right-hand plots. This characteristic, as mentioned in the
last section, stems mainly from the Tausworthe generator, leading to the conclusion
that shorter sequences of generated random numbers show stronger statistical defects.
Software simulations of the model, using seeds generated with Matlab's randi function
instead of the seed generator, have shown that these statistical defects are caused by the
generated seeds. The reason for this is most likely, that the seed generator is a modi�ed
version of the combined Tausworthe generator. A completely di�erent uniform random
number generator as seed generator or other way of providing seeds could therefore
signi�cantly improve precision.

These model simulations have further shown that even when using "ideal" seeds, the
GRNG using three summing terms from combined Tausworthe generators, does not
achieve the same precision as a GRNG using three Matlab random numbers. This
demonstrates that a statistically ideal uniform distribution is highly important in a CLT
GRNG.

39

5. Results

15% 40% 50% 60% 70% 80% 85% 90%
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Barrier

A
v
e
ra

g
e
 A

b
s
o
lu

te
 C

o
n
v
e
rg

e
n
c
e
 E

rr
o
r

[%
]

WBO Pricing using 2
14

 Simulated Paths

1 year

2 years

3 years

15% 40% 50% 60% 70% 80% 85% 90%
−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

 0.2

Barrier

A
v
e
ra

g
e
 C

o
n
v
e
rg

e
n
c
e
 E

rr
o
r

[%
]

WBO Pricing using 2
14

 Simulated Paths

1 year

2 years

3 years

15% 40% 50% 60% 70% 80% 85% 90%
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Barrier

A
v
e
ra

g
e
 A

b
s
o
lu

te
 C

o
n
v
e
rg

e
n
c
e
 E

rr
o
r

[%
]

WBO Pricing using 2
17

 Simulated Paths

1 year

2 years

3 years

15% 40% 50% 60% 70% 80% 85% 90%
−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

 0.2

Barrier

A
v
e
ra

g
e
 C

o
n
v
e
rg

e
n
c
e
 E

rr
o
r

[%
]

WBO Pricing using 2
17

 Simulated Paths

1 year

2 years

3 years

15% 40% 50% 60% 70% 80% 85% 90%
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Barrier

A
v
e
ra

g
e
 A

b
s
o
lu

te
 C

o
n
v
e
rg

e
n
c
e
 E

rr
o
r

[%
]

WBO Pricing using 2
20

 Simulated Paths

1 year

2 years

3 years

15% 40% 50% 60% 70% 80% 85% 90%
−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0.0

 0.1

 0.2

Barrier

A
v
e
ra

g
e
 C

o
n
v
e
rg

e
n
c
e
 E

rr
o
r

[%
]

WBO Pricing using 2
20

 Simulated Paths

1 year

2 years

3 years

Figure 5.2.: Average absolute error and average error for worst-of barrier call options

40

5. Results

5.3. Speed-Up

The speed-up was determined by comparing the time the FPGA needed to price a product
with the time needed by the Matlab script running on a single Intel i5-4200U Core running
at 1.60GHz with 8GB RAM in Matlab R2013b 64-bit on Ubuntu 12.04. The clock
frequency on the FPGA was limited to 100MHz as the input/output pins only supported
velocities up to this region. Using a separate clock-domain for the communication block
could further increase computation speed.

Table 5.2 shows the average computation times on CPU and FPGA and the resulting
speed-ups for a selected group of products. A more extensive list and a list of the stock-
sets used can be found in appendix C. The speed-up can be split into two parts, one
resulting from the hardware acceleration and one from an optimized path simulation
scheme. The �rst part which is realized by using parallelism and bit width reduction
gives a speed up of about 550, which can be seen for very low barrier products in which
almost no barrier events occur. The second part is the optimized path simulation scheme
which wastes no time continuing the path simulation after a barrier event has occurred
and immediately starts a new path simulation. This gives for high barrier products of
80%, speed-ups ranging from 850 to 1450. Summarizing, the pricing of a three year
product using 214 simulated paths requires less than 20ms, the pricing of a two year
product less than 13ms and the pricing of a one year product less than 7ms.

Depending on the parameter set the resulting pricing has a smaller or bigger standard
deviation, it lies therefore in the responsibility of the issuer to choose the number of
simulated paths required to determine an "accurate" price. As the computation times
scale linearly with the number of simulated paths, they can readily be multiplied by a
factor to determine the computation time for other numbers of simulated paths.

41

5. Results

Barrier Time to CPU FPGA

Price Maturity Comp. Time Comp. Time Speed-up

40% 1 year 3.5s 6.4ms 550

60% 1 year 3.5s 6.1ms 574

80% 1 year 3.5s 4.1ms 852

40% 2 years 6.9s 12.5ms 554

60% 2 years 6.9s 10.9ms 638

80% 2 years 6.9s 6.0ms 1171

40% 3 years 10.4s 18.3ms 568

60% 3 years 10.4s 14.6ms 713

80% 3 years 10.4s 7.2ms 1462

Table 5.2.: Speed-ups and computation times for pricings using 214 simulated paths

42

Chapter 6
Conclusion & Outlook

This project has shown that Gaussian distributions generated using the central limit
theorem are well suited for Monte-Carlo pricing of multi-asset �nancial products. Even
with the smallest necessary number of three addition terms a very accurate pricing is
possible reducing the necessary hardware space considerably.

The used AXI4-Lite communication protocol allows for seamless implementation in other
systems and the introduced parameter/result storage enables batch pricing of multiple
products with the possibility of only changing a single parameter for a more e�cient
processing �ow.

The implemented combined Tausworthe URNG has proven to be a fast solution which
requires a sophisticated seed selection, as using poorly chosen seeds leads to strong sta-
tistical defects in the CLT GRNG. Using the presented seed generator these statistical
defects could be reduced but not completely eliminated as software simulations have
shown.

The use of independently running cores being handled by a single controlling block and
using a single �oating-point pipeline allows for an easy scaling of the design onto larger
FPGAs and the code versatility makes it easy to manipulate signal bit widths within the
architecture.

The desired precision of a relative convergence point error of 1% or smaller was achieved
and could be further improved, foremost by eliminating the statistical defects of the
combined Tausworthe generator, either through better seeds or using another URNG. An
increase of the input and internal signal bit widths could additionally improve precision.

The high potential of specialized architectures to accelerate the pricing of exotic �nancial
products has been demonstrated and could be seen especially strong in this product, as
it becomes void if the barrier level is touched. This bene�t can be seen in the high
speed-up achieved especially for high barrier options. The speed-up of 550 without

43

6. Conclusion & Outlook

considering barrier events, is surprisingly high, even when considering the fact that the
comparison was made to a single CPU core, as the design was also run on a FPGA board
with comparatively small hardware capabilities. Top speed-ups for three year and 80%
barrier products went over 1450. Overall the design realizes the pricing of a three year
product in less than 20ms, a two year product in less than 13ms and a one year product
in less than 7ms.

Outlook

Further development of the architecture presented in this thesis could include the imple-
mentation of the Heston model or other more sophisticated models. As the scheduling
process is handled by the controller, the exchange of the model would break down to
exchanging the iteration block and changing the number of GRNGs. In case of the He-
ston model with changing volatility three additional GRNGs would be needed for each
core.

As the architecture's clock frequency was bottle-necked by the I/O pins to 100MHz, a
signi�cant speed-up could simply be achieved by introducing a second clock domain solely
for the communication block. The use of the antithetic variates method, which uses for
each generated random number sequence also its mirrored negative sequence, could also
signi�cantly increase speed. The already correlated GRNs can simply be reversed to
gain a second GRNs set, this would e�ectively half the used area of all the core logic
excluding the iteration block. A thorough quantitative analysis on whether this has a
negative impact on the Monte-Carlo pricing would have to be performed to con�rm its
applicability.

44

Appendix A
MultiCorePricer 2015 Datasheet

Architecture for the Monte-Carlo pricing of worst-of barrier call options, built from three
underlying assets, realized on the Xilinx Zynq-7020 SoC.

A.1. Electrical characteristics

Supply voltage 3.3 V

Clock rate 100 MHz

Total On-Chip Power 1.123 W

A.2. Applications information

A.2.1. I/O interface

The transfer of data between the processing system and logic is handled using the AXI4-
Lite protocol [36].

45

A. MultiCorePricer 2015 Datasheet

A.2.2. Storage address map

The I/O interface can be used to directly write to the internal RAM. The address space
is structured as shown below:

031

Seed(0)0x7AA00000

...

Seed(8)
0x7AA00023

0189151631

NoOfSim log2(NoOfSim) S0x7AA00024

VolSdt(0)(17 downto 2) VolSdt(1)(17 downto 2)

VolSdt(2)(17 downto 2) Drift(0)(27 downto 12)

Drift(1)(27 downto 12) Drift(2)(27 downto 12)

(�oat) Strike

log(Strike)(21 downto 6) log(Barrier)(29 downto 14)

Ai(0) Ai(1)

Ai(2) Ai(3)

0131419202122232425262728293031

V
o
lS
d
t(
0
)(
1
0
)

V
o
lS
d
t(
1
)(
1
0
)

V
o
lS
d
t(
2
)(
1
0
)

D
ri
ft
(0
)(
1
1
1
0
)

D
ri
ft
(1
)(
1
1
1
0
)

D
ri
ft
(2
)(
1
1
1
0
)

log(Strike)
(5 downto 0)

log(Barrier)
(13 downto 0)

01211121516212231

Drift(0)(9 downto 0) Drift(1)(9 downto 0) Drift(2)(9 downto 0)

Ai(4) NoOfSteps P
S

0x7AA0004F

01231

A
ck

R
eq

0x7AA00050

0x7AA00053

031

(double) Price(63 downto 32)0x7AA00054

(double) Price(31 downto 0)
0x7AA0005B

46

A. MultiCorePricer 2015 Datasheet

Data Format Content

(int,frac,s/u)

Seed(0-8) (32,0,u) 32-bit starting seeds for the seed generation

S (1,0,u) Bit signaling that all seeds have been written

NoOfSim (33,-10,u) Total number of simulated paths (used by the sim-
ulation counter)

log2(NoOfSim) (8,0,u) Total Number of simulated paths (used to divide
single simulation price)

VolSdt (-2,20,u) = σ ·
√

∆t, constant factor in the model

Drift (-3,30,s) = (µ− σ2

2) ·∆t, constant factor in the model

(�oat) Strike �oat Strike price in single precision �oating point format

log(Strike) (4,17,s) Natural logarithm of the strike price (used for pay-
o� check)

log(Barrier) (3,26,s) Natural logarithm of the barrier level in percent
(used for barrier event check)

Ai(0-4) (0,16,u) Coe�cients of the Cholesky decomposition of the
correlation matrix of the assets

NoOfSteps (15,0,u) Number of steps per simulation (used by the Iter-
ation Block counter)

PS (1,0,u) Bit signaling that all pricing parameters have been
written

Ack (1,0,u) Bit signaling the PL that the price has been read
by the PS

Req (1,0,u) Bit signaling the PS that the price can be read

(double) Price double Price in double precision �oating point format

Table A.1.: List of input signals, their content and format (integer and fractional bit
width (negative value means fractional point outside of the word), signed or
unsigned)

47

A. MultiCorePricer 2015 Datasheet

A.2.3. Basic usage

Before any products can be priced, the necessary header �le has to be generated. This
is done by de�ning the following variables in the Matlab script "ParameterSet.m" and
running it:

• assets: Array containing the address numbers in the Tickerlist, where the his-
torical data of the three underlying assets is stored (can be a matrix containing
di�erent asset sets in each row)

• barrierInPercent: The barrier value in percent (can be an array with di�erent
barrier values)

• strike: The strike price as a percentage of the initial price

• timeToMaturity: The time to maturity in years (can be a fractional)

• stepsPerYear: Number of iteration steps per year (de�nes the ∆t in the model)

• riskFreeRate: The risk-free interest rate

• noOfSim: The number of simulated paths used to price the product (will be rounded
up to the next power of two)

The GenerateHeader.m Matlab script then uses the historical data to compute the volatil-
ities and correlation matrix of the underlying assets. The historical data of the various
assets has to be stored in a struct named "Tickerlist" where each asset has the �elds
"time" and "value" with the corresponding data.

48

Appendix B
Detailed Block Diagram and Code

Overview

B.1. Block diagram

A detailed block diagram of the top level of the PL is presented in �gure B.1.

B.2. VHDL code overview

A coarse overview of what is where in the code �le hierarchy is given here to aid readers,
eager to understand the details of the VHDL code, �nd what they want.

Top level chip entities

top.vhd Toplevel entity with AXI4-Lite interface and RAM

Control

Controller.vhd Entity containing all internal components and controlling data �ow

Seeder.vhd Seed generator for all Cores

Core.vhd Sub-entity of the Controller containing Core components

Seeder.vhd

SeedTausworthe.vhd Modi�ed combined Tausworthe generator (�gure 4.7)

49

B. Detailed Block Diagram and Code Overview

Core.vhd

GRNG3.vhd Gaussian random number generator presented in chapter 4

Correlator.vhd Applies the Cholesky matrix

IterationBlock.vhd Simulates the GBM model as explained in chapter 4

GRNG3.vhd

Tausworthe.vhd Combined Tausworthe generator (�gure 4.4)

Other �les

constants.vhd Constants used throughout the project

types.vhd Type declarations used throughout the project

RealARITH.vhd Arithmetic operations library designed by IIS

top_tb.vhd Testbench (not necessary for synthesis)

tb_util.vhd Testbench utilities by IIS (not necessary for synthesis)

50

B. Detailed Block Diagram and Code Overview

B.3. Matlab pricing script

%% Input parameters
% s0 : i n i t i a l p r i c e (s e t to 1 = 100% f o r a l l)
% s t r i k e : s t r i k e p r i c e (as percentage o f s0)
% ba r r i e r : b a r r i e r l e v e l (as percentage o f s0)
% timeToMaturity : product durat ion in years
% r f : r i s k - f r e e ra t e
% corrMat : c o r r e l a t i o n Matrix o f the under ly ings
% = (co r r (p r i c e 2 r e t (t imeSe r i e sP r i c e)))
% vo l : v o l a t i l i t y o f the under ly ings
% = std (p r i c e 2 r e t (t imeSe r i e sP r i c e) , 1)∗ s q r t (255)
% noOfSim : number o f paths to s imulate
% noOfSteps : number o f s t ep s per s imu la t i on
function [op t i onPr i c e] = mult iAssetBarr ierAny (s0 , s t r i k e , ba r r i e r , . . .

timeToMaturity , r f , corrMat , vol , noOfSim , noOfSteps)

%% Pr e l l o c a t i o n

% a l l o c a t e v a r i a b l e s
opt i onPr i c e = [] ;

% s p e c i f y p r e c i s i o n
Spec . p r e c i s i o n = ' double ' ;

%% Preproce s s ing

deltaT = timeToMaturity/noOfSteps ;

% Ca lcu la te Chol Decomposition
colDecCorr = sqrtm(corrMat) ;

%% Calcu la t e independent normal d i s t r i b u t i o n path

noOfAssets = s ize (s0 , 1) ;

randomSamples = zeros (noOfAssets , noOfSteps , noOfSim , Spec . p r e c i s i o n) ;

for i i = 1 : noOfAssets
randomSamples (i i , : , :) = randn(noOfSim , noOfSteps) ' ;

end

%% Apply c o r r e l a t i o n matrix to independent s imu la t i on s

for i i = 1 : noOfSim
randomSamples (: , : , i i) = reshape (colDecCorr ∗randomSamples (: , : , i i) , . . .

[noOfAssets , noOfSteps]) ;
end

51

B. Detailed Block Diagram and Code Overview

%% Build p r i c e pathes

% c a l c u l a t e d r i f t matrix
d r i f tMat r i x = repmat (exp ((r f - 1/2∗ vo l .^2)∗ deltaT) , [1 , noOfSteps]) ;

% c a l c u l a t e d i f f u s i o n matrix
d i f f u s i onMat r i x = exp(repmat (vol , [1 , noOfSteps , noOfSim]) . ∗ . . .

randomSamples∗sqrt (deltaT)) ;

% c a l u l a t e sample paths
pathMatrix = repmat (s0 , [1 , noOfSteps , noOfSim]) . ∗ . . .
cumprod(repmat (dr i f tMatr ix , [1 , 1 , noOfSim]) . ∗ d i f fu s i onMat r i x , 2) ;

%% Calcu la t e Option Pr i ce

% down option , check b a r r i e r h i t
i f any(any(s0 <= repmat (ba r r i e r , [1 , s ize (s0 , 2)]) , 1))

index = true (1 ,T, NoOfSim) ;
else

index = pathMatrix <= repmat (ba r r i e r , [1 , noOfSteps , noOfSim]) ;
end

% out opt ion
indexBH = ~any(any(index , 2) , 1) ;
sum(sum(indexBH)) ;

% s e t h i t s to zero and c a l c u l a t e average
opt i onPr i c e = exp(- r f ∗deltaT ∗noOfSteps) / (noOfSim) ∗ . . .
sum(double (indexBH) .∗ min(max(pathMatrix (: , end , :) - . . .
repmat (s t r i k e , [1 , 1 , noOfSim]) , zeros (noOfAssets , 1 , noOfSim)) , [] , 1)) ;

52

B. Detailed Block Diagram and Code Overview

S
_
A

X
I_

A
R

E
S

E
T

N

S
_
A

X
I_

A
C

L
K

S
_
A

X
I_

W
D

A
T

A

S
_
A

X
I_

A
R

A
D

D
R

S
_
A

X
I_

R
D

A
T

A

R
s
tx

R
B

I

C
lk

x
C

I

A
d
d
re

s
s

W
rite

D
a
ta

R
e
a
d
D

a
ta

S
t
o
r
a
g
e

S
_
A

X
I_

A
W

A
D

D
R

S
_
A

X
I_

R
E

A
D

Y

S
_
A

X
I_

V
A

L
ID

SeedSetxS

SeedxD

AixD

VolSdt

DriftxD

LogStrkxD

LogBarxD

NStpxD

NumPth

PotPthxD

ContAckxS

DbStrkxD

ContReqxS

PricexD

SeedSetxSI

SeedxDI

AixDI

VolSdtxDI

DriftxDi

LogStrkxDI

DbStrkxDI

LogBarxDI

NStpxDI

NumPth

PotPth

AckxSI

ReqxSO

PricexDO

9
x
3
2

5
x
1
6

3
x
1
8

3
x
2
8

2
2

3
2

2
4

1
5

2
3

8
6
4

R
s
tx

R
B

I

C
lk

x
C

I

SeedSetxSI

SeedxDI

S
e
e
d

G
e
n
e
r
a
t
i
o
n

Rand0xDO

Rand0xDO

Rand0xDO

3
2

3
2

3
2

9
x
3
2

R
s
tx

R
B

I

C
lk

x
C

I

SetxSSetxSI

AixDI

VolSdtxDI

DriftxDi

LogStrkxDI

DbStrkxDI

LogBarxDI

NStpxDI

SetxSI

S
e
e
d
S

e
tx

S
I

S
e
e
d
x
D

I

BrkAckxSI

BrkReqxSO

AckxSI

ReqxSO

SetxSI

I
t
e
r
a
t
i
o
n

B
l
o
c
k

F
E

x
x
D

O
2
5

F
l
o
a
t
i
n
g

P
o
i
n
t

P
i
p
e
l
i
n
e

F
E

x
x
D

I

PotPth

PricexDO

C
o
n
t
r
o
l
l
e
r

M
u
l
t
i
C
o
r
e
P
r
i
c
e
r

2
0
1
5

Figure B.1.: Detailed block diagram

53

Appendix C
MultiCorePricer 2015 Simulation Data

This appendix lists the underlying assets used for the test products to analyze the pre-
cision and speed-up of the architecture. Extensive lists of the average convergence point
errors and speed-ups are given. For all pricings a ∆t of 1 year

1000 was used.

C.1. Black-Scholes Comparison

The historical data between 2010 and 2014 of the following stocks, shown in �gure C.1,
were used to determine the input parameters and compute the average convergence point
error:

• ABB (ABBN)

• Nestle (NESN)

• Novartis (NOVN)

• Swatch (UHR)

• Swisscom (SCMN)

• UBS (UBSN)

Table C.1 shows a list of the maximum and average error of the architecture's convergence
point for di�erent call option parameters over the six above listed stocks. Monte-Carlo
pricings with 214 and 217 simulated paths were used. The strike price is given as a
percentage of the initial price.

54

C. MultiCorePricer 2015 Simulation Data

2010 2011 2012 2013 2014

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Time

P
ri
c
e
/I
n
it
ia

l
P

ri
c
e

ABB

Nestle

Novartis

Swatch

Swisscom

UBS

Figure C.1.: Time series of the historical data used for the Black-Scholes comparison

C.2. Worst-of Barrier Call Option Comparison

The historical data between 2010 and 2014 of the following stock-sets were used to
determine the input parameters and compute the average convergence point error (the
rightmost percentage shows the approximate average correlation of the stocks with each
other):

• ABB (ABBN), CIE Financiere Richemont (CFR), Swatch (UHR) (70%)

• SGS (SGSN), swissRE (SREN), UBS (UBSN) (52%)

• Actelion (ATLN), Novartis (NOVN), Swisscom (SCMN) (35%)

Table C.2 shows a list of the maximum and average error of the architecture's convergence
point for di�erent product parameters over the three above listed stock-sets with strike
prices of 100% and 95% of the initial price. Monte-Carlo pricings with 214, 217 and 220

paths were used. The barrier price is given as a percentage of the initial price. The

55

C. MultiCorePricer 2015 Simulation Data

error values and standard deviations are given as a percentage relative to the computed
ground truth price.

C.3. Speed-Up

Speed-up was determined by comparing the time the FPGA needed to price a product
with the time needed by the Matlab script running on a single Intel i5-4200U Core
running at 1.60GHz with 8GB RAM in Matlab R2013b 64-bit on Ubuntu 12.04.

Table C.3 shows the computation times on CPU and FPGA and the resulting speed-ups
for di�erent product setups. The CPU and FPGA computation times were determined
by running the corresponding product pricing multiple times and taking the average
computation time.

56

C. MultiCorePricer 2015 Simulation Data

Strike Time to 214 Path Pricing 217 Path Pricing

Price Maturity Max. Error Avg. Error Max. Error Avg. Error

120% 0.5 years 0.448% 0.295% 0.332% 0.180%

120% 1 year 0.237% 0.180% 0.237% 0.137%

120% 2 years 0.205% 0.134% 0.180% 0.088%

120% 3 years 0.122% 0.095% 0.075% 0.046%

110% 0.5 years 0.204% 0.125% 0.201% 0.115%

110% 1 year 0.164% 0.108% 0.116% 0.087%

110% 2 years 0.116% 0.056% 0.107% 0.052%

110% 3 years 0.121% 0.061% 0.101% 0.081%

100% 0.5 years 0.112% 0.076% 0.081% 0.047%

100% 1 year 0.075% 0.054% 0.077% 0.046%

100% 2 years 0.088% 0.062% 0.080% 0.055%

100% 3 years 0.077% 0.059% 0.076% 0.045%

95% 0.5 years 0.162% 0.057% 0.047% 0.023%

95% 1 year 0.145% 0.053% 0.060% 0.033%

95% 2 years 0.139% 0.062% 0.049% 0.023%

95% 3 years 0.127% 0.090% 0.050% 0.032%

90% 0.5 years 0.071% 0.041% 0.055% 0.029%

90% 1 year 0.078% 0.041% 0.068% 0.034%

90% 2 years 0.052% 0.029% 0.042% 0.026%

90% 3 years 0.091% 0.034% 0.028% 0.013%

80% 0.5 years 0.041% 0.032% 0.038% 0.016%

80% 1 year 0.060% 0.029% 0.024% 0.012%

80% 2 years 0.095% 0.048% 0.047% 0.017%

80% 3 years 0.078% 0.045% 0.031% 0.012%

70% 0.5 years 0.035% 0.027% 0.014% 0.006%

70% 1 year 0.031% 0.023% 0.034% 0.016%

70% 2 years 0.035% 0.026% 0.039% 0.023%

70% 3 years 0.052% 0.039% 0.052% 0.023%

Table C.1.: Pricing precision for a single asset call option

57

C. MultiCorePricer 2015 Simulation Data

B
a
r
r
ie
r

T
im

e
to

2
1
4
P
a
th

P
r
ic
in
g

2
1
7
P
a
th

P
r
ic
in
g

2
2
0
P
a
th

P
r
ic
in
g

P
r
ic
e

M
a
tu
r
it
y

M
a
x
.
E
r
r
o
r

A
v
g
.
E
r
r
o
r

A
v
g
.
S
td
.

M
a
x
.
E
r
r
o
r

A
v
g
.
E
r
r
o
r

A
v
g
.
S
td
.

M
a
x
.
E
r
r
o
r

A
v
g
.
E
r
r
o
r

A
v
g
.
S
td
.

1
5
%

1
y
ea
r

0
.1
2
0
%

0
.0
4
2
%

1
.7
9
9
%

0
.0
9
7
%

0
.0
4
5
%

0
.6
4
9
%

0
.0
8
9
%

0
.0
5
2
%

0
.2
1
7
%

4
0
%

1
y
ea
r

0
.0
6
3
%

0
.0
4
1
%

1
.7
9
7
%

0
.1
2
6
%

0
.0
6
4
%

0
.6
2
8
%

0
.0
9
7
%

0
.0
4
5
%

0
.2
2
0
%

5
0
%

1
y
ea
r

0
.0
6
8
%

0
.0
5
3
%

1
.7
6
7
%

0
.0
5
6
%

0
.0
3
2
%

0
.6
2
3
%

0
.0
9
7
%

0
.0
5
6
%

0
.2
3
0
%

6
0
%

1
y
ea
r

0
.0
4
9
%

0
.0
2
3
%

1
.7
9
7
%

0
.1
2
6
%

0
.0
4
1
%

0
.6
3
1
%

0
.0
4
0
%

0
.0
2
5
%

0
.2
2
6
%

7
0
%

1
y
ea
r

0
.0
4
9
%

0
.0
2
3
%

1
.8
0
8
%

0
.0
7
5
%

0
.0
3
7
%

0
.6
7
3
%

0
.1
2
9
%

0
.0
6
6
%

0
.2
3
7
%

8
0
%

1
y
ea
r

0
.1
2
0
%

0
.0
6
9
%

1
.9
5
2
%

0
.0
8
0
%

0
.0
3
8
%

0
.6
8
6
%

0
.0
6
6
%

0
.0
3
0
%

0
.2
3
5
%

8
5
%

1
y
ea
r

0
.2
9
0
%

0
.2
0
1
%

2
.2
2
5
%

0
.2
0
5
%

0
.0
8
5
%

0
.7
4
9
%

0
.0
9
1
%

0
.0
6
3
%

0
.2
7
9
%

9
0
%

1
y
ea
r

0
.5
0
1
%

0
.4
3
4
%

2
.8
8
3
%

0
.1
7
6
%

0
.1
0
9
%

1
.0
4
2
%

0
.1
3
6
%

0
.0
9
2
%

0
.3
5
1
%

1
5
%

2
y
ea
rs

0
.1
4
6
%

0
.0
7
4
%

1
.9
0
2
%

0
.2
7
5
%

0
.1
3
3
%

0
.6
5
8
%

0
.1
1
8
%

0
.0
7
5
%

0
.2
4
1
%

4
0
%

2
y
ea
rs

0
.1
5
4
%

0
.0
6
6
%

1
.8
8
5
%

0
.1
5
3
%

0
.0
6
5
%

0
.6
7
4
%

0
.1
3
0
%

0
.1
0
0
%

0
.2
2
6
%

5
0
%

2
y
ea
rs

0
.0
8
0
%

0
.0
5
1
%

1
.9
3
0
%

0
.1
2
9
%

0
.0
6
1
%

0
.6
5
8
%

0
.1
0
0
%

0
.0
8
0
%

0
.2
2
9
%

6
0
%

2
y
ea
rs

0
.1
0
2
%

0
.0
4
0
%

1
.9
0
2
%

0
.1
6
2
%

0
.1
0
2
%

0
.6
8
5
%

0
.1
1
9
%

0
.0
8
7
%

0
.2
3
1
%

7
0
%

2
y
ea
rs

0
.0
9
9
%

0
.0
3
4
%

2
.0
1
4
%

0
.1
2
4
%

0
.0
7
9
%

0
.7
2
1
%

0
.1
5
1
%

0
.0
6
4
%

0
.2
4
2
%

8
0
%

2
y
ea
rs

0
.2
5
5
%

0
.1
7
4
%

2
.4
0
7
%

0
.1
2
1
%

0
.0
6
5
%

0
.8
2
6
%

0
.0
4
9
%

0
.0
3
3
%

0
.2
9
9
%

8
5
%

2
y
ea
rs

0
.4
8
7
%

0
.3
8
2
%

2
.8
7
0
%

0
.1
8
1
%

0
.0
7
6
%

1
.0
1
2
%

0
.1
0
9
%

0
.0
5
0
%

0
.3
7
6
%

9
0
%

2
y
ea
rs

0
.9
5
2
%

0
.8
3
2
%

3
.8
8
3
%

0
.5
6
0
%

0
.4
0
0
%

1
.3
4
3
%

0
.3
9
8
%

0
.2
6
3
%

0
.5
0
4
%

1
5
%

3
y
ea
rs

0
.1
8
9
%

0
.0
9
9
%

1
.9
7
6
%

0
.2
2
1
%

0
.0
9
7
%

0
.6
7
6
%

0
.1
1
2
%

0
.0
9
1
%

0
.2
4
5
%

4
0
%

3
y
ea
rs

0
.1
4
8
%

0
.1
0
2
%

1
.9
8
0
%

0
.1
7
7
%

0
.1
3
9
%

0
.7
4
1
%

0
.1
6
1
%

0
.1
1
4
%

0
.2
6
2
%

5
0
%

3
y
ea
rs

0
.1
4
6
%

0
.0
5
7
%

2
.0
0
2
%

0
.1
6
2
%

0
.1
1
0
%

0
.6
9
8
%

0
.1
4
4
%

0
.0
8
9
%

0
.2
4
2
%

6
0
%

3
y
ea
rs

0
.0
7
4
%

0
.0
3
4
%

2
.0
3
8
%

0
.2
9
4
%

0
.1
1
4
%

0
.7
1
9
%

0
.1
1
9
%

0
.0
8
4
%

0
.2
4
5
%

7
0
%

3
y
ea
rs

0
.1
2
4
%

0
.0
7
5
%

2
.2
2
9
%

0
.1
1
8
%

0
.0
6
8
%

0
.7
7
7
%

0
.0
8
3
%

0
.0
4
9
%

0
.2
5
7
%

8
0
%

3
y
ea
rs

0
.3
1
8
%

0
.2
5
4
%

2
.7
9
5
%

0
.0
8
4
%

0
.0
5
2
%

0
.9
5
4
%

0
.0
7
2
%

0
.0
4
2
%

0
.3
2
7
%

8
5
%

3
y
ea
rs

0
.5
1
2
%

0
.4
5
7
%

3
.4
2
7
%

0
.3
9
4
%

0
.1
2
6
%

1
.2
0
2
%

0
.1
1
9
%

0
.0
6
2
%

0
.4
0
8
%

9
0
%

3
y
ea
rs

1
.3
6
5
%

1
.1
2
8
%

4
.7
3
9
%

0
.3
8
5
%

0
.3
0
1
%

1
.6
4
7
%

0
.3
6
5
%

0
.2
2
7
%

0
.5
7
8
%

5
0
-8
0
%

1
y
ea
r

0
.0
4
2
%

0
.0
3
7
%

0
.0
4
4
%

5
0
-8
0
%

2
y
ea
rs

0
.0
7
5
%

0
.0
7
7
%

0
.0
6
6
%

5
0
-8
0
%

3
y
ea
rs

0
.1
0
5
%

0
.0
8
6
%

0
.0
6
6
%

5
0
-8
0
%

1
-3

y
ea
rs

0
.0
7
4
%

0
.0
6
7
%

0
.0
5
9
%

1
5
-9
0
%

1
-3

y
ea
rs

0
.1
9
8
%

0
.1
0
2
%

0
.0
8
1
%

T
ab
le
C
.2
.:
P
ri
ci
n
g
p
re
ci
si
on

fo
r
th
e
w
or
st
-o
f
b
ar
ri
er

ca
ll
op
ti
on

(e
rr
or
s
in

ab
so
lu
te

va
lu
e)

58

C. MultiCorePricer 2015 Simulation Data

Barrier Time to CPU FPGA

Price Maturity Comp. Time Comp. Time Speed-up

15% 1 year 3.50442s 0.00638s 549.371

40% 1 year 3.50384s 0.00637s 550.047

50% 1 year 3.50731s 0.00632s 553.994

60% 1 year 3.51637s 0.00611s 573.574

70% 1 year 3.50272s 0.00547s 640.598

80% 1 year 3.48017s 0.00413s 851.542

85% 1 year 3.48866s 0.00315s 1119.573

90% 1 year 3.50583s 0.00201s 1757.184

15% 2 years 6.92515s 0.01271s 546.040

40% 2 years 6.90814s 0.01254s 553.657

50% 2 years 6.87407s 0.01204s 576.917

60% 2 years 6.93533s 0.01089s 638.239

70% 2 years 6.97458s 0.00888s 784.736

80% 2 years 6.96409s 0.00597s 1170.708

85% 2 years 7.00048s 0.00428s 1635.074

90% 2 years 6.93196s 0.00256s 2726.818

15% 3 years 10.44938s 0.01905s 545.113

40% 3 years 10.44546s 0.01828s 568.089

50% 3 years 10.37941s 0.01693s 613.772

60% 3 years 10.39047s 0.01460s 712.742

70% 3 years 10.44707s 0.01127s 926.177

80% 3 years 10.26342s 0.00715s 1462.227

85% 3 years 10.34386s 0.00498s 2099.776

90% 3 years 10.39921s 0.00290s 3600.175

Table C.3.: Speed-ups and computation times of pricings using 214 simulated paths for
di�erent product setups

59

Appendix D
Presentation Slides

60

MultiCorePricer: Derivative Pricing
using hardware acceleration on the Zynq

Miguel Guerrero
Harald Kröll, Donnacha Daly,

Marcus Hildmann, Lukas Bruderer
Prof. Qiuting Huang, Prof. Didier Sornette

ETH Zurich

January 29, 2015

1 / 40

Outline

1 Introduction
Project Background
Worst-of Barrier Option
Pricing the Product
Simulating Underlying Paths

2 Design
Design Overview
Core
Gaussian Random Number Generator
Iteration Block

3 Results
Precision & Speed-up
Utilization
Conclusion

2 / 40

D. Presentation Slides

61

Introduction

3 / 40

Project Background

A derivative is a contract that derives its value from the
performance of an underlying entity, which can be an asset,
index, or interest rate and is often called an underlying.

Analytical evaluation of prices and risk figures generally not
possible → Monte-Carlo simulations

Goal: Investigate advantages of a dedicated architecture on
an FPGA over CPU based one.

4 / 40

D. Presentation Slides

62

Call Option

Contract which gives the buyer the right, but not the
obligation, to buy an underlying at a specified date for a
specified price.

Profit in CHF

Loss in CHF

0

+5

+10

+15

+20

-20

-15

-10

-5
20 30 40 50 60

Price
in

CHF

Initial Price

Profit

Loss

IBM

5 / 40

Barrier Call Option

A Call option that nullifies if the price drops on or below the
barrier level during it’s lifetime.

Profit in CHF

Loss in CHF

0

+5

+10

+15

+20

-20

-15

-10

-5
20 30 40 50 60

Price
in

CHF

Initial Price

Profit

Loss 40

Barrier

IBM

6 / 40

D. Presentation Slides

63

Worst-of Barrier Option

Multiple underlyings instead of one

3 underlyings fixed for this architecture

Payout is measured on worst performing underlying

7 / 40

Worst-of Barrier Option

020406080100
80

85

90

95

100

105

110

115

120

Time to Expiry

A
ss

et
 P

ri
ce

[%]

[d]

IBM

Intel

Xilinx

8 / 40

D. Presentation Slides

64

Worst-of Barrier Option

020406080100
80

85

90

95

100

105

Time to Expiry

A
ss

et
 P

ri
ce

[%]

[d]

Xilinx

IBM

Intel

9 / 40

Worst-of Barrier Option

020406080100
75

80

85

90

95

100

105

Time to Expiry

A
ss

et
 P

ri
ce

[%]

[d]

Intel

Xilinx

IBM

10 / 40

D. Presentation Slides

65

Pricing the Product

Price is the mean of all simulated outcomes

Three possible simulation outcomes:
1 No barrier event & lowest underlying’s price > Initial price
→ return price of lowest underlying

2 No barrier event & lowest underlying’s price ≤ Initial price
→ return 0

3 Barrier event
→ return 0

11 / 40

Simulating Underlying Paths

Model used: Geometric Brownian motion

dSt =

drift︷ ︸︸ ︷
µStdt +

diffusion︷ ︸︸ ︷
σStdWt S(t) price at time t

µ(t) percentage drift
σ(t) percentage volatility (std)
W (t) Wiender process or Brownian motion

W(t) starts at 0, moves along normally distributed increments

Applying one time step:
St = S0 · exp((µ− σ2

2)t + σWt)

Correlated Wiener process ⇒ correlated increments

W (t)−W (t −∆t) ∝




1 0 0
a0 a1 0
a2 a3 a4





Grd0

Grd1

Grd2


 =



ε0

ε1

ε2




12 / 40

D. Presentation Slides

66

Design

13 / 40

Design Overview

AXI4 I/O
Interface

Storage and
Control

Seed
Generator

Memory
23 x 32 bit

MultiCorePricer 2015

Host computer

Core Bank

GRNG

Programmable Logic

Processing System

Floating Point Pipeline

fix
2

float
ex 1

N

∑

14 / 40

D. Presentation Slides

67

Core

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Apply
Correlation

Iteration Block

Input Parameters

Seeds

Seeds

Seeds

15 / 40

Core

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Apply
Correlation

Iteration Block

Input Parameters

Seeds

Seeds

Seeds

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

16 / 40

D. Presentation Slides

68

Central Limit Theorem

Arithmetic mean of a sufficiently large number of independent
random variables will be approximately normally distributed

17 / 40

Central Limit Theorem

Arithmetic mean of a sufficiently large number of independent
random variables will be approximately normally distributed

Seldom used for high accuracy normally distributed random
numbers

Finite number of additions → error in tail region

18 / 40

D. Presentation Slides

69

Central Limit Theorem

Low accuracy distribution performs well

For this application → relative error of up to 1% acceptable

n = 3 already fulfills this condition

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

n = 3

reference

Frequency

Value

Matlab (randn) vs. CLT (n=3)

19 / 40

Gaussian Random Number Generator

Random Number Generator

Random Number Generator

Random Number Generator

Seeds

Seeds

Seeds

D Q

SetxDI

Seed0xDI

32

<< 13

"0xFFFFFFFE"
<< 12

>> 19

32

D Q

Seed0xDI

32

<< 2

"0xFFFFFFF8"
<< 4

>> 25

32

D Q

Seed0xDI

32

<< 3

"0xFFFFFFFE"
<< 17

>> 11

32

32

0

1

0

1

0

1

20 / 40

D. Presentation Slides

70

Uniform Random Number Generator

Proposed by L’Ecuyer et al.

Combined generator

Pi(z) = zk − zq−1 mod 2

Pcomb(z) = P(z) · P(z) · P(z)

Few nonzero coefficients

Periodicity of 288

D Q

SetxDI

Seed0xDI

32

<< 13

"0xFFFFFFFE"
<< 12

>> 19

32

D Q

Seed0xDI

32

<< 2

"0xFFFFFFF8"
<< 4

>> 25

32

D Q

Seed0xDI

32

<< 3

"0xFFFFFFFE"
<< 17

>> 11

32

32

0

1

0

1

0

1

21 / 40

Core

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Apply
Correlation

Iteration Block

Input Parameters

Seeds

Seeds

Seeds

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Zynq DSP48 units



1 0 0

a0 a1 0

a2 a3 a4







Grd0
Grd1
Grd2


 =




ε0
ε1
ε2




Grd0

Grd1

Grd2

ε0

ε1

ε2

22 / 40

D. Presentation Slides

71

Core

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Apply
Correlation

Iteration Block

Input Parameters

Seeds

Seeds

Seeds

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Zynq DSP48 units



1 0 0

a0 a1 0

a2 a3 a4







Grd0
Grd1
Grd2


 =




ε0
ε1
ε2




Grd0

Grd1

Grd2

ε0

ε1

ε2

23 / 40

Iteration Block

Si (n) = Si (n − 1) · exp((µ− σ2

2)∆t + σ
√

∆t εn−1)

log[Si (n)] = log[Si (n − 1)] + (µ− σ2

2)t︸ ︷︷ ︸
drift=const.

+σ
√

∆t εn−1︸ ︷︷ ︸
Diffusion

log[Si (0)] = 0→ Si (0) = 1, instead of Si (0) = Starting price

log[Si (n)] ≤ log(Barrier in percent)

24 / 40

D. Presentation Slides

72

Iteration Block

Iteration Cell (0)

Iteration Cell (1)

Iteration Cell (2)

Test for

Barrier Event

Step

counter

0

0

1

log(Barrier)

ε0

σ
√

∆t

(µ − σ2

2
)∆t

noOfSteps

log[S0(n)]

min < Strike

Break
Request

Output

Output
Request

log[Si (n)] = log[Si (n − 1)] + (µ− σ2

2
∆t)

︸ ︷︷ ︸
Drift=const.

+ (σ
√

∆t · εi)
︸ ︷︷ ︸

Diffusion

25 / 40

Core

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Gaussian Random
Number Generator

Apply
Correlation

Iteration Block

Input Parameters

Seeds

Seeds

Seeds

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4




1 0 0

a0 a1 0

a2 a3 a4







Grd0
Grd1
Grd2


 =




ε0
ε1
ε2


 log(Sn)=log(Sn−1)+(µ–σ

2

2
)∆t+(σ

√
∆t)εi

Grd0

Grd1

Grd2

ε0

ε1

ε2

log(SN)

26 / 40

D. Presentation Slides

73

Design Overview

AXI4 I/O
Interface

Storage and
Control

Seed
Generator

Memory
23 x 32 bit

MultiCorePricer 2015

Host computer

Core Bank

GRNG

Programmable Logic

Processing System

Floating Point Pipeline

fix
2

float
ex 1

N

∑

27 / 40

Results

28 / 40

D. Presentation Slides

74

Precision

Relative error for convergence
point

Standard deviation for Zynq
and Matlab the same

Higher rel. error for high barrier
and long product lifetime
→ Non-ideal Gauss bell

Barrier [%]

Duration 40 60 80

1 year 0.0005 0.0005 0.0012

2 years 0.0005 0.0005 0.0025

3 years 0.0014 0.0014 0.0031

Zynq vs. Matlab, ∆t = 1year
1000

29 / 40

Speed-Up

Higher Barrier
→ more simulation breaks

No barrier
→ Speed-Up ≈ 550

Barrier [%]

Duration 40 60 80

1 year 552 581 891

2 years 559 685 1250

3 years 607 773 1551

Zynq vs. Matlab, ∆t = 1year
1000

30 / 40

D. Presentation Slides

75

Utilization

Maximum clock frequency: 100MHz

Full Arch. Single Core Exp, Add Cont.+AXI

DSP
DSP48 95.91% 3.64% 1.36% 0%

Slice Logic
Slice LUTs 81.02% 2.70% 4.15% 6.67%
Slice Registers 39.35% 1.33% 3.06% 1.66%

31 / 40

Utilization

Zynq-7020 Zynq MMP
XC7Z020 XC7Z045

DSP Slices 220 2020
Logic Cells 85k 444k

Cores 26 135
Speed-up 600-900 3120-46800

Price 495.00$ 1,495.00$

32 / 40

D. Presentation Slides

76

Conclusion

General speed-up of 600x to 900x

Higher speed-up for longer product lifetime

First architecture for financial products using CLT Gaussian
RNG

Overhead has been held minimal by using a slim AXI4-Lite
communication protocol and dedicated Exp() and Add IPs

Limiting factor on Zynq are the DSP Slices

33 / 40

Appendix

34 / 40

D. Presentation Slides

77

Tausworthe Generator

Sequence of bits from a linear recurrence modulo 2
xn = axn− + ...+ akxn−k mod 2, xi, ai ∈ {0, 1}
P (z) = zk − azk− − ...− ak
Fractional numbers formed by taking blocks of bits
un =

∑L
i=1 xns+i−12−i

11010010011000010111111000110101
︸ ︷︷ ︸

s
︸ ︷︷ ︸

L

System deterministic ⇒ Produces pseudorandom numbers

Periodicity of p = 2k − 1 if P is primitive, s0 6= 0, and s is
coprime to p

Requires s steps for each un

35 / 40

Tausworthe Generator

Faster implementation for special cases.

Primitive trinomial of the form P (z) = zk − zq − 
0 < 2q < k, 0 < s ≤ k − q < k ≤ L, gcd(s,2k − 1) = 1

D Q

32

<< q

"111111110000"

<< s

>> k-s

32

k
︷ ︸︸ ︷

L−k
︷︸︸︷

1101001001100001

0111111000110101

0110000101111110
L-1 k-s

XOR
L-q-1 k-s-q

L-s-1 L-k
+

Too few nonzero coefficients lead to statistical defects

Period length cannot exceed 2L

36 / 40

D. Presentation Slides

78

Exponential & Adder IP

Single-precision floating point exponential function IP

(−1)sign(1 +
∑23

i=1 b23−i 2
−i)× 2e−127

Number of simulated paths is always a 2’s potence
→ division becomes subtraction of exponent

Double-precision floating point adder

(−1)sign(1 +
∑52

i=1 b52−i 2
−i)× 2e−1023

37 / 40

Finite field

A Finite field or Galois Field is a field that contains a finite
number of elements, called its order.

Common but not the only examples of finite fields are the
integers modulo a prime.

Finite fields only exist when the order is a prime power pk (no
zero divisors allowed).

The Characteristic of a field of order pk is p (this means that
adding p copies of any element always results in zero)

38 / 40

D. Presentation Slides

79

Finite field examples

39 / 40

Picture References

CLT for different n values, courtesy: Revisiting Central Limit Theorem, Malik et al.

Single-precision floating point diagram, courtesy: Wikipedia, Fresheneesz

Double-precision floating point diagram, courtesy: Wikipedia, Codekaizen

Finite field examples, courtesy Wikipedia

40 / 40

D. Presentation Slides

80

D. Presentation Slides

81

Bibliography

[1] �SIX structured products,� http://www.six-structured-products.com, accessed:
2015-01-27.

[2] S. Tolle, B. Hutter, P. Rüthemann, and H. Wohlwend, Structured Products in Wealth

Management. John Wiley & Sons, 2012.

[3] �Schweizerische Nationalbank: Statistisches Monatsheft Dezember 2014,�
http://www.snb.ch/ext/stats/statmon/pdf/defr/D5_1_Wertschriftenb_in_
Kundendepots.pdf, accessed: 2015-01-07.

[4] �SIX Structured Products Exchange AG: Marktreport Nr.11 November 2014,� www.
six-structured-products.com/arcmsdownload/c664fb0c10cb46957c9fb2337a7f7226/
CONTENT.pdf/SIX_SPE_Marktreport_1114_Final.pdf, accessed: 2015-01-07.

[5] P. Brandimarte, Numerical methods in �nance and economics: a MATLAB-based

introduction. John Wiley & Sons, 2013.

[6] A. J. McNeil, R. Frey, and P. Embrechts, Quantitative risk management: concepts,

techniques, and tools. Princeton university press, 2010.

[7] J. Hull, Options, futures and other derivatives. Pearson education, 2009.

[8] D. Matteson and D. Ruppert, �Time-series models of dynamic volatility and corre-
lation,� Signal Processing Magazine, IEEE, vol. 28, no. 5, pp. 72�82, Sept 2011.

[9] P. Boyle, M. Broadie, and P. Glasserman, �Monte carlo methods for security pricing,�
Journal of economic dynamics and control, vol. 21, no. 8, pp. 1267�1321, 1997.

[10] M. Haugh, �Advanced variance reduction techniques,� Lecture Notes IEOR E4703,

Center for Financial Engineering, Columbia University, 2004.

[11] B. Spiers and D. Wallez, �High-performance computing on wall street,� Computer,
vol. 43, no. 12, pp. 53�59, 2010.

82

http://www.six-structured-products.com
http://www.snb.ch/ext/stats/statmon/pdf/defr/D5_1_Wertschriftenb_in_Kundendepots.pdf
http://www.snb.ch/ext/stats/statmon/pdf/defr/D5_1_Wertschriftenb_in_Kundendepots.pdf
www.six-structured-products.com/arcmsdownload/c664fb0c10cb46957c9fb2337a7f7226/CONTENT.pdf/SIX_SPE_Marktreport_1114_Final.pdf
www.six-structured-products.com/arcmsdownload/c664fb0c10cb46957c9fb2337a7f7226/CONTENT.pdf/SIX_SPE_Marktreport_1114_Final.pdf
www.six-structured-products.com/arcmsdownload/c664fb0c10cb46957c9fb2337a7f7226/CONTENT.pdf/SIX_SPE_Marktreport_1114_Final.pdf

Bibliography

[12] L. Hong, L. Zhong-hua, and C. Xue-bin, �The applications and trends of high perfor-
mance computing in �nance,� in Distributed Computing and Applications to Busi-

ness Engineering and Science (DCABES), 2010 Ninth International Symposium on.
IEEE, 2010, pp. 193�197.

[13] E. Jäger, �High performance computing and statistical modeling of �nancial re-
turns,� Master's thesis, ETH Zurich, 2010.

[14] M. Smelyanskiy, �Challenges of mapping �nancial analytics to many-core architec-
ture,� in High Performance Computational Finance, 2008. WHPCF 2008. Workshop

on. IEEE, 2008, pp. 1�1.

[15] R.-S. Liu, Y.-C. Tsai, and C.-L. Yang, �Parallelization and characterization of
GARCH option pricing on GPUs,� in Workload Characterization (IISWC), 2010

IEEE International Symposium on. IEEE, 2010, pp. 1�10.

[16] G. W. Morris, D. B. Thomas, and W. Luk, �FPGA accelerated low-latency market
data feed processing,� in High Performance Interconnects, 2009. HOTI 2009. 17th

IEEE Symposium on. IEEE, 2009, pp. 83�89.

[17] S. Weston, J.-T. Marin, J. Spooner, O. Pell, and O. Mencer, �Accelerating the com-
putation of portfolios of tranched credit derivatives,� in High Performance Compu-

tational Finance (WHPCF), 2010 IEEE Workshop on. IEEE, 2010, pp. 1�8.

[18] D. B. Thomas andW. Luk, �Credit risk modelling using hardware accelerated monte-
carlo simulation,� in Field-Programmable Custom Computing Machines, 2008.

FCCM'08. 16th International Symposium on. IEEE, 2008, pp. 229�238.

[19] A. H. Tse, D. B. Thomas, and W. Luk, �Option pricing with multi-dimensional
quadrature architectures,� in Field-Programmable Technology, 2009. FPT 2009. In-

ternational Conference on. IEEE, 2009, pp. 427�430.

[20] Q. Jin, D. B. Thomas, and W. Luk, �Exploring recon�gurable architectures for
explicit �nite di�erence option pricing models,� in Field Programmable Logic and

Applications, 2009. FPL 2009. International Conference on. IEEE, 2009, pp. 73�
78.

[21] G. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, C. C. Cheung, D.-U. Lee, R. C.
Cheung, and W. Luk, �Recon�gurable acceleration for monte carlo based �nancial
simulation,� in Field-Programmable Technology, 2005. Proceedings. 2005 IEEE In-

ternational Conference on. IEEE, 2005, pp. 215�222.

[22] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. S.
Trew, A. McCormick, G. Smart et al., �Maxwell-a 64 FPGA supercomputer.� AHS,
vol. 7, pp. 287�294, 2007.

[23] X. Tian and K. Benkrid, �Design and implementation of a high performance �nancial
monte-carlo simulation engine on an FPGA supercomputer,� in ICECE Technology,

2008. FPT 2008. International Conference on. IEEE, 2008, pp. 81�88.

83

Bibliography

[24] N. A. Woods and T. VanCourt, �FPGA acceleration of quasi-monte carlo in �nance,�
in Field programmable logic and applications, 2008. FPL 2008. International Con-

ference on. IEEE, 2008, pp. 335�340.

[25] R. Sridharan, G. Cooke, K. Hill, H. Lam, and A. George, �FPGA-based recon�g-
urable computing for pricing multi-asset barrier options,� in Application Accelerators

in High Performance Computing (SAAHPC), 2012 Symposium on. IEEE, 2012,
pp. 34�43.

[26] R. C. Cheung, D.-U. Lee, W. Luk, and J. D. Villasenor, �Hardware generation of
arbitrary random number distributions from uniform distributions via the inver-
sion method,� Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 15, no. 8, pp. 952�962, 2007.

[27] C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk, and
R. Korn, �An energy e�cient FPGA accelerator for monte carlo option pricing with
the heston model,� Conference on Recon�gurable Computing and FPGAs (ReCon-

Fig), pp. 468�474, 2011.

[28] C. de Schryver, D. Schmidt, N. When, E. Korn, H. Marxen, and R. Korn, �A new
hardware e�cient inversion based random number generator for non-uniform distri-
butions,� in Recon�gurable Computing and FPGAs (ReConFig), 2010 International

Conference on. IEEE, 2010, pp. 190�195.

[29] X. Tian, K. Benkrid, and X. Gu, �High performance monte-carlo based option pricing
on fpgas.� Engineering Letters, vol. 16, no. 3, pp. 434�442, 2008.

[30] H. Edrees, B. Cheung, M. Sandora, D. B. Nummey, and D. Stefan, �Hardware-
optimized ziggurat algorithm for high-speed gaussian random number generators.�
in ERSA, 2009, pp. 254�260.

[31] J. S. Malik, A. Hemani, J. N. Malik, B. Silmane, and N. D. Gohar, �Revisiting
central limit theorem: Accurate gaussian random number generation in vlsi,� IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 99, 2014.

[32] �Maximal length lfsr feedback terms,� http://users.ece.cmu.edu/~koopman/lfsr/
index.html, accessed: 2015-01-10.

[33] P. Greisen, �Flexible digital emulator for a wireless mimo channel,� Master's thesis,
ETH Zurich, 2007.

[34] R. C. Tausworthe, �Random numbers generated by linear recurrence modulo two,�
Mathematics of Computation, vol. 19, no. 90, pp. 201�209, 1965.

[35] P. L'Ecuyer, �Maximally equidistributed combined tausworthe generators,� Math.

Comp., vol. 65, pp. 203�213, 1996.

[36] R. Gri�n, �Designing a custom axi-lite slave peripheral,� http://www.silica.com/
�leadmin/02_Products/Productdetails/Xilinx/designing_a_custom_axi_slave_
rev1.pdf, accessed: 2015-01-09.

84

http://users.ece.cmu.edu/~koopman/lfsr/index.html
http://users.ece.cmu.edu/~koopman/lfsr/index.html
http://www.silica.com/fileadmin/02_Products/Productdetails/Xilinx/designing_a_custom_axi_slave_rev1.pdf
http://www.silica.com/fileadmin/02_Products/Productdetails/Xilinx/designing_a_custom_axi_slave_rev1.pdf
http://www.silica.com/fileadmin/02_Products/Productdetails/Xilinx/designing_a_custom_axi_slave_rev1.pdf

	Introduction and problem statement
	Structured Products
	Efficient Monte-Carlo Methods
	Hardware Acceleration
	Financial Instruments
	Call Option
	Barrier Call Option
	Worst-of Barrier Call Option
	Put Options, Best-of, Up/Down-and-In/Out
	Contract Example: Multi Barrier Reverse Convertible

	Project Details
	Project Description
	Project Goals

	Related Work
	Theoretical Background
	Simulating an Asset
	Black-Scholes Model
	Heston Model
	Geometric Brownian Motion (GBM)
	Correlated Wiener Process

	Gaussian Random Number Generator (GRNG)
	Box-Muller Method
	Cumulative Distribution Function Inversion Method
	Ziggurat method
	Central Limit Theorem

	Uniform Random Number Generator (URNG)
	Linear Feedback Shift Registers (LFSR)
	Combined Tausworthe Generator

	Pricing
	Summary

	Hardware Architecture
	Programmable Logic
	I/O Interface and Storage
	Core

	Combined Tausworthe Generator
	Controller

	Processing System
	Batch Pricing
	Pricing Flow

	Results
	Utilization
	Precision
	Black-Scholes Comparison
	Worst-of Barrier Call Option Comparison

	Speed-Up

	Conclusion & Outlook
	MultiCorePricer 2015 Datasheet
	Electrical characteristics
	Applications information
	I/O interface
	Storage address map
	Basic usage

	Detailed Block Diagram and Code Overview
	Block diagram
	VHDL code overview
	Matlab pricing script

	MultiCorePricer 2015 Simulation Data
	Black-Scholes Comparison
	Worst-of Barrier Call Option Comparison
	Speed-Up

	Presentation Slides

